

Parallelization of the Hierarchical Search in Python

for High Performance Embedded Systems

Radoglou Grammatikis Panagiotis, Manganopoulou Evdoxia and Dasygenis Minas

Department of Informatics and Telecommunications Engineering

University of Western Macedonia

Kozani, 50100, Greece

radg.pan@ieee.org, manganopoulou_evi@hotmail.com, mdasyg@ieee.org

Abstract—The number of high performance embedded systems

that are used for multimedia applications, like video encoding or

decoding, has erupted. A key component in video encoding is the

motion estimation, which exhibits high computational complexity

and hard to meet deadlines. The most popular technique for

motion estimation is block matching. The hierarchical search

(HS) is a popular and a very fast block matching algorithm that

achieves the best image quality, with a very high computational

complexity. This complexity is usually handled using

parallelization. Our work differentiates from other authors,

because it targets parallelization on embedded systems using the

Python framework and specifically the Multiprocessing module.

The experimental results on parallelization of the HS algorithm

on a high performance multi core embedded systems, illustrate

the usefulness of our methodology, with speedup up to 1.4.

Keywords— Motion Estimation, Block Matching Algorithms,

Hierarchical Search, Python, Multimedia, Mobile, High

Performance

I. INTRODUCTION

With the development of the network and communication

technologies, multimedia is becoming more and more popular,

among desktop or mobile users. Mobile multimedia requires a

high performance embedded system, like a multi core mobile

phone having a number of ARM processors. High quality

multimedia transmission requires high speed bandwidth.

Thus, the basic problem during video communication is

bandwidth demand. Sending several frames per second in

order to create the illusion of a continuous moving sequence

with high resolution, requires high bandwidth. As a

conclusion, video compression was considered as a solution to

a problem like that.

Since the early 1990s, when video coding technology was

in its infancy, international video compression standards such

as H.261, MPEG-1, H.262/MPEG-2 Video, H.263, and

MPEG-4 Part 2 have been used as powerful engines behind

the commercial success of digital video [6].

The basic efficient of video compression is block matching

motion estimation [7]. In the motion estimation process, a

frame is divided into many non overlapping blocks with

different block sizes. According to the motion contents, the

target block in the current frame is compared with the

candidate blocks in the reference frame. Under the constraint

of cost function, we can obtain the best matched block by

minimizing the functional cost. Finally, the motion vector,

which represents the displacement between the current block

and the best matched block, along with the residual signal

(which is the pixel difference between the current block and

the best matched block) are transported to the next process to

be coded.

There are many popular algorithms for motion estimation

such as Full Search [2], Hierarchical Search [5], 3-step

Logarithmic Search [10] and Parallel Hierarchical One

Dimensional Search [2]. All these algorithms operate on

blocks of equal size, which they have partitioned both current

and previous frame in a successive video stream and estimate

the motion vectors.

Until now, many researchers have presented their works on

parallelizing block motion estimation. They have used either

OpenMP or OpenMPI or GPU [16], or custom architectures

[15] or special FPGA architectures [14]. None of them have

ever tried to parallelize a block matching algorithm on an

existing high performance embedded system, like a smart

mobile phone. The reason is the difficulty of utilizing all these

frameworks on such a platform. Smart mobile phones do not

have a GPGPU, or FPGA, or OpenMP or OpenMPI. Thus,

their methodologies cannot be applied.

In this paper, we present our methodology and our findings

on the parallelization of the hierarchical search block

matching algorithm. All the results were extracted in an

embedded system and also the implementation of the

parallelized HS was written in Python. The main reason we

used the Python programming language is that it provides

portability between different embedded platforms. Also, many

Python modules add a hardware abstraction layer which helps

programmers who don’t have any previous experience in

embedded systems, to write code easily.

mailto:radg.pan@ieee.org
mailto:radg.pan@ieee.org
mailto:mdasyg@ieee.org
Panagiotis
Typewriter
P. Radoglou-Grammatikis, E. Manganopoulou and M. Dasygenis, “P. Radoglou-Grammatikis, E. Manganopoulou, and M. Dasygenis, “Parallelization of the hierarchical search in python for high performance embedded systems,”in2016 5th International Conference on Modern Circuits and Systems Technologies (MOCAST), May 2016, pp. 1–4.

The published version is available at IEEE Xplore, May 2016, pp. 1-4, DOI: 10.1109/MOCAST.2016.7495138

II. RELATED WORK

Initial efforts for the parallelization of the block matching

algorithms in old parallel processing platforms have been

presented in [1, 11, 12, 14, 15, 16]. Specifically, as far as the

HS algorithm is concerned, very few research works have

been published, referring to systolic arrays [5, 11, 12] and not

modern parallelization frameworks.

Our work differs from the previous researches in two key

points: (a) by the fact that we achieve to parallelize the HS

algorithm using Python programming, while all the previous

works utilized C programming language, and (b) our work is

the only work that targets a real high performance embedded

system like a mobile phone.

One drawback of using Python in one parallelization task is

that it is slower than C but on the other hand, allows

programmers to express concepts in fewer lines of code than it

would be possible using languages such as C or C++ [8].

Additionally, an important advantage using Python is that it

can be used in many system architectures such as BSD, Linux

and Windows operating systems [9]. Also, Python scripts can

be executed in Android platforms and in other embedded

machines [9].

III. HIERARCHICAL SEARCH ALGORITHM

Hierarchical search is a motion estimation algorithm that

uses a combination of both fewer search locations and fewer

pixels in computing the matching block. In this algorithm, two

low-resolution versions of the current picture and the

reference picture are formed by subsampling both of them by

a factor of two and four [3,4]. The motion vector search

begins at the lowest resolution picture (level 2). The search

space is one fourth of the original one. At level one, the

motion vector search is performed with the origin being the

block that corresponds to the level 2 block where there is a

close match and a search region of [-1,1] pixel around it. At

level zero the search origin is located on the block which

corresponds to the level one block where the corresponding

distance criterion is minimized and the search region is again

[-1,1] pixels around the block. The location that yields the

smallest distance criterion corresponds to the final motion

vector output.

IV. PARALLELIZATION METHOLOGY

Parallelization is defined as the concurrent execution of

blocks of code [8]. As a result, the first thing that has to be

paid attention is the way that the Python interpreter behaves

under those circumstances and what principles it obeys.

A. Python parallelization attributes

Python interpreter has some distinct differences from other

programming languages when it comes to issues that have to

do and are related to parallelizing a program. One of the most

important issues is the Global Interpreter Lock (GIL), which it

cannot run more than one thread at a time [8]. However, there

are numerous techniques that manage to create and execute

many threads such as the Parallel Python module (PP).

B. Multiprocessing module attributes

There are a lot of different parallelization techniques that

seem plausible, such as the Message Passing Interface for

Python (MPI) [8], the Threading module [8], the

Multiprocessing module [8], etc. We chose to use the

Multiprocessing module for the Python 3. This module has an

easy way of passing the data to and from among various

processes. For this job, pipes and queues are used. The queue

is generated using the Multiprocessing Queue class and its

basic methods, the ones that we have extensively used in our

code, are put() and get() [8]. Also, the queues are a FIFO

structure as well, because the processes run concurrently.

Additionally, another feature of Multiprocessing module is

that it does not create separate threads, but instead, it uses

spawning processes. This means that no problem can be

created with GIL.

C. Dependencies and their implications

The HS algorithm cannot be easily parallelized, because

there are many dependencies between different tasks.

Specifically, the processes that execute the subsampling task

can run concurrently, while the process that runs the motion

estimation phase has to wait in order to collect the data from

the previous ones. This is achieved with the Multiprocessing

Queue class, where each process adds data in a FIFO

structure, in order for another process to collect this data. The

algorithm 1 defines the five main tasks of the HS algorithm

that are executed concurrently and algorithm 2 shows the

motion estimation task. Note that each main task is executed

by one process, while the remaining processes that may exist

undertake a workload for every main task.

Algorithm1 Procedure Parallel Hierarchical Search

1. process_1 = create_current_frame_subsampled_by_two()

2. process_2= create_current_frame_subsampled_by_four()

3. process_3=create_previous_frame_subsampled_by_two()

4. process_4=create_previous_frame_subsampled_by_four()

5.

6. process_1.start()

7. process_3.start()

8. process_1.join()

9. process_3.join()

10. process_2.start()

11. process_4.start()

12. process_2.join()

13. process_4.join()

14. process_5 = HS_Motion_Estimation()

15. process_5.start()

Algorithm 2 Procedure HS_Motion_Estimation

1. /***Level 2 ***/

2. for (i=-p/4 …..) /* ME at fr.subsamp. By 4 */

3. for (j=-p/4 …..)

4. {

5. for (m=0 …..)

6. for (n=0 …..)

7. {

8. read_from_current_frame_4()

9. Check_Bound_Condition

10. read_from_previous_frame_4()

11. distance_criterion_check()

12. }

13. }

14. /*** Level 1 ***/

15. for (i=-1 …..) /*ME at fr.subsamp. By 2 */

16. for (j=-1 …..)

17. {

18. for (m=0 …..)

19. for(n=0 …..)

20. {

21. read_from_current_frame_2()

22. Check_Bound_Condition

23. read_from_previous_frame_2()

24. distance_criterion_check()

25. }

26. }

27. /*** Level 0 ***/

28. for (i=-1 …..) /*ME at original frame */

29. for (j=-1 …..)

30. {

31. for (m=0 …..)

32. for(n=0 …..)

33. {

34. read_from_current_frame_0()

35. Check_Bound_Condition

36. read_from_previous_frame_0()

37. distance_criterion_check()

38. }

39. }

D. Pickling

Pickling is a definition that comes from a Python module

named Pickle that needs to be used in order to pass the

arguments to a process [9]. In terms of Multiprocessing, the

arguments to the Multiprocessing queue need to be picklable.

There are certain types of names which are picklable and

certain other types which are not picklable. For example the

video sequence file which the algorithm HS processes is

unpicklable. This creates a problem with large proportions.

Let us assume that we have a file opened in the parent

process. If we attempt to call a child process in order for it to

be processed or to extract something from it (such as a frame),

then it is almost certain that the child process will not be able

to process the file and it will raise a Value Error exception.

One solution to the aforementioned problem is the use of a

flag which indicates whether the file is opened by a process or

not.

V. EXPERIMENTAL RESULTS

In this section we present the experimental results in order

to prove the robustness of our proposed methodology for the

parallelization of the HS algorithm, using the Multiprocessing

module. We have to note that no other authors have presented

parallelization methodologies of block matching algorithms

on high performance embedded systems and thus, we cannot

provide any comparisons.

For the integration of the experimental measurements we

used the Sony Xperia P (LT22i) smartphone with a 2x ARM

Cortex-A9 processor at 1.00 GHz and with Android version

4.1.2 and Doogee Voyager2 DG310 smartphone with

MTK6582 Quad Core processor at 1.3GHz with Android

version 4.4.4. Additionally, the BUS and Foreman video

sequences were used to evaluate the performance of the

parallelized HS algorithm. The BUS video sequence consists

of 150 frames with a resolution of 352 × 288 pixels and the

Foreman video sequence consists of 300 frames with a

resolution of 3840×2160 pixels. The adopted block size was

16 × 16 pixels as the basic unit for block matching and the

search area considered in these experiments, ranged from 8 ×

8 pixels to 16 × 16 pixels. Additionally, we concluded that the

optimal number of processes for the parallelized HS was

eleven and as a result, we had the maximum reduction of the

execution time.

In order to assess the performance of the parallel

implementation, we measured the practical execution time and

we calculated the speedup. The practical execution time (or

wall clock) is the total time that a parallel implementation

needs to complete the computation. The execution time is

obtained by calling the time() function of the module time.

This function returns the current system time in ticks since

12:00am, January 1, 1970 (epoch). Note that the execution

time in this work is referred on the motion estimation of all

frames. Furthermore, it is known that the speedup is defined

as the serial runtime of the sequential program, when executed

on a single processor, divided by the execution time of the

parallel implementation. All versions executed recursively 30

times and the average clock duration was computed.

As we can see in Fig. 1, the serial and parallel executions

for the BUS video sequence take about 245.330 and 218.453

seconds and 175.0000 and 155.4600 respectively. In Fig.2, the

speedups are shown for the same video. Additionally, after

many experiments we have ascertained that the use of the

Cython can optimize the speedups approximately 47%. Those

results seem very satisfying, because as mentioned earlier, HS

cannot be fully parallelized.

Finally, an important metric that can evince the possibilities

of the parallelization is the energy consumption of the battery

life of the Android device. Specifically in our experiments,

each motion estimation level performs in worst case 4548,

20280 and 46158 arithmetic operations respectively.

Therefore, the total number of the arithmetic operations is

70986. The Sony Xperia P smart phone has the Li-Ion 1305

mAh battery and the watt-hours of this battery are: 1305 mAh

x 3.72 V / 1000 = 4.854 Wh. We executed the serial program

10 times and we ascertained that the 4.854 Wh of the battery

was consumed 0.3% which is 0.01456 Wh. In addition, the

energy efficiency of the serial program is: 70986 / 0.01456 =

4895586.20 operations/Wh (Fig. 2). On the other hand, the ten

executions of the parallel program consumed 0.2% of the

4.854 Wh which is 0.0097 Wh and energy efficiency is 70986

/ 0.00969 = 7318144.33 operations/Wh (Fig. 2). As a result,

after the parallelization, the consumption of the Wh of the

battery was meliorated by 0.00486 Wh and energy efficiency

was improved by 2422558.13 operations/Wh. The same

experimental results were confirmed and with the Doogee

Voyager2 DG310 smart phone (Fig.2).

Fig1: Serial and parallel execution time of the HS Algorithm for the video

sequence BUS.

VI. CONCLUSIOΝS

Multimedia applications play an important role in our daily

life. Up to now, nobody has presented a parallelization

methodology of a key multimedia component, the hierarchical

block matching algorithm, on high performance embedded

systems like a smart mobile phone. In this paper, we present a

unique approach in parallelizing this component, using the

Python programming language and particularly the

Multiprocessing module. The experimental results on

multicore smart phones prove that speedup gains and energy

improvements are possible with Python. Python is a well-

supported language in many desktops and embedded systems,

and thus our gains are not only limited on the embedded

domain.

VII. REFERENCES

[1] P. Baglietto, M. Maresca, A. Migliaro, and M. Migliardi,“Parallel
implementation of the full search block matching algorithm for motion
estimation,” In Proceedings of the 1995 International Conference on
Application Specific Array Processors, pp. 182–192, 1995.

[2] V. Bhaskaran and K. Konstantinides,“Image and Video Compression
Standards,” Kluwer Academic Publishers, 1998.

[3] Kroupis, N., Dasigenis, M., Argyriou, A., Tatas, K., Soudris, D.,
Thanailakis, A., ... & Goutis, C. E. (2001). Power, performance and area
exploration of block matching algorithms mapped on programmable
processors. In Image Processing, 2001. Proceedings. 2001 International
Conference on (Vol. 3, pp. 728-731). IEEE.

[4] Tatas, K., Siozios, K., Soudris, D., Masselos, K., Potamianos, K.,
Blionas, S., & Thanailakis, A. (2003). Power optimization methodology
for multimedia applications implementation on reconfigurable
platforms. In Integrated Circuit and System Design. Power and Timing
Modeling, Optimization and Simulation(pp. 430-439). Springer Berlin
Heidelberg.

[5] Dasygenis, Minas, and Panagiotis Michailidis,“Evaluating modern
parallelization techniques on block matching algorithms,” Proceedings
of the 18th Panhellenic Conference on Informatics. ACM, 2014.

[6] Jagiwala, Darshna D., and Mrs SN Shah,“Analysis of Block Matching

Algorithms for Motion Estimation in H. 264 Video
CODEC,” Analysis 2.6,2012, pp. 1396-1401.

[7] Koduri, N. R., Dlodlo, M. E., De Jager, G., & Ferguson, K. L. (2011,
June). Fast implementation of block motion Estimation Algorithms in
Video Encoders. In Data Compression, Communications and
Processing (CCP), 2011 First International Conference on (pp. 103-
107). IEEE.

[8] Palach, Jan., Parallel Programming with Python. Packt Publishing Ltd,
2014.

[9] Gaddis, Tony, Starting out with Python. Pearson Addison Wesley, 2009.

[10] J. Jain and A. Jain,“Displacement measurement and its applications in
intraframe image coding,” IEEE Transactions on Communications,
29(12), 1981, pp.1799–1808.

[11] H.-M. Jong, Liang-Gee, and T.-D. Chiueh,“Parallel architectures for 3-
step hierarchical search block-matching algorithm,” IEEE Transactions
on Circuits and Systems for Video Technology, 4(4),Aug 1994, pp.
407–416.

[12] C. Konstantopoulos, A. I. Svolos, and C. Kaklamamis,“Efficient parallel
algorithm for hierarchical block-matching motion estimation. In Proc,”
SPIE Visual Communications and Image Processing, 3653,1998, p.p.
481–490.

[13] Beazley, David.,“Understanding the python gil.”, PyCON Python
Conference. Atlanta, Georgia,2010.

[14] HaubleinK., Reichenbach M., Fey D., “Fast and generic hardware
architecture for stereo block matching applications on embedded
systems,” inReConFigurable Computing and FPGAs (ReConFig), 2014
International Conference on gurable Computing and FPGAs,Cancun,
2014, p.p. 1-6.

[15] Siou-Shen Lin, Po-Chih Tseng, Liang-Gee Chen,“Low-power parallel
tree architecture for full search block-matching motion estimation”
Circuits and Systems, 2004. ISCAS '04. Proceedings of the 2004
International Symposium onYear: 2004,2004 Volume: 2, Pages: II -
313-16.

[16] Monteiro E., Vizzotto B., Diniz C., Zatt, B., Bampi S.,“Applying
CUDA Architecture to Accelerate Full Search Block Matching
Algorithm for High Performance Motion Estimation in Video
Encoding,” Computer Architecture and High Performance Computing
(SBAC-PAD), 2011 23rd International Symposium onYear:
2011.,Vitoria, Espirito Santo, 2011, p.p. 128 - 135.

Fig 2: SpeedUps / Energy efficiency results for the BUS video sequence.

