

14-23 June 2021 // Virtual / Montreal

A Self-Learning Approach for Detecting Intrusions in Healthcare Systems

P. Radoglou-Grammatikis et al.
University of Western Macedonia
pradoglou@uowm.gr

Under SPEAR Project

Authors

University of Western Macedonia

https://ithaca.ece.uowm.gr/

Panagiotis Radoglou Grammatikis

Panagiotis Sarigiannidis

OInfinity Limited

http://0infinity.net/

Georgios Efstathopoulos

International Hellenic University

https://www.cs.ihu.gr/
Thomas Lagkas

SIDROCO HOLDINGS LIMITED

https://sidroco.com/

Antonios Sarigiannidis

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 787011 (SPEAR).

https://www.spear2020.eu/

Internet of Medical Things (IoMT) Cybersecurity

Among other critical infrastructures, the healthcare sector is the most vulnerable due to the vast amount of personal and administrative data

Vulnerabilities of Smart Medical Devices and EHRs

Smart medical devices use insecure communication protocols like Modbus/TCP, while Electronic Health Records (EHRs) are characterized by severe vulnerabilities

Countermeasures

Need for efficient Intrusion Detection and Prevention Systems (IDPS) using Machine Learning (ML) and Deep Learning (DL) techniques.

Challenge

Lack of available datasets in order to feed the ML and DL models

Goal

Providing an IDPS using an active learning approach for detecting intrusions in a healthcare ecosystem. The proposed IDPS is re-trained continuously, thus optimizing the detection efficacy by itself.

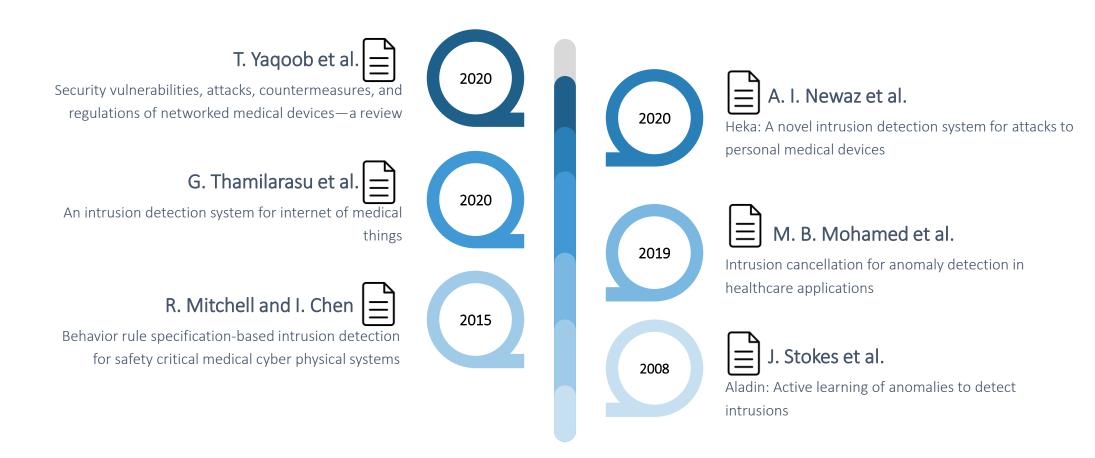
Introduction

A Self-Learning Approach for Detecting Intrusions in Healthcare Systems

Providing an IDPS utilizing active learning in order to detect and mitigate Modbus/TCP and HTTP cyberattacks against a healthcare ecosystem.

Related Work

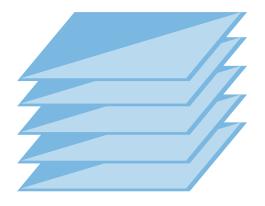
Previous works related to detecting intrusions against healthcare ecosystems



Contributions

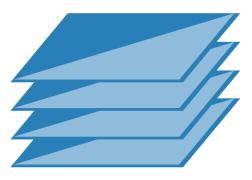
Three main contributions

Detecting a plethora of HTTP (5) and Modbus/TCP (14) cyberattacks.



Active Learning Approach

The proposed IDPS is re-trained continuously, thus optimizing the detection efficacy by itself



ML/DL Methods Evaluation

Evaluating a plethora of ML/DL methods

Threat Identification

HTTP and Modbus/TCP Cyberattacks

Electronic Health Records

EHRs use typical ICT protocols like HTTP

Smart Medical Devices

Modbus is an industrial protocol widely adopted by both legacy and smart medical devices.

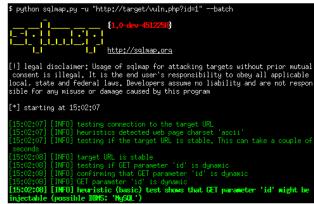
Four HTTP Cyberattacks

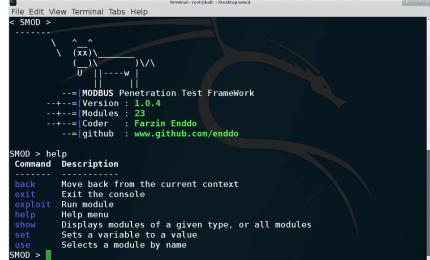
(a) Dos, (b) SQL Injection, (c) Bruteforce and (d) XSS

13 Modbus/TCP Cyberattacks

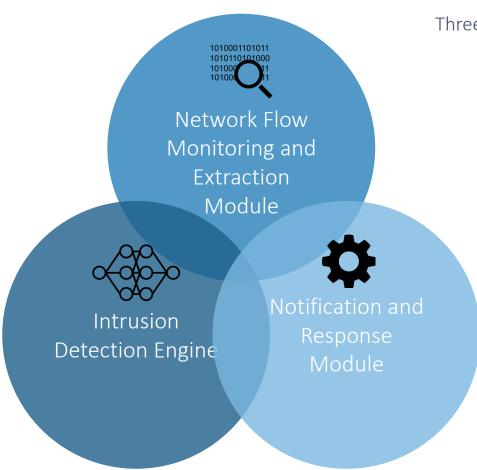
- (a) modbus/function/readHoldingRegister
- (b) modbus/scanner/uid
- (c) modbus/function/readDiscreteInput,
- (d) modbus/dos/writeSingleCoils,
- (e) modbus/function/writeSingleRegister,
- (f) modbus/function/readInputRegister,
- (g) modbus/function/readCoils (DoS

- (h) modbus/function/readHoldingRegister (DoS),
- (i) (modbus/function/readDiscreteInputs (DoS)),
- (j) modbus/dos/writeSingleRegister,
- (k) modbus/scanner/getfunc,
- (I) modbus/function/writeSingleCoils and
- (m) modbus/function/readInputRegister (DoS)





Proposed IDPS Architecture



Three main components

Network Flow Monitoring and Extraction Module

Through SPAN and Tcpdump, it monitors the examined healthcare infrastructure. It generates bi-directional Modbus/TCP and HTTP flow statistics.

Intrusion Detection Engine

Responsible for detecting the aforementioned Modbus/TCP and HTTP cyberattacks. Decision Tree \rightarrow HTTP cyberattacks, Random Forest \rightarrow Modbus/TCP cyberattacks

Notification and Response Module

Notifies the security administrator about possible security events. Indicates and applies firewall (iptables) rules.

Active Learning

Overview & Methods

When?

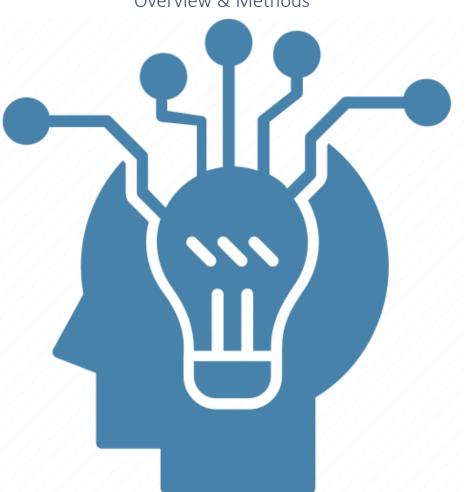
When there are no available labelled training datasets as in our case since CIs cannot label and disclose their sensitive data.

What?

Selects the most informative data from a set of unlabelled data in order to optimize and construct a training dataset

Oracle

Usually, there is an external factor that annotates the data investigated



Query Synthesis

Synthesizes the data samples de novo, producing never observed data samples.

Stream-based Selective Sampling

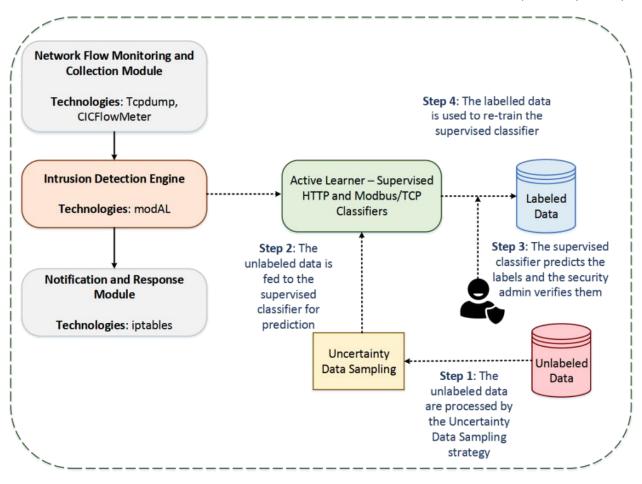
Receives data samples as streams continuously and decides based on a **query strategy** which data samples should be labelled or not.

Pool-based Sampling

Creates first a pool with unlabelled data samples and sequentially decides based on a query strategy which of them will be labelled.

Active Learning

How it is adopted by the proposed IDPS



Step #1: Data Investigation & Assessment

The unlabelled data is assessed by the **query strategy** named Uncertainty Data Sampling.

Step #2: Feeding supervised classifiers

The data approved by the Uncertainty Data Sampling is fed to the supervised classifiers

Step #3: Data Prediction and Verification

The supervised classifiers predict the labels that also are verified by a security expert.

Step #4: Training Dataset Update

The new labelled data is introduced to the new training dataset

Active Learning

Implementation

Definitions

- Let x be an unlabelled network flow from the input space X and y the respective label
- Let U be a set of unlabelled TCP/IP network flows within a pool.
- Let *L* be the training dataset consisting of the labelled TCP/IP network flows
- f(x) = y: the target function, which absolutely classifies the unlabelled TCP/IP network flows in the correct classes.
- h(x) = y: supervised classifier (hypothesis) predicting the label of an unlabelled TCP/IP network flow after the training process

iEEE ICC*

Generalization Error E

$$E[l(h)] \int_{-\infty}^{\infty} l(h(x), f(x)) dx$$

$$l(h(x), f(x)) = (h(x) - f(x))^2$$

Uncertainty Sampling Strategy

- Identify and label those unlabelled network flows in the pool that will be used to re-train the supervised classifiers (hypothesis)
- Ask the external factor about those unlabelled network flows for which the hypothesis is less confident.
- The external factor is the same hypothesis since IDPS should be re-trained by itself. A security expert confirm the labels

 IEEE ICC 20201

 14-23 June 2021 // Virtual / Montreal

The uncertainty criterion is the entropy: *H*

$$H = -\sum_{i=1}^{m} p_{\theta}(y_i|x) \log_2(p_{\theta}(y_i|x))$$

$$x^* = argmax(x) + H > \delta$$

Algorithm 1: Active Learner: Pooling-based Sampling and Uncertainty Sampling Strategy

```
Data: U, L, h
Result: Re-train h
initialization;
while size(U) > 0 do
if classifier_uncertainty(U(i)) > δ then
Predict y(i) using h;
Verify or change the prediction of h through the security expert;
Add U(i) and y(i) in L;
```

end

Remove U(i) from U;

Re-train h

end

Evaluation Methodology

Step One

HTTP Dataset Preparation

CICIDS2017 Dataset

I. Sharafaldin et al.

Toward Generating a New Intrusion

Detection Dataset and Intrusion Traffic

Characterization

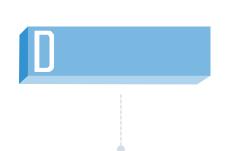
Modbus/TCP Dataset Preparation

Emulating Modbus/TCP
Cyberattacks

P. Radoglou-Grammatikis et al.
Implementation and Detection
of Modbus Cyberattacks

Step Three

Data Preprocessing



Step Four

Feature Selection: Flow
Duration, TotLen Fwd
Pkts, Fwd Pkt Len Mean.
Fwd Pkt Len Mean, Bwd
Pkt Len Std, Flow IAT Std,
Bwd Pkts/s, Subflow Bwd
Pkts, Init Bwd Win Bytes,
Active Mean

Step Five

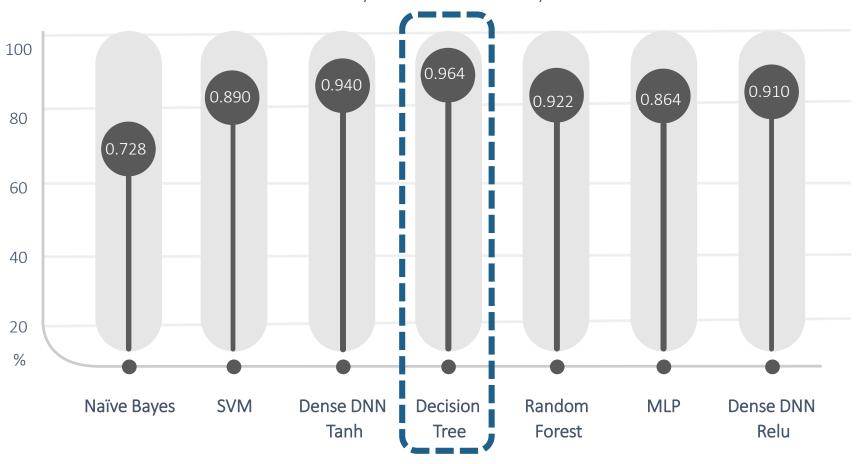
Evaluation

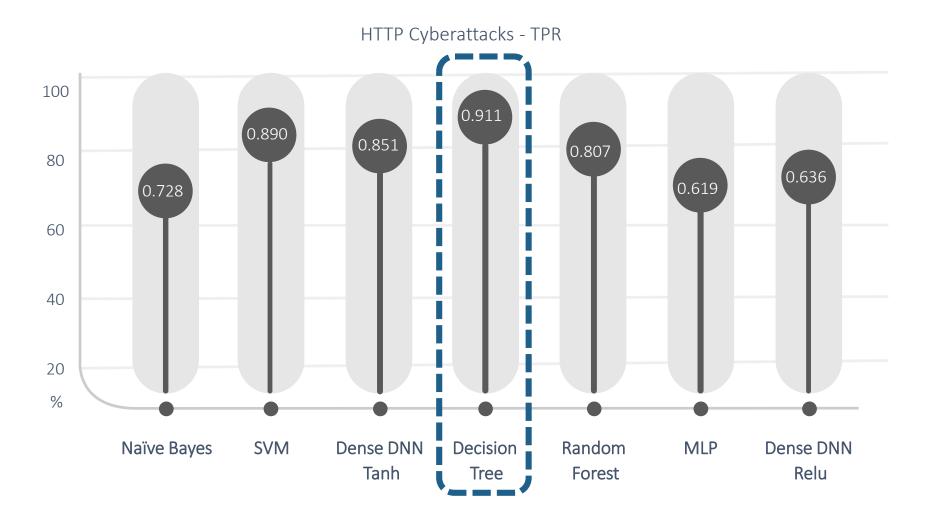
$$Accuraccy = \frac{TP + TN}{TP + TN + FP + FN}$$

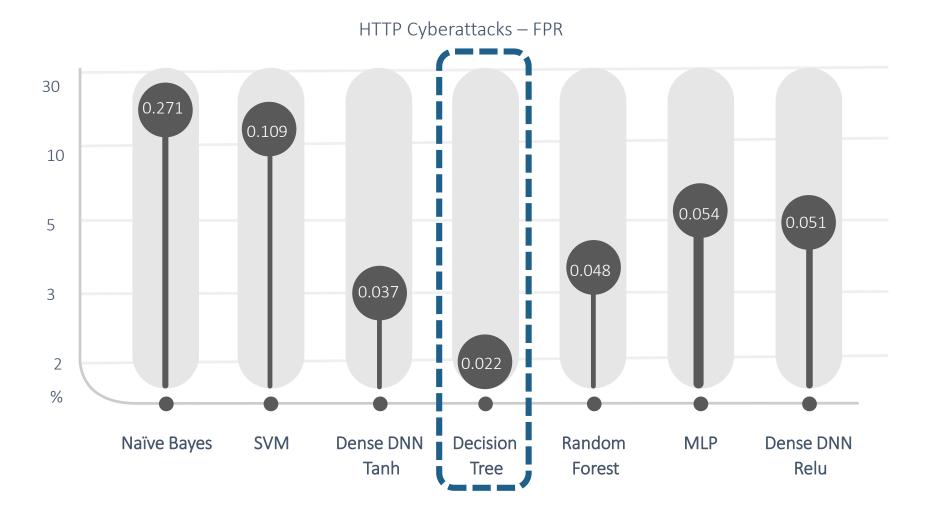
$$TPR = \frac{TP}{TP + FN}$$

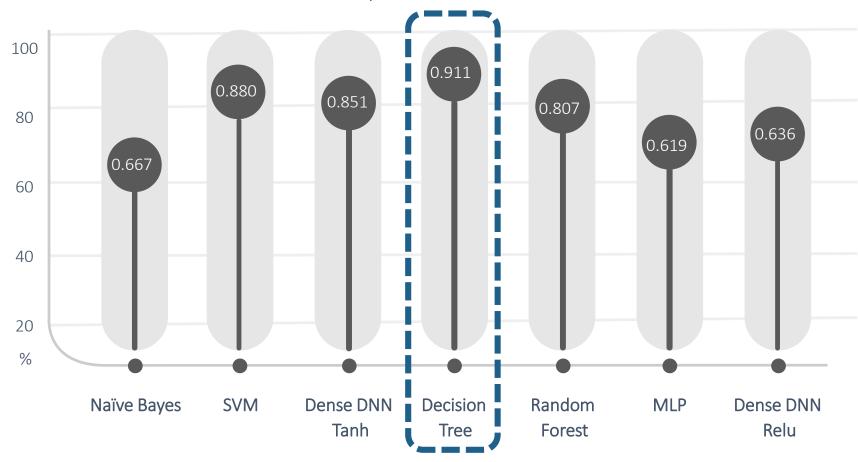
$$FPR = \frac{FP}{FP + TN}$$

Pkts, Init Bwd Win Bytes, $F1 = \frac{2 \times Precision \times TPR}{Precision + TPR}$ where $\frac{TP}{TP + FP}$









HTTP Cyberattacks – Aggregative Results

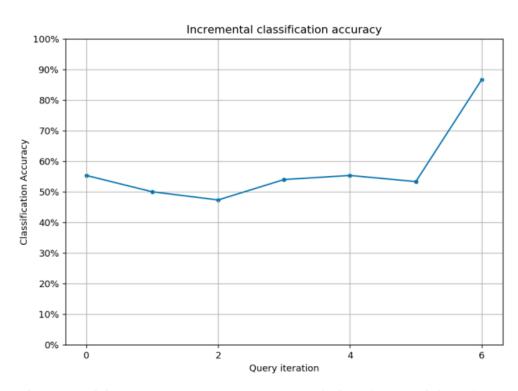
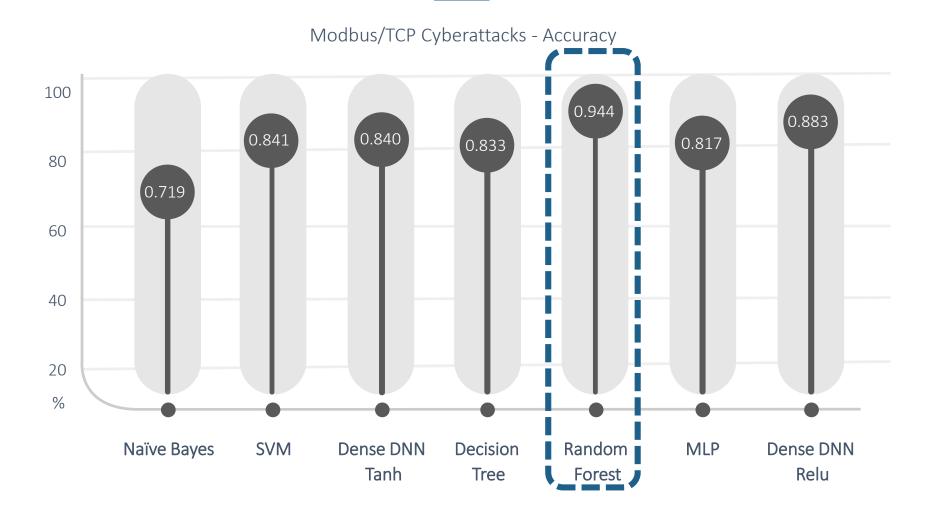
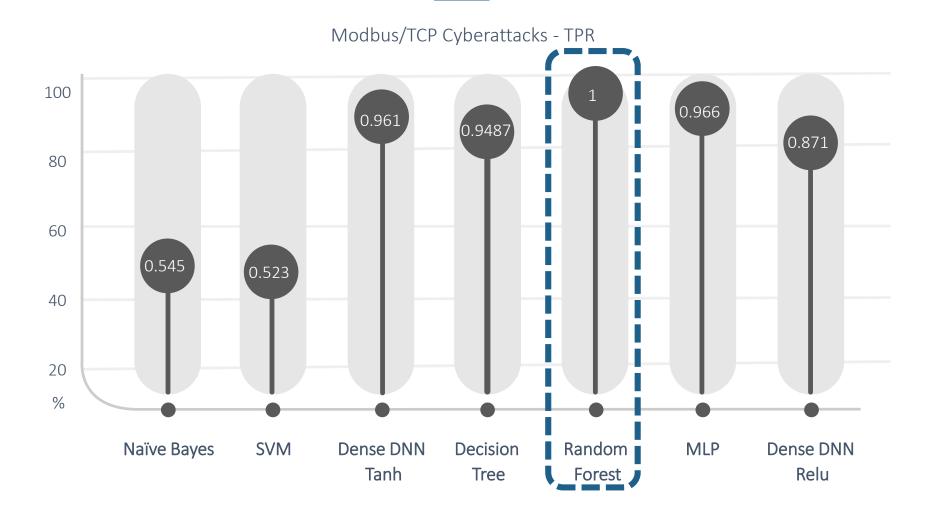


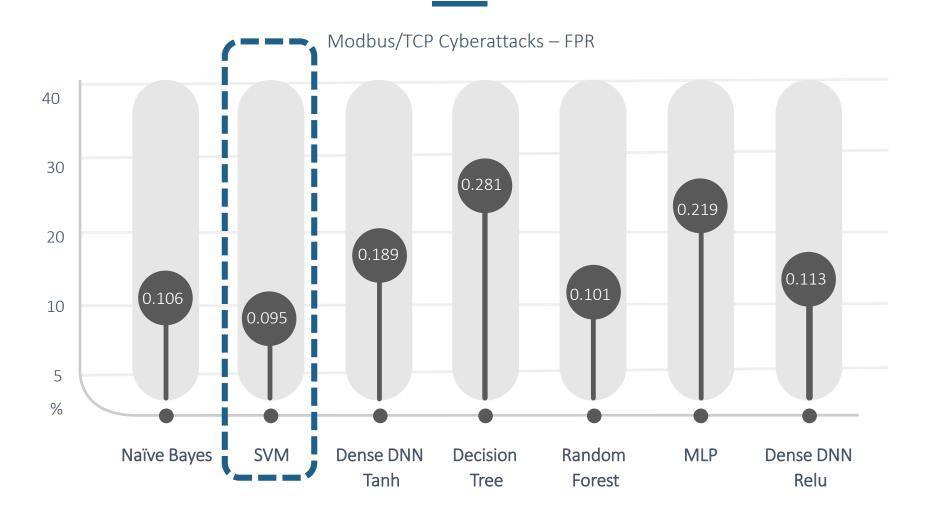
TABLE I: Evaluation Results related to the cyberattacks against HTTP

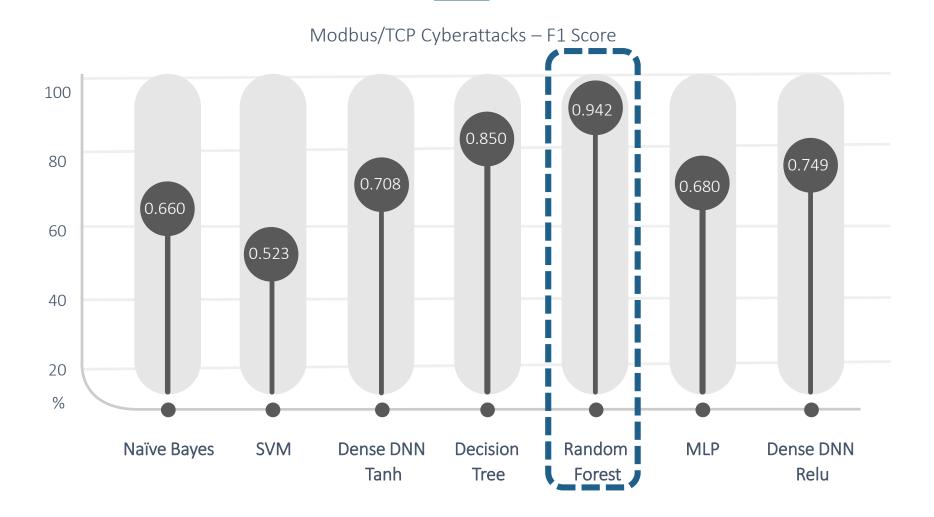
ML Method	Accuracy	TPR	FPR	F1
Decision Tree Classifier	0.9644	0.9111	0.0222	0.9111
Naive Bayes	0.7288	0.72888	0.27111	0.66744
SVM	0.89075	0.89075	0.10924	0.88027
Random Forest	0.92296	0.80740	0.04814	0.80740
MLP	0.90478	0.61915	0.05440	0.61915
Dense DNN Relu	0.90908	0.63633	0.05195	0.63633
Dense DNN Tanh	0.94074	0.85185	0.03703	0.85185

Fig. 2: Decision Tree - Accuracy Increment during the re-training phases









Modbus/TCP Cyberattacks – Aggregative Results

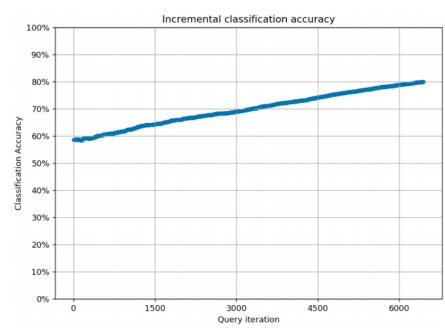


Fig. 3: Random Forest - Accuracy Increment during the re-training phases

TABLE II: Evaluation Results related to the cyberattacks against Modbus/TCP

ML Method	Accuracy	TPR	FPR	F1
Decision Tree	0.83333	0.94827	0.28160	0.85051
Classifier				
Naive Bayes	0.71982	0.54597	0.10632	0.66086
SVM	0.841	0.523	0.095	0.523
Random Forest	0.94454	1	0.10166	0.94250
MLP	0.81797	0.96663	0.21924	0.68018
Dense DNN Relu	0.88357	0.87158	0.11341	0.74989
Dense DNN Tanh	0.84078	0.96122	0.18952	0.70827

Conclusions

Final Remarks

IoMT and Legacy Healthcare Systems

IoMT and legacy helatcare systems are characterised by severe security issues

ŵ

EHR - HTTP

EHRs are threatened by HTTP cyberattacks

IoMT - Modbus

Smart medical devices are threatened by Modbus/TCP cyberattacks

Accurate Intrusion Detection

Necessity of intrusion detection mechanisms – lack of available datasets

Active Leering Approach

The proposed IDPS is re-trained by itself. It uses the pool-based zampling method and the uncertainty sampling strategy with the entropy criterion.

Average Accuracy

95%

The evaluation analysis demonstrates the efficiency of the proposed IDPS against HTTP and Modbus/TCP cyberattacks, showing additionally how the overall accuracy is increased during the re-training phases.

Future Plans

Optimization of the proposed active learning approach with reinforcement learning techniques, thus eliminating the presence of the cybersecurity expert.

Thank You & Q/A

Contact us

pradoglou@uowm.gr

https://www.spear2020.eu/

https://www.linkedin.com/company/spear2020/

https://www.youtube.com/channel/UCw6-d5G01ToBhCmaUnHlcpw

Thank You

Q/A?

