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ABSTRACT
In this paper, an Intrusion Detection and Prevention System (IDPS)
for the Distributed Network Protocol 3 (DNP3) Supervisory Control
and Data Acquisition (SCADA) systems is presented. The proposed
IDPS is called DIDEROT (Dnp3 Intrusion DetEction pReventiOn
sysTem) and relies on both supervised Machine Learning (ML) and
unsupervised/outlier ML detection models capable of discriminat-
ing whether a DNP3 network flow is related to a particular DNP3
cyberattack or anomaly. First, the supervised ML detection model is
applied, trying to identify whether a DNP3 network flow is related
to a specific DNP3 cyberattack. If the corresponding network flow
is detected as normal, then the unsupervised/outlier ML anomaly
detection model is activated, seeking to recognise the presence
of a possible anomaly. Based on the DIDEROT detection results,
the Software Defined Networking (SDN) technology is adopted in
order to mitigate timely the corresponding DNP3 cyberattacks and
anomalies. The performance of DIDEROT is demonstrated using
real data originating from a substation environment.

CCS CONCEPTS
• Security and privacy→ Intrusion detection systems; • Comput-
ing methodologies → Neural networks.
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1 INTRODUCTION
In the era of hyper-connected digital economies, the smart tech-
nologies play a vital role in the operation of the electrical grid, trans-
forming it into a new, decentralised model with multiple benefits,
such as distributed generation, pervasive control, remote monitor-
ing and self-healing. According to S.Tan et al. [39], the Smart Grid
(SG) is going to constitute the greatest paradigm of the Internet of
Things (IoT). However, although this new reality introduces signif-
icant advantages, it also raises crucial security and privacy risks
due to the heterogeneous characteristics of the involved legacy and
smart energy systems. In particular, SG includes legacy systems,
such as Supervisory Control and Data Acquisition System (SCADA)
that rely on protocols designed without having security in mind.
On the other side, the rapid progression of IoT makes harder the
security and information management of the various entities [13].
Therefore, SG is exposed against a plethora of cyberattacks and
malware, including Denial of Service (DoS), data privacy breaches
and ransomware. It is noteworthy that due to the interconnected
and independent nature of the Critical Infrastructure (CIs), a failure
in SG can affect significantly other CIs, generating cascading ef-
fects and endangering the general population and economy across
national borders [5]. A characteristic example was the cyberattack
against the Ukrainian substation, resulting in the power outage for
more than 225,000 people [33]. More recent cases are the Dragonfly
2.0 Advance Persistent Threat (APT) campaign against multiple
energy companies [32] and the cyberattack against the US electrical
grid in 2019 [22].

Both academia and industry have identified countermeasures
in order to address the cybersecurity issues of SG. Specifically,
IEC 62351 [17] defines a set of security and privacy guidelines for
Industrial Control Systems (ICS) based on existing technologies.
Moreover, Intrusion Detection and Prevention Systems (IDPS) can
handle a lot of information, thus recognising possible intrusions.
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Undoubtedly, these solutions are valuable, eliminating cybersecu-
rity incidents. However, the rapid evolution of cyberattacks and
malware requires the continuous adoption of the appropriate mea-
sures. The guidelines of IEC 62351 limit to specific security controls
related to industrial protocols and cannot be quickly adopted by
SCADA, especially when they operate since safety issues can occur,
such as brownouts or even blackouts. On the other side, the current
IDPS tools cannot recognise potential cyberattacks and anomalies
against the industrial application layer protocols. Therefore, the
challenge of ensuring smart, safe, sustainable and efficient SG be-
comes major as the road ahead for SG is a difficult one, filled with
significant and far-reaching challenges to sustainability.

In this paper, we present a Machine Learning (ML)-based IDPS
capable of detecting and preventing cyberattacks and anomalies
against the Distributed Network Protocol (DNP3) protocol. The
proposed IDPS is called DIDEROT (Dnp3 Intrusion DetEction pRe-
ventiOn sysTem) and relies on network flow statistics, including
two detection layers: a) intrusion detection and b) anomaly de-
tection that work supplementarily. The first layer (i.e., intrusion
detection) relies on supervised ML detection methods and is re-
sponsible for recognising particular DNP3 cyberattacks, including
a) injection, b) flooding, c) DNP3 reconnaissance, d) replay attacks
and e) masquerading. The second layer (i.e., anomaly detection)
is activated when the first layer classifies a network flow as nor-
mal. Thus, the second layer undertakes to identify whether a DNP3
anomaly takes place either due to a security violation or a possible
electricity disturbance. Moreover, it is noteworthy that DIDEROT
takes full advantage of the Software Defined Networking (SDN) [35]
technology in order to mitigate the DNP3 cyberattacks/anomalies
[10]. In particular, based on the detection results, DIDEROT informs
appropriately the SDN controller in order to drop the corresponding
malicious/anomalous network flows. Therefore, the contributions
of this paper are summarised in the following sentences:

• DetectingDNP3 cyberattacks: DIDEROT can detect a plethora
of DNP3 cyberattacks by using supervised ML detection
methods and particularly a decision tree classifier.

• DetectingDNP3 anomalies: DIDEROT can recognise DNP3
anomalies that take place either due to a security violation
or an electricity disturbance. To this end, both unsuper-
vised/outlier and semisupervised/novelty detection meth-
ods were investigated. Moreover, an autoencoder Deep Neu-
ral Network (DNN) was developed for this purpose called
DIDEROT Autoencoder.

• Evaluating a plethora of ML methods in recognising
DNP3 cyberattacks and anomalies: Various ML methods
were assessed, using real DNP3 network traffic data origi-
nating from a substation environment.

• Mitigating DNP3 cyberattacks/anomalies: Based on the
DIDEROT detection results, DIDEROT takes full advantage
of SDN in order to mitigate timely the DNP3 cyberattacks
and anomalies.

The rest of this paper is organised as follows. Section 2 discusses
relevant works. Section 3 provides a background related to a) the
DNP3 SCADA systems, b) IDPS systems and c) ML methods used

for detecting intrusions. Next, section 4 analyses the DIDEROT ar-
chitecture. Finally, section 6 is devoted to the DIDEROT evaluation,
while section 7 concludes this paper.

2 RELATEDWORK
This section is devoted to describing previous similar works. Each
paragraph focuses on a separate case, analysing the proposed Intru-
sion Detection System (IDS) architecture, the detectionmechanisms,
their efficiency and the relevant cyberattacks. Finally, based on this
concise analysis, the limitations and shortcomings of the existing
intrusion detection methods are summarised.

Multiple survey papers have examined thoroughly the vari-
ous IDS devoted to protecting SG. Some of them are listed below
[15, 20, 33, 34]. In our previous work in [33], we have examined in
detail 37 IDS cases specially designed for a) the entire SG ecosystem,
b) AMI, c) SCADA, d) substations and e) synchrophasors. In partic-
ular, after providing the necessary background in the SG elements,
communications, the typical IDS architecture and the detection
methods, the appropriate requirements of an IDS for SG were iden-
tified. Next, a detailed analysis of 37 IDS cases follows, describing
their architecture, the detection methods and their evaluation re-
sults. Based on this study, the limitations of the existing IDS for SG
are identified, and directions for future research efforts are given.

More specifically, in [25], S. Lee et al. present a method called
LDA-based Automatic Rule Generation (LARGen), which can iden-
tify and generate signatures used by signature-based IDS. Based
on the authors, a signature is considered as a set of hexadecimal or
American Standard Code for Information Interchange (ASCII) char-
acters that identify a malicious pattern. If a network packet includes
this pattern in the header or in the payload, then it is detected suc-
cessfully by a signature-based IDS containing the specific signature.
The functionality of LARGen relies on the Latent Dirichlet Alloca-
tion algorithm [19]. In particular, LARGen first exports signature
strings from network flows; then categorises the network flows
based on the exported signature strings and finally, through LDA
identifies key content strings indicating the malicious traffic. The
architecture of LARGen consists of three main modules, namely: a)
Pre-processing: Construction of Documents, b) LDA-based Topic
Modeling and c) Attack Signature Generation. The applicability
and efficiency of LARGen were evaluated, utilising a plethora of
experiments, including the following cyberthreats: a) trojan horses,
b) overflow attacks, c) DoS, d) injection, e) insecure methods, f)
arbitrary code execution and g) others. Based on the experimental
results, LARGen presents 1.6% False Positives (FP).

In [9], N. Dutt et al. introduce an anomaly-based IDS imitating
the operation of the Human Immune System (HIS). The architecture
of the proposed IDS is composed of two intrusion detection mecha-
nisms: a) Statistical Modeling based Anomaly Detection (SMAD)
and b) Adaptive Immune-based Anomaly Detection (AIAD). In par-
ticular, SMAD imitates the behaviour of the HIS innate immune
system, while AIDS works like the adaptive immune system, con-
sidering both T-cells and B-cells. The effectiveness of SMAD and
AIAD was validated, using real-time network traffic data as well as
traces from the UNSW-NB15 [30] intrusion detection dataset. The
True Positive Rate (TPR) of SMAD reaches 97%, while the TPR of
AIAD approaches 99%.
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In our previous work [11], we developed an anomaly-based IDS
system for SG, utilising real operational data (i.e., raw electricity
measurements) originating from a power plant in Greece. The ar-
chitecture of the proposed IDS is composed of 6 modules, namely,
a) Data Collection Module, b) Pre-processing Module, c) Feature
Selection Module, d) Model Training, e) Anomaly Detection Module
and f) Response Module. Several ML methods were evaluated un-
der different time window values, including Principal Component
Analysis (PCA), OneClass Support Vector Machine (SVM), Isolation
Forest, Angle-Based Outlier Detection (ABOD), Stochastic Outlier
Selection (SOS) and autoencoder. Based on the evaluation results,
the overall detection improvement due to the proposed complex
data representation method is validated.

O. Igbe et al. in [18] introduce and IDS devoted to the DNP3
communications. The architecture of the proposed IDS consists of
three primary blocks: a) Packet Capture block, b) Pre-processing
block and c) Deterministic Dendritic Cell Algorithm (dDCA) [14]
Signal Processing block. In particular, the first block undertakes
to monitor and capture the DNP3 network packets; the following
one executes the necessary pre-processing actions while the last is
responsible for the detection process. A DNP3 intrusion detection
dataset was created for the development and evaluation of the
proposed IDS, including DNP3 packet modification and injection
attacks, DNP3 cold restart attacks, Distributed Denial of Service
(DDoS), DNP3 Disable unsolicited attacks and Man in The Middle
(MiTM). The performance of the proposed IDS is demonstrated
using Receiver Operating Characteristic (ROC) curves.

In [22], S. Kwon et al. focuses on the DNP3 and IEC 61850 pro-
tocols. The proposed Network Based Intrusion Detection Systems
(NIDS) relies on a Bidirectional Recurrent Neural network (BRNN)
[37], which analyses both the header and payload of DNP3 pack-
ets. Thus, BRNN can detect three cyberattacks, including Cyber-
Physical (CPS) malware behaviour, disabling reassembly attacks
and False Data Injection (FDI) [26, 27] attacks. Based on the authors,
the first cyberattack includes five subcategories: a) reconnaissance
attacks, b) DoS Operate, c) DoS Cold Restart, d) DoS Warm Restart
and e) File Transfer. The proposed IDS was applied and validated
in an IEEE 1815.1-based Korean substation. However, the relevant
cyberattack data was produced by emulating the corresponding
cyberattacks through the Triangle MicroworksâĂŹ Distributed Test
Manager (DTM) [29] and Ostinato [31, 38], which is an opensource
network traffic generator. A numerical analysis demonstrates the
efficiency of the proposed NIDS.

X. C. Yin et al. in [40] present also an IDS for the DNP3 protocol.
First, they studied the vulnerabilities of DNP3. Next, they executed
relative DNP3 cyberattacks in order to collect necessary data and fi-
nally, they provide a DNP3 IDS, which adopts ML classification and
visualisation processes. Their IDS consists of three main modules,
namely a) Data Input System, b) Data Analysis System and c) Classi-
fication and Detection System. The Data Input System is responsible
for collecting the appropriate data needed for ML. Multiple data
were used, including the cyberattacks’ outcomes performed by the
authors as well as traces from various malware, including a) Triton
[7], b) Industroyer, c) BlackEnergy [21], d) Stuxnet [12, 23], e) Duqu
[3], f) Flame [3] and g) Gauss [3]. The normal data was produced
from experiments simulating normal DNP3 operations as well as
from publicly available datasets. Subsequently, the Data Analysis

System pre-processes this data, and finally, the Classification and
Detection System applies an ML classifier, thus discriminating the
benign and abnormal states. The efficiency of the proposed IDS is
demonstrated based on a visualisation diagram depicting which
points are classified as benign or malicious.

Admittedly, the previous works provide significant insights and
useful methodologies. In particular, each detection category is char-
acterised by the corresponding advantages and disadvantages. In
particular, the signature-based IDS are characterised by high TPR;
however, they are unable to recognise zero-day attacks or unknown
anomalies. On the other side, the anomaly-based IDS adopting sta-
tistical analysis and ML solutions can identify unknown threats, but
yield high False Positive Rate (FPR). Finally, the specification-based
IDS are characterised by low FPR and can detect unknown anom-
alies; nevertheless, the corresponding specification rules should be
updated accordingly based on the operation of the SG environment.

3 BACKGROUND
This section introduces some necessary background information
about a) the DNP3 SCADA systems, b) IDPS and c) intrusion de-
tection processes relying on ML methods. In particular, the typical
architectures of the SCADA and IDPS systems are described, while
functional characteristics of the DNP3 protocols and the ML meth-
ods used for detecting intrusions/anomalies are detailed.

3.1 DNP3 SCADA Systems
A SCADA system [32] is a dominant component of a CI, which
monitors, automates and controls the operations of the industrial
equipment. Therefore, it constitutes a crucial target for cybercrim-
inals. In particular, a SCADA system consists of five elements: a)
measurement instruments, b) logic controllers, c) a Master Terminal
Unit (MTU), d) a communication interface and e) a Human Machine
Interface (HMI). The measurement instruments refer to sensors and
actuators that monitor the physical environment and collect rele-
vant measurements, such as temperature, voltage and current. A
logic controller is usually a Programmable Logic Controller (PLC)
or Remote Terminal Unit (RTU), responsible for collecting the mea-
surements by the previous measurement instruments, identifying
operational abnormalities and activating/deactivating or configur-
ing other devices. The MTU is a host or a server through which
the system operator has the ability to control and configure the
logic controllers usually via a friendly user interface called HMI.
Finally, the interaction between MTU and the logic controllers
is achieved through a communication interface, which relies on
industrial protocols, such as DNP3.

DNP3 [32] is a reliable protocol adopted in CIs, mainly in the US.
In a SCADA system, DNP3 is used to exchange messages between
a master (i.e., MTU) and outstation or differently slave (i.e., PLC or
RTU). It can be applied with several network topologies, such as a)
point-to-point, where one master and an outstation interact with
each other, b) multiple-drop, where there are one or more masters
and multiple outstations and c) the hierarchical topology, where a
device can play both roles of a master and an outstation. DNP3 is
coming with three layers, namely, a) link layer, b) transport layer
and c) application layer. The link-layer provides addressing services,
link control, error checking, data fragmentation and multiplexing.
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The DNP3 transport layer is similar to the transport layer of the
Open Systems Interconnection (OSI) model and is represented by
only one byte used for fragmenting DNP3 packets. Finally, the
application layer defines a set of data messages used for manag-
ing and controlling the SCADA applications. Apart from the serial
line DNP3 application, DNP3 can operate upon Transmission Con-
trol Protocol/Internet Protocol (TCP/IP) where all DNP3 layers are
incorporated into the application layer of TCP/IP.

Based on N. Rodofile et al. [36], in this paper, we investigate
five DNP3 cyberattacks: a) injection, b) flooding, c) DNP3 recon-
naissance, d) replay and e) masquerading. The first cyberattack
refers to a malicious insider that injects malicious DNP3 packets.
The second attack denotes a DNP3 DoS, where the cyberattacker
floods the target with multiple DNP3 packets. Next, a DNP3 recon-
naissance refers to particular DNP3 packets that are sent to the
target system in order to identify whether it uses the DNP3 protocol
or not. The replay attack captures legitimate DNP3 packets and
re-transmit them after a specific delay. Finally, the masquerading
attack impersonates the DNP3 behaviour of the legitimate asset.

3.2 IDPS Systems
Based on the Request For Comments (RFC) document 2828 [33],
intrusion detection is defined as the process aiming to audit and
investigate security events in order to recognise a possible secu-
rity policy violation. In 1980, the IDS term was introduced as a
hardware or software system capable of automating the intrusion
detection process. In particular, in 1980, J. Anderson [2] highlighted
the significance of the log files during an intrusion detection proce-
dure. Another remarkable case is the paper [6] of D. Denning, who
defined a theoretical IDS model based on abstract feature patterns.
According to D. Denning, if a system cannot operate based on its
specifications, then it has been probably affected by a threat.

A typical IDS architecture consists of three main elements: a)
Agents, b) Analysis Engine and c) Response Module [33]. Agents
undertake to monitor the examined infrastructure, thus collecting
and sometimes pre-processing the necessary data for the detection
process. Based on the position of Agents, two IDS types are distin-
guished: a) Host-based IDS (HIDS) and NIDS. In the first case, an
Agent can monitor only a specific host, thereby detecting anom-
alies only related to this host. On the other side, the Agent is placed
in a specific network point, where the entire network traffic can
be captured, thus detecting anomalies in the overall network. The
Analysis Engine is the core component of an IDS, which receives the
information of the various Agents and implements the intrusion de-
tection process. Finally, the Response Module receives the outcome
of the Analysis Engine and notifies the responsible user/operator.
Sometimes, the Response Module can perform some automate mit-
igation strategies, such as the activation of specific firewall rules
in order to mitigate and prevent similar intrusions; thus, the IDPS
term is used in this case.

The detection process implemented by the Analysis Engine can
be classified into threemain categories: a) signature-based detection,
b) anomaly-based detection and c) specification-based detection
[33]. The first category defines specific rules called signatures that
reflect malicious patterns. If the characteristics of the monitoring
data match with those of the signatures, then a possible security

violation takes place. On the other side, anomaly-based detection
applies statistical analysis and Artificial Intelligence (AI) methods.
Finally, the specification-based detection defines a set of rules called
now specifications that define the normal operation of the moni-
tored system/infrastructure. If the characteristics of the monitored
data do not agree with those of the specifications, then a security
violation is carried out.

3.3 Intrusion Detection based on ML Methods
In this subsection, a brief overview of ML-based intrusion detection
processes is provided. More detailed information is available in
recent survey papers in [1, 4, 16]. Despite the existence of various
ML methods, all of them follow the subsequent phases.

• Preprocessing Phase: This phase processes appropriately
the input data so that it will be in accordance with the corre-
sponding ML model. Usually, data-preprocessing methods
are applied, such as min-max scaling, normalisation, stan-
dardisation, robust scaler and max abs scaler.

• Training Phase: The ML model is trained with normal
or/and abnormal data pre-processed data called features.
There are multiple ML methods for detecting anomalies.
They can be divided into three main categories, namely, a)
supervised detection methods, b) unsupervised/outlier de-
tection methods and c) semi-supervised/novelty detection
methods. The first category uses labelled data, such as "Nor-
mal" or "Anomaly" or labels indicating the cyberattack type.
Characteristic examples of this method are: SVM, neural net-
works and decision trees. The second category relies mainly
on clustering techniques and unlabeled datasets, assuming
that the majority of the instances are normal; however, the
unlabelled datasets can comprise some outliers. Characteris-
tic examples of this case are: ABOD, Isolation Forest, Local
Outlier Factor (LOF), SOS and k-means. Finally, the semi-
supervised/novelty detection methods use training data that
does not include outliers. Therefore, the ML model aims to
identify whether a new observation is an outlier or not. In
this case, the outlier is named novelty. One class deep neu-
ral networks and One Class-SVM compose examples of this
category.

• Prediction Phase: After the training phase, the ML model
can be deployed in order to predict unknown data after the
execution of the same pre-processing tasks of the first phase.

Regarding the performance of the aforementioned ML meth-
ods, particular evaluation metrics can be used, including Accuracy,
TRP, FPR and the F1 score. The following equations define these
metrics. True Positives (TP) indicates the number of the correct
classifications that recognised successfully the cyberattacks or the
anomalous behaviours. True Negatives (TN) denotes the number of
the correct classifications that recognised the normal activities. FP
denotes the number of the mistaken classifications that detected
the normal activities as cyberattacks or anomalies. Finally, False
Negatives (FN) defines the number of the wrong classifications that
classified the cyberattacks or the anomalous behaviours as normal
activities.

Accuracy =
TP +TN

TP +TN + FP + FN
(1)
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Figure 1: DIDEROT Architecture

FPR =
FP

FP +TN
(2)

TPR =
TP

TP + FN
(3)

F1 =
2 × Precision ×TPR

Precision +TPR
where Precision =

TP

TP + FP
(4)

4 DIDEROT ARCHITECTURE
Fig. 1 illustrates the architecture of DIDEROT. Based on the typ-
ical IDS architecture [33], DIDEROT consists of three modules,
namely, a) Data Monitoring Module, b) DIDEROT Analysis Engine
and c) Response Module. Each of them is detailed in the follow-
ing subsections. The Data Monitoring Module feeds the DIDEROT
Analysis Engine with the necessary data to detect DNP3 cyberat-
tacks/anomalies. The DIDEROT Analysis Engine is responsible for
the detection process, including two detection layers: a) intrusion
detection and b) anomaly detection that operate complementarily.
Finally, based on the outcome of the DIDEROT Analysis Engine,
the Response Module generates security events and activates the
SDN controller in order to mitigate timely the respective DNP3
cyberattacks/anomalies.

4.1 Data Monitoring Module
Based on the typical IDS infrastructure described in section 3.2,
the Data Monitoring Module operates as an agent, which monitors
the network traffic and feeds the DIDEROT Analysis Engine with

network flows statistics. In particular, Tshark is used to capture
the network traffic data, while CICFlowMeter [8, 24] extracts bidi-
rectional network flow statistics. Based on the placement of the
Data Monitoring Module, DIDEROT can operate either as HIDS
or NIDS. Moreover, before the transmission of the network flow
statistics to the DIDEROT Analysis Engine, the Data Monitoring
Module pre-processes them, using the min-max scaler defined by
Equation 5.

z =
x −min(x)

max(x) −min(x)
(5)

4.2 DIDEROT Analysis Engine
The DIDEROT Analysis Engine is the core component of DIDEROT,
which receives the network flow statistics and performs the detec-
tion process. It consists of two detection layers, namely a) intrusion
detection and b) anomaly detection that operate supplementarily.
The first layer adopts multiclass supervised ML detection methods,
thus detecting particular DNP3 cyberattacks as described in subsec-
tion 3.1: a) Injection, b) Flooding, c) DNP3 Reconnaissance, d) Replay
and e) Masquerading. On the other side, the second layer is acti-
vated only when the first layer classifies a network flow as normal.
It considers both unsupervised/outlier and semi-supervised/novelty
ML detection methods. Moreover, for the purpose of the second
layer, the DIDEROT Autoencoder was developed. Its analysis is
carried out in the following section. Finally, the efficiency of both
layers in terms of Accuracy, TPR, FPR and the F1 score is analysed
in section 6.
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4.3 Response Module
Following the typical IDS architecture, the Response Module re-
ceives the outcome of the DIDEROT Analysis Engine and gener-
ates security events based on the format of those produced by the
AlienVault OpenSource Security Information and Event Manage-
ment (OSSIM) [41]. Then, the Response Module informs appro-
priately the SDN controller (i.e., Ryu) [28] in order to drop the
malicious/anomalous DNP3 flows. In particular, the Response Mod-
ule uses the Representational State Transfer (REST) Application
Programming Interface (API) of Ryu in order to identify which ma-
licious/anomalous DNP3 network flows will be dropped, by setting
empty the action field. The DNP3 network flows are defined via
the source and destination IP addresses as well as the source and
destination ports.

5 DIDEROT AUTOENCODER
The DIDEROT Autoencoder is a DNN devoted to identifying DNP3
anomalies. As illustrated in Fig. 2, it is composed of six fully con-
nected layers and maps input data x ∈ X = Rn to an output xfi ∈ X .
In particular, it consists of an encoder f : X =⇒ Z and a decoder
д : Z =⇒ X which together result in the output xfi = д(f (x)). The
low-dimensional latent representation of x is obtained from the
encoder and is defined as z = f (x) ∈ Z = Rm (m << n). As a result
of this dimensionality reduction, the DIDEROT Autoencoder avoids
to become an identity function, and the training process aims to
minimise the reconstruction error L(x ,xfi), which is typically the
Euclidean distance in space X . Since the proposed autoencoder is
trained, anomalies are detected by measuring the reconstruction
error L(x ,xfi) and comparing it with a threshold T , classifying all
operational data samples y with L(y,д(f (y))) > T as anomalies.
The selected threshold T is estimated heuristically based on the re-
construction error L of all normal training data samples. In practice
the threshold T in order to be more robust is selected to be a large
percentile of the reconstruction error T = p0.9(L(x ,xfi)|x ∈ X ) or
if a validation dataset is available, it is selected to maximise the per-
formance for the validation data. It is noteworthy that the training
dataset should only consist of normal observations, and therefore
it is expected to be reconstructed well.

Figure 2: DIDEROT Autoencoder

6 EVALUATION ANALYSIS
This section focuses on the DIDEROT evaluation. First, the eval-
uation environment is presented. Then, the dataset used to train
and test the DIDEROT Analysis Engine is described. Finally, the
evaluation results in terms of Accuracy, TPR, FPR and the F1 Score
are provided.

6.1 Evaluation Environment
The data used for the DIDEROT evaluation process originates from
an emulated substation environment equipped with real RTUs that
control the operation of the other Intelligent Electronic Devices
(IEDs). A centralised server acts as MTU, including an HMI through
which the operator can interact with the various RTUS, using the
DNP3 protocol. All assets are connected to an SDN switch. Through
SPAN, the entire network traffic generated in the substation envi-
ronment is destined into MTU, which also hosts DIDEROT. Con-
sequently, the Data Monitoring Module can receive the overall
network traffic and extract the respective network flow statistics,
thereby feeding the DIDEROT Analysis Engine. Finally, the SDN
controller (i.e., Ryu) is located in a different host.

6.2 Dataset
The first detection layer of the DIDEROT Analysis Engine (i.e., in-
trusion detection) relies on supervised ML detection methods; thus,
a labelled dataset composed of both normal and malicious network
flow statistics is necessary. The normal records were collected via
the normal network traffic generated in the substation environment.
On the other side, the dataset created by N. Rodofile et al. [36] was
used for the malicious records. The malicious records reflect the
aforementioned DNP3 attacks: a) injection, b) flooding, c) DNP3
reconnaissance, d) replay and e) masquerading. The overall dataset
was balanced in order to include the same number of normal and
malicious records. Moreover, among the malicious records, each
DNP3 cyberattack involves the same number of records. On the
other side, the second detection layer of the DIDEROT Analysis
Engine considers both unsupervised and semi-supervised ML detec-
tion methods. Therefore, the training data can include only normal
records originating from the substation environment. However, the
testing dataset should include both normal and abnormal records.
Therefore, again the dataset created by N. Rodofile et al. [36] was
used. As in the case of the first detection layer, the testing dataset
was balanced, including equal normal and anomalous records.

CICFlowMeter [8, 24] was used to generate the network flow
statistics. In particular, both detection layers are fed by the following
network flow features.

• Flow Duration: Defines the network flow duration in sec-
onds.

• TotLen Fwd Pkts: Denotes the entire size of packets to the
forward direction.

• Fwd Pkt Len Mean: Identifies the average size of the pack-
ets to the forward direction.

• Fwd Pkt Len Mean: Specifies the average size of the net-
work packets to the forward direction.

• Bwd Pkt Len Std: Indicates the standard deviation value of
the packets to the backward direction.



DIDEROT: An Intrusion Detection and Prevention System for DNP3-based SCADA Systems ARES 2020, August 25–28, 2020, Virtual Event, Ireland

• Flow IAT Std: Defines the standard deviation time between
two packets sent to the forward direction.

• Bwd Pkts/s: Denotes the number of the packets transmitted
to the backward direction per second.

• SubflowBwdPkts: Specifies the average number of packets
in a subflow to the backward direction.

• Init Bwd Win Bytes: Implies the number of bytes sent in
an initial window to the backward direction.

• Active Mean: Denotes the average time of a network flow,
which remained active before becoming idle.

6.3 Evaluation Results
Table 1 summarises the evaluation results of the first detection layer
(i.e., intrusion detection). Several supervised ML detection methods
were evaluated, including Quadratic Discriminant Analysis, Ad-
aBoost, Multi-Layer Perceptron (MLP), Random forest, SVM (Linear
kernel), SVM (RBF kernel), Naive Bayes, Decision Tree, Linear Dis-
criminant Analysis (LDA) and Logistic Regression. Considering all
evaluation metrics, the Decision Tree classifier presents the best
performance. Fig. 3 illustrates the confusion matrix of the Decision
Tree classifier.

Table 1: Evaluation Results of the First DIDEROT Detection
Layer - Intrusion Detection

ML Method Accuracy TPR FPR F1
Quadratic Discriminant
Analysis 0.722 0.166 0.166 0.166

AdaBoost 0.798 0.396 0.120 0.396
MLP 0.911 0.733 0.053 0.733
Random Forest 0.931 0.793 0.041 0.793
SVM Linear 0.893 0.680 0.063 0.680
SVM RBF 0.864 0.592 0.081 0.592
Naive Bayes 0.910 0.731 0.053 0.731
Decision Tree 0.997 0.991 0.001 0.991
LDA 0.896 0.688 0.062 0.688
Logistic Regression 0.907 0.722 0.055 0.722

Accordingly, Table 2 summarises the evaluation results of the
second detection layer (i.e., anomaly detection) of DIDEROT. Many
unsupervised/outlier and semisupervised/novelty ML detection
methods were evaluated and compared with each other, including
a) MCD, b) LOF, PCA, Isolation Forest and DIDEROT Autoencoder.
DIDEROT Autoencoder presents the best performance in terms
of all evaluation metrics. Fig. 4 shows the confusion matrix of
DIDEROT Autoencoder.

7 CONCLUSIONS
The rapid progression of the Information and Communication Tech-
nology (ICT) converts the conventional electrical grid into a new
paradigm called SG, offering multiple services in both energy con-
sumers and utility companies, such as the two-way communication,
pervasive control, self-healing and in general better use of the ex-
isting resources. Despite the fact that this new technological leap

Figure 3: Confusion Matrix of the First DIDEROT Detection
Layer (Decision Tree)

Table 2: Evaluation Results of the Second DIDEROT Detec-
tion Layer - Anomaly Detection

ML Method Accuracy TPR FPR F1
MCD 0.946 1 0.107 0.949
LOF 0.942 1 0.114 0.945
PCA 0.5 0 0 0
Isolation Forest 0.950 1 0.098 0.953
DIDEROT Autoencoder 0.951 1 0.097 0.953

Figure 4: Confusion Matrix of the Second DIDEROT Detec-
tion Layer (DIDEROT Autoencoder)

leads the energy world into a new, digital reality, it raises serious
cybersecurity risks.

In this paper, we provide aDNP3 IDPS calledDIDEROT. DIDEROT
relies on two detection layers that operate complementarily. The
first detection layer relies on a decision tree classifier responsible
for recognising specific DNP3 cyberattacks, while the second de-
tection layer uses an autoencoder DNN capable of detecting DNP3
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anomalies either due to a potential security violation or an elec-
tricity disturbance. The efficiency of DIDEROT is demonstrated
using real DNP3 network traffic data originating from an emulated
substation environment.

Our future plans related to this work include the creation of
appropriate association rules that will combine the two detec-
tion layers of DIDEROT in order to identify new DNP3 intru-
sions/anomalies. Moreover, intrusion detection mechanisms related
to other industrial application layer protocols will be investigated,
including IEC 61850, IEC 60870-5-104, Profinet and EtherCAT.
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