
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2021.3093905, IEEE
Transactions on Industrial Informatics

Modelling, Detecting and Mitigating Threats Against Industrial
Healthcare Systems: A combined SDN and Reinforcement Learning

Approach

Panagiotis Radoglou-Grammatikis†, Konstantinos Rompolos†, Panagiotis Sarigiannidis†,†† Vasileios Argyriou‡,
Thomas Lagkas§, Antonios Sarigiannidis¶, Sotirios Goudos‖ and Shaohua Wan∗∗

Abstract—The rise of the Internet of Medical Things (IoMT)
introduces the healthcare ecosystem in a new digital era with
multiple benefits, such as remote medical assistance, real-time
monitoring and pervasive control. However, despite the valuable
healthcare services, this progression raises significant cybersecu-
rity and privacy concerns. In this paper, we focus our attention
on the IEC 60870-5-104 protocol, which is widely adopted in
industrial healthcare systems. First, we investigate and assess
the severity of the IEC 60870-5-104 cyberattacks by providing
a quantitative threat model, which relies on Attack Defence
Trees (ADTs) and Common Vulnerability Scoring System (CVSS)
v3.1. Next, we introduce an Intrusion Detection and Prevention
System (IDPS), which is capable of discriminating and mitigating
automatically the IEC 60870-5-104 cyberattacks. The proposed
IDPS takes full advantage of the Machine Learning (ML) and
Software Defined Networking (SDN) technologies. ML is used
to detect the IEC 60870-5-104 cyberattacks, utilising (a) Trans-
mission Control Protocol (TCP)/ Internet Protocol (IP) network
flow statistics and (b) IEC 60870-5-104 payload flow statistics.
On the other side, the automated mitigation is transformed
into a Multi-Armed Bandit (MAB) problem, which is solved
through a Reinforcement Learning (RL) method called Thomson
Sampling (TS) and SDN. The evaluation analysis demonstrates
the efficiency of the proposed IDPS in terms of intrusion detection
accuracy and automated mitigation performance. The detection
accuracy and the F1 score of the proposed IDPS reach 0.831 and
0.8258, while the mitigation accuracy is calculated at 0.923.

Index Terms—Cybersecurity, IEC 60870-5-104, Internet of
Medical things, Intrusion Detection, Machine Learning, Rein-
forcement Learning, Software Defined Networking
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T he rapid evolution of the Internet of Medical Things
(IoMT) leads the healthcare ecosystem to a new digital

paradigm with valuable services, such as remote monitoring,
faster diagnosis, preventive care and health education. Based
on the current situation of the COVID-19 pandemic and
future pandemics, this evolution and, in general, the complete
digitisation of the healthcare cyber-physical infrastructures be-
comes more necessary than ever. However, despite the benefits,
this new reality raises crucial cybersecurity and privacy risks
due to the sensitive nature of the healthcare data and the
vulnerabilities of the involved entities [1]. In particular, the
healthcare sector is considered as the most sensitive Critical
Infrastructure (CI) in terms of cybersecurity due to the vast
amount of personal and administrative data aggregated in
Electronic Health Record (EHR) applications. A characteristic
healthcare-related cybersecurity incident was the WannaCry
ransomware, which paralysed the United Kingdom’s National
Health Service (NHS) in May 2017.

Therefore, based on the aforementioned remarks, the pres-
ence of reliable intrusion detection and prevention mechanisms
is vital. In this paper, we focus our attention on the IEC
60870-5-104 protocol, which is widely adopted by industrial
healthcare systems [2]. IEC 60870-5-104 is characterised by
severe cybersecurity issues since it does not include adequate
authentication and authorisation mechanisms. Thus, it allows
potential cyberattackers to perform various cyberattacks like
Denial of Service (DoS) and unauthorised access. Such cy-
berattacks against IEC 60870-5-104 can lead to devastating
consequences in the healthcare ecosystem. Moreover, it is
noteworthy that IEC 60870-5-104 is used by other CIs, such as
the energy domain. Consequently, possible IEC 60870-5-104
cyberattacks can lead to cascading effects among different CIs.
First, this paper investigates the criticality of the IEC 60870-
5-104 cyberattacks by introducing a quantitative threat model,
which combines an Attack Defence Tree (ADT) and the
Common Vulnerability Scoring System (CVSSS) v3.1. Next,
we provide an Intrusion Detection and Prevention System
(IDPS), which takes advantage of the Machine Learning (ML)
and Software Defined Networking (SDN) technologies. ML
is used to detect the IEC 60870-5-104 cyberattacks, utilising
(a) Transmission Control Protocol (TCP) / Internet Protocol
(IP) network flow statistics and (b) IEC 60870-5-104 payload
flow statistics. On the other side, the automated mitigation
is transformed into a Multi-Armed Bandit (MAB) problem,
which is solved through a Reinforcement Learning (RL)
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method called Thomson Sampling (TS) and SDN. Hence, the
contributions of this paper are summarised as follows.

• Providing a quantitative IEC 60870-5-104 threat
model: The proposed threat model determines the sever-
ity of the IEC 60870-5-104 cyberattacks, combining ADT
and CVSS v3.1.

• Detecting IEC 60870-5-104 cyberattacks: We provide
an ML-based IDPS capable of detecting accurately the
IEC 60870-5-104 cyberattacks. Due to the lack of avail-
able IEC 60870-5-104 datasets, a new IEC 60870-5-104
intrusion detection dataset is implemented and provided
in the context of this work.

• Mitigating automatically IEC 60870-5-104 cyberat-
tacks: The automatic mitigation is transformed into a
MAB problem, which is solved through TS and SDN.
TS is responsible for the decision-making process, while
SDN undertakes to apply the mitigation strategy.

The rest of this paper is organised as follows. Section II
discusses relevant works. Section III presents the quantitative
IEC 60870-5-104 threat model. Section IV describes the
architecture of the proposed IDPS, focusing mainly on the
detection of the IEC 60870-5-104 cyberattacks. Section V
analyses the mitigation process. Finally, section VI is devoted
to the evaluation results, while section VII concludes this
paper.

II. RELATED WORK

Several papers have investigated the cybersecurity issues
in the healthcare sector. Some of them are listed in [1],
[9]–[13]. In particular, in [1], T. Yaqoob et al. investigate
the vulnerabilities of the smart medical devices and propose
appropriate countermeasures. In [9], S. Chenthara et al. discuss
the cybersecurity and privacy challenges of the e-health solu-
tions in cloud-computing environments. Similarly, in [10] S.
Wolker-Roberts et al. discuss relevant countermeasures against
internal threats in healthcare CIs. In [11], P.Vijayakumar et al.
provide an anonymous authentication framework for Wireless
Body Area Networks (WBANs). Finally, in [12] Y. Sun et al.
provide a detailed survey about the IoMT security and privacy
issues. Next, we elaborate on some similar works regarding
(a) IEC 60870-5-104 threat modelling, (b) detecting intrusions
against IEC 60870-5-104 and (c) mitigating or even preventing
cyberattacks through SDN.

In [5], the authors conduct an abstract threat analysis of
the IEC 60870-5-104 industrial systems. Based on a Coloured
Petri Net (CPN) analysis, two cyberattack categories are
specified: (a) physical attacks and (b) cyberattacks. The first
category denotes those activities performed by an attacker
having physical access to the target system. On the other side,
the cyberattacks refer to those that exploit the IEC 60870-
5-104 vulnerabilities. In particular, based on the authors, the
second category includes four kinds: (a) unauthorised access,
(b) Main-In-The-Middle (MITM), (c) DoS and (d) traffic
analysis. Each of the aforementioned cyberattacks is assigned
to the CPN transitions. Next, the authors emulate the four IEC

60870-5-104 cyberattacks and quantify their risk based on the
AlienVault OSSIM risk model.

In [3], E. Hodo et al. adopt various ML algorithms to detect
cyberattacks against an emulated industrial environment using
the IEC 60870-5-104 protocol. To this end, the authors use a
dataset consisting of (a) replay attacks, (b) DoS attacks and
(c) Address Resolution Protocol (ARP) spoofing attacks. Thus,
they evaluate the classification performance of various ML
classifiers, including Random Forest, OneR, J48, IBk
and Naive Bayes. According to the evaluation results, J48
achieves the best performance.

In [4], Y. Yang et al. create Snort-compliant signature
and specification rules to detect IEC 60870-5-104-related
cyberattacks. The difference between the signature and speci-
fication rules lies in the fact that the former category defines
malicious patterns, while the second determines the normal
behaviour. The same authors in [7] introduce a specification-
based Intrusion Detection System (IDS) capable of recognising
IEC 60870-5-104 anomalies. The proposed IDS relies on
a Detection State Machine (DSM), which relies on Finite
State Machines (FSM). The experimental results confirm the
efficiency of the proposed IDS.

In [14], H. Lin introduces an SDN-based in-network hon-
eypot, which can mitigate the impact of a cyberattack by
(a) isolating the cyberattacker and (b) spoofing the network
communication, thereby establishing a connection with a cy-
berattacker via non-existent nodes, called phantom nodes. This
connection allows the defender to mislead the cyberattacker
and gather useful information. Initially, the SDN controller
quarantines the malicious nodes by corrupting their communi-
cation with any legitimate node. Next, the SDN controller uses
spoofed IP addresses that communicate with the cyberattacker
by adapting appropriately the network packets’ content at
the network and application layers. To this end, statistic and
physical models are utilised, respectively.

In [15], T. Xing et al. present an SDN-based Intrusion
Prevention System (IPS) called SDNIPS. The SDNIPS ar-
chitecture consists of four modules: (a) Snort agent, (b)
SDNIPS daemon, (c) alert interpreter and (d) rules generator.
The Snort agent is responsible for detecting the potential
cyberattacks by applying the respective signature rules. Next,
the SDNIPS daemon undertakes to transform the detection
results into a (JavaScript Object Notation) JSON format, which
is transmitted to the SDN controller. The alert interpreter
processes the JSON files, thus extracting the appropriate in-
formation, such as the IP addresses. Finally, the rule generator
produces the OpenFlow entries introduced into the Open
vSwitch flow tables. The authors evaluate their IPS with a
typical IPS relying on iptables. The evaluation criterion
is whether both IPS can generate alerts under tremendous
network traffic conditions. To this end, two DoS attacks are
emulated. The proposed IPS exceeds the performance of the
typical IPS using iptables.

Undoubtedly, the aforementioned works provide useful and
significant insights. Table I compares the previous, similar
works with respect to (a) IEC 60870-5-104 threat modelling,
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TABLE I: Comparison with relevant works
Reference Threat Modeling Anomaly Detection Cyberattack Discrimination Cyberattack Mitigation
E. Hodo et al. [3] X X X X
Y. Yang et al. [4] X X X X
P. Radoglou-Grammatikis
et al. [5] X X X X

P. Radoglou-Grammatikis
et al. [6] X X X X

Y. Yang et al. [7] X X X X
SPEAR SIEM [8] X X X X
Proposed IDPS X X X X
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Fig. 1: Proposed IEC 60870-5-104 ADT

(b) IEC 60870-5-104 anomaly detection, (c) IEC 60870-
5-104 cyberattack discrimination and (d) IEC 60870-5-104
cyberattack mitigation. Apart from the aforementioned works,
Table I contains also [6] and [8] that provide an IDS and a
Security Information and Event Management (SIEM) system
for IEC 60870-5-104, respectively. As depicted, most of the
current works cannot discriminate the various IEC 60870-5-
104 cyberattacks and mitigate them. In particular, they do not
consider (a) the various cyberattacks depending on the IEC
60870-5-104 commands and (b) the sensitive nature of the
CIs, such as the industrial healthcare systems. Regarding the
first key point, this paper provides a quantitative threat model,
taking into account the IEC 60870-5-104 commands. More-
over, the proposed IDPS can discriminate precisely the various
cyberattacks with respect to the IEC 60870-5-104 commands.

On the other side, although the existing works demonstrate
how SDN can mitigate the possible intrusions, they do not take
into account that the automated countermeasures (such as the
isolation of the compromised assets in a sensitive environment)
can lead to more devastating consequences. To this end, in
this paper, we formulate the mitigation decision as a MAB
problem, which is solved with the TS method.

III. IEC 60870-5-104 THREAT MODELLING

The proposed IEC 60870-5-104 threat modelling combines
both ADT and CVSS that determine the cyberattack paths and
their risks, respectively. In particular, an ADT [16] comprises
two antagonistic nodes: (a) attacking nodes and (b) defending
nodes. The attacking nodes describe the goal and the actions
that a cyberattacker may adopt in order to compromise the
security of the target system. The defending nodes correspond
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TABLE II: IEC 60870-5-104 Cyberattacks Description and CVSS Representation
IEC 60870-5-104 Cyberattack Description CVSS Representation

Man-In-the-Middle During this attack, the cyberattacker is inserted between two endpoints,
thus monitoring and controlling the network traffic exchanged.

AV:N/AC:L/PR:H/UI:R/S:C/C:H/I:L/
A:L/E:H/RL:O/RC:C/MAV:N/MAC:L
/MPR:H/MUI:R/MS:C/MC:H/MI:L/
MA:L/CR:H/IR:H/AR:H

Capturing and Dropping
IEC 60870-5-104 Packets

This attack is a refinement of the Man-In-The-Middle attack, where the
cyberattacker can drop the IEC 60870-5-104 packets.

AV:N/AC:L/PR:H/UI:R/S:C/C:H/I:N/
A:N/E:H/RL:O/RC:C/MAV:N/MAC:L
/MPR:H/MUI:R/MS:C/MC:L/MI:N/
MA:N/CR:H/IR:H/AR:H

Traffic Sniffing Traffic Sniffing is a passive attack, where through the MITM the
cyberattacker can monitor and capture the IEC 60870-5-104 packets.

AV:N/AC:L/PR:H/UI:R/S:C/C:H/I:N/
A:N/E:H/RL:O/RC:C/MAV:N/MAC:L
/MPR:H/MUI:R/MS:C/MC:L/MI:N/
MA:N/CR:H/IR:H/AR:H

C CI NA 1
The C CI NA 1 is a Counter Interrogation command in the control
direction. This cyberattack sends unauthorised IEC 60870-5-104
C CI NA 1 packets to the target system.

AV:N/AC:L/PR:H/UI:R/S:C/C:L/I:H/
A:N/E:F/RL:T/RC:R/MAV:N/MAC:L
/MPR:H/MUI:R/MS:C/MC:L/MI:H/
MA:N/CR:H/IR:H/AR:H

C SC NA 1 The C SC NA 1 command is a single command. This cyberattack
sends unauthorised C SC NA 1 60870-5-104 packets to the target system.

AV:N/AC:L/PR:H/UI:R/S:C/C:L/I:H/
A:N/E:F/RL:T/RC:R/MAV:N/MAC:L
/MPR:H/MUI:R/MS:C/MC:L/MI:H/
MA:N/CR:H/IR:H/AR:H

C SE NA 1
The C SE NA 1 command is a set-point command with normalised
values. This cyberattack sends unauthorised IEC 60870-5-104 C SE NA 1
packets to the target system.

AV:N/AC:L/PR:H/UI:R/S:C/C:L/I:H/
A:N/E:F/RL:T/RC:R/MAV:N/MAC:L
/MPR:H/MUI:R/MS:C/MC:L/MI:H/
MA:N/CR:H/IR:H/AR:H

C RD NA 1
The C RD NA 1 command is a read command. This cyberattack sends
unauthorised IEC 60870-5-104 C RD NA 1 packets to the target
system.

AV:N/AC:L/PR:H/UI:R/S:C/C:L/I:H/
A:N/E:F/RL:T/RC:R/MAV:N/MAC:L
/MPR:H/MUI:R/MS:C/MC:L/MI:H/
MA:N/CR:H/IR:H/AR:H

C RP NA 1
The C RP NA 1 command is a reset command. This cyberattack
sends unauthorised IEC 60870-5-104 C RP NA 1 packets to the target
system.

AV:N/AC:L/PR:H/UI:R/S:C/C:L/I:H/
A:N/E:F/RL:T/RC:R/MAV:N/MAC:L
/MPR:H/MUI:R/MS:C/MC:L/MI:H/
MA:N/CR:H/IR:H/AR:H

M SP NA 1 DoS This attack floods the target system with IEC 60870-5-104 M SP NA 1
packets.

AV:N/AC:H/PR:H/UI:R/S:C/C:N/N:L/
A:H/E:F/RL:W/RC:R/MAV:N/MAC:H
/MPR:H/MUI:R/MS:C/MC:N/MI:N/
MA:H/CR:H/IR:H/AR:H

C CI NA 1 DoS This attack floods the target system with IEC 60870-5-104 C CI NA 1
packets.

AV:N/AC:H/PR:H/UI:R/S:C/C:N/N:L/
A:H/E:F/RL:W/RC:R/MAV:N/MAC:H
/MPR:H/MUI:R/MS:C/MC:N/MI:N/
MA:H/CR:H/IR:H/AR:H

C SE NA 1 DoS This attack floods the target system with IEC 60870-5-104 C SE NA 1
packets.

AV:N/AC:H/PR:H/UI:R/S:C/C:N/N:L/
A:H/E:F/RL:W/RC:R/MAV:N/MAC:H
/MPR:H/MUI:R/MS:C/MC:N/MI:N/
MA:H/CR:H/IR:H/AR:H

C SC NA 1 DoS This attack floods the target system with IEC 60870-5-104 C SC NA 1
packets.

AV:N/AC:H/PR:H/UI:R/S:C/C:N/N:L/
A:H/E:F/RL:W/RC:R/MAV:N/MAC:H
/MPR:H/MUI:R/MS:C/MC:N/MI:N/
MA:H/CR:H/IR:H/AR:H

C RD NA 1 DoS This attack floods the target system with IEC 60870-5-104 C RD NA 1
packets.

AV:N/AC:H/PR:H/UI:R/S:C/C:N/N:L/
A:H/E:F/RL:W/RC:R/MAV:N/MAC:H
/MPR:H/MUI:R/MS:C/MC:N/MI:N/
MA:H/CR:H/IR:H/AR:H

C RP NA 1 DoS This attack floods the target system with IEC 60870-5-104 C RP NA 1
packets.

AV:N/AC:H/PR:H/UI:R/S:C/C:N/N:L/
A:H/E:F/RL:W/RC:R/MAV:N/MAC:H
/MPR:H/MUI:R/MS:C/MC:N/MI:N/
MA:H/CR:H/IR:H/AR:H

to the defences that can be used by the defender in order to
address or mitigate a cyberattack. Each node can have one
or more children of the same type (i.e., attacking node or
defending node), thus reflecting a refinement into specific sub-
goals and actions. If a node does not have any refinement
(i.e., children of the same type), then it constitutes a non-
refined node, which indicates a basic action. Moreover, a
node can have children of the opposite type, thus defining
a countermeasure. A refinement can be classified into two
types: (a) conjunctive and (b) disjunctive. In the first case
(i.e., conjunctive refinement), the goal of a refined node is
achieved, whether all of its children accomplish their goals.
Thus, a conjunctively refined node is characterised by an AND
operator. On the other side, a disjunctively refined node is

characterised by an OR operator, i.e., its goal is achieved
whether one of its children at least achieves its goal. On
the other side, CVSS is an open vulnerability assessment
framework, which quantifies the severity of each vulnerability
or attack between 0 and 10 [17].

Fig. 1 depicts the ADT of the proposed IEC 60870-5-104
threat analysis. In our analysis, we have considered the non-
refined nodes as IEC 60870-5-104 cyberattacks supported by
existing attacking tools, such as the Metasploit framework
(i.e., auxiliary/client/iec104/iec104), Qtester104,
OpenMUC j60870, IEC-TestServer and custom
Ettercap filters. Therefore, the non-refined nodes
are (a) MITM, (b) Traffic Sniffing, (c) C RD NA 1,
(d) C CI NA 1, (e) C RP NA 1, (f) C SC NA 1, (g)
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C SE NA 1, (h) M SP NA 1 DOS, (i) C CI NA 1 DOS,
(j) C SE NA 1 DOS, (k) C RD NA 1 DOS and (l)
C RP NA 1 DOS. The cyberattacks between (c) and (f)
refer to unauthorised access cyberattacks related to the
respective IEC 60870-5-104 commands. Similarly, the
cyberattacks between (f) and (l) denote DoS cyberattacks
corresponding to the IEC 60870-5-104 commands. Fig. 1
quantifies their severity based on CVSSv3.1. It should be
noted that the Confidentiality Requirement (CR), the Integrity
Requirement (IR) and the Availability Requirement (AR)
of the Environmental Group are defined to ”High” since
the proposed threat model is adopted in a CI so that the
IEC 60870-5-104 communications should be secured as
much as possible. The other CVSS values are determined
based on the nature of each IEC 60870-5-104 command.
Table II summarises the IEC 60870-5-104 cyberattacks,
including their CVSS textual representations. Subsequently,
the CVSS scores of the non-refined nodes are propagated
upper, by using the equation (1) and equation (2). In
particular, equation (1) is applied to a parent node when it
has conjunctive refinements. On the other side, equation (2) is
used when the parent node consists of disjunctive refinements.
Therefore, the CVSS scores of the refined nodes (i.e., (a)
Compromising Confidentiality, (b) Compromising Integrity
and (c) Compromising Availability) are calculated and
illustrated by Fig. 1. Moreover, the proposed threat model
considers two countermeasures called ”Intrusion Detection”
and ”SDN-based Mitigation”. The first node is responsible
for the detection process, while the second undertakes to
mitigate the intrusion through SDN.

CV SSRefinedNode =
n∏
i=1

CV SSRefinementi (1)

CV SSRefinedNode = max{(CV SSRefinement1),

(CV SSRefinement2), ..., (CV SSRefinementn)}
(2)
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Fig. 2: Architecture of the proposed IDPS

IV. ARCHITECTURAL DESIGN AND INTRUSION
DETECTION

The rise of the IoMT has digitised the healthcare ecosystem
into a new era, known as Healthcare 4.0. The IoMT assets
are deployed throughout the healthcare ecosystem, providing
valuable services, such as remote and hospitalised patients’
monitoring, pervasive control and flexibility. The backbone
behind such services relies on telemetry protocols, like IEC
60870-5-104. IEC 60870-5-104 is a telemetry protocol, which
is mainly utilised in the energy sector. However, given Health-
care 4.0, Hospital Information System (HIS), multiple IoMT
sensors, actuators and legacy industrial healthcare systems
start adopting IEC 60870-5-104 to orchestrate their archi-
tectural and operational schema. In particular, IEC 60870-5-
104 comprises read and write commands like C CI NA 1,
M SP NA 1 and C RP NA 1 that monitor or update the
status of the healthcare assets. Furthermore, IEC 60870-5-
104 can handle the electrical operation of the healthcare
infrastructure, monitoring and controlling the functionality of
the respective substations. An IEC 60870-5-104 cyberattack
against the substation supporting the healthcare infrastructure
can raise disastrous consequences or even fatal accidents.
Thus, it is obvious that the interdependency between the
healthcare and energy sectors is crucial, and the IEC 60870-
5-104 can affect both of them.

Fig 2 illustrates the proposed IDPS architecture. In particu-
lar, it relies on the architectural design of the SDN technology,
which consists of three main planes: (a) data plane, (b) control
plane and (c) application plane. The data plane incorporates
the industrial healthcare resources, such as physical and virtual
devices connected to the SDN switches. These resources are
called Network Elements (NE). The control plane includes
the SDN Controller (SDN-C), which is responsible for or-
chestrating and managing the NE. To this end, the SDN-
C communicates with the SDN switches through a South-
Bound Interface (SBI). In our case, the Ryu controller plays
the role of SDN-C, and the SBI is implemented through
the OpenFlow v1.3 protocol. Finally, the application plane
comprises one or more applications that can instruct the
SDN-C to change the behavioural characteristics of the entire
SDN network in order to serve a particular purpose, such
as load balancing or cybersecurity. In this paper, we use the
SDN-C to isolate the assets related to a security event. The
communication between the applications and the SDN-C is
implemented through a North-Bound Interface (NBI). NBI
is implemented via the Ryu REpresentational State Transfer
(REST) Application Programming Interface (API).

The proposed IDPS lies in the application plane. It con-
sists of four modules: (a) Network Traffic Capturing Module
(NTCM), (b) Network Flow Extraction Module (NFEM), (c)
Detection Engine (DE) and (d) Notification and Response
Module (NRM). The NTCM monitors the SDN network
and captures the IEC 60870-5-104 network traffic through a
Switched Port Analyser (SPAN). To this end, tcpdump is
used. The NFEM receives the IEC 60870-5-104 network traffic
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from the NTCP and generates the corresponding network
flow statistics. In particular, two kinds of flow statistics are
generated: (a) TCP/IP network flow statistics and (b) IEC
60870-5-104 payload flow statistics. The first kind refers to
bidirectional flow statistics related to the TCP/IP attributes of
the IEC 60870-5-104 packets. These statistics are generated
through CICFlowMeter. On the other side, the second refers
to bidirectional flow statistics related to the payload of the
IEC 60870-5-104 packets. To this end, a custom IEC 60870-
5-104 parser was implemented in the context of this work.
Both cases are determined by a time limit, which affects the
statistics and, therefore, the detection performance. This limit
is defined experimentally in section VI. The DE is responsi-
ble for the intrusion detection process based on the various
statistics received from the previous module. DE integrates
two complement detection models: (a) Intrusion Detection
Model (IDM) based on TCP/IP network flow statistics and (b)
IDM based on IEC 60870-5-104 payload flow statistics. Based
on the evaluation analysis in section VI, both IDMs apply a
Classification and Regression Tree (CART) classifier. CART
is a decision tree composed of internal nodes and leaves that
divide the overall data space into smaller sub-spaces based on
the training features. In our case, the training features originate
from the NFEM. Thus, a directed tree is created, allowing
the classification of the various instances. The internal nodes
represent the classification rules, while the leaves represent
the classes (i.e., the IEC 60870-5-104 cyberattacks) of the
problem. The operation of the internal nodes relies on a
discrete function, which divides the entire data space S into
smaller sub-spaces S1, S2, ..., Sk. To this end, various criteria
can be used. In our case, we apply the Information Gain
(IG) defined by equations (3)-(5). E(Sk) denotes the entropy
of the sub-space Sk, while pi implies the probability of
the i class in the sub-space Sk. The entire space S is split
recursively until there is no significant gain from additional
separations. δ indicates the stopping criterion, regarding the
splitting process. Finally, based on the detection outcome,
NRM notifies the security administrator by generating the
corresponding security events. In addition, NRM is responsible
for deciding about the mitigation process analysed in the
following section.

If NRM takes the decision to isolate the assets related to
an IEC 60870-5-104 cyberattack, it instructs Ryu through the
Ryu REST API regarding how to modify the flow tables of
the SDN switch. OpenFlow is used to modify the rules in
each flow table or add new rules. In our case, two rules
are added. The Ryu REST API automates the OpenFlow
commands that Ryu will send to the flow tables of the
SDN switch. In particular, two Ryu REST API commands
are utilised with the following fields: dpid, priority,
idle_timeout, hard_timeout, actions, table_id
and match. The final field comprises additional sub-fields
that identify the IEC 60870-5-104 network flow elements,
such as in_port, eth_type, ip_proto, ipv4_src,
ipv4_dst, tcp_src and tcp_dst. dpid indicates the
corresponding SDN switch. priority denotes the priority

of the specific rule. idle_timeout denotes the idle time
before discarding. hard_timeout implies the maximum
time before discarding. actions defines the instructions set
of this rule, such as for example to drop or re-direct the IEC
60870-5-104 packets. table_id denotes the identifier of the
table where the flow will be added. Finally, match indicates
the criteria that will be used to map the IEC 60870-5-104
packets with this rule. in_port expresses the input port
of the SDN switch. eth_type defines the Ethernet frame
type based on Internet Assigned Numbers Authority (IANA).
ip_proto determines the protocol attribute of IPv4 based
on IANA. ipv4_src, ipv4_dst, tcp_src and tcp_dst
denote the network flow elements, i.e., the source IP address,
the destination IP address, the source TCP port and the desti-
nation TCP port, respectively. The two commands are differ-
entiated with each other based on the aforementioned network
flow elements. The first command uses the ipv4_src and
tcp_src, while the second command uses the ipv4_dst
and tcp_dst. Both ipv4_src and ipv4_dst refer to
the same IP address which is identified either as a source
or destination IP address. On the other hand, tcp_src and
tcp_dst equal to 2404, which corresponds to the default
TCP port for IEC 60870-5-104. Finally, regarding the instal-
lation of the proposed IDPS, the aforementioned components
(i.e., NTCM, NFEM, DE and NRM) are incorporated into
a single Virtual Machine (VM), while SDN-C composes a
different VM.

I(S,A) =
|S1|
|S|

E(S1) +
|S2|
|S|

E(S2) + ...

+
|Sj |
|S|

E(Sj) =

k=j∑
k=1

|Sk|
|S|

E(Sk)

(3)

E(Sk) = −
m∑
i=1

pi log2(pi) (4)

IG(S,A) = E(S)− I(S,A) ≤ δ (5)

V. SDN-BASED MITIGATION: PROBLEM FORMULATION
AND METHODOLOGY

After the successful cyberattack detection, the mitigation
process follows, where the NRM should decide whether the
assets (i.e., physical or virtual devices) related to the IEC
6070-5-104 cyberattack will be isolated or not by the SDN-
C. The continuous and proper operation of the industrial
healthcare and IoMT systems using the IEC 60870-5-104
protocol is crucial since they can monitor and control the
patients’ health status and the medical equipment [18]. There-
fore, the NRM cannot decide arbitrarily to corrupt the potential
malicious/anomalous IEC 60870-5-104 flows since this action
could lead to more devastating consequences and cascading
effects. For instance, a malicious insider could perform a traffic
sniffing cyberattack by a legitimate device. Based on Fig. 1, the
CVSS score of this cyberattack is not very high; however, the
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compromised device could also be used for legitimate health-
care operations (e.g., sleep monitoring, air medical service and
medical equipment maintenance). Consequently, its isolation
could result in a higher cost for the healthcare organisation. On
the other side, the CVSS score of those cyberattacks targeting
the integrity and availability of the IEC 60870-5-104 systems
is not negligible. Despite the fact that CVSS can provide a
good overview about the severity of a cyberattack, it cannot
be utilised for NRM’s decision since (a) it does not take into
account the parameters of each environment and (b) it cannot
calculate the actual cost [17].

Therefore the response operation of NRM relies on two
strategies, i.e., s1 and s2, denoting that NRM will instruct the
SDN-C to isolate the assets related to the IEC 60870-5-104
cyberattack or not, respectively. In the second case, the SDN-C
waits for the security administrator to activate the appropriate
countermeasure. Thus, each strategy is related mainly to the
time when the malicious activities will be isolated. In particu-
lar, each strategy is accompanied by a particular cost. This cost
implies the actual impact of the cyberattack/anomaly, and it
can be measured by various values, such as monetary claims,
man-hours, or in general, unit costs. In our experiments, we
adopt the third choice since we do not focus on a particular
case study related to a healthcare organisation. Our goal is
to train the NRM in order to decide for each security event
the appropriate strategy with the best-expected reward. The
expected reward called Return of each strategy si is given
by equation (6), where se and SE denotes the corresponding
and the latest security event, respectively.

ri(se) =

{
1 If the cost of si is the minimum
0 Otherwise

(6)

Ri(SE) =
SE∑
i=1

ri(se) (7)

θ = E[Ri(SE)] = E[
SE∑
i=1

ri(se)] =

∑SE
i=1 ri(se)

N
(8)

p(θ|R) =
p(R|θ)p(θ)
p(R)

=⇒ p(θ|R) ∝ p(R|θ)p(θ)

∝
N∏
i=1

θri(1− θ)(1−ri)( 1

Beta(α, β)
θa−1(1− θ)β−1)

∝ (
N∏
i=1

θri(1− θ)1−ri)(θα−1(1− θ)β−1)

= (θ
∑N

i=1 ri(1− θ)
∑N

i=1 1−ri)(θα−1(1− θ)β−1)

= (θa−1+
∑N

i=1 ri(1− θ)β−1+
∑N

i=1(1−ri)

=⇒ p(θ|R) = Beta(α+
N∑
i=1

ri, β +N −
N∑
i=1

ri)

(9)

Beta(α, β) =
Γ(α)Γ(β)

Γ(α+ β)
where Γ is the Gamma function

(10)

Algorithm 1: SDN-based Mitigation - TS
Data: S, nPosStrategyMatrix, nNegStrategyMatrix,

returnMatrix
Result: selectedStrategy
securityEventCounter = 0;
while True do

Receive a security event;
securityEventCounter = securityEventCounter +1 ;
selectedStrategy = 0;
maxRandom = 0;
for strategy ← 0 to S by 1 do

randomBeta = B(nPosStrategyMatrix[strategy]
+ 1, nNegStrategyMatrix[strategy] + 1)

if randomBeta> maxRandom then
maxRandom = randomBeta;
selectedStrategy = strategy;

end
end
SDN controller executes selectedStrategy;
if
returnMatrix[securityEventCounter][strategy]
== 1 then

nPosStrategyMatrix[selectedStrategy] =
nPosStrategyMatrix[selectedStrategy +1

end
else

nNegStrategyMatrix[selectedStrategy] =
nNegStrategyMatrix[selectedStrategy +1

end
end

The Return of each strategy si is defined by the random
variable ri, which follows the Bernoulli distribution. Our
decision problem can be transformed into a Multi-Armed Ban-
dit (MAB) problem [19], where the corresponding strategies
represent the slot machines and the NRM plays the gambler’s
role. The goal of the gambler is to maximise the overall
Return (i.e., the amount of money in terms of the MAB prob-
lem). The total Return and the mean Return up to security
event SE for each strategy si is given by equations (7)-(8),
respectively. N denotes the total number where the strategy
si is selected. To solve this kind of MAB problem, we adopt
the TS method [20]. TS balances the sequential actions of
an exploration-exploitation dilemma, where the exploitation
intends to maximise the performance, while the exploration
accumulates new information to improve future performance.
In our problem, exploration is related to investigating the
Return of the various NRM strategies, while exploitation
is related to selecting that strategy leading to the greatest
mean. TS is a Bayesian-based method, which estimates the
posterior p(θ|R), taking full advantage of the conjugate pairs.
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In Bayesian statistics, there are certain pairs of distributions,
where the evidence p(R) can be ignored and the posterior
has the same form as the prior p(θ). These pairs are named
conjugate pairs. In particular, given R = r1, r2, ..., rn, the
Bernoulli likelihood is equal to p(R|θ) =

∏N
i=1 θ

r
i (1 −

θ)1−ri , ri ∼ Bernoulli(θ). Next, if we choose the prior p(θ)
to follow the Beta distribution (i.e., p(θ) = Beta(θ;α, β) =
constant × θa−1(1 − θ)β−1 = 1

B(α,β)θ
α−1(1 − θ)β−1),

then the posterior p(θ|R) follows also the Beta distribution
Beta(α+

∑N
i=1 ri, β +N −

∑N
i=1 ri), as indicated by equa-

tion (9), where Beta is given by equation (10). It is noteworthy
that the choice of the Beta distribution is not arbitrary since in
a win or lose situation where the reward is binary, the mean of
this distribution ranges between 0 and 1. However, the output
of the Beta distribution ranges also between 0 and 1. Thus,
for each security event, TS takes a sample drawn from the
posterior probability, which equals to Beta(α = N1

i (se) + 1,
β = N0

i (se) + 1), where N1
i (se) and β = N0

i (se) denote
the number of times the strategy si returned 1 up to security
event se and the number of times the strategy si returned
0 up to security event se. Algorithm 1 shows how the
TS method is applied. The variables nPosStrategyMatrix
and nNegStrategyMatrix represent N1

i (se) and N0
i (se),

respectively.

VI. EVALUATION RESULTS

Before analysing the experimental results, we need to
present the dataset used for this purpose and the corresponding
evaluation metrics. In particular, we evaluate the efficiency
of the proposed IDPS in terms of (a) detection performance
and (b) mitigation performance. In the first case, we created
an IEC 60870-5-104 intrusion detection dataset comprising
the cyberattacks discussed in section III. This dataset was
constructed utilising (a) 7 VMs with IEC-TestServer
representing the field devices, (b) a VM with Qtester104
playing the role of a Human-Machine Interface (HMI) and 3
VMs equipped with Metasploit, OpenMUC j60870 and
Ettercap representing the cyberattackers. Moreover, four
evaluation metrics are adopted: (a) Accuracy, (b) True Positive
Rate (TPR) and (c) F1 score defined by equations (11)-(14),
respectively. To calculate the previous evaluation metrics, the
following terms are utilised. True Positives (TP) denote the
correct classifications concerning the malicious instances. True
Negatives (TN) imply the number of the correct classifications
with respect to the normal instances. False Negatives (FN)
express the mistaken classifications regarding the malicious
instances, and finally, False Positives (FP) denote the wrong
classifications of the normal instances. Furthermore, we used
and evaluated six flow timeouts (15s, 30s, 60s, 90s, 120s and
180s) for both IDMs described in section IV. For the flow
timeouts providing the optimal detection performance, we
also present a detailed ML comparative analysis, including
Logistic Regression, Linear Discriminant
Analysis (LDA), Quadratic Discriminant
Analysis (QDA), Decision Tree, Naive Bayes,
Support Vector Machine (SVM), Multi-Layer

Perceptron (MLP), Random Forest, Adaboost and
two custom Deep Neural Networks (DNNs) called Dense
DNN Relu [21] and Dense DNN Tanh [21]. Finally,
we compare the detection efficiency of the proposed IDPS
with Suricata, a widely known signature/specification
based IDPS. To this end, we adopt the IEC 60870-5-104
signature rules released by Cisco Talos. On the other side,
regarding the mitigation performance, first, we investigate how
the posterior probability of θ|R ranges based on the number
of the security events. To this end, we run a Python-based
simulation based on the security events generated by the IEC
60870-5-104 intrusion detection dataset created in the context
of this work. The cost of each strategy for each security event
was defined experimentally by security experts responsible
for the cybersecurity of a healthcare centre. Moreover, we
compare the accuracy of the proposed solution with another
relevant method called Upper Confident Bound (UCB). The
simulation and evaluation experiments were conducted on
a computing system with Ubuntu 18.04.5 Long Terminal
Support (LTS), Intel Core i7-6700 CPU @ 3.40GHz 8, 16
GB Random Access Memory (RAM) and 245,1 GB Solid
Disk Drive (SSD).

Accuracy reflects the ratio between the correct classifications
and the total instances. It is a fair evaluation metric when the
training dataset contains an equal number of all classes.

Accuracy =
TP + TN

TP + TN + FP + FN
(11)

TPR denotes the portion of the original intrusion instances that
were detected as intrusions.

TPR =
TP

TP + FN
(12)

FPR expresses the symmetry of the normal instances that were
recognised as cyberattacks.

FPR =
FP

FP + TN
(13)

The F1 score represents the golden ratio between TPR and
Precision. Precision is computed by dividing TP by the sum
of TP and TN.

F1 =
2× TP

2× TP + FP + FN
(14)

Fig. 3 and Fig. 4 depict the detection performance for
the IDMs using (a) TCP/IP network flow statistics and (b)
IEC 60870-5-104 payload flow statistics, respectively. In the
first case, the best detection performance is achieved when
the flow timeout equals 180 seconds. In contrast, when the
IEC 60870-5-104 payload flow statistics are used, the optimal
detection performance is achieved when the flow timeout is
equal to 120 seconds. In both cases, the numerical results
rely on the CART decision tree. In particular, Tables III-IV
present the comparative ML analysis for each case. When the
TCP/IP network flow statistics are used, the best detection
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Fig. 3: IDM - TCP/IP Network Flow Statistics
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Fig. 4: IDM - IEC 60870-5-104 Payload Flow Statistics

performance is achieved by the CART decision tree, where
Accuracy = 0.8173, TPR = 0.7973, FPR = 0.0203 and
F1 = 0.7921. The worst performance is achieved by SVM,
where Accuracy = 0.4098, TPR = 0.4098, FPR = 0.0537
and F1 = 0.3158. Similarly, when the IEC 60870-5-104
payload flow statistics are utilised, the CART decision tree
also achieves the maximum detection performance, where
Accuracy = 0.8173, TPR = 0.7973, FPR = 0.0203
and F1 = 0.7921. In this case, the minimum efficiency
is accomplished by Adaboost, where Accuracy = 0.2500,
TPR = 0.2500, FPR = 0.0682 and F1 = 0.1818.

TABLE III: IDM - TCP/IP Network Flow Statistics - Comparative ML/DL
Analysis

ML Method Accuracy TPR FPR F1
Logistic Regression 0.4423 0.4423 0.0507 0.3880
LDA 0.5178 0.5178 0.0438 0.5047
QDA 0.5636 0.5636 0.0397 0.5211
Decision Tree Classifier 0.8173 0.7973 0.0203 0.7921
Naive Bayes 0.419 0.419 0.0528 0.355
SVM 0.4098 0.4098 0.0537 0.3158
MLP 0.4882 0.4882 0.0465 0.4398
Random Forest 0.5454 0.5454 0.0413 0.5283
Adaboost 0.5454 0.5454 0.0413 0.5283
Dense DNN Relu 0.5439 0.5439 0.0415 0.5198
Dense DNN Tanh 0.4995 0.4995 0.0455 0.4655
Suricata 0.6162 0.4037 0.0000 0.5752

Regarding the mitigation performance, Fig. 5-8 illustrate
how the posterior probability defined in section V ranges based
on the number of 20, 100, 200 and 2000 security events
for each strategy. We can see that the Probability Density
Function (PDF) is made skinnier and taller as more security
events are generated by the proposed IDPS, thus increasing
our belief for each strategy. Finally, Fig. 9 compares the
accuracy of the TS method with a relevant UCB method with
respect to 5, 10, 20, 50, 100, 200, 1000, 1500 and 2000

TABLE IV: IDM - IEC 60870-5-104 Payload Flow Statistics - Comparative
ML/DL Analysis

ML Method Accuracy TPR FPR F1
Logistic Regression 0.6223 0.6223 0.0343 0.6053
LDA 0.6183 0.6183 0.0347 0.6055
QDA 0.6085 0.6085 0.0356 0.5340
Decision Tree Classifier 0.8314 0.8314 0.0153 0.8258
Naive Bayes 0.5582 0.5582 0.0402 0.4749
SVM 0.5537 0.5537 0.0406 0.4805
MLP 0.5902 0.5902 0.0373 0.5702
Random Forest 0.6647 0.6647 0.0305 0.6473
Adaboost 0.2500 0.2500 0.0682 0.1818
Dense DNN Relu 0.6425 0.6425 0.0325 0.5988
Dense DNN Tanh 0.5769 0.5769 0.0385 0.0385
Suricata 0.6162 0.4037 0.0000 0.5752

security events. In contrast with TS, UCB does not use samples
from the posterior probability, but it relies on a predefined
threshold. The mitigation accuracy of TS reaches 0.932. We
can also observe that the proposed TS method exceeds the
UCB efficiency for each number of security events.
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Fig. 5: Strategy probability density function after 20 security events
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Fig. 7: Strategy probability density function after 200 security events
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Fig. 8: Strategy probability density function after 2000 security events
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Fig. 9: Accuracy comparison between the proposed TS method and UCB

VII. CONCLUSIONS

Despite the necessary digitisation of the healthcare ecosys-
tem, the IoMT progression and mainly the insecure nature
of the legacy healthcare systems increase the attack surface.
In this paper, we pay our attention to the IEC 60870-5-104
protocol, which is widely adopted by the industrial systems
in the healthcare sector. In particular, first, we introduce a
quantitative threat model, which evaluates the severity of the
possible cyberattacks with respect to the corresponding IEC
60870-5-104 commands. Next, we provide an IDPS system,
which combines ML and SDN in order to detect and mitigate
the IEC 60870-5-104 cyberattacks. The intrusion detection
relies on a CART classifier that uses the TCP/IP network flow
statistics and IEC 60870-5-104 payload flow statistics. On the
other side, the SDN-based mitigation is transformed into a
MAB problem solved with the TS method. The evaluation
results demonstrate the efficiency of the proposed IDPS. Our
future plans related to this work are focused on enhancing the
proposed IDPS so that it can detect multi-step cyberattacks
related to IEC 60870-5-104 and other industrial and IoMT
protocols utilised in the healthcare sector, such as Modbus,
MQTT and EtherCAT. To this end, ML-based association rules
techniques will be adopted.
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