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Abstract—With the rapid progression of Information and
Communication Technology (ICT) and especially of Internet of
Things (IoT), the conventional electrical grid is transformed into
a new intelligent paradigm, known as Smart Grid (SG). SG
provides significant benefits both for utility companies and energy
consumers such as the two-way communication (both electricity
and information), distributed generation, remote monitoring, self-
healing and pervasive control. However, at the same time, this
dependence introduces new security challenges, since SG inherits
the vulnerabilities of multiple heterogeneous, co-existing legacy
and smart technologies, such as IoT and Industrial Control
Systems (ICS). An effective countermeasure against the various
cyberthreats in SG is the Intrusion Detection System (IDS),
informing the operator timely about the possible cyberattacks
and anomalies. In this paper, we provide an anomaly-based
IDS especially designed for SG utilising operational data from
a real power plant. In particular, many machine learning and
deep learning models were deployed, introducing novel param-
eters and feature representations in a comparative study. The
evaluation analysis demonstrated the efficacy of the proposed
IDS and the improvement due to the suggested complex data
representation.

Index Terms—Anomaly detection, Cybersecurity, Intrusion
Detection System, Machine learning, Operational Data, Smart
Grid

I. INTRODUCTION

The next generation of the electrical grid known as Smart
Grid (SG) will address multiple challenges of the existing
conventional one, such as centralised generation, one-way
communication (only electricity transmission), limited control
and manual restoration. In particular, an integral part of SG is
the convergence of the Information and Communication Tech-
nology (ICT) services and especially the Internet of Things
(IoT) with the electrical engineering, thus providing two-way
communication (both electricity and information), increased
reliability, self-healing, remote monitoring, as well as better
utilization of the renewable resources [1]–[3]. According to
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[1], SG is going to be the largest paradigm of the IoT
technology called Enernet, combining multiple sensors and
communication protocols. Even though SG offers numerous
benefits, at the same time, it introduces numerous and sig-
nificant challenges, especially concerning the security domain
due to its heterogeneous nature.

Concerning the cybersecurity aspect, SG inherits the vul-
nerabilities of the various technologies it integrates. More
specifically, the operation of the existing electrical grid is
largely based on the Supervisory Control and Data Acqui-
sition (SCADA) systems that monitor and control various
processes during the electricity transmission and distribution.
However, these systems utilise legacy industrial protocols
such as Modbus, IEC-60870-5-104, Profinet and Distributed
Network Protocol (DNP3) that are characterised by severe
cybersecurity flaws, since they do not involve authentication
and authorisation mechanisms [4], [5]. On the other hand,
the advent of IoT generates crucial security concerns since
it is based on the Internet, which is insecure by its nature
[6]. Moreover, it combines novel technologies such as Wire-
less Sensor Networks (WSNs) that bring the corresponding
cybersecurity issues, such as sinkhole, sybil and wormhole
cyberattacks. Finally, the ability of various objects to interact
with each other and their physical environment without any
human intervention and control increases the security and
privacy concerns.

In general, the cyberattacks against SG target the Confiden-
tiality, Integrity and Availability (CIA) of the involved sys-
tems and communications. In particular, Man-in-The-Middle
(MiTM) and False Data Injection (FDI) attacks violate the
confidentiality and integrity, respectively. On the other hand,
the various Denial of Service (DoS) attacks threaten the
availability principle. Furthermore, a more dangerous category
of cyberthreats against SG is the Advanced Persistent Threat
(APT) which is organised by security specialists for a long
period pursuing a specific goal. A characteristic APT against
SG was the cyberattack against an Unkranian electric substa-
tion resulting in the power blackout for more than 225,000
people [4]. Moreover, another characteristic example was the
Stuxnet worm against the Iranian nuclear programme, which
exploited four zero-days vulnerabilities [4]. Also, in 2009,
various reconnaissance cyberattacks were performed against
the US electrical grid by Chinese and Russian cyberattackers
[4]. Similarly, in 2014 a campaign of various cyberattacks
called Dragonfly [4], attempted to violate the electrical grid
infrastructures of many countries such as the US, France,
Germany, Italy, Poland, Spain and Turkey.

Anticipating the cybersecurity issues of SG, both academia



and industry have provided proper authentication and access
control mechanisms to enhance the existing protection solu-
tions. For instance, the IEC 62351 standard provides solu-
tions, thereby addressing the security gaps of many industrial
protocols. However, many manufacturers and vendors cannot
implement or integrate these solutions. Also, such solutions
may not prevent various threats such as FDI and DoS cyber-
attacks. An effective countermeasure against cyberthreats is
to apply an Intrusion Detection System (IDS) which audits
and analyses security information to detect timely possible
malicious security violations. A significant benefit of these
systems is that they can detect zero-day cyberattacks or
unknown anomalies by adopting Artificial Intelligence (AI)
mechanisms.

In this paper, a novel IDS is proposed capable of detecting
possible anomalies in a power plant, by utilising real-life
operational data in terms of temperature values. In particular,
the proposed IDS adopts many supervised learning techniques
based on a dataset coming from a large scale power plant in
the area of Lavrio, Greece. The power plant belongs to the
Public Power Corporation (PPC) premises, who is the main
power generator in Greece. The outline architecture of this
plant is depicted in Fig. 1. The introduced IDS extracts security
events, thus informing the system operator or/and the security
administrator about possible anomalies coming from known
or unknown cyberattacks or system’s disturbances.

The rest of the paper is organised as follows: Various
relevant works are discussed on Section II. In Section III,
we provide a background about the IDS systems. Section IV
presents and analyses the architecture of the proposed IDS.
Section V is devoted to the evaluation process, which demon-
strates the efficacy of our IDS. Finally, Section VI provides
the concluding remarks of this paper, by summarising its main
contribution and providing directions for future work.

II. RELATED WORK

Relevant works providing IDS systems for SG are discusses
on this section. Each paragraph is devoted to a separate IDS
by summarising its architecture and performance.

In [7], A. Patel et al. proposed an anomaly-based IDS
relying on a Support Vector Machine (SVM), an Ontology
Knowledge Base (OKB) and a fuzzy analyser. In particular,
this IDS can monitor the entire SG ecosystem and consists of
numerous Host-Based IDS (HIDS) and Network-Based IDS
(NIDS) agents that each of them applies an SVM model which
was trained by combining records from the KDD CUP 1999
dataset and experiments carried out by the authors. Moreover,
in order to reduce the false positives generated by the previous
SVM model, a fuzzy logic technique was adopted capable of
determining a risk value between 0 and 1 for each entity of
SG. Finally, an OKB was used to identify the target of the
possible attacks. Based on the evaluation process, the Area
Under Curve (AUC) reaches 0.994.

In [8], the authors presented an IDS for the Advanced
Metering Infrastructure (AMI) consisting of three units that
monitor the network traffic generated by smart meters, data
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Fig. 1: PPC Power Plant - Lavrio, Greece Unit 5.

collectors and the AMI headend respectively. Concerning
the detection process, the algorithm evaluates seven machine
learning algorithms by using both KDD CUP 1993 and NSL-
KDD datasets. The algorithms evaluated are: 1) Single Clas-
sifier Drift, 2) Bagging using Adaptive-Size Hoeffding Tree,
3) Bagging using ADWIN, 4) Limited Attribute Classifier,
5) Leveraging Bagging, 6) Active Classifier, 7) Accuracy
Updated Ensemble. Based on the experimental results, the
Single Classifier Drift and the Active Classifier are suggested
for the smart meters, the Leveraging Baggin for the data
collectors while the Active Classifier for the AMI headends.
Also it is worth mentioning the relevant work in [9]–[13].

In [14], the authors developed an anomaly-based IDS for
AMI, which monitors and controls the bidirectional Trans-
mission Control Protocol/Internet Protocol (TCP/IP) network
flows, which are aggregated periodically in the data collector
component. The proposed IDS consists of four modules,
namely 1) the Network Monitoring Module, 2) the Network
Flow Extraction Module, 3) the Analysis Engine Module and
4) the Response Module. Regarding the detection process
implemented by the Analysis Engine Module, a Classification
And Regression Tree (CART) decision tree was deployed by
utilising the CICIDS2017 dataset. Based on the evaluation
analysis, the accuracy and the True Positive Rate (TPR) of
the proposed IDS reach 0.996 and 0.993 respectively.

In [15], B. Kang et al. implemented a signature-based
IDS for IEC 61850 substations by using the Suricata IDS.
More detailed, a stateful analysis plugin was implemented into
Suricata, whose architecture is divided into three units, namely
1) Manufacturing Message Specification (MMS) decoder, 2)
rule match engine and 3) state manager. The first unit decodes
the MMS packets by extracting their attributes. The second



unit applies the signature rules, while the role of the last unit
is to update the state of the protected devices. Concerning
the evaluation process, two cyberattacks were performed and
detected successfully.

In [16], Y. Yang et al. implemented a specification-based
IDS devoted to protecting synchrophasor systems utilising
IEEE C37.118. In particular, their IDS is composed of 1)
access control rules, 2) protocol rules and 3) behaviour rules.
The access control rules determine the legitimate Medium
Access Control (MAC) and the Internet Protocol (IP) addresses
as well as the corresponding transport layer ports permitted to
transmit and receive network packets. The protocol rules define
that only IEEE C37.118 network packets can be transmitted
by the various entities. Finally, the last category adopts a
deep packet inspection process, thus defining behaviour rules
based on the attributes of IEEE C37.118. Concerning the
evaluation process, the False Positive Rate (FPR) is calculated
approximately at 0%.

A survey of different anomaly detection techniques in
various application domains, including energy, was presented
in [17]. Also, a more specific study related to IDS systems
for SG was presented in [4]. Methods based on data analyt-
ics and statistics are commonly used approaches to identify
abnormal behaviours using network and operational data.
Statistical techniques aim to evaluate if the testing datasets
fit to previously modelled distributions. Jakkula and Cook
use statistics and clustering techniques to identify outliers in
datasets collected from smart environments [18], but they have
not considered the impact of the exogenous variables, e.g.,
weather temperature on the electricity consumption. Adnan
et al. combine linear regression with clustering techniques
for getting better results [19]. Zhang et al. [20] further use
piecewise linear regression to t the relation between energy
consumption and weather temperature. Brown et al. use K-
Nearest Neighborhood (KNN) in fast kernel regression to
predict electricity consumption [21], which requires large
datasets. Nadai et al. combine Autoregressive Integrated Mov-
ing Average (ARIMA) and adaptive Articial Neural Network
(ANN) to detect anomaly consumption [22] using a relatively
small data set that is from a few buildings.

In [23], the authors move away from the concept of sin-
gle events identified as an anomaly to the concept of the
collective anomaly, that is itemsets of events that may be
anomalous based on their patterns of appearance. The work
in [24] investigates the use of re-sampling techniques for
intrusion detection inside of a hierarchical, three-layer SG
communication system and the authors in [25] proposed a
generative model for anomaly detection that takes into account
the hierarchical structure of the network and the data collected
from smart meters. A method that applies the K-means algo-
rithm for clustering of traffic data and outlier detection was
introduced in [26] for the data transmitted between the utility
centre and the smart homes. In [27] an approach based on
stacked sparse autoencoder was introduced to extract the high-
level representation from massive monitoring data acquired
automatically from actual smart meter network. Then softmax

is used for classification to detect anomalies and send alarm
messages using web technologies.

Undoubtedly, each of the previous works provides sig-
nificant and useful methodologies for detecting cyberattacks
and anomalies against SG. Each methodology includes the
corresponding advantages and disadvantages. In particular, the
signature-based IDS systems are characterised by high detec-
tion performance, but they cannot detect unknown attacks. On
the other hand, the anomaly-based techniques usually adopting
a machine learning method are able to detect unknown attacks,
but they exhibit many false positives. Finally, the specification-
based techniques combine the advantages of the previous
methods, but they should be updated continuously due to the
rapidly evolving nature of SG.

In this paper, we present an anomaly-based IDS utilising a
plethora of machine learning and deep learning algorithms.
In particular, compared to the previous works, the ratio-
nale behind our implementation is coming from a real-life
paradigm, where temperature values are utilised to identify
possible anomalies in a real power plant. Furthermore, our
work adopts a novel complex data representation, evaluating
the performance of many algorithms.

III. IDS BACKGROUND

The goal of an IDS system is to detect possible attacks
and anomalies either by informing timely the system operator
or the security administrator or performing some countermea-
sures. The typical architecture of IDS consists of three entities,
namely 1) Agents, 2) Analysis Engine and 3) Response
Module. Agents are responsible for monitoring and collecting
information about the target systems. Two kinds of agents are
defined: 1) Host-Based and 2) Network-Based. The first one
monitors only one specific host, thus collecting information
such as the network traffic generated and received by this
host as well as its log files. On the other hand, the second
one is able to monitor the network traffic generated by many
devices. Based on this discrimination, the IDS systems can
be classified into two categories: 1) HIDS and 2) NIDS.
Accordingly, the Analysis Engine receives the information
collected by the agents and tries to detect possible cyberattack
or anomaly patterns. The detection mechanisms applied by
the analysis engine can be classified into three categories:
1) signature-based, 2) anomaly-based and 3) specification-
based. The first one matches the information collected by the
agents with specific attack signatures. The second category
attempts to identify possible anomalies by adopting statistical
analysis and AI techniques. The last category matches the
information collected by the agents with a set determining the
legitimate behaviours. Finally, the Response Module informs
the responsible administrator about the possible cyberattacks
and anomalies.

IV. ARCHITECTURE OF THE PROPOSED IDS

The proposed method for anomaly detection using oper-
ational data is based on an supervised learning framework
that incorporates a training and a testing stage, as illustrated



in Fig. 2. This section analyses the suggested methodology
and provides details for the data acquisition process. Also, all
the pre-processing steps are analysed and the proposed novel
complex representation of the descriptor is presented.
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Fig. 2: Architecture of the Porposed IDS.

A. Data Collection Module

Initially, operational data and more specifically temperature
values coming from the incoming cooling water and the
generator winding was collected from the Lavrio Unit 5 Power
Plant overtime sampled every minute. As depicted in Fig. 1
the specific unit consists of multiple logic controllers such as
Programmable Logic Controllers (PLCs) and Remote Terminal
Units (RTUs) that monitor and control the operations of the
industrial equipment existing such as power generators and
transformers. Moreover, it includes many smart meters that
record the energy consumption of the various Intelligent Elec-
tronic Devices (IEDs) utilised such as monitors and computers.
It should be noted that all information generated by the
power plant devices is recorded in a centralised control server.
The ground truth was provided by the power plant engineers
indicating the anomalies and the events that triggered them.
The input is a time-series and the training is performed only
with normal data. Fig. (3) shows a sample of the dataset
utilised.

For the proposed machine learning approach the dataset was
split to training and testing subsets and simple k-fold Cross
Validation (CV) was also used for analysing the state of the
system and accessing the reliability of the proposed method.

Fig. 3: Sample of the operational data from the power plant.

B. Pre-processing and Feature selection Modules

Several pre-processing approaches were implemented and
tested for the training and evaluation of the anomaly detection.
Feature standardisation was considered making the values of
each feature in the data have zero-mean and unit variance.
Let f(m),m = [x, y]TE ∈ R denote the feature vector with x
and y to represent the water and generator temperature respec-
tively. Initially, the distribution mean and standard deviation
for each feature x and y is determined, and subsequent the
mean from each feature is subtracted and the values of each
one are divided by its standard deviation.

f ′ =
f − f̄
σ

(1)

Where f is the original feature vector, f̄ is the mean of that
feature vector, and σ is its standard deviation.

During the data capturing and feature generation stages, it
is common that complex data is obtained but decomposed to
independent values without considering if there is a correlation
between them and they are computed independently by a
classier. To overcome this issue, vectorial features can be
represented more precisely using a complex representation
[28], [29]. Since, in our case, vectorial features m = [x, y] are
the primary source of information, a complex representation
of these features allows better correlation between them [28]–
[30].

Considering a complex vector z representation for the pre-
processed features we have f(z), z = x + iy ∈ C that can
be also denoted using the Euler representation z = reiφ

where r = |z|=
√
x2 + y2 is the magnitude of z and φ =

argz = atan2(y, x). As a result a solid representation of the
selected complex features is obtained, while the computational
complexity does not increase significantly. A vector f can be
decomposed in components that are linearly independent, and
therefore, they can reconstruct the original data by linearly
combining them. However, a correlation may exist between
the components x and y from the statistical point of view (i.e.,
water and generator temperatures are not uncorrelated). The
proposed complex descriptor does not affect the overall per-
formance if the components are independent, but this complex
representation considers and takes advantage of that improving
the performance, if there is a correlation. The proposed method
capturing the dependencies within the two temperature sensors
exploits the complex representation.

C. Anomaly Detection Module

For the anomaly detection, several machine learning meth-
ods were considered including One Class-SVM, Isolation
Forests, Angle-Base Outlier Detection (ABOD), Stochastic
Outlier Selection (SOS), Principal Component Analysis (PCA)
and deep fully connected autoencoders. The proposed complex
feature vectors over a sliding time window were used as input
for all these approaches.

During the training stage, all the methods were trained
using normal data (without anomalies) and regarded the above
methods, linear kernels were used for the PCA and One Class



TABLE I: The evaluation results for time window 20.

Accuracy F1s AUC
Win20 Norm Comp Norm Comp Norm Comp
PCA 0.554 0.975 0.608 0.975 0.710 0.967

OneClass 0.595 0.893 0.648 0.869 0.735 0.657
Iforest 0.575 0.875 0.628 0.884 0.729 0.851
ABOD 0.521 0.688 0.584 0.718 0.586 0.547
SOS 0.951 0.975 0.947 0.975 0.842 0.967
Auto 0.560 0.619 0.614 0.669 0.718 0.763

SVM, the Euclidean distance was used to obtain the dissimilar-
ity matrix and T-distributed Stochastic Neighbor Embedding
(tSNE) to calculate the affinity matrix for SOS. The angle-
based outlier factor used for ABOD is defined as the variance
over the angles between the feature vectors weighted by their
distance and for the Isolation forest approach the algorithm
is using full decision trees and we measure the average
path length between the root and each leaf (feature point)
with the abnormal data points to be the ones with relatively
short average path. About the designed deep architecture, the
following autoencoder was designed with six fully connected
layers as it is shown in Fig. (4).

Fig. 4: An overview of the architecture of the proposed
autoencoder that was used for anomaly detection.

The objective of the testing stage is the detection of
anomalies in new operational data. Therefore, new incoming
operational data is pre-processed, transformed into a complex
feature representation, following the same pre-processing steps
as in the training stage. Once the features are extracted, all the
models created during the training are used to detect anomalies
at the new input data and determine the presence of any
attacks.

D. Response Module

This module receives the output of the Anomaly Detection
Module and undertakes to inform the security operator or
the security administrator about the possible cyberattacks
by extracting the appropriate security events. A web-based
platform was developed for this purpose, providing also related
statistics.

V. EVALUATION ANALYSIS

This section shows and analyses the anomaly detection
results obtained using the normal real uncorrelated features
and the proposed complex representation for all the machine
learning and deep learning approaches. The results are repre-
sented by the Accuracy, the F1 score, and AUC.

TABLE II: The evaluation results for time window 30.

Accuracy F1s AUC
Win30 Norm Comp Norm Comp Norm Comp
PCA 0.527 0.597 0.585 0.652 0.687 0.736

OneClass 0.553 0.905 0.611 0.885 0.702 0.681
Iforest 0.548 0.791 0.606 0.819 0.697 0.864
ABOD 0.530 0.799 0.591 0.791 0.642 0.568
SOS 0.976 0.989 0.976 0.990 0.921 0.994
Auto 0.538 0.603 0.596 0.658 0.693 0.740

TABLE III: The evaluation results for time window 50.

Accuracy F1s AUC
Win50 Norm Comp Norm Comp Norm Comp
PCA 0.459 0.550 0.523 0.614 0.627 0.684

OneClass 0.516 0.913 0.581 0.909 0.659 0.773
Iforest 0.480 0.617 0.545 0.675 0.637 0.757
ABOD 0.574 0.739 0.640 0.765 0.603 0.598
SOS 0.989 0.995 0.989 0.995 0.960 0.997
Auto 0.466 0.553 0.530 0.617 0.628 0.684

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

F1 =
2 · precision · recall
precision+ recall

(3)

AUC =

∫ b

a

TPR(FPR−1(x))dx = P (X1 > X0) (4)

Where X1 is the score for a positive instance and X0 is the
score for a negative instance.

Furthermore, all the methods and features were tested for
three different sliding time windows of 20, 30 and 50 minutes.
Tables I, II and III show the Accuracy, the F1 scores and
the AUC values for all the models and both features (normal

Fig. 5: The overall performance of the machine learning and
deep learning methods with and without the proposed complex
feature representation and the affect of the size of the sliding
time window.



and complex), indicating an improvement for the proposed
complex representation. Furthermore, the average values for
each method and the overall effect of the size of the time
window are shown in Fig. (5). The overall average ccuracy
was increased by 29%, the F1 score by 22% and the AUC
by 8%. Regarding the sliding time window, it is observed that
the performance is reduced for larger sizes, something that
was expected since it affects the on-time estimation of sudden
outliers.

VI. CONCLUSIONS

In this work, a novel approach for cyberattacks detection
on SGs has been introduced based on anomaly detection over
operational data. Furthermore, a complex representation of the
input data was suggested aiming to exploit the correlation in-
between the data values improving the overall accuracy of
anomaly detection. Several machine learning and deep learn-
ing methods were used in a comparative study demonstrating
the improved performance of the proposed methodology. Fur-
thermore, real operational data from a power plant was used
and different parameters were considered. Overall the use of
operational data and anomaly detection methods provide a
new mechanism for accurate detection of cyberattacks and
anomalies that may affect the performance of the various
devices on the grid. Regarding the future plans it is expected to
improve the proposed architecture considering more advanced
DNNs based on LSTM layers and manifold representations
for multi-dimensional operational data.
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