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Abstract

The technological leap of smart technologies has brought the conventional electrical grid
in a new digital era called Smart Grid (SG), providing multiple benefits, such as two-way
communication, pervasive control and self-healing. However, this new reality generates sig-
nificant cybersecurity risks due to the heterogeneous and insecure nature of SG. In particular,
SG relies on legacy communication protocols that have not been implemented having cy-
bersecurity in mind. Moreover, the advent of the Internet of Things (IoT) creates severe
cybersecurity challenges. The Security Information and Event Management (SIEM) systems
constitute an emerging technology in the cybersecurity area, having the capability to detect,
normalise and correlate a vast amount of security events. They can orchestrate the entire
security of a smart ecosystem, such as SG. Nevertheless, the current SIEM systems do not
take into account the unique SG peculiarities and characteristics like the legacy communi-
cation protocols. In this paper, we present the Secure and PrivatE smArt gRid (SPEAR)
SIEM, which focuses on SG. The main contribution of our work is the design and imple-
mentation of a SIEM system capable of detecting, normalising and correlating cyberattacks
and anomalies against a plethora of SG application-layer protocols. It is noteworthy that
the detection performance of the SPEAR SIEM is demonstrated with real data originating
from four real SG use case (a) hydropower plant, (b) substation, (c) power plant and (d)
smart home.
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1. Introduction

The next-generation electrical grid, also known as Smart Grid (SG), intends to address
multiple challenges of the conventional model, such as generation diversification, demand
response and the optimal management of the existing resources. In particular, the point
of convergence between electrical engineering and the Internet of Things (IoT) creates an
intelligent layer over the current model, which allows the development of appropriate busi-
ness applications offering pervasive control, self-monitoring and self-healing [1]. However,
this transition to the SG encloses significant cybersecurity risks that can lead to disastrous
consequences [2]. Characteristic examples are the BlackEnergy3 (2015) and Crashoverride
(2016) Advanced Persistent Threats (APTs) that caused extensive blackouts in Ukraine [3].
The necessary presence of legacy systems, such as Supervisory Control and Data Acquisi-
tion (SCADA)/Industrial Control Systems (ICS) and the advent of IoT increase the attack
surface of SG [4]. On the one side, SCADA/ICS use insecure communication protocols, like
Modbus and IEC 60870-5-104 [5] that allow the cyberattackers to perform various cyberat-
tacks. On the other side, IoT generates new cybersecurity concerns [6]. First, IoT relies on
the Internet model, which is vulnerable by itself. Second, the vast amount of the IoT data,
such as the smart metering data constitutes an attractive target for potential cyberattackers.
Finally, the capability of the various objects to interact with each other without any human
intervention increases the privacy concerns.

Taking into account the critical cybersecurity issues of SG, both academia and industry
have investigated possible countermeasures. First, the IEC 62351 standard has defined a set
of security controls and guidelines based mainly on existing authentication and authorisa-
tion technologies [7–9]. Moreover, the Security Information and Event Management (SIEM)
systems constitute an emerging technology organsisng the monitoring, detection and preven-
tion measures of a smart ecosystem, such as SG [10]. In particular, a SIEM can aggregate,
normalise and correlate various security events, thus identifying potential security violations
[10]. A security event is considered a normalised message related to the security status
of the monitored infrastructure [10]. However, the continuous progression of cyberattacks
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and malware requires the simultaneous evolution and adoption of the necessary counter-
measures. First, the guidelines of IEC 62351 cannot be adopted quickly by the vendors and
manufacturers, especially when the corresponding SCADA/ICS operate in real-time since
safety issues can arise. On the other side, the current SIEM systems include a limited set of
intrusion and anomaly detection mechanisms regarding the SG application-layer protocols
[11]. In addition, they are characterised by a lack of understanding between the complicated
relations of the real intrusion instances and fake alerts [12]. Therefore, the difficult goal of
ensuring intelligent, safe, viable and efficient SG becomes a major need filled with significant
and far-reaching challenges.

Based on the aforementioned remarks, this paper presents a SIEM system called Secure
and PrivatE smArt gRid (SPEAR) SIEM, which is exclusively focused on the SG ecosystem.
The proposed SIEM is focused on detecting, normalising and correlating security events
against SG environments and calculating the reputation value of each SG asset (hardware
or virtual device), which reflects how secure and trustworthy the functionality of each asset is.
To this end, SPEAR SIEM is capable of detecting, normalising and correlating cyberattacks
and anomalies against a plethora of SG communication protocols. Moreover, it includes
anomaly detection models that process time-series operational data (i.e., raw electricity
measurements) of four SG environments, namely (a) hydropower plant, (b) substation, (c)
power plant and (d) smart home. The architectural model of SPEAR SIEM consists of five
primary components, namely (a) AlienVault OSSIM SIEM [13], (b) SPEAR SIEM Basis, (c)
Message Bus, (d) Big Data Analytics Component (BDAC), (e) the Visual-based Intrusion
Detection System (VIDS) and (f) Grid Trusted Module (GTM). Section 3 analyses the
architecture of SPEAR, detailing the functionality of each component. The contributions of
this paper are summarised in the following points.

• Providing a SIEM system specially designed for SG: The proposed SIEM can
detect, normalise and correlate the security events related to multiple SG application-
layer cyberattacks.

• Providing a set of operational data-based anomaly detection models: The
specific models can detect anomalies based on the operational data (i.e., time series
electricity data) of four SG use cases: (a) hydropower plant, (b) substation, (c) power
plant and (d) smart home.

• Implementing a visual-based detection mechanism through ML/DL dimen-
sionality reduction techniques: Through VIDS, the security administrator can
identify potential, undetected security issues.

• Implementing a reputation mechanism reflecting the trust value of each SG
asset: GTM can calculate the reputation value of each SG asset based on the security
events and alerts received.

• Developing two novel Deep Neural Networks (DNNs), namely SPEAR
Stacked Denoising Autoencoder (SDAE) and Payload Text CNN Classi-

3



fier: The proposed DNNs are part of BDAC, detecting particular cyberattacks and
anomalies, respectively.

• Evaluating a plethora of ML/DL methods for detecting various cyberat-
tacks in four SG use cases: The various ML and DL methods of BDAC and VIDS
are evaluated in four SG use cases: (a) hydropower plant, (b) substation, (c) power
plant and (d) smart home.

The rest of this paper is organised as follows. Section 2 presents relevant works. Section
3 is devoted to the architecture of SPEAR SIEM. Section 4 presents the evaluation analysis.
Finally, section 5 concludes this paper. It is noteworthy that SPEAR SIEM was implemented
under the H2020 SPEAR project [14].

2. Related Work

Many papers have studied the security and privacy issues of SG. Some of them are listed
in [2, 11, 15–20]. In particular, in [11], the authors provide a comprehensive survey regarding
the intrusion detection in the SG sector. After providing the necessary background about the
SG and IDS, the authors investigate 37 cases related to detecting cyberattacks and anomalies
against (a) the entire SG ecosystem, (b) the Advanced Metering Infrastructure (AMI), (c)
SCADA systems, (d) substations and (e) synchrophasors. The DiSIEM project in [15]
evaluates the efficiency of seven SIEM systems: (a) HP ArcSight, (b) IBM QRadar, (c) Intel
McAfee Enterprise Security Manager, (d) Alienvault OSSIM, (e) XL-SIEM, (f) Splunk and
(g) Elastic Stack based on various criteria like data sources, data storage, User and Entity
Behaviour Analytics (UEBA), risk analysis, exposed APIs, resilience, event management and
visualisation. Similarly, in [16], L. Cui et al. examine the detection of False Data Injection
(FDI) attacks in SG, utilising ML methods. In particular, the authors focus on FDI attacks
against (a) energy consumption data, (b) state estimation and (c) load forecasting. In
[17], S. Quincozes et al. provide a survey about the intrusion detection and prevention
mechanisms concerning the digital substations. M. Gunduz and R. Das in [18] investigate
the various threats in SG, providing the corresponding solutions and directions for future
work. In a similar manner, in [2], P. Kumar et al. present a detailed study about the smart
metering networks, paying special attention to the security, privacy and open research issues.
Accordingly, in [19], M. Hassan et al. present a compilation about the differential privacy
techniques for Cyber-Physical Systems (CPS). Finally, in [20], I. Stellios et al. study IoT-
based cyberattacks against Critical Infrastructures (CIs), including SG, SCADA and smart
home environments. Subsequently, we pay our attention to some specific cases, highlighting
the differences with our work. Each paragraph focuses on a dedicated case.

In [21], R. Leszczyna and M. Wrbel review three open-source SIEM systems based on
the SG conditions. In particular, the SIEM systems investigated are (a) AlienVault OSSIM
[13], (b) Cyberoam iView [22] and (c) Prelude [23]. For the evaluation procedure, the au-
thors adopt the Solution Merit Index (SMI) by B. Sahay and K. Gupta [24]. The proposed
methodology relies on (a) primary criteria and (b) secondary criteria. The primary criteria
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are (a) number of available and compatible sensors, (b) number of the out-of-the-box sen-
sors, (c) diversity of available sensors, (d) real-time performance, (e) range and flexibility
of reporting, (f) alert correlation, (g) auto-response capabilities. On the other hand, the
secondary criteria are (a) documentation comprehensiveness, (b) complexity of the instal-
lation process, (c) complexity of the system configuration, (d) portability and (e) hardware
requirements. Based on the primary criteria, the OSSIM performance reaches 97% while
the performance of Cyberoam iView and CS Prelude reach 76% and 24.3%, respectively.
Concerning the secondary criteria, the Prelude performance approaches 86.8% while OSSIM
and Cyberoam iView reach 59.4% and 56.6%. The complete SMI for OSSIM is 81.96% while
the SMI of Prelude and Cyberoam iView is calculated at 80.68% and 37.16%. Therefore,
according to the authors, OSSIM is a complete SIEM system appropriate for the situational
awareness of an SG environment.

In [25], K. Zhang et al. introduce the Backward Influence Factor (BIF) algorithm capable
of processing and mining intrusion patterns originating from a sequence of IDS alerts. The
proposed algorithm handles efficiently the sequence data analysis issues like random noise,
disordering and element missing. In particular, it consists of five phases: (a) normalisation,
(b) intrusion action extraction, (c) intrusion session pruning, (d) correlation discovery and
(e) dynamic correlation graph construction. During the first phase, the IDS alerts are
normalised into a common format. Next, the intrusion action extraction phase follows by
discriminating the alerts based on two elements: (a) the source IP address and (b) the
destination IP address. Subsequently, the intrusion actions are specified, considering the
type and the destination port fields. Next, the intrusion session pruning phase undertakes
to separate long intrusion actions into smaller sequences called intrusion sessions. Then,
the pruning process starts, removing the sub-patterns from the initial sequence. Next, the
correlation discovery phase aggregates all pruned sessions, based on their starting time. The
BIF algorithm is responsible for computing the attraction score between two sessions. The
attraction score is expressed by the Influence Factor (IF). Finally, the last phase generates
a dynamic correlation graph based on the higher IF values.

In [26], M. Albanese et al. provide a probability-based framework, which assesses and
quantifies whether the sequence of events is unexplained, considering models of previously
learned behaviours. Based on the authors, such events can originate from (a) intrusion
detection and (b) alert correlation processes. Although their work can be applied to both
processes, it does not aim to overcome or replace them. In contrast, the proposed frame-
work runs on top of them, analysing whether their output is adequately explained. The
authors consider that the available intrusion detection models and alert correlation models
are ineffective for explaining a sequence of events identified in data streams. The input for
the intrusion detection decision is a vector of network packets, while the alert correlation
procedure relies on a set of alerts. The proposed framework is actually based on their pre-
vious work in [27] related to the cybersecurity settings. In particular, the authors adapt
the algorithms of [27] appropriately in order to estimate the probability that a sequence
of events is unexplained. The evaluation results demonstrate the efficacy of the proposed
framework in terms of accuracy and scalability.

K. Zhang et al. in [28] provide an alert correlation framework called Intrusion Action
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Based Correlation Framework (IACF) presenting a similar architecture as in their previous
work in [25]. The proposed framework enhances the aggregation of cybersecurity alerts, the
intrusion actions association, the extraction of intrusion sessions and finally the intrusion
scenarios identification. IACF is composed of three phases: (a) normalisation, (b) intrusion
session construction and (c) intrusion scenario construction. First, the cybersecurity alerts
are aggregated and divided into two groups based on the source IP and the destination IP
address. Thus, the intrusion actions are extracted based on the sequence of alerts display-
ing an intrinsic correlation. Next, the extraction of intrusion sessions follows, aiming to
split long sequences of intrusion actions into smaller intrusion sessions. To this end, two
algorithms are used, namely (a) Time-lag based Sequence Splitting (TSS) and (b) Sequence
Pruning Algorithm (SPA). Finally, the intrusion scenario construction starts, following the
assumption that intrusion sessions presenting a binary relation can compose the intrusion
scenario. Finally, a correlation graph is generated, consisting of the intrusion sessions and
their binary relations. The evaluation analysis shows the efficacy of IACF in terms of (a)
the recognition of multi-step cyberattacks, (b) the performance of the proposed algorithms
and (c) accuracy.

In our previous work in [29], we present an IDS called ARIES (smArt gRid Intrusion
dEtection System), which focuses on SG. The architecture of the proposed IDS consists
of three main modules: (a) Data Collection Module, (b) ARIES Analysis Engine and (c)
Response Module. The Data Collection Module is responsible for collecting (a) network
flow statistics, (b) Modbus/TCP payload information and (c) operational data. Next, the
ARIES Analysis Engine consists of three detection layers related to the aforementioned data
types. The first layer focuses on detecting cyberattacks, utilising network flow statistics. In
particular, it consists of two complementary detection models: (a) Intrusion Detection Model
and (b) Anomaly Detection Model. First, IDM takes place, adopting a decision tree classifier
capable of detecting five cyberattacks: (a) File Transfer Protocol (FTP) brute-force attacks,
(b) Secure Shell (SSH) brute-force attacks, (c) DoS, (d) bot and (e) port scanning. If the
detection outcome of IDM is normal, then ADM is activated, trying to identify a potential
anomaly. To this end, an autoencoder is used. Next, the second layer is devoted to detecting
potential Modbus anomalies by analysing the Modbus payload through the isolated forest
algorithm. Finally, the third layer focuses on electricity-related operational data and adopts
the ARIES Generative Adversarial Network (GAN) to recognise relevant anomalies. Finally,
the Response Module notifies the security administrator and can generate some automated
firewall rules to mitigate the impact of the potential cyberattacks/anomalies. The main
novelty of this work lies in the development of the ARIES GAN at the third detection layer.
The evaluation results demonstrate the efficacy of ARIES, including a comparison study
with multiple ML/DL methods.

In [30], the authors introduce an anomaly-based IDS for the electrical grid, based on
operational data of a real power plant. The proposed IDS consists of two primary stages (a)
the training stage and (b) the testing stage. In the first stage, the ML training process is car-
ried out, while the testing stage allows real-time anomaly detection, predicting whether an
anomaly exists or not. In particular, the training stage includes four modules: (a) Data Col-
lection Module, (b) Pre-Processing Module, (c) Feature Selection module and (d) Training
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Module. Accordingly, the testing stage comprises four modules: (a) Data Collection Module,
(b) Pre-processing Module, (c) Anomaly Detection Module and (d) Response Module. The
main innovation of this work lies in the fact that the Pre-Processing Module (in both stages)
adopts a complex data representation, which results in better detection performance. The
evaluation analysis demonstrates the efficiency of the complex data representation, com-
prising a plethora of ML and DL methods, such as Principal Component Analysis (PCA),
One-Class Support Vector Machine (SVM), isolation forest, Angle-Based Outlier Detection
(ABOD), SOS and autoencoder.

In [31], M. Ali et al. present MALGRA, which constitutes a combined ML and N-Gram
malware feature extraction and detection system. The methodology behind MALGRA in-
cludes six steps: (a) dynamic analysis, (b) Application Programming Interface (API) call
feature extraction, (c) N-Gram creation, (d) feature reduction, (e) N-Gram model prepara-
tion and (f) testing using samples. First, the authors follow a dynamic analysis in order to
investigate the behaviour of various malware, utilising an Artificial Intelligence (AI) sand-
box, called SNDBOX. In particular, the authors investigate two scenarios. The first one
focuses on the API calls and their arguments’ memory location to construct N-Grams. An
N-Gram is a subset of a given data sample with a length of n. In the second scenario, the
N-Grams are implemented based on the function calls and their arguments’ address. Next,
the Term FrequencyInverse Document Frequency (TF-IDF) method is adopted in order to
reduce the feature space. TF-IDF is a statistical method assessing how relevant a word is
in a document. Finally, the N-Grams are transformed into binary vectors introduced to
the ML methods. The evaluation analysis demonstrates the effectiveness of MALGRA. To
this end, the authors used four ML methods and 60 malicious samples from the virus share
website. The ML methods used are (a) Naive Bayes, (b) Decision Tree, (c) Random For-
est and (e) Logistic Regression. Based on the experimental results, the Logistic Regression
accomplishes the best detection accuracy.

M. Ghafouri et al. [32] provide a detection and mitigation system against cyber-physical
attacks related to a Wide Area Management System (WAM) and its components (i.e., Pha-
sor Measurement Unit (PMU) and Phasor Data Concentrator (PDC)). A voltage stability
problem refers to the instability of the power system to maintain and control the appropriate
voltage values at all buses during the regular operation or after an electrical disturbance.
This situation can lead to various consequences, such as load curtailment, brownouts or
even power outage. First, the authors study the cyberattacks against WAM, discriminating
two main categories: (a) cyberattacks against communication links and (b) cyberattacks
related to the WAM devices and data. Based on this study, an attack generation algorithm
is implemented, targeting the voltage stability. The proposed attack generation algorithm
relies on the power flow equations, addressing traditional anomaly detection techniques.
Next, the authors introduce a detection mechanism adopting the Thevenin Equivalent (TE)
parameters. It is worth noting that the proposed detection scheme does not rely on histor-
ical data and is capable of detecting the aforementioned cyberattacks. Next, a mitigation
framework is presented, allowing the system operator to specify the compromised PMUs or
PDCs and recover their proper functionality. The authors evaluate their system with three
use cases: (a) 7-bus transmission power system, (b) 39-bus New England system and IEEE
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118-bus system. The experimental result confirms the efficiency of the proposed detection
and mitigation system.

Undoubtedly, the previous works introduce significant contributions. Based on [21], we
use the AlienVault OSSIM as a basis for the proposed SPEAR SIEM. However, AlienVault
OSSIM focuses mainly on signature-based techniques without considering the special pecu-
liarities and characteristics of SG. It is noteworthy that the commercial version of AlienVault
OSSIM called AlienVault Unified Security Management (USM) [13] includes some correla-
tion rules and directives about SCADA systems. However, both AlienVault OSSIM and
AlienVault USM do not utilise ML and DL solutions targeted to the SG application layer
protocols. Furthermore, although several research efforts use ML and DL for detecting cy-
berattacks or anomalies against SG application-layer protocols, they cannot discriminate
the exact cyberattack type. For instance, they may detect a DoS attack without describing
specifically how this attack is related to the respective application-layer protocol. More-
over, a few papers pay attention to industrial protocols like BACnet and IEC 60870-5-104,
without again specifying the exact cyberattack type. Also, it is worth mentioning that the
existing works do not correlate the various SG-related security events.

Therefore, based on the aforementioned remarks, we provide a comprehensive SIEM sys-
tem dedicated to SG, aiming to address the current shortcomings. First, SPEAR SIEM
includes a variety of ML and DL detectors capable of discriminating the exact cyberattack
type. Next, it introduces visual-based detection mechanisms that allow the security admin-
istrator to identify undetected security issues. Next, SPEAR SIEM correlates the security
events related to Modbus, thus composing security alerts reflecting actual attack scenarios.
Finally, SPEAR SIEM introduces an extra protection level that quantifies the trust value of
each SG asset based on the security events received by the various detectors.

3. SPEAR SIEM Architecture

The SPEAR SIEM architecture relies on the ARCADE framework [14] and consists of
three layers as illustrated in Fig. 1. First, at the Data Capturing Layer, the SPEAR SIEM
Basis collects the necessary data for the intrusion detection processes. Three types of data
are captured: (a) network flow statistics, (b) packet payload information and (c) opera-
tional data (i.e., time-series electricity data). Then, the Detection Layer follows, where the
intrusion and anomaly detection processes take place, generating the corresponding secu-
rity events. There are four intrusion detection processes: (a) network flow-based detection,
(b) packet-based detection, (c) operational data data-based detection and (d) visual-based
detection. The first three are implemented by BDAC while VIDS carries out the last. Fi-
nally, the correlation layer follows where the security events are correlated. There are two
kinds of correlation. The first one is implemented by VIDS through correlation rules for the
Modbus/TCP protocol, thus producing alerts reflecting multi-step Modbus-related attack
scenarios. The second kind is conducted by GTM, which receives the various security events
and calculates each SG asset’s reputation value. Fig. 2 illustrates the interactions among the
SPEAR SIEM components. First, the OSSIM Sensors (part of AlienVault OSSIM) and the
SPEAR Sensors (part of SPEAR SIEM Basis) are distributed throughout the SG infrastruc-
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ture, thus monitoring, collecting and parsing various data. This information is transmitted
then to the OSSIM Server (part of AlienVault OSSIM) and Data Acquisition, Parsing and
Storage (DAPS) (part of SPEAR SIEM Basis), respectively. The OSSIM Server normalises
this information and uses a MySQL database for the storage, while DAPS uses an Elas-
ticsearch database and distributes this information to BDAC and VIDS. The normalised
information stored in the OSSIM server and the detection results of BDAC and VIDS are
named ‘security events’. Through the Message Bus, these security events are sent to GTM
and VIDS. Finally, the security events originating from BDAC and VIDS, the GTM updated
reputation values and the security alerts are visualised by VIDS. The following subsections
analyse each component in detail.

D
a

ta
 C

a
p

tu
ri

n
g
 L

a
y
e

r

Network Flow 

Statistics

Packet 

Payload
Operational 

Data

SPEAR SIEM Basis: SPEAR 

Sensors + DAPS

D
e

te
c
ti

o
n

 L
a

y
e

r

BDAC VIDS

Network flow-based detection

Packet-based detection

Operational Data-based 

detection

visual-based detection

C
o

rr
e

la
ti

o
n

 L
a

y
e

r

GTM VIDS

Fuzzy Logic
VIDS Correlation Rules for 

Modbus

Message Bus

Data

Security 

Events

SG Asset Reputation Values + 

Modbus Alerts

Figure 1: SPEAR SIEM Architecture.

9



Figure 2: SPEAR SIEM Operation Flow.

3.1. AlienVault OSSIM

AlienVault OSSIM is an open-source SIEM system capable of providing several security
capabilities. Its architecture is composed of two main components: (a) OSSIM Server and
(b) OSSIM Sensors. The OSSIM Sensors are deployed throughout the SG infrastructure,
collecting and normalising security-related information from any asset (hardware or virtual
devices). A wide range of OSSIM sensors is available, including firewalls, Host-based In-
trusion Detection Systems (HIDS) and Network-based Intrusion Detection Systems (NIDS).
Next, the OSSIM Server aggregates and correlates the security information gathered by the
OSSIM Sensors, thus composing security alerts. A security alert is defined as a set of se-
curity events associated with each other [13]. It is noteworthy that AlienVault OSSIM is
already implemented and provided by AT&T. In the context of this paper, we use the Alien-
Vault OSSIM as a signature-based detection, producing the corresponding security events
and alerts.

3.2. SPEAR SIEM Basis

SPEAR SIEM Basis follows a server-sensor architecture consisting of two components:
(a) SPEAR Sensors and (b) DAPS. Fig. 3 illustrates the SPEAR SIEM Basis architecture,
showing the relationship between the SPEAR Sensors and DAPS. In particular, a SPEAR
Sensor consists of two main functional elements (a) Network Capturer and Parser (NCP) and
(b) Asset Discovery (AD). NCP uses a runtime network analyser to continuously capture,
parse and forward network traffic data to DAPS. More detailed, NCP analyses a plethora
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of SG application-layer protocols by isolating specific payload information and relevant net-
work flow statistics used by BDAC and VIDS to detect intrusions/anomalies. To this end,
Tshark [33] and CICFlowMeter [34] are adopted. The format of the network flow statistics
is defined by CICFlowMeter [34]. Finally, AD utilises periodically Nmap [35] to discover
which assets (hardware and virtual devices) are active, thus collecting and delivering relevant
information to DAPS.

DAPS is a centralised server consisting of five functional elements: (a) Streaming Bus,
(b) Data Capturing and Parser (DCP), (c) Storage Infrastructure, (d) Representational
State Transfer (REST) Server and (e) OSSIM Event Manager. First, the Streaming Bus
is in charge of providing a near real-time streaming data to BDAC and VIDS in order to
detect intrusions/anomalies during the prediction phase. In particular, the Streaming Bus
relies on Apache Kafka and transmits (a) specific packet payload information, (b) network
flow statistics (c) operational data and (e) honeypot data. The operational data is retrieved
directly by DAPS from the corresponding SG use case, while the honeypot data is given
by the Honeypot Manager, which is an external component analysed in [14]. The SPEAR
honeypots and how the honeypot data is introduced into DAPS is out of the scope of this
paper. More details about this content are provided by [36, 37] and [14], respectively. Next,
DCP is responsible for importing the data published in the Streaming Bus and storing
them in the Storage Infrastructure. In turn, the Storage Infrastructure persists all captured
data originating either from the SPEAR Sensors or DAPS. More precisely, the payload
information related to the SG application-layer protocols, the network flow statistics, the
operational data (i.e., time series electricity data) and the honeypot data are stored into
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an Elasticsearch database. On the other hand, the asset-related data originating from AD
is stored in an SQLite database. Next, the REST server transmits the asset-related to
BDAC, VIDS and GTM. Finally, the OSSIM Event Manager is in charge of retrieving
OSSIM security events from the OSSIM Server periodically and forwarding them to the
Message Bus. The OSSIM security events are retrieved with all the attributes as defined by
AlienVault [13] and then they are parsed to match with the SPEAR SIEM security event
format (Table A.8).

3.3. BDAC: Big Data Analytics Component

BDAC is a backend component consisting of four main modules: (a) Data Receiving
Module, (b) Training Module, (c) BDAC Analysis Module and (d) Security Event Extrac-
tion Module. First, the Data Receiving Module is responsible for communicating with the
SPEAR SIEM Basis to receive the appropriate data for detecting potential cyberattacks
and anomalies. Then, the BDAC Analysis Engine analyses this data, identifying poten-
tial cyberattacks and anomalies. The BDAC Analysis Engine includes 24 intrusion and
anomaly detection models that analyse appropriately the various data types. The intrusion
and anomaly detection models of the BDAC Analysis Engine are updated periodically via
the Training Module. In particular, the Training Module is fed by the Data Receiving Mod-
ule with new normal and malicious data, thereby re-training the current intrusion/anomaly
detection models of the BDAC Analysis Engine only whether their accuracy and the F1
score are better compared to the previous ones. Finally, based on the BDAC Analysis En-
gine’s response, the SPEAR Event Extraction Module extracts the corresponding security
events. The following subsections provide more details about the architectural components
of BDAC. It is noteworthy that all BDAC modules are located in a common place so that
the communication interfaces among them are not necessary.

3.3.1. Data Receiving Module

The Data Receiving Module communicates with the DAPS subcomponent of the SPEAR
SIEM Basis in order to receive (a) network flow statistics, (b) payload information of the
SG application layer protocols, (c) operational data, (d) honeypots’ logs and (e) asset-
related data. In particular, the Data Receiving Module utilises the DAPS Streaming Bus
to monitor the network flow statistics and honeypots’ logs, while the payload of the SG
application-layer protocols and the operational data are received periodically via the DAPS
Storage Infrastructure of DAPS, utilising specific threshold values. According to the network
characteristics of each SG use case, these threshold values are defined appropriately. Finally,
the asset-related data is received from the DAPS REST Server.

3.3.2. Big Data Analysis Engine

The BDAC Analysis Engine is the core architectural component of BDAC responsible for
detecting possible cyberattacks and anomalies. It focuses mainly on detecting cyberattacks
and anomalies against the SG application-layer protocols, including Modbus, DNP3, IEC
60870-5-104, IEC 61850 (MMS), BACnet, MQTT, HTTP and SSH. Therefore, the corre-
sponding detection models are formed (e.g., Modbus Intrusion/Anomaly Detection Models).
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For each of these protocols, two detection categories are identified: (a) Network Flow-
Based Detection Models and (b) Packet-Based Detection Models. The first category (i.e.,
Network Flow-Based Detection Models) is devoted to identifying cyberattacks and anomalies
based on network flow statistics. It is divided into two subcategories: (a) Network Flow-
Based Intrusion Detection Models and (b) Network Flow-Based Anomaly Detection Models.
In particular, the Network Flow-Based Intrusion Detection Models rely on multiclass clas-
sification ML/DL methods in order to identify specific cyberattack types. In contrast, the
Network Flow-Based Anomaly Detection Models use outlier/novelty detection to detect po-
tential anomalies. The difference between a cyberattack and anomaly lies in the fact that
a cyberattack specifies a particular intrusion type like a Denial of Service Attack (DoS) or
a port scan, while an anomaly can originate from an intrusion or another reason like an
electrical disturbance. Hence, the second subcategory (i.e., Network Flow-Based Anomaly
Detection Models) operates as complementary to the first one (i.e., Network Flow-Based
Intrusion Detection Models) based on the flowchart presented in Fig. 4. In particular, by
checking the TCP/User Datagram Protocol(UDP) source and destination port of a net-
work flow received by the Data Receiving Module, the corresponding SG application layer
protocol is identified. Therefore, the appropriate Network Flow-Based Intrusion Detection
Model related to this protocol is activated (e.g., Modbus Network Flow-Based Intrusion
Detection Model). Then, if this model detects a specific attack, the corresponding secu-
rity event is generated via the Security Event Extraction Module. Otherwise, the relevant
Network Flow-Based Anomaly Detection Model is activated (e.g., Modbus Network Flow-
based Anomaly Detection Model). Similarly, if the specific model identifies an anomaly, the
corresponding security event is produced. Otherwise, the TCP/UDP Network Flow-Based
Intrusion/Anomaly detection models are used in a similar manner. It should be noted that
the last models have been presented in our previous work in [29] and focus on the TCP
and UDP protocols of the transport-layer. Hence, if the TCP/UDP Network Flow-Based
Intrusion Detection Model detects a specific attack, the respective security event is gener-
ated. Otherwise, the TCP/UDP Network Flow-Based Anomaly Detection Model undertakes
to discover whether a possible anomaly exists, generating a suitable security event or not.
Finally, it should be noted that this process is carried out continuously, always monitoring
new network flow statistics.

The second category (i.e., Packet-Based Anomaly Detection Models) identifies potential
anomalies based on the payload information of each packet. Fig. 5 illustrates the relevant
flowchart of the Packet-based Anomaly Detection Models. First, the information of each
packet is received through the Data Receiving Module. Next, the corresponding application
layer protocol is identified to execute the appropriate packet-based anomaly detection model.
Finally, if an anomaly is detected, the corresponding security event is produced via the
Security Event Extraction Module.

Apart from the application-layer protocols, the BDAC Analysis Engine uses operational
data (i.e., raw electricity measurements) and honeypots logs in order to identify additional
anomalies. Thus, the corresponding models are identified, i.e., Operational Data-Based
Anomaly Detection Models and Honeypot-Based Anomaly Detection Models. The oper-
ational data originate from the local environment of each SG use case and is captured
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Figure 4: Flowchart of the Network Flow based Detection Models.
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Figure 5: Flowchart of the Packet based Detection Models.
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through the SPEAR SIEM Basis. In particular, four kinds of operational data were consid-
ered based on four individual SG use cases, i.e., (a) hydropower plant, (b) substation, (c)
power plant and (d) smart home. On the other side, any interaction with a honeypot is
considered an anomalous activity since a legitimate user will not interact with it. Figure 6
and Figure 7 show the flowcharts related to the Operational Data-Based Anomaly Detec-
tion Models and Honeypot-Based Anomaly Detection Models, respectively. Regarding the
Operational Data-Based Anomaly Detection Models, initially, a series of operational data
(i.e., electricity measurements) is collected through the Data Receiving Module. Next, the
respective Operational Data-Based Anomaly detection model is applied. If an anomaly is
recognised, a relevant security event is generated by the Security Event Extraction Module.
On the other side, the honeypots logs are received via the Data Receiving Module and are
transformed into security events by the Security Event Extraction Module. Therefore, based
on the previous remarks, the following subsections analyse the respective intrusion/anomaly
detection models per SG application-layer protocol and those related to the operational data
and honeypots logs.

BDAC Analysis Engine

Receive Operational Data 

via the Data Receiving 

Module

Apply the Corresponding 

Operational Data Based 

Anomaly Detection Model

Anomaly
Extract Security Event via the 

Security Extraction Module
True

Figure 6: Flow Diagram of the Operational Data-Based Detection Models.
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Normalise Honeypot Logs into 

Security Events

Extract Security Event via the 

Security Extraction Module

Figure 7: Flow Diagram of the Honeypot-Based Detection Model.

3.3.2.1. Modbus/TCP Intrusion/Anomaly Detection Models. Three Modbus/TCP-related
intrusion/anomaly detection models were implemented: (a) Modbus/TCP Network Flow-
Based Intrusion Detection Model, (b) Modbus/TCP Network Flow-Based Anomaly Detec-
tion Model and (c) Modbus Packet-Based Anomaly Detection Model. The first two rely
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on Modbus/TCP related network flow statistics. In particular, the Modbus/TCP Network
Flow-Based Intrusion Detection Model utilises a Decision Tree Classifier [38] aiming to iden-
tify malicious network flows indicating the following Modbus/TCP cyberattacks:

• modbus/function/readInputRegister (DoS): This DoS attack floods the target
system with Modbus/TCP Read Input Register packets (Function Code 04).

• modbus/function/writeSingleCoils: This unauthorised access attack sends a Mod-
bus/TCP packet (Function Code 05), which changes the status of a single coil either
to ON or OFF. Since the Modbus/TCP protocol does not include any authentica-
tion or authorisation mechanism, a cyberattacker can send malicious Modbus/TCP
commands against the target system.

• modbus/scanner/getfunc: This reconnaissance attack enumerates all Modbus/TCP
function codes used and supported by the target system.

• modbus/dos/writeSingleRegister: This DoS attack floods the target system with
Modbus/TCP Write Single Register packets (Function Code 06).

• modbus/function/readDiscreteInputs (DoS): This DoS attack floods the target
system with Modbus/TCP Read Discrete Inputs packets (Function Code 02).

• modbus/function/readHoldingRegister (DoS): This DoS attack floods the tar-
get system with Modbus/TCP Read Holding Register packets (Function Code 03).

• modbus/function/readCoils (DoS): This DoS attack floods the target system with
Modbus/TCP Read Coils packets (Function Code 01).

• modbus/function/readInputRegister: This unauthorised attack sends a Mod-
bus/TCP packet (Function Code 04) used to read the values of specific input registers.

• modbus/function/writeSingleRegister: This unauthorised access attack sends a
Modbus/TCP packet (Function Code 06) in order to write a value to a specific holding
register.

• modbus/dos/writeSingleCoils: This DoS attack floods the target system with
Modbus/TCP Write Single Register packets (Function Code 06).

• modbus/function/readDiscreteInput: This unauthorised access attack sends a
Modbus/TCP packet (Function Code 02) to read the status of specific discrete inputs.

• modbus/scanner/uid: This reconnaissance attack enumerates which slave IDs are
activated.

• modbus/function/readCoils: This unauthorised access attack sends a Modbus/TCP
packet (Function Code 01) to read the status of specific coils.
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• modbus/function/readHoldingRegister: This unauthorised access attack sends
a Modbus/TCP packet (Function Code 03) to read the values of specific holding reg-
isters.

The aforementioned cyberattacks are implemented by Smod, a widely known pen-testing
tool related to Modbus [39, 40]. The Modbus Network Flow-Based Anomaly Detection
Model adopts the DIDEROT Autoencoder [41], identifying anomalous Modbus/TCP net-
work flows. The DIDEROT autoencoder is analysed in our previous work in [41]. Finally, the
last model focuses on the payload of the Modbus/TCP packets, recognising Modbus/TCP
anomalous packets based on the Isolation Forest method [42]. Since there are no sufficient
intrusion/anomaly detection datasets related to the Modbus/TCP, it is worth mentioning
that relevant Modbus/TCP intrusion/anomaly detection datasets were constructed, by im-
plementing Modbus/TCP cyberattacks against a real smart home as well as an emulated
SG environment. To this end, the directions provided by A. Gharib et al. [43] were followed.
The evaluation analysis related to the Modbus/TCP intrusion/anomaly detection models is
analysed in section 4.

3.3.2.2. DNP3 Intrusion/Anomaly Detection Models. The BDAC Analysis Engine encloses
two detection models related to DNP3: (a) DNP3 Network Flow-Based Intrusion Detection
Model and (b) DNP3 Network Flow-Based Anomaly Detection Model. Both of them rely on
DNP3-related network flow statistics. In particular, the DNP3 Network Flow-Based Intru-
sion Detection Model utilises a Decision Tree Classifier [38], which recognises the following
five DNP3-related cyberattacks.

• Injection: Since the DNP3 protocol does not include sufficient authorisation mech-
anisms, this attack injects malicious DNP3 packets in a communication established
between a DNP3 outstation and master.

• Flooding: This DoS attack floods continuously the target system with DNP3 packets.

• DNP3 Reconnaissance: This reconnaissance attack identifies whether the DNP3
protocol is used by the target system or not.

• Replay: This attack replays DNP3 packets originating from a legitimate party to the
other endpoint.

• Masquerading: In this attack, the cyberattacker imitates the behaviour of a legiti-
mate asset, sending the appropriate DNP3 packets.

The DNP3 Network Flow-Based Anomaly Detection Model uses the ABOD method
[44, 45], thus identifying anomalous DNP3 network flows. Both models were trained, utilising
normal DNP3 network flow statistics coming from a real substation environment as well as
from the DNP3 intrusion detection dataset of N.Rodofile et al. [46]. The evaluation analysis
of these DNP3 intrusion/anomaly detection models is presented in our previous work in [41].
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3.3.2.3. IEC 60870-5-104 Intrusion/Anomaly Detection Models. Three IEC 60870-5-104-
related detection models are incorporated into the BDAC Analysis Engine: (a) IEC 60870-
5-104 Network Flow-Based Intrusion Detection Model, (b) IEC 60870-5-104 Network Flow-
Based Anomaly Detection Model and (c) IEC 60870-5-104 Packet-Based Anomaly Detection
Model. The first two rely on IEC 60870-5-104 related network flow statistics specified by the
2404 TCP port. In particular, the IEC 60870-5-104 Network Flow-Based Intrusion Detection
Model utilises a Decision Tree Classifier [38], detecting the following cyberattacks.

• c ci na 1 DoS: This DoS attack floods the target system with c ci na 1 IEC 60870-
5-104 packets.

• c sc na 1: This unauthorised access attack injects a c sc na 1 IEC 60870-5-104 packet
to the target. Since IEC 60870-5-104 does not comprise sufficient authentication
and authorisation mechanisms, a potential cyberattacker can perform malevolent IEC
60870- 5-104 commands to manipulate the target system.

• c ci na 1: This unauthorised access attack injects a c ci na 1 IEC 60870-5-104 packet
to the target.

• c se na 1: This unauthorised access attack injects a c se na 1 IEC 60870-5-104 packet
to the target system.

• c sc na 1 DoS: This DoS attack floods the target system with c sc na 1 IEC 60870-5-
104 packets.

• c se na 1 DoS: This DoS attack floods the target system with c se na 1 IEC 60870-5-
104 packets.

• m sp na 1 DoS: This DoS attack floods the target system with m sp na 1 IEC 60870-
5- 104 packets.

The IEC 60870-5-104 Network Flow-Based Anomaly Detection Model adopts the Isola-
tion Forest method [42], detecting anomalous IEC 60870-5-104 network flows. Finally, the
last model focuses on the IEC 60870-5-104 packets’ payload information, identifying IEC
60870-5-104 anomalous packets. To this end, it applies the Local Outlier Factor (LOF)
method [47, 48]. For the training process, a suitable IEC 60870-5-104 intrusion detection
dataset was constructed, utilising an emulated substation environment. For this purpose,
the directions of A. Gharib et al. [43] were used. The evaluation results related to the IEC
60870-5-104 detection models are presented in section 4.

3.3.2.4. IEC 61850 (MMS) Anomaly Detection Model. The BDAC Analysis Engine includes
a single model related to the IEC 61850 (MMS) protocol. The proposed model is named IEC
61850 (MMS) Network Flow-Based Anomaly Detection Model and relies on outlier/novelty
detection and network flow statistics defined by the TCP port 102. In particular, it utilises
the Minimum Covariance Determinant (MCD) method [45, 49]. Since there are no sufficient
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intrusion/anomaly detection datasets related to IEC 61850 (MMS), an IEC 61850 (MMS)
anomaly detection dataset was constructed, by combining normal IEC 61850 (MMS) network
flows from an emulated substation environment and abnormal IEC 61850 (MMS) network
flows generated statistically. The evaluation analysis of the specific model is detailed in
section 4.

3.3.2.5. BACnet Intrusion/Anomaly Detection Models. The BDAC Analysis Engine in-
cludes two detection models related to BACnet. The first one called BACnet Network
Flow-based Intrusion Detection Model utilises the Random Forest method [50], thus de-
tecting three BACnet cyberattacks: (a) fuzzing, (b) flooding and (c) tampering. The sec-
ond model focuses on the BACnet packets’ payload and is named BACnet Packet-Based
Anomaly Detection Model. It uses a custom text Convolutional Neural Network (CNN)
[51, 52], which detects abnormal BACnet packets. This method is named Payload Text
CNN Classifier. Due to the lack of publicly available intrusion/anomaly detection datasets
for BACnet, an appropriate dataset was implemented utilising the equipment of a real smart
home environment. The evaluation analysis of the aforementioned models and more details
about the Payload Text CNN Classifier are included in section 4.

3.3.2.6. MQTT Intrusion/Anomaly Detection Models. Two detection models are integrated
into the BDAC Analysis Engine regarding the MQTT protocol: (a) MQTT Network Flow-
Based Intrusion Detection Model and (b) MQTT Packet-Based Intrusion Detection Model.
On the one hand, the first model applies the Random Forest method [50] with MQTT
network flow statistics and detects three kinds of MQTT-related cyberattacks: (a) unautho-
rised subscribe, (b) large payload DoS attack and (c) connection flooding attack. On the
other hand, the second model uses the SPEAR Payload Text CNN [51, 52] with the payload
attributes of the MQTT packets in order to recognise the anomalous MQTT packets. For
the training process, an appropriate MQTT intrusion detection dataset was constructed,
following the directions of [43]. As in the previous cases, the evaluation results of the afore-
mentioned models are documented in section 4.

3.3.2.7. HTTP Intrusion/Anomaly Detection Models. The BDAC Analysis Engine inte-
grates two detection models associated with the HTTP protocol: (a) HTTP Network Flow-
Based Intrusion Detection Model, (b) HTTP Network Flow-Based Anomaly Detection Model.
The first model adopts a Decision Tree Classifier [38] capable of discriminating the following
HTTP-related cyberattacks.

• DoS: This DoS attack floods the target system with HTTP packets.

• SQL-Injection: This attack aims to exploit vulnerabilities of web applications in
order to access unauthorised information.

• Bruteforce-Web: This attack attempts to access a password-protected web applica-
tion by using multiple passwords combinations.

• XSS: Cross-Site Scripting (XSS) is a type of injection attack, where malicious scripts
are injected into web applications.
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The HTTP Network Flow-Based Anomaly Detection Model relies on LOF [47, 48]. Both
models mentioned above take as input HTTP network flow statistics specified by the 80
TCP port. For the training process, a combined dataset was utilised, including normal
HTTP network flows originating from an emulated substation environment and malicious
HTTP network flow statistics of the CSE-CIC-IDS2018 dataset [34]. Section 4 details the
evaluation results for both HTTP detection models.

3.3.2.8. SSH Intrusion/Anomaly Detection Models. Two SSH-related detection models are
involved in the BDAC Analysis Engine. The first one is named SSH Network Flow-Based
Intrusion Detection Model and uses Adaboost [53, 54] to recognise SSH bruteforce attacks.
The second model, called SSH Network Flow-Based Anomaly Detection Model applies the
MCD method [45, 49] to identify anomalous SSH network flows. Both models take as
input SSH network flow statistics. The training process relies on a combined dataset, which
includes normal SSH network flows from an emulated substation environment and malicious
SSH network flows of the CSE-CIC-IDS2018 dataset [34]. Section 4 details the relevant
evaluation results.

3.3.2.9. Operational Data Based Anomaly Detection Models. The BDAC Analysis Engine
includes four detection models that analyse operational data (i.e., time series electricity
measurements), detecting anomalies related to four SG use cases: (a) hydropower plant, (b)
substation, (c) power plant and (d) smart home. In particular, the first model related to
the hydropower plant environment adopts a GAN [52], which was presented in our previous
work in [29]. Next, the second model (i.e., related to the substation environment) applies
LOF. The remaining models related to the anomalies of the power plant and the smart home
use also the GAN presented in [29]. For the training process, real data was used for each
SG use case. As in the previous cases, the evaluation of the particular models is detailed in
section 4.

3.3.2.10. Honeypots-Based Detection Model. The Honeypot-Based Detection Model relies
on SG honeypots coming from our previous works in [55] and [36, 37]. In particular,
the honeypots’ logs are collected by the Honeypot Manager that forwards them to the
Honeypots-Based Detection Model. The latter undertakes to normalise and transform them
into security events based on the format of Table A.8. The Honeypot Manager is analysed
in our previous work in [14].

3.3.3. Training Module

The Training Module is responsible for providing the BDAC Analysis Engine with the
various ML/DL based intrusion/anomaly detection models. In particular, the main goal
behind this module is to train the initial intrusion/anomaly detection models of the BDAC
Analysis Engine and re-train them periodically with more and updated data. The previous
intrusion/anomaly detection models of the BDAC Analysis Engine are replaced whether the
performance of the new ones is better in terms of the accuracy and the F1 score metrics.
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3.3.4. Security Event Extraction Module

The Security Event Extraction Module undertakes to generate normalised security events
based on the outcome of the BDAC Analysis Engine intrusion/anomaly detection models.
The format of the SPEAR security events is given in Table A.8. The Security Event Ex-
traction Module utilises the information given by the Data Receiving Module concerning
(a) the network flow statistics, (b) packet payload information of the SG application-layer
protocols, (c) operational data and (d) honeypots logs to fill in the necessary fields of the
SPEAR security event format. Moreover, it communicates with DAPS in order to receive
more information for the assets related to a security event, such as the asset ID, the asset
name and the network ID. Finally, it pushes the BDAC security events to Message Bus. It
is noteworthy that based on the security event information, this module can also indicate
and form automatic firewall rules that are introduced in the Userdata fields of the security
event format (Table A.8). These firewall rules rely on the syntax of the Linux firewall, i.e.,
iptables [56].

3.4. VIDS: Visual-based Intrusion Detection System

VIDS has been designed to receive, store, present, manipulate and visualise data (security
events, network packets, operational data (i.e., time-series electricity measurements) and
network assets data) from the other SPEAR SIEM components on a simple and easy-to-
use visual environment. Moreover, VIDS correlates the Modbus-related security events of
BDAC, thus composing Modbus security alerts based on correlation rules. First, VIDS
communicates with the Message Bus, thus consuming and visualising the security events
generated only by BDAC and the VIDS itself. The security events of AlienVault OSSIM are
correlated and illustrated by AlienVault OSSIM itself. This communication between VIDS
and Message Bus relies on Apache Kafka. Moreover, VIDS communicates with DAPS of
SPEAR SIEM Basis in order to receive the appropriate data for the visual-based anomaly
detection mechanisms. As in the case of BDAC, VIDS receives from DAPS the payload of the
SG application-layer protocols, network flow statistics and operational data (i.e., time series
electricity measurements). Both Apache Kafka (Streaming Bus) and the Elasticsearch API
(Storage Infrastructure) are utilised for the communication between VIDS and the SPEAR
SIEM Basis. The role of VIDS is complementary to that of BDAC and AlienVault OSSIM,
allowing the system operator or the security administrator to observe potential anomalies
through appropriate visualisations. Finally, VIDS communicates with GTM to configure
it and visualise its reputation values of each asset (i.e., hardware or virtual devices). This
communication is based on a REST API.

By focusing on the visual-based detection mechanisms with operational data (i.e., time
series electricity measurements), several ML and DL-based dimensionality reduction meth-
ods are adopted to detect anomalies. All of them are available in the VIDS dashboard,
thereby giving the user the capability to show different visualisations. It is inherently ar-
duous to visualise the incoming network and operational data in a manner straightforward
to understand by humans since in most cases, they comprise a large number of features.
The role of dimensionality reduction in this context is to reduce these features in a lower-
dimensional space and represent all of them with a single 2D or 3D point in space, which
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is easy to understand by the system operator. Towards this goal, each ML/DL dimension-
ality reduction method produces a latent space in the form of a manifold in two or three
dimensions. The produced output includes a colour indication at each point, which is au-
tomatically adjusted based on the distance from the statistical centre of the expected data.
This distance value corresponds to the measured distance from the centroid of normal values
in the reduced dimensionality space and indicates how close to normal the observed data
is. The methods also produce a covariance matrix, showing the correlation between the
recorded features over time, indicating how each parameter influences the rest. The outputs
of each algorithm are saved into a PostgreSQL database of VIDS and are used to plot the
visualisation diagrams (Fig. 8, Fig. 9, Fig. 10 and Fig. 11).

Fig. 8 presents a line-chart displaying the anomaly score of the operational data (i.e., time
series electricity measurements) over time. The red horizontal line represents the threshold
of normal values, calculated as the statistical centre of the normal data. The black line
represents the distance from this threshold, indicating how close to normal the incoming
data is at each time instant. There are two such diagrams, one for the live operational data
and one for the historical operational data stored in the VIDS database. In the latter, the
user can select a time window (i.e., 3 hours) and scroll through the diagram, observing the
anomaly score over this time window.

Figure 8: Anomaly score line chart over time. The values below the red line correspond to normal data and
the ones above indicate potential anomalies.

Fig. 9 and Fig. 10 depict the reduced dimensionality space of the operational data. The
user can choose between representations in either two or three dimensions, with the live and
historical data. At each time instant, the live scatter plot displays the network’s current
status, after executing the ML and DL-based dimensionality reduction methods, using the
most recent operational data received from the Storage Infrastructure of the SPEAR SIEM
Basis. In the case of the historical data, the scatter plot represents the status of the grid
throughout the whole selected date. The visual patterns formed in these diagrams allow
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the operator to observe the network’s status and determine anomalies by looking at the
projected points’ position and tint. The potential anomalies are showcased by grouped
points having a red tint. By rendering these charts, VIDS offers an overview of the network
status with respect to anomalies in the operational data and provides a comprehensive
visualisation through several methods. The security administrator can deduce whether an
anomaly occurs at any given time instant by observing the respective patterns.

Figure 9: Scatter plot of the 2D data representation of the recorded features. In this case, points having
a blue tint and located to the left correspond to normal data, while red points located to the right side
indicate potential anomalies. X Dim and Y Dim denote the dimensions after the dimensionality reduction
process.

Figure 10: Scatter plot of the 3D data representation of the recorded features. In this case, points having a
blue tint, located towards the middle correspond to the normal data, while points with a red tint indicate
potential anomalies. X Dim, Y Dim and Z Dim denote the dimensions after the dimensionality reduction
process.

Fig. 11 illustrates the correlation among the recorded features of the operational data. A
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higher line width indicates a more substantial influence between the corresponding features.
The user can hover at each line and observe the actual value of the connection. Values close
to 0.05 indicate no correlation, while values close to 1 recommend strong relation. The live
dependency diagram shows the status corresponding to the most recent operational data at
each time instant. Finally, the historical diagram displays the average value throughout the
selected date for each connection.

Figure 11: Dependency wheel diagram showing the recorded features correlation. Higher line width indicates
a stronger relation between the features.

The VIDS correlation capability relies on correlation rules that focus on the security
events generated by the Modbus Network Flow-Based Intrusion Detection Model. However,
similar rules can be identified for the other industrial protocols. This kind of correlation
aims to identify relationships among the Modbus security events, composing alerts reflecting
multi-step attack scenarios related to Modbus. The correlation rules are constructed by
combining the information of the security events (Table A.8) as well as additional fields,
such as time information (e.g., a sequence of events appearing in a specific period time) or
the number of continuous security events. Event Processing Language (EPL) statements
are utilised for the syntax of these correlation rules. Table B.9 in Appendix B summarises
these rules.

3.5. GTM: Grid Trusted Module

The goal of GTM is to correlate the various security events and calculate a reputation
value for each SG asset (hardware or virtual). This kind of correlation intends to reflect
how trustworthy, safe and secure each asset is. To this end, GTM communicates with the
Message Bus to receive the various security events produced by AlienVault OSSIM, BDAC
and VIDS. Fig. 12 shows the architecture of GTM. In particular, since GTM is a backend
component, VIDS is utilised for its configuration, defining a specific threshold value for
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each asset. If an asset’s reputation value exceeds the particular threshold, then a GTM
alert is generated for the specific asset. This communication between VIDS and GTM is
implemented via a REST API. Then, all security events are received from the Message Bus,
and the GTM Functional Process Unit undertakes to calculate a reputation value for each
asset. These reputation values are sent to the VIDS, which undertakes to visualise them.
Finally, the reputation values of GTM are stored into the GTM database as historical data.

Figure 12: GTM Architecture.

The operation core of GTM is the GTM Functional Process Unit, which consists of
four elements: (a) the GTM queue, (b) the Fuzzy Logic Core, (c) the Fuzzy Reputation
Reduction System and (d) the Fuzzy Reputation Recovery System. First, GTM receives
continually security events stored into the GTM queue, which applies a First In First Out
(FIFO) model. Next, the Logic Core undertakes to quantify the severity of each security
event based on fuzzy logic rules, considering the asset value, the subcategory, the event
risk, the priority and the reliability of the security events based on Table A.8. The Fuzzy

25



Logic Core utilises the fuzzy theory to map the value of each aforementioned variable into
a quantified value without strict rules. Table 1 shows indicative fuzzy logic rules used by
the Fuzzy Logic Core. These rules are derived by forming the fuzzy universe. The fuzzy
universe is unique and mandatory for each variable used to calculate the quantified value of
the security event.

Table 1: Indicative Rules of the Fuzzy Logic Core.

No Input Output

Rule #1
Asset Value: high, Priority: high, Risk: high,
Reliability: high, Subcategory: modbus/function/readCoils

Quantified Value:
Low

Rule #2
Asset Value: low, Priority: low, Risk: low,
Reliability: medium, Subcategory: SQL Injection

Quantified Value:
High

Rule #3
Asset Value: high, Priority: high, Risk: high,
Reliability: medium, Subcategory: HTTP DoS

Quantified Value:
Low

... ... ...

Rule #20
Asset Value: high, Priority: medium, Risk: high,
Reliability: medium, Subcategory: DNP3 Reconnaissance

Quantified Value:
Low

Rule #21
Asset Value: high, Priority: medium, Risk: medium,
Reliability: high, Subcategory: Masquerading

Quantified Value:
Low

Rule #22
Asset Value: high, Priority: medium, Risk: low,
Reliability: high, Subcategory: Port Scanning

Quantified Value:
Low

The purpose of the Fuzzy Reputation Reduction System is to produce the reputation
value of any asset related to the corresponding security event. The reputation value of each
asset is computed, taking into account the time difference between the previous reputation
value and the current security event as well as the outcome of the Fuzzy Logic Core. Table 2
includes indicative fuzzy logic rules used by the Fuzzy Reputation Reduction System in
order to calculate the reputation value of each asset.

Table 2: Indicative Rules of the Fuzzy Reputation Reduction System.

No Input Output
Rule #1 Time: Low, Quantified Value: Low Reputation Value: Low
Rule #2 Time: Low, Quantified Value: Low Reputation Value: Medium
Rule #3 Time: Low, Quantified Value: High Reputation Value: Medium
Rule #4 Time: Medium, Quantified Value: Low Reputation Value: Low
Rule #5 Time: Medium, Quantified Value: Medium Reputation Value: Medium
Rule #6 Time: Medium, Quantified Value: High Reputation Value: High
Rule #7 Time: High, Quantified Value: Low Reputation Value: Low
Rule #8 Time: Medium, Quantified Value: Medium Reputation Value: High
Rule #9 Time: Medium, Quantified Value: High Reputation Value: High

Finally, the Fuzzy Reputation Recovery System undertakes to increase the reputation
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value based on the time difference between the last reduction of an asset’s reputation value
and the current time. A threshold in the VIDS determines the frequency, which is utilised
to check a possible increment of the reputation value. The functionality of the Fuzzy Rep-
utation Recovery System is also based on fuzzy rules. Table 3 shows a sample of them.

Table 3: Indicative Rules of the Fuzzy Reputation Recovery System.

No Input Output
Rule #1 Time: Low, Reputation Value: Low Reputation Value: Medium
Rule #2 Time: High, Reputation Value: Low Reputation Value: Medium
Rule #3 Time: Low, Reputation Value: Medium Reputation Value: Medium
Rule #4 Time: High, Quantified Value: Medium Reputation Value: High
Rule #5 Time: Low, Quantified Value: High Reputation Value: High
Rule #6 Time: High, Quantified Value: High Reputation Value: High

3.6. Message Bus

Message Bus plays the role of a gateway providing a communication system among all
SPEAR SIEM components that generate and handle security events. It applies a publish-
subscribe pattern based on Apache Kafka. In particular, BDAC and VIDS (via the system
operator or the security administrator) produce security events to the appropriate Apache
Kafka topic of the Message Bus. In contrast, VIDS and GTM consume them in order to
visualise them and compute the assets’ reputation value, respectively.

4. Evaluation Analysis

This section focuses on evaluating the detection performance of SPEAR SIEM. First,
subsection 4.1 describes the evaluation environment. Next, subsection 4.2 and subsection 4.3
present the datasets and the comparative methods used in the evaluation analysis. Finally,
subsection 4.4.1 and subsection 4.4.2 presents the evaluation results of BDAC and VIDS,
respectively.

4.1. Evaluation Environment

The detection mechanisms of BDAC and VIDS were implemented and evaluated, utilising
real data originating from four SG use cases, namely (a) hydropower plant, (b) substation,
(c) power plant and (e) smart home. The first three cases (i.e., hydropower plant, substation
and power plant) use logic controllers, such as Programmable Logic Controllers (PLCs) and
Remote Terminal (RTUs) that monitor and control the operation of the entire infrastruc-
ture and mainly that of industrial devices, such as turbines, transformers and generators.
These controllers communicate with a centralised server called Master Terminal Unit (MTU)
managed by the system operator through a Human Machine Interface (HMI). In particu-
lar, through HMI, the system operator can monitor and handle the operation of PLCs and
RTUs, sending the appropriate commands via the corresponding SG application-layer pro-
tocols (e.g., Modbus, DNP3 and IEC 61850). Finally, the smart home environment involves
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smart meters that measure energy consumption and relevant statistics. This information
is also stored in an MTU, using the corresponding SG application-layer protocols. The
SPEAR Sensors were deployed in each SG infrastructure, using a Switched Port Analyser
(SPAN). Therefore, the overall network traffic is directed to the SPEAR sensors. In addi-
tion, the operational data of each SG infrastructure is stored in MTU, which transmits them
to DAPS.

4.2. Datasets

For each SG application-layer protocol mentioned above in subsection 3.3, appropriate
datasets were formed and utilised to train and test the ML and DL models of the BDAC Anal-
ysis Engine. These datasets were composed either by creating them from scratch with the
emulation of the respective cyberattacks/anomalies or combining existing intrusion datasets
with the normal records coming from the aforementioned SG use cases (i.e., hydropower
plant, substation, power plant and smart home). New datasets were formed for the Mod-
bus/TCP, IEC 60870-5-104, IEC 61850, BACnet and MQTT. In addition, the CSE-CIC-
IDS2018 dataset [34] was used for the HTTP and SSH. For the anomaly detection models
of the BDAC Analysis Engine and VIDS using operational data (i.e., time-series electricity
measurements), suitable datasets were produced from scratch based on the indications of
security and safety experts from each SG infrastructure (i.e., hydropower plant, substation,
power plant and smart home). Due to the sensitive nature of these datasets, they cannot
be published in the current work.

4.3. Comparative Methods

This subsection is devoted to the comparative methods used to evaluate BDAC and
VIDS. In particular, subsection 4.3.1 is focused on the ML and DL comparative methods
related to the BDAC Analysis Engine, while subsection 4.3.2 describes the ML and DL
dimensionality reduction methods of VIDS.

4.3.1. BDAC Comparative Methods

Multiple ML and DL methods were investigated and evaluated for each detection model
of the BDAC Analysis Engine. In particular, regarding the detection models adopting a
multiclass classification, the following ML methods were used: Logistic Regression [57], Lin-
ear Discriminant Analysis (LDA) [58], Decision Tree Classifier [38], Naive Bayes [59], SVM
Linear [60], SVM RBF [60], Random Forest [61], Adaboost [53], Multi-Layer Perceptron
(MLP) [62], Quadratic Discriminant Analysis [63], K Nearest Neighbour (KNN) [64]. More-
over, three custom DNNs were also used in our evaluation analysis. The first two called
Dense DNN Relu and Dense DNN Tanh are originating from our previous work in [29]. The
remaining one called SDAE was implemented during this work.

The SPEAR SDAE is a DNN consisting of consequent encoding layers of individual De-
noising Autoencoders (DAEs), which can be considered a type of MLP. In the beginning,
the original input data is used to generate higher representation. Afterwards, the output
of the first trained DAE’s hidden layer is used as the next autoencoder’s input to extract
higher representations. The training process of the SPEAR SDAE consists of two phases.
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The first phase is the unsupervised layer-wise pre-training and the second phase is the su-
pervised fine-tuning phase. During the first phase, each layer is trained separately. For
the first phase, the labels are not required since the goal is to extract the feature represen-
tations from the input data. Then, after the training of all layers, the fine-tuning phase
starts, which is a backpropagation phase, using supervised training algorithms. This greedy
layer-wise procedure has been shown to yield significantly better local minima than random
initialisation of deep networks, achieving better generalisation on a number of tasks [65].
The SPEAR SDAE was tested to detect possible cyberattacks against MQTT and BACnet
based on the corresponding network flow statistics. In particular, during the training phase,
it receives as input 83 network flow-related statistic features and the label for each MQTT
or BACnet network flow. These features pass through two or three encoder layers depending
on the specific architecture of each protocol. Then, the representative features are extracted,
passing through a final softmax classification layer with an equal number of nodes as the
number of classes.

Regarding the models using outlier/novelty detection mechanisms to identify whether
there is an anomaly or not, the following ML methods were evaluated: ABOD [44], Isolation
Forest [42], PCA [66], MCD [45, 49] and LOF [47, 48]. Furthermore, two DNNs were also
adopted and evaluated. The first one is called DIDEROT Autoencoder and originates from
our previous work in [41]. The second one was developed during this work. It relies on text
CNN, which is a slight variant of a typical CNN. The difference between them is that in the
conventional CNNs, the sizes of filters in a single layer are usually the same. In contrast, in
text-CNNs, the filters have a fixed width equal to the embedding size of the input sentences
but different heights. The sentences are formed by parsing the SG application-layer payload
of each packet and decomposing it into tokens. Each token is usually either a payload
field or its value. The Payload Text CNN Classifier consists of 3 layers. The first layer is an
embedding layer, which transforms the words of each payload/sentence in word embeddings.
Word embeddings are dense vectors representing the projection of the word into a continuous
vector space. During the convolution process, a filter w of size hxd is applied in a window
of h words of the sentence to extract a new feature. In particular, h represents the height
and d denotes the width of the token embeddings that form a sentence. This filter is applied
to each possible window generating a feature map. After this procedure, a global max-
pooling layer follows, extracting the most important feature of each feature map. Filters of
3 different window sizes (4, 6, 8) are used in the different channels to extract more features
by processing 4-grams, 6-grams and 8-grams. Consequently, the features from the global
max-pooling layers are concatenated and passed through a dense feature layer and a final
output layer.

4.3.2. VIDS Comparative Methods

Concerning the visual-based detection mechanisms of VIDS, four ML dimensionality
reduction methods are investigated and compared with each other, including PCA [66],
Singular Value Decomposition (SVD) [67], Independent Component Analysis (ICA) [68]
and Semi-Random Projection (SRP) [69]. In addition, four DNNs, namely (a) DeepDense
Autoencoder, (b) Feed Forward (FF) Autoencoder, (c) Long Short-Term Memory (LSTM)
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Autoencoder and (d) Classic Dense Sequence Autoencoder were constructed during this
work. Adam is utilised as the optimisation method, the Mean Squared Error (MSE) is
used for the loss, while the Rectified Linear Unit (ReLU) and sigmoid are used for the
activation functions. Tables-4-7 summarise these DNNs. For each ML/DL dimensionality
reduction method, a time window of 30 instances (the most recent operational data of the
corresponding evaluation environment) is used as input.

Table 4: Overview of the DeepDense Autoencoder.

Layer (type) Output Shape Param #

input 1(Input Layer) (None, inputDim) 0
dense 1 (Dense) (None,128) 57728
dense 2 (Dense) (None,64) 8256
dense 3 (Dense) (None,32) 2080
dense 4 (Dense) (None,lowDim) 99
dense 5 (Dense) (None,32) 128
dense 6 (Dense) (None,64) 2112
dense 7 (Dense) (None,128) 8320
dense 8 (Dense) (None,inputDim) 58050

Table 5: Overview of the FF Autoencoder.

Layer (type) Output Shape Param #

input 1(Input Layer) (None, inputDim) 0
dense 1 (Dense) (None,lowDim) 1353
dense 2 (Dense) (None,inputDim) 1800

Table 6: Overview of the LSTM Autoencoder.

Layer (type) Output Shape Param #

input 1(Input Layer) (None, inputDim,1) 0
lstm 1 (LSTM) (None,lowDim) 60
repeat vector 1 (ReepatVector) (None,inputDim,3) 0
lstm 2 (LSTM) (None,inputDim,1) 20

Table 7: Overview of the Classic Dense Sequence Autoencoder.

Layer (type) Output Shape Param #

dense 1 (Dense) (None,128) 57728
dense 2 (Dense) (None,64) 8256
dense 3 (Dense) (None,lowDim) 195
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dense 4 (Dense) (None,64) 256
dense 5 (Dense) (None,128) 8320
dense 6 (Dense) (None,inputDim) 58050

4.4. Evaluation Results

Before proceeding to the analysis of the BDAC and VIDS detection performance, we
need to introduce first the necessary background terms. True Positives (TP) define the
number of the correct classifications that detected the cyberattacks and anomalies as mali-
cious/anomalous behaviours. Accordingly, True Negatives (TN) denote the number of the
correct classifications that recognised the normal behaviour activities as normal. On the
other side, False Negatives (FN) denote the number of the wrong classifications that iden-
tified malicious activities as normal. Finally, False Positives (FP) define the number of
the incorrect classifications that detected the normal activities as malicious or anomalous.
Therefore, the following metrics are defined (Equations 1-4).

Accuracy (ACC) (equation (1)) indicates the ratio between the correct classifications and
the total number of data samples. ACC can be utilised as an unbiased evaluation metric
when the training dataset comprises an equivalent quantity of data samples for all classes.
For example, if the training dataset contains 90% data samples characterised as normal and
10% data samples as anomalous, then the ACC can reach 90% by classifying every case as
normal.

Accuracy(ACC) =
TP + TN

TP + TN + FP + FN
(1)

The False Positive Rate (FPR) (equation (2)) denotes the proportion of normal behaviours
recognised as malicious/anomalous. FPR is calculated by dividing FP with the sum of FP
and TN.

FPR =
FP

FP + TN
(2)

The True Positive Rate (TPR) (equation (3)) determines what proportion of actual mali-
cious/anomalous activities was identified as malicious/anomalous. TPR is focused essen-
tially on FN and is calculated by dividing TP with the sum of FN and TP.

TPR =
TP

TP + FN
(3)

Finally, the F1 score (equation (4)) expresses the golden ratio between the TPR and Pre-
cision, taking into account both FN and FP. Precision is another evaluation metric, which
computes the proportion of those data samples classified as malicious/anomalous.

F1 =
2 × Precision× TPR

Precision + TPR
where Precision =

TP

TP + FP
(4)
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4.4.1. BDAC Evaluation Results

This subsection summarises the evaluation results of the various intrusion and anomaly
detection models that compose the BDAC Analysis Engine. The comprehensive ML/DL
comparative analysis of the BDAC evaluation results is provided by Tables C.10-C.28 in
Appendix C. It is noteworthy that all ML and DL methods were fine-tuned after several
experiments. Fig. 13 summarises the detection performance of the BDAC network flow-based
intrusion detection models. The Modbus/TCP Network Flow-Based Intrusion Detection
Model adopts a decision tree, where ACC = 0.964, TPR = 0.749, FPR = 0.019 and F1 =
0.749. Decision trees are efficient ML methods used for both classification and regression
problems. Their architecture consists of internal nodes and leaves. The internal nodes and
their edges separate the whole space into smaller sub-spaces based on the training features.
In contrast, the leaves symbolise the various classes. Consequently, different paths are
formed that can be translated into logical rules leading to particular classes. In this paper,
we use the Classification and Regression Tree (CART) method with the Information Gain
(IG) criterion. More details about the decision trees are given in [38]. The IEC 60870-5-104
Network Flow-Based Intrusion Detection Model adopts also a CART decision tree whose
ACC, TPR, FPR and the F1 score reach 0.953, 0.815, 0.026 and 0.815. On the other side,
the BACnet and the MQTT Network Flow-Based Intrusion Detection Models apply the
SPEAR SDAE method, which is analysed previously in subsection 4.3. In the first case, the
ACC, TPR, FPR and the F1 score reach 0.909, 0.991, 0.090 and 0.979, respectively. On
the contrary, the efficiency of the MQTT Network Flow-Based Intrusion Detection Model
is reflected by the following metrics ACC = 0.992, TPR = 0.984, FPR = 0.005 and
F1 = 0.984. Finally, both HTTP Network Flow-Based Intrusion Detection Model and SSH
Network Flow-Based Intrusion Detection Model use a CART decision tree classifier where
their performance is defined by the following metrics, respectively: ACC = 0.964, 0.911,
0.026 and 0.911 and ACC = 0.960, TPR = 0.958, FPR = 0.038 and F1 = 0.955.

Figure 13: BDAC Network Flow-based Intrusion Detection Models Evaluation Results
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Figure 14: BDAC Network Flow-based & Packet-Based Anomaly Detection Models Evaluation Results

Fig. 14 illustrates the detection performance of those BDAC Analysis Engine models
detecting anomalies based on outlier or novelty detection techniques. First, the Modbus
Network Flow-Based Anomaly Detection Model utilises the DIDEROT autoencoder, where
its detection performance is defined by ACC = 0.950, TPR = 0.999, FPR = 0.099 and
F1 = 0.952. The DIDEROT autoencoder is described by our previous work in [42]. In
particular, it is a DNN composed of six fully connected layers that represent the encoder
and decoder, evenly. Both the encoder and decoder map the input data x to an output
y. Based on the dimensionality reduction property, the training process intends to reduce
the reconstruction error L(x, y), which typically is the Euclidean distance in space X. The
anomaly detection process is conducted by calculating and comparing the reconstruction
error L(x, y) with a threshold T , which is defined heuristically. In contrast, the Modbus
Packet-Based Anomaly Detection Model applies the isolation forest method [42], where
ACC, TPR, FPR and the F1 score are calculated at 0.943, 0.952, 0.062 and 0.930. The
isolation forest method detects outliers or differently anomalies by intentionally ”overfitting”
a function memorising each data point. Since the data space is relatively empty around
outliers/anomalies, the function requires fewer memorisation steps. To this end, full decision
trees are used, calculating the path length between the root and each leaf (data point). The
final measure for each data point is the average path length, which is relatively short.
Similarly, the IEC 60870-5-104 Network Flow-Based Anomaly Detection Model adopts the
isolation forest, where ACC = 0.948, TPR = 0.967, FPR = 0.074, ACC = 0.952. However,
on the other side, the IEC 60870-5-104 Packet-Based Anomaly Detection Model utilises the
LOF method [47]. The evaluation metrics for this model are ACC = 0.926, TPR = 0.859,
FPR = 0.005, ACC = 0.921. The LOF functionality relies on the local density. An
outlier/anomaly is detected by comparing the local density of the point investigated with
the local density of its neighbours. The locality is provided by KNN [64] through which the
density is estimated by measuring their distance. When the density of the point investigated
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is significantly lower than its neighbours’ density, it is considered an outlier/anomaly. The
IEC 61850 (MMS) Network Flow-Based Anomaly Detection Model applies the MCD method
[49] with ACC = 0.981, TPR = 0.986, FPR = 0.22 and F1 = 0.977. The MCD is a
robust estimator of multivariate scatter and location. Its resiliency to the masking effect,
makes it efficient to detect outliers/anomalies. M. Hubert and D. Michiel in [49] provide
a detailed description about MCD, using simplified examples. Next, both the BACnet
Packet-Based Intrusion Detection Model and the MQTT Packet-Based Anomaly Detection
Model adopt the Payload Text CNN described earlier in subsection 4.3. The detection
performance of the first is reflected by the following metrics ACC = 0.967, TPR = 0.967,
FPR = 0.032 and F1 = 0.982. Similarly, the performance of the MQTT Packet-Based
Anomaly Detection Model is defined by ACC = 0.985, TPR = 0.985, FPR = 0.014 and
F1 = 0.985. Finally, the HTTP Network Flow-Based Anomaly Detection Model and the
SSH Network Flow-Based Anomaly Detection Model use LOF and MCD, respectively. The
detection performance of the first is reflected by ACC = 0.946, TPR = 0.954, FPR = 0.058
and F1 = 0.938. In contrast, the evaluation metrics of the SSH Network Flow-Based
Anomaly Detection Model are ACC = 0.957, TPR = 0.970, FPR = 0.050 and F1 = 0.944.

Fig. 15 depicts the detection performance of the BDAC Operational Data-Based Anomaly
Detection Models. In particular, the ARIES GAN [29] is applied in the three of the four
SG use cases: (a) hydropower plant, (b) power plant and (c) smart home. As mentioned
in section 2, the ARIES GAN is discussed in our previous work in [29]. In contrast, in the
substation use case, the LOF [47] method is used, where ACC = 0.873, TPR = 0.993,
FPR = 0.157 and F1 = 0.759. Regarding the ARIES GAN, the evaluation metrics in
the hydropower plant use case equal with ACC = 0.746, TPR = 0.978, FPR = 0.311
and F1 = 0.607. Similarly, the efficacy of the ARIES GAN in the power plant use case is
reflected by ACC = 0.851, TPR = 0.982, FPR = 0.188 and F1 = 0.755.

Figure 15: BDAC Operational Data-Based Anomaly Detection Models Evaluation Results
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4.4.2. VIDS Evaluation Results

This subsection is devoted to evaluating the detection performance of VIDS. The detailed
ML/DL comparative analysis is provided by Tables D.29-D.32 in Appendix D. As illsutrated
by Fig. 16, almost in all SG use cases the LSTM-Autoencoder presents the best efficacy in
terms of ACC and the F1 score. Only, in the smart home environment, the FF-Autoencoder
overcomes the LSTM-Autoencoder. Both LSTM-Autoencoder and FF-Autoencoder are de-
tailed in subsection 4.3.

Figure 16: VIDS Evaluation Results

5. Conclusions

Although the modern electrical grid provides several benefits, such as pervasive control
and self-healing, it involves crucial cybersecurity risks. In particular, the combination of
the insecure SG communication protocols, the IoT security issues and the rapid evolution of
cyberattacks and malware can lead to disastrous consequences, such as extensive blackouts
and brownouts. The SIEM systems constitute a state-of-the-art cybersecurity technology,
which can organise and manage the monitoring, detection and prevention measures.

In this work, we presented the SPEAR SIEM, which focuses on the peculiarities of SG.
In particular, SPEAR SIEM is composed of four main components, namely (a) SPEAR
SIEM Basis, (b) BDAC, (c) VIDS and (d) GTM. SPEAR SIEM Basis undertakes to mon-
itor the infrastructure, thus providing the necessary data to the other components. Next,
BDAC integrates a set of ML/DL-based intrusion and anomaly detection models related
to the SG communication protocols and SG operational data (i.e., time-series electricity
measurements). Next, VIDS is a parallel detection and correlation mechanism, which relies
on visual analytics. Finally, GTM correlates the various security events and computes the
reputation value of each SG asset. The evaluation analysis demonstrates the efficiency and
applicability of SPEAR SIEM in four SG environments, namely (a) hydropower plant, (b)
substation, (c) power plant and (d) smart home.
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Our future plans related to this work include the incorporation of more intrusion and
anomaly detection models in the BDAC Analysis Engine that will focus on Profinet and
EtherCAT. Moreover, appropriate association rules will be investigated in order to correlate
security events related to other industrial protocols. To this end the Apriori and Eclat ML
methods will be investigated. Finally, appropriate self-healing mechanisms will be exam-
ined to be integrated into SPEAR SIEM, taking full advantage of the network automation
capabilities offered by the Software-Defined Networking (SDN) technology. In particular,
the SDN controller will be able to mitigate the potential malicious flows or re-arrange them,
thus ensuring the stability of the SG infrastructure.
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Appendix A. SPEAR SIEM Security Event Format

Table A.8 summarises the format of the SPEAR security events.

Table A.8: SPEAR SIEM security event format.

Security Event Field Name Security Event Field Description

SPEAR Component
Identifier of the SPEAR SIEM component, which generates
the security event. Three options are available: AlienVault
OSSIM, BDAC and VIDS.

Date Date and time of the security event.

Sensor The sensor, which processed the security event.

Device IP
The IP address of the sensor, which processed the security
event.

Event Type ID
Identifier assigned by the component, which generates the
security event.

Unique Event ID
Unique identifier assigned by the component, which
generates the security event.

Protocol Protocol related to the security event.

Category
Event taxonomy for the security event. In the context of
BDAC and VIDS, it is “Cyberattack” or “Anomaly”.

Subcategory
Subcategory of the security event taxonomy type listed
under Category. In the context of BDAC and VIDS, it is a
specific cyberattack or anomaly.

Data Source Name
Name of the external application or device that produced
the security event. In the context of BDAC and VIDS, it
related to VIDS itself or the internal modules of BDAC.

Data Source ID

Identifier related to the external application or device which
generated the security event. In the context of BDAC and
VIDS, it is related to the internal modules of BDAC or
VIDS itself.

Product Type Product type related to the security event.

Additional Info
Uniform Resource Locator (URL) including more details
about the security event.

Priority
It reflects the significance of the security event in the
range between 0-5.

Reliability
It reflects the detection reliability in the range between
0-10.

Risk
Risk calculation relies on the formula:
Asset Value * Event Reliability * Event Priority / 25

OTX Indicators
Number of indicators related to an OTX IP reputation or
OTX pulse event. In the context of BDAC and VIDS, it
is null.

Source/Destination ID
Identifier of the source/destination related to the security
event.
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Source/Destination IP
IP addresses of source/destination, respectively related to
security event.

Source/Destination Hostname Hostname of source/destination.

Source/Destination
MAC Address

Media Access Control (MAC) of source/destination.

Source/Destination Port Port of source/destination.

Source/Destination
Latest Update

The last time when the component, which generated the
security event updated the source/destination properties.

Source/Destination Username
and Domain

Username and domain related to source/destination.

Source/Destination Asset Value
Asset value of source/destination. It reflects the
significance of source/destination.

Source/Destination Location
If the origin of source/destination is known, it reflects the
host country.

Source/Destination Context
If the asset belongs to a user-defined group of entities,
AlienVault OSSIM shows the relevant contexts. In the
context of BDAC and VIDS, it is null.

Source/Destination
Asset Groups

When the source/destination belongs to one or more asset
groups, this field lists the asset group name or names.

Source/Destination Networks
When the source/destination belongs to one or more
networks, this field lists the networks.

Source/Destination
Logged Users

A list of users and their information related
to source/destination.

Source/Destination
OTX IP Reputation

(Yes or No) Whether or not the OTX IP Reputation
identifies the IP address as suspicious.

Source/Destination Service
List of services or applications related to the
source/destination ports.

Service Port Port utilised by the service or application.

Service Protocol Protocol utilised by the service or application.

Raw Log Raw log details of the security event.

Filename Name of a file related to the security event.

Username Usernames related to the security event.

Password Passwords related to the security event.

Userdata 1-9 User-generated log fields.

Rule Detection

AlienVault OSSIM NIDS rule used to detect the
security event. In the context of BDAC and VIDS,
BDAC internal modules and
VIDS itself are used, respectively.
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Appendix B. VIDS Correlation Rules for Modbus

Table B.9 summarises the VIDS correlation rules for Modbus.

Table B.9: VIDS Correlation Rules for Modbus

No Description

Rule #1
If there are X or more consecutive events denoting a modbus/function/
readInputRegister (DoS) attack, then an alert called ‘modbus/function/
readInputRegister (DoS)’ is raised. X is defined by the user.

Rule #2
If there are X or more consecutive events denoting a modbus/dos
/writeSingleRegister attack, then an alert called ‘modbus/dos
/writeSingleRegister’ is raised. X is defined by the user.

Rule #3

If there are X or more consecutive events denoting a modbus/function/
readDiscreteInputs (DoS) attack, then an alert called
‘modbus/function/readDiscreteInputs (DoS)’ is raised. X is defined
by the user.

Rule #4

If there are X or more consecutive events denoting a modbus/
function/readHoldingRegister (DoS) attack, then an alert called
‘modbus/function/readHoldingRegister (DoS)’ is raised. X is defined
by the user.

Rule #5
If there are X or more consecutive events denoting a modbus
/function/readCoils (DoS) attack, then an alert called
‘modbus/function/readCoils (DoS))’ is raised. X is defined by the user.

Rule #6
If there are X or more consecutive events denoting a modbus/dos
/writeSingleCoils attack, then an alert called ‘modbus/dos
/writeSingleCoils’ is raised. X is defined by the user.

Rule #7
If there are X events denoting a modbus/scanner/uid attack and
right after X events denoting a modbus/scanner/getfunc, then an
alert called ‘Modbus Reconnaissance’. X is defined by the user.

Rule #8
If there are X or more consecutive events denoting a modbus/
scanner/getfunc attack, then an alert called ‘Modbus Reconnaissance’
is raised. X is defined by the user.

Rule #9
If there are X or more consecutive events denoting a modbus/scanner
/uid attack, then an alert called ‘Modbus Reconnaissance’ is raised.
X is defined by the user.

Rule #10

If there are X events denoting a modbus/scanner/uid attack and
right after X events denoting a modbus/function/writeSingleCoils,
then an alert called ‘modbus/function/writeSingleCoils’ is raised.
X is defined by the user.

Rule #11

If there are X events denoting a modbus/scanner/getfunc attack and
right after X events denoting a modbus/function/writeSingleCoils,
then an alert called ‘modbus/function/writeSingleCoils’ is raised.
X is defined by the user.
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Rule #12
If there are X or more consecutive events denoting a modbus/function
/writeSingleCoils, then an alert called ‘modbus/function/
writeSingleCoils’ is raised. X is defined by the user.

Rule #13

If there are X events denoting a modbus/scanner/uid attack and right
after X events denoting a modbus/function/readInputRegister, then
an alert called ‘modbus/function/readInputRegister’ is raised. X is
defined by the user.

Rule #14

If there are X events denoting a modbus/scanner/getfunc attack and
right after X events denoting a modbus/function/readInputRegister,
then an alert called ‘modbus/function/readInputRegister’ is raised.
X is defined by the user.

Rule #15
If there are X or more consecutive events denoting a modbus/function
/readInputRegister, then an alert called ‘modbus/function/
readInputRegister’ is raised. X is defined by the user.

Rule #16

If there are X events denoting a modbus/scanner/uid attack and right
after X events denoting a modbus/function/writeSingleRegister, then
an alert called ‘modbus/function/writeSingleRegister’ is raised. X is
defined by the user.

Rule #17

If there are X events denoting a modbus/scanner/getfunc attack and
right after X events denoting a modbus/function/writeSingleRegister,
then an alert called ‘modbus/function/writeSingleRegister’ is raised.
X is defined by the user.

Rule #18
If there are X or more consecutive events denoting a modbus/function
/writeSingleRegister, then an alert called ‘modbus/function
/writeSingleRegister’ is raised. X is defined by the user.

Rule #19

If there are X events denoting a modbus/scanner/uid attack and right
after X events denoting a modbus/function/readDiscreteInput, then
an alert called ‘modbus/function/readDiscreteInput’ is raised. X is
defined by the user.

Rule #20

If there are X events denoting a modbus/scanner/getfunc attack and
right after X events denoting a modbus/function/readDiscreteInput,
then an alert called ‘modbus/function/readDiscreteInput’ is raised.
X is defined by the user.

Rule #21
If there are X or more consecutive events denoting a modbus/function
/readDiscreteInput, then an alert called ‘modbus/function
/readDiscreteInput’ is raised. X is defined by the user.

Rule #22

If there are X events denoting a modbus/scanner/uid attack and right
after X events denoting a modbus/function/readHoldingRegister, then
an alert called ‘modbus/function/readHoldingRegister’ is raised. X
is defined by the user.

Rule #23

If there are X events denoting a modbus/scanner/getfunc attack and
right after X events denoting a modbus/function/readHoldingRegister,
then an alert called ‘modbus/function/readHoldingRegister’ is raised.
X is defined by the user.
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Rule #24
If there are X or more consecutive events denoting a modbus/function
/readHoldingRegister, then an alert called ‘modbus/function
/readHoldingRegister’ is raised. X is defined by the user.
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Appendix C. BDAC Evaluation Results - Comprehensive ML/DL Comparative
Analysis

The Appendix C presents the ML/DL comparative analysis related to the intrusion and anomaly
detection models of the BDAC Analysis Engine. In particular, Tables C.10-C.28 reflect this eval-
uation process. It is worth noting that all ML and DL methods were fine-tuned after several
experiments.

Table C.10: Modbus/TCP Network Flow-Based Intrusion Detection Model Evaluation Results.

Classification Problem Multi-Class Classification

Data Type
Network flow statistics (related only to Modbus/TCP
network flows specified by the 502 TCP port)

Features
All features exported by CICFlowMeter [54],
excluding FlowID, SrcIP, DstIP and Timestamp

Total Dataset Size 255000 Modbus flows

Training Dataset Size 70%

Tesing Dataset Size 30%

ML/DL Method ACC TPR FPR F1

Logistic Regression 0.943 0.603 0.030 0.603

LDA 0.943 0.604 0.030 0.604

Decision Tree Classifier 0.964 0.749 0.019 0.749

Nave Bayes 0.928 0.497 0.038 0.497

SVM RBF 0.918 0.426 0.044 0.426

SVM Linear 0.921 0.453 0.042 0.453

Random Forest 0.947 0.633 0.028 0.633

MLP 0.938 0.570 0.033 0.570

Adaboost 0.887 0.214 0.060 0.214

Quadratic Discriminant Analysis 0.941 0.593 0.031 0.593

Dense DNN Relu 0.945 0.619 0.029 0.619

Dense DNN Tanh 0.945 0.619 0.029 0.619

Table C.11: Modbus/TCP Network Flow-Based Anomaly Detection Model Evaluation Results.

Classification Problem Outlier/Novelty Detection

Data Type
Network flow statistics (related only to Modbus/TCP
network flows specified by the 502 TCP port)

Features
Flow Duration, TotLen Fwd Pkts, Fwd Pkt Len Mean,
Bwd Pkt Len Std, Flow IAT Std, Bwd Pkts/s,
Subflow Fwd Byts, Init Fwd Win Byts, Active Mean

Total Dataset Size 255000 Modbus flows

Training Dataset Size 70%

Tesing Dataset Size 30%

ML/DL Method ACC TPR FPR F1

ABOD 0.949 0.999 0.100 0.951
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Isolation Forest 0.950 0.999 0.099 0.952

PCA 0.540 0.846 0.567 0.488

MCD 0.948 0.999 0.102 0.950

LOF 0.947 0.999 0.104 0.950

DIDEROT Autoencoder 0.950 0.999 0.099 0.952

Table C.12: Modbus/TCP Packet-Based Anomaly Detection Model Evaluation Results.

Classification Problem Outlier/Novelty Detection

Data Type Attributes of Modbus/TCP Payload

Features
TCP-LEN, TRANSACTION-ID, PROTOCOL-ID, UNIT-ID
, FCODE, LEN, START-ADDR, BYTE-COUNT

Total Dataset Size 255000 Modbus packets

Training Dataset Size 70%

Tesing Dataset Size 30%

ML/DL Method ACC TPR FPR F1

ABOD 0.819 0.800 0.166 0.784

Isolation Forest 0.943 0.952 0.062 0.930

PCA 0.909 0.869 0.062 0.888

MCD 0.905 0.857 0.062 0.878

LOF 0.943 0.952 0.062 0.930

DIDEROT Autoencoder 0.888 0.074 0.898 0.968

Table C.13: IEC 60870-5-104 Network Flow-Based Intrusion Detection Model Evaluation Results.

Classification Problem Multi-class Classification

Data Type
Network flow statistics (related only to IEC
60870-5-104 network flows specified by the 2404 TCP
port)

Features
Flow Duration, TotLen Fwd Pkts, Fwd Pkt Len Mean,
Bwd Pkt Len Std, Flow IAT Std, Bwd Pkts/s, Subflow
Fwd Byts, Init Fwd Win Byts, Active Mean

Total Dataset Size 100000 IEC 60870-5-104 flows

Training Dataset Size 70%

Tesing Dataset Size 30%

ML/DL Method ACC TPR FPR F1

Logistic Regression 0.900 0.602 0.056 0.602

LDA 0.904 0.619 0.054 0.619

Decision Tree Classifier 0.953 0.815 0.026 0.815

Nave Bayes 0.855 0.421 0.082 0.421

SVM RBF 0.853 0.413 0.083 0.413

SVM Linear 0.843 0.375 0.089 0.375

Random Forest 0.918 0.672 0.046 0.672
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MLP 0.904 0.619 0.054 0.619

Adaboost 0.843 0.375 0.089 0.375

Quadratic Discriminant Analysis 0.899 0.598 0.057 0.598

Dense DNN Relu 0.909 0.636 0.051 0.636

Dense DNN Tanh 0.916 0.664 0.047 0.664

Table C.14: IEC 60870-5-104 Network Flow-Based Anomaly Detection Model Evaluation Results.

Classification Problem Outlier/Novelty Detection

Data Type

Features
Flow Duration, TotLen Fwd Pkts, Fwd Pkt Len Mean,
Bwd Pkt Len Std, Flow IAT Std, Bwd Pkts/s, Subflow
Fwd Byts, Init Fwd Win Byts, Active Mean

Total Dataset Size 100000 IEC 60870-5-104 flows

Training Dataset Size 70%

Tesing Dataset Size 30%

ML/DL Method ACC TPR FPR F1

ABOD 0.937 0.947 0.074 0.942

Isolation Forest 0.948 0.967 0.074 0.952

PCA 0.699 0.892 0.347 0.537

MCD 0.948 0.999 0.102 0.950

LOF 0.953 0.941 0.038 0.941

DIDEROT Autoencoder 0.881 0.852 0.089 0.877

Table C.15: IEC 60870-5-104 Packet-Based Anomaly Detection Model Evaluation Results.

Classification Problem Outlier/Novelty Detection

Data Type Attributes of IEC 60870-5-104 Payload

Features
frame length, testfr con, testfr act, stopdt con, stopdt act,
startdt con, startdt act

Total Dataset Size 100000 IEC 60870-5-104 packets

Training Dataset Size 75%

Tesing Dataset Size 25%

ML/DL Method ACC TPR FPR F1

ABOD 0.508 0.452 0.440 0.466

Isolation Forest 0.893 0.860 0.074 0.889

PCA 0.535 0.500 0.431 0.513

MCD 0.734 0.594 0.125 0.691

LOF 0.926 0.859 0.005 0.921

DIDEROT Autoencoder 0.748 0.568 0.072 0.692

Table C.16: IEC 61850 (MMS) Network Flow-Based Anomaly Detection Model Evaluation Results.
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Classification Problem Outlier/Novelty Detection

Data Type
Network flow statistics (related only to MMS network flows
identified by the 102 TCP port)

Features
Flow Duration, TotLen Fwd Pkts, Fwd Pkt Len Mean,
Bwd Pkt Len Std, Flow IAT Std, Bwd Pkts/s, Subflow Fwd
Byts, Init Fwd Win Byts, Active Mean

Total Dataset Size 80000 IEC 61850 (MMS) flows

Training Dataset Size 75%

Testing Dataset Size 25%

ML/DL Method ACC TPR FPR F1

ABOD 0.973 0.970 0.024 0.966

Isolation Forest 0.977 0.971 0.019 0.971

PCA 0.506 0.524 0.511 0.514

MCD 0.981 0.986 0.022 0.977

LOF 0.954 0.924 0.022 0.945

DIDEROT Autoencoder 0.960 0.982 0.115 0.9743

Table C.17: BACnet Network Flow-Based Intrusion Detection Model Evaluation Results.

Classification Problem Multi-class Classification

Data Type Attributes of BACnet Payload

Features
All features exported by CICFlowMeter [54],
excluding FlowID, SrcIP, SrcPort, DstIP DstPort, Protocol and
Timestamp

Total Dataset Size 100000 BACnet flows

Training Dataset Size 70%

Tesing Dataset Size 30%

ML/DL Method ACC TPR FPR F1

Logistic Regression 0.960 0.982 0.115 0.974

Nave Bayes 0.902 0.925 0.115 0.894

KNN 0.934 0.968 0.090 0.928

SVM RBF 0.924 0.952 0.090 0.897

SPEAR SDAE 0.909 0.991 0.090 0.979

Random Forest 0.959 0.969 0.090 0.972

Table C.18: BACnet Packet-Based Intrusion Detection Model Evaluation Results.

Classification Problem Outlier/Novelty Detection

Data Type Attributes of BACnet Payload

Features
BACnet payload text is parsed and split into tokens, using
the ntlk regular expression tokenizer. The result is a sentence
composed of tokens for each packet.

Total Dataset Size 100000 BACnet packets
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Training Dataset Size 75%

Tesing Dataset Size 25%

ML/DL Method ACC TPR FPR F1

Multinomial Nave Bayes 0.771 0.661 0.339 0.761

Logistic Regression 0.808 0.850 0.330 0.872

SVM RBF 0.962 0.961 0.032 0.978

Payload Text CNN 0.967 0.967 0.032

Table C.19: MQTT Network Flow-Based Intrusion Detection Model Evaluation Results.

Classification Problem Multi-Class Classification

Data Type
Network flow statistics (related only to MQTT
network traffic identified by the 1883/8883 TCP ports)

Features
All features exported by CICFlowMeter [54],
excluding FlowID, SrcIP, SrcPort, DstIP DstPort, Protocol and
Timestamp

Total Dataset Size 90000 MQTT flows

Training Dataset Size 75%

Tesing Dataset Size 25%

ML/DL Method ACC TPR FPR F1

Logistic Regression 0.939 0.878 0.040 0.863

Nave Bayes 0.869 0.739 0.086 0.761

KNN 0.941 0.950 0.065 0.926

SVM RBF 0.956 0.913 0.028 0.907

Random Forest 0.970 0.967 0.017 0.982

SPEAR SDAE 0.992 0.984 0.005 0.984

Table C.20: MQTT Packet-Based Anomaly Detection Model Evaluation Results.

Classification Problem Outlier/Novelty Detection

Data Type Attributes of MQTT Pyload

Features
MQTT payload text is parsed and split into tokens using ntlk
regular expression tokenizer. The result is a sentence with tokens
for each packet.

Total Dataset Size 90000 MQTT packets

Training Dataset Size 75%

Tesing Dataset Size 25%

ML/DL Method ACC TPR FPR F1

Multinomial Nave Bayes 0.728 0.728 0.271 0.667

Logistic Regression 0.890 0.890 0.109 0.880

SVM RBF 0.890 0.890 0.109 0.880

Payload text CNN 0.985 0.985 0.014 0.985
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Table C.21: HTTP Network Flow-Based Intrusion Detection Model Evaluation Results.

Classification Problem Multi-Class Classification

Data Type
Network flow statistics (related only to HTTP(S) network
flows identified by the 80 TCP port)

Features
All features exported by CICFlowMeter [37],excluding
FlowID, SrcIP, DstIP and Timestamp

Total Dataset Size 150000 HTTP flows

Training Dataset Size 70%

Tesing Dataset Size 30%

ML/DL Method ACC TPR FPR F1

Logistic Regression 0.937 0.844 0.038 0.844

LDA 0.946 0.866 0.033 0.866

Decision Tree Classifier 0.964 0.911 0.026 0.911

Nave Bayes 0.878 0.696 0.075 0.696

SVM RBF 0.908 0.770 0.057 0.770

SVM Linear 0.928 0.822 0.044 0.822

Random Forest 0.922 0.807 0.048 0.807

MLP 0.940 0.851 0.037 0.851

Adaboost 0.760 0.400 0.150 0.400

Quadratic Discriminant Analysis 0.911 0.777 0.055 0.777

Dense DNN Relu 0.940 0.851 0.037 0.851

Dense DNN Tanh 0.940 0.851 0.0370 0.851

Table C.22: HTTP Network Flow-Based Anomaly Detection Model Evaluation Results.

Classification Problem Outlier/Novelty Detection

Data Type
Network flow statistics (related only to HTTP(S) network
flows identified by the 80 TCP port)

Features
All features exported by CICFlowMeter [37],excluding
FlowID, SrcIP, DstIP and Timestamp

Total Dataset Size 150000 HTTP flows

Training Dataset Size 70%

Tesing Dataset Size 30%

ML/DL Method ACC TPR FPR F1

ABOD 0.577 0.571 0.416 0.558

Isolation Forest 0.833 0.948 0.281 0.850

PCA 0.596 0.592 0.400 0.581

MCD 0.719 0.545 0.106 0.660

LOF 0.946 0.954 0.058 0.938

DIDEROT Autoencoder 0.934 0.927 0.061 0.902

Table C.23: SSH Network Flow-Based Intrusion Detection Model Evaluation Results.
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Classification Problem Multi-Class Classification

Data Type
Network flow statistics (related only to SSH network
flows identified by the 22 TCP port)

Features

Dst Port, Flow Duration, TotLen Fwd Pkts,
Fwd Pkt Len Mean, Bwd Pkt Len Std, Flow IAT Std,
Bwd Pkts/s, Subflow Fwd Byts, Init Fwd Win Byts,
Active Mean

Total Dataset Size 10000 SSH flows

Training Dataset Size 70%

Tesing Dataset Size 30%

ML/DL Method ACC TPR FPR F1

Logistic Regression 0.859 0.750 0.058 0.821

LDA 0.945 0.920 0.038 0.928

Decision Tree Classifier 0.960 0.958 0.038 0.955

Nave Bayes 0.823 0.741 0.154 0.640

SVM RBF 0.837 0.660 0.339 0.788

SVM Linear 0.799 0.845 0.307 0.307

Random Forest 0.955 0.903 0.009 0.942

MLP 0.903 0.841 0.010 0.910

Adaboost 0.950 0.890 0.010 0.934

Quadratic Discriminant Analysis 0.500 0.500 0.250 0.666

Dense DNN Relu 0.916 0.985 0.014 0.906

Dense DNN Tanh 0.916 0.836 0.011 0.904

Table C.24: SSH Network Flow-Based Anomaly Detection Model Evaluation Results.

Classification Problem Outlier/Novelty Detection

Data Type
Network flow statistics (related only to SSH network
flows identified by the 22 TCP port)

Features
Flow Duration, TotLen Fwd Pkts, Fwd Pkt Len Mean,
Bwd Pkt Len Std, Flow IAT Std, Bwd Pkts/s, Subflow Fwd
Byts, Init Fwd Win Byts, Active Mean

Total Dataset Size 10000 SSH flows

Training Dataset Size 70%

Tesing Dataset Size 30%

ML/DL Method ACC TPR FPR F1

ABOD 0.935 0.870 0.013 0.922

Isolation Forest 0.943 0.901 0.013 0.941

PCA 0.701 0.596 0.247 0.564

MCD 0.957 0.970 0.050 0.944

LOF 0.925 0.913 0.066 0.909

DIDEROT Autoencoder 0.946 0.954 0.058 0.938
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Table C.25: Operational Data Based Anomaly Detection Model Hydropower Plant Use Case.

Classification Problem Outlier/Novelty Detection

Data Type Oprational Data - Hydropower Plant Use Case

Features ’DE’, ’power’, ’waterlevel’, ’NDE’, ’nozzles’

Total Dataset Size 10000 time-series

Training Dataset Size 70%

Tesing Dataset Size 30%

ML/DL Method ACC TPR FPR F1

ABOD 0.581 0.993 0.522 0.487

Isolation Forest 0.716 0.948 0.341 0.572

PCA 0.745 0.978 0.312 0.606

MCD 0.733 0.210 0.135 0.240

LOF 0.579 0.996 0.525 0.486

ARIES GAN 0.746 0.978 0.311 0.607

Table C.26: Operational Data Based Anomaly Detection Model Substation Use Case.

Classification Problem Outlier/Novelty Detection

Data Type Operational Data - Substation Use Case

Features

ACTIVE POWER SOE, APPARENT POWER SOE,
CURRENT SOE, FRECUENCY SOE
REACTIVE POWER SOE, TEMPERATURE SOE,
TRAFOS POSITION SOE, VOLTAGE SOE

Total Dataset Size 10000 time-series

Training Dataset Size 70%

Tesing Dataset Size 30%

ML/DL Method ACC TPR FPR F1

ABOD 0.839 0.995 0.200 0.713

Isolation Forest 0.850 0.951 0.175 0.718

PCA 0.847 0.961 0.181 0.716

MCD 0.822 0.991 0.220 0.691

LOF 0.873 0.993 0.157 0.759

ARIES GAN 0.840 0.961 0.189 0.708

Table C.27: Operational Data Based Anomaly Detection Model Power Plant Use Case.

Classification Problem Outlier/Novelty Detection

Data Type Operational Data - Power Plant Use Case
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Features

v24 batteries, v60 batteries, generator speed,
gen motor voltage, gen motor current, exc motor voltage,
exc motor current, incom cooling water, gen status winding2,
gen outlet air, exc set bearing2, grid phase r, grid phase s,
grid phase t, main mg nn, exc mg nn, overvolt main gen,
overcur main gen, rem command, com fault

Total Dataset Size 10000 time-series

Training Dataset Size 70%

Tesing Dataset Size 30%

ML/DL Method ACC TPR FPR F1

ABOD 0.692 0.989 0.397 0.600

Isolation Forest 0.813 0.960 0.231 0.705

PCA 0.851 0.982 0.187 0.755

MCD 0.715 0.299 0.158 0.329

LOF 0.829 0.992 0.220 0.730

ARIES GAN 0.851 0.982 0.188 0.755

Table C.28: Operational Data Based Anomaly Detection Model Smart Home Use Case.

Classification Problem Outlier/Novelty Detection

Data Type Operational Data - Smart Home Use Case

Features
AoutPhL1, AoutPhL2, AoutPhL3, BattAmp, BattTemp,
BattVolt, PinPhL1, PinPhL2, PinPhL3, PoutPhL1,
PoutPhL2, PoutPhL3, VoutPhL1, VoutPhL2, VoutPhL3

Total Dataset Size 10000 time-series

Training Dataset Size 70%

Tesing Dataset Size 30%

ML/DL Method ACC TPR FPR F1

ABOD 0.649 0.668 0.362 0.597

Isolation Forest 0.769 0.976 0.279 0.615

PCA 0.859 0.976 0.167 0.724

MCD 0.729 0.992 0.332 0.581

LOF 0.690 0.735 0.344 0.676

ARIES GAN 0.859 0.976 0.167 0.725
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Appendix D. VIDS Evaluation Results - Comprehensive ML/DL Comparative
Analysis

The Appendix D shows the ML/DL comparative analysis related to the intrusion and anomaly
detection models of VIDS. In particular, Tables D.29-D.32 reflect this evaluation process. It is
worth noting that all ML and DL methods were fine-tuned after several experiments.

Table D.29: VIDS Evaluation Results Hydropower Plant Use Case.

Classification Problem Visual-based Anomaly Detection

Data Type Oprational Data - Hydropower Plant Use Case

Features ’DE’, ’power’, ’waterlevel’, ’NDE’, ’nozzles’

Total Dataset Size 10000 time-series

Training Dataset Size 70%

Tesing Dataset Size 30%

ML/DL Method 2D-ACC 3D-ACC 2D-F1 3D-F1

PCA 0.8626 0.3568 0.7618 0.4205

SVD 0.8912 0.3881 0.7954 0.4172

ICA 0.8357 0.6738 0.7291 0.5635

SRP 0.7806 0.2344 0.6442 0.3797

Deep Dense Autoencoder 0.7354 0.4207 0.0782 0.4089

FF Autoencoder 0.2344 0.2344 0.4780 0.3797

LSTM Autoencoder 0.9830 0.9500 0.9637 0.8819

Classic Dense Sequence
Autoencoder

0.2344 0.3548 0.3797 0.4111

Table D.30: VIDS Evaluation Results Substation Use Case.

Classification Problem Visual-based Anomaly Detection

Data Type Oprational Data - Substation Use Case

Features

ACTIVE POWER SOE, APPARENT POWER SOE,
CURRENT SOE, FRECUENCY SOE
REACTIVE POWER SOE, TEMPERATURE SOE,
TRAFOS POSITION SOE, VOLTAGE SOE

Total Dataset Size 10000 time-series

Training Dataset Size 70%

Tesing Dataset Size 30%

ML/DL Method 2D-ACC 3D-ACC 2D-F1 3D-F1

PCA 0.6210 0.2754 0.5637 0.4318

SVD 0.7184 0.3999 0.6361 0.1597

ICA 0.7615 0.5376 0.6573 0.0647

SRP 0.8053 0.7316 0.7260 0.2431

Deep Dense Autoencoder 0.7573 0.2754 0.6654 0.4318

FF Autoencoder 0.6412 0.2754 0.5575 0.4318

LSTM Autoencoder 0.8122 0.8491 0.8443 0.7815
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Classic Dense Sequence
Autoencoder

0.7643 0.2754 0.5285 0.4318

Table D.31: VIDS Evaluation Results Power Plant Use Case.

Classification Problem Visual-based Anomaly Detection

Data Type Oprational Data - Power Plant Use Case

Features

v24 batteries, v60 batteries, generator speed,
gen motor voltage, gen motor current, exc motor voltage,
exc motor current, incom cooling water, gen status winding2,
gen outlet air, exc set bearing2, grid phase r, grid phase s,
grid phase t, main mg nn, exc mg nn, overvolt main gen,
overcur main gen, rem command, com fault

Total Dataset Size 10000 time-series

Training Dataset Size 70%

Tesing Dataset Size 30%

ML/DL Method 2D-ACC 3D-ACC 2D-F1 3D-F1

PCA 0.8571 0.6466 0.7879 0.0371

SVD 0.8187 0.8701 0.7494 0.7873

ICA 0.8037 0.7007 0.7274 0.6396

SRP 0.8126 0.2973 0.7360 0.4583

Deep Dense Autoencoder 0.7969 0.6116 0.7084 0.5723

FF Autoencoder 0.7861 0.9143 0.7257 0.8657

LSTM Autoencoder 0.7027 0.9776 0.8298 0.9631

Classic Dense Sequence
Autoencoder

0.7782 0.9085 0.7009 0.8501

Table D.32: VIDS Evaluation Results Smart Home Use Case.

Classification Problem Visual-based Anomaly Detection

Data Type Oprational Data - Power Plant Use Case

Features
AoutPhL1, AoutPhL2, AoutPhL3, BattAmp, BattTemp,
BattVolt, PinPhL1, PinPhL2, PinPhL3, PoutPhL1,
PoutPhL2, PoutPhL3, VoutPhL1, VoutPhL2, VoutPhL3

Total Dataset Size 10000 time-series

Training Dataset Size 70%

Tesing Dataset Size 30%

ML/DL Method 2D-ACC 3D-ACC 2D-F1 3D-F1

PCA 0.9220 0.9229 0.8351 0.8286

SVD 0.910 0.940 0.105 0.881

ICA 0.8814 0.8551 0.7799 0.7341

SRP 0.8822 0.7178 0.7818 0.5801

Deep Dense Autoencoder 0.9212 0.8864 0.8318 0.7528
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FF Autoencoder 0.9280 0.9254 0.8468 0.8358

LSTM Autoencoder 0.7627 0.6890 0.6577 0.5954

Classic Dense Sequence
Autoencoder

0.9017 0.8881 0.7943 0.7740
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