
TRUSTY: A Solution for Threat Hunting Using
Data Analysis in Critical Infrastructures

Panagiotis Radoglou-Grammatikis
University of Western Macedonia

Kozani, Greece
pradoglou@uowm.gr

Athanasios Liatifis
University of Western Macedonia

Kozani, Greece
aliatifis@uowm.gr

Elisavet Grigoriou
Sidroco Holdings Ltd

Nicosia, Cyprus
egrigoriou@sidroco.com

Theocharis Saoulidis
Sidroco Holdings Ltd

Nicosia, Cyprus
hsaoulidis@sidroco.com

Antonios Sarigiannidis
Sidroco Holdings Ltd

Nicosia, Cyprus
asarigia@sidroco.com

Thomas Lagkas
International Hellenic University

Kavala, Greece
tlagkas@cs.ihu.gr

Panagiotis Sarigiannidis
University of Western Macedonia

Kozani, Greece
psarigiannidis@uowm.gr

Abstract—The rise of the Industrial Internet of Things (IIoT)
plays a crucial role in the era of hyper-connected digital
economies. Despite the valuable benefits, such as increased
resiliency, self-monitoring and pervasive control, IIoT raises
severe cybersecurity and privacy risks, allowing cyberattackers
to exploit a plethora of vulnerabilities and weaknesses that
can lead to disastrous consequences. Although the Intrusion
Detection and Prevention Systems (IDPS) constitute valuable
solutions, they suffer from several gaps, such as zero-day attacks,
unknown anomalies and false positives. Therefore, the presence
of supporting mechanisms is necessary. To this end, honeypots
can protect real assets and trap cyberattackers. In this paper, we
provide a web-based platform called TRUSTY , which is capable
of aggregating, storing and analysing the detection results of
multiple industrial honeypots related to Modbus/Transmission
Control Protocol (TCP), IEC 60870-5-104, BACnet, Message
Queuing Telemetry Transport (MQTT) and EtherNet/IP. Based
on this analysis, we provide a dataset related to honeypot security
events. Moreover, this paper provides a Reinforcement Learning
(RL) method, which decides about the number of honeypots
that can be deployed in an industrial environment in a strategic
way. In particular, this decision is converted into a Multi-Armed
Bandit (MAB), which is solved with the e-Greedy method. The
evaluation analysis demonstrates the efficiency of the proposed
method.

Index Terms—Cybersecurity, Dataset, Honeypot, Industrial In-
ternet of Things, Multi-Armed Bandit, Reinforcement Learning,
Thompson Sampling

I. INTRODUCTION

In the age of the Industrial Internet of Things (IIoT), the
smart technologies are not only an extension of the Critical
Infrastructure (CIs) but play an indispensable role at the
core of each automation process. Undoubtedly, IIoT offers
multiple advantageous services in the industrial sector, such as
pervasive control, self-monitoring and better utilisation of the
existing resources. However, it also raises severe cybersecurity
concerns, exposing CIs to new risks [1]. In particular, a
cybersecurity incident against a CI can lead to disastrous
consequences and economic losses, affecting public health.
Characteristic examples were the Advanced Persistent Threats
(APTs) Stuxnet, Duqu, Flame and Gauss [2].

Several industrial protocols, such as Modbus, IEC 60870-5-
104 and BACnet, do not include essential authentication and
access control measures. Hence, they are prone to a plethora of
cyberattacks, including Denial of Service (DoS), unauthorised
access activities and False Data Injection (FDI). Consequently,
the presence of appropriate cybersecurity detection mecha-
nisms is necessary. Typical Intrusion Detection and Prevention
Systems (IDPS) utilise known signature and specification rules
in order to detect possible security violations. For example,
both Snort and Suricata include an appropriate language
for constructing such signature/specification rules related to
Modbus and the Distributed Network Protocol 3 (DNP3).
However, signature/specification-based techniques can detect
only known malicious patterns or generic anomalies without
distinguishing details about the malicious activities. On the
other side, anomaly-based detection methods are prone to
False Positives (FP). Therefore, such detection mechanisms
should be enhanced with other countermeasures. To this end,
a honeypot is a fictitious security hole, which aims to mislead
potential cyberattackers. In particular, a honeypot can hide the
real assets and secondly, can gather significant information
about the malicious activities.

In this paper, we focus our attention on (a) strategic hon-
eypot deployment in an IIoT environment and (b) statistical
analysis of research honeypots’ data. First, we model the
optimal number of honeypots that can support the security
measures of a CI as a Multi-Armed Bandit (MAB) problem.
The proposed MAB problem is solved via a Reinforcement
Learning (RL) method called e-Greedy. takes into account
both the potential costs and benefits of the defender and the at-
tacker. Based on the number of the honeypots’ security events
(i.e., honeypots’ logs captured when a cyberattacker interacts
with them), converges to the optimal number of honeypots that
can be deployed. Secondly, this paper introduces also TRUSTY
(Threat hunting using Data Analysis), a plat-
form, which analyses automatically the honeypots’ detection
results. Based on the aforementioned remarks, the contribution
of our paper is summarised in the following points:978-1-7281-5684-2/20/$31.00 ©2021 IEEE

Panagiotis
Typewriter
This paper is published in IEEE Xplore: https://ieeexplore.ieee.org/abstract/document/9527936 - P. Radoglou-Grammatikis et al., "TRUSTY: A Solution for Threat Hunting Using Data Analysis in Critical Infrastructures," 2021 IEEE International Conference on Cyber Security and Resilience (CSR), 2021, pp. 485-490, doi: 10.1109/CSR51186.2021.9527936.

• Strategic Honeypot Deployment: We model the honey-
pots’ deployment in a CI as a MAB problem, which is
solved via , considering the costs and the benefits of the
defender and the potential cyberattackers.

• Web-based Honeypot Data Analysis Platform: We
provide a web-based honeypot data analysis platform
called TRUSTY, capable of analysing the honeypots’
detection results. It provides geolocation information, net-
work layer information (e.g., network flows), application-
layer information (e.g., function codes, unit identifiers)
and risk estimation per network flow.

• Providing a Honeypot Dataset: Through this work,
a honeypot dataset is provided publicly, including the
network traffic and logs from multiple industrial honey-
pots, such as Conpot and Dionaea. This dataset can
be utilised for intrusion detection processes, comprising
network flows statistics related to Modbus/Transmission
Control Protocol (TCP), IEC 60870-5-104, BACnet, Mes-
sage Queuing Telemetry Transport (MQTT) and Ether-
Net/IP.

The rest of this paper is organised as follows: Section II
presents a background and relevant works. Section III analyses
our strategic RL-based method regarding the honeypots’ de-
ployment. Section IV presents the architecture of TRUSTY .
Section V discusses the evaluation analysis of this work.
Finally, section VI concludes this paper.

II. BACKGROUND AND RELATED WORK

This section provides a background on honeypots and
summarises relevant honeypot implementations, relevant tools
and projects.

A. Honeypot and Honeypot categories

Honeypots are assets with no production value that imitate
real assets’ behaviour, aiming to protect them and collect
valuable information about the cyber-attackers. In particular,
honeypots can be classified into two categories: (a) production
honeypots and (b) research honeypots. Production honeypots
are placed into an organisation’s production network, trying to
hide the real assets from potential malicious insiders. On the
other side, research honeypots are exposed to public networks
like the Internet, attracting potential cyber-attackers and col-
lecting important information related to them. It is noteworthy
that any interaction with a honeypot is considered suspicious
since legitimate users do not have any reason to interact with it.
Moreover, honeypots can be classified based on the interaction
level as (a) Low-Interaction Honeypots (LIH) and (b) High-
Interaction Honeypots (HIH). LIHP simulates a set of network
services like File Transfer Protocol (FTP), Secure Shell (SSH)
and Modbus realistically, without successfully implementing
them. On the other hand, HIHP provides an overall operating
system with pre-installed services.

B. Honeypots Implementations

Both academia and industry have implemented several
honeypots. In particular, Deception Toolkit (DTK) [3]

was the first honeypot released in 1997, emulating known
vulnerabilities of UNIX. HoneyBOT [4] is a LIH for Windows
operating systems, simulating relevant vulnerabilities. Simi-
larly, KFSensor [5] is a commercial honeypot for Windows
systems which also incorporates Snort. HoneyD [6] is
probably the most known honeypot capable of emulating at
the same time multiple hosts. Tiny Honeypot [7] is a
server-based honeypot, which listens to all TCP ports, logging
all interaction activities. Dionaea [8] is written in Python
and emulates the MQTT protocol. Jackpot [7] is related to
Simple Mail Transfer Protocol (SMTP) and aims to combat
email spam. Cowrie [9] is a LIH emulating SSH. Conpot
[10] is an industrial honeypot emulating multiple relevant
protocols like Modbus and IEC 60870-5-104 [11].

C. Honeypot-related Tools

Many supporting tools have been developed in order to anal-
yse the data retrieved from honeypots or to extend their func-
tionalities [12]. In particular, Bait-n-Switch [13] aims
to redirect all malicious traffic to a honeypot. Accordingly,
Honeynet Security Console (HSC) [14] analyses,
correlates and visualises honeypots logs. Honeysnap [15]
processes Packet Capture (PCAP) files that were collected by
server-based honeypots. GSOC-Honeyweb [7] is devoted to
the management of client-based honeypots via a user-friendly
environment. Moreover, TraCINg [7] aggregates data from
multiple honeypots and correlates this information in order to
discover possible worms.

D. Honeypot-related Projects

It is noteworthy that many honeypots projects have been
organised, aiming to exploit at the maximum level the benefits
of honeypots and mainly to discover possible zero-day attacks.
In particular, the Honeynet Project [16] was started in
1999 to explore and investigate zero-day cyberattacks. Further-
more, the Leurre.com project [17] deployed multiple LIHs
in more than 30 counties, aiming at collecting quantitative
data related to cyberthreats and vulnerabilities. Accordingly,
NoAH-Project coordinated by Foundation for Research
and Technology Hellas (FORTH) deployed an HIH called
Argos [18] to enhance the protection of Internet Service
Providers (ISPs) and investigate potential zero-day attacks.
The mw-collect Alliance project collected information
about various malware by deploying multiple Nepenthes sen-
sors [7]. Moreover, Telekom-Fruhwarnsystem [7] was
started in 2013 to collect various datasets related to honey-
pot activities. Finally, H2020 SPEAR implemented various
industrial honeypots for the smart electrical grid [19].

III. STRATEGIC HONEYPOT DEPLOYMENT: A MULTI
ARMED BADNIT PROBLEM

The first functionality of TRUSTY is the strategic hon-
eypots’ deployment as a MAB problem. First, we consider
two antagonistic players: (a) Attacker and (b) Defender.
The goal of the Attacker is to attack the real EPES assets,

while the Defender aims to deploy the appropriate num-
ber of honeypots that will provide the maximum protection,
taking into account the available computing resources and
the behaviour of the Attacker. Let Nmax be the maximum
number of honeypots and real EPES assets that can be hosted
in an EPES infrastructure. Nmax is defined by TRUSTY .
Moreover, let N ≤ Nmax be the total number of the connected
machines that can serve either as honeypots or real EPES
assets. TRUSTY is also able to define which machines will
be used by honeypots. The ratio of N utilised by honeypots
is symbolised by θ. sA,i ∈ {0, 1} represents the strategy of
the Attacker, meaning to attack or not machine i. sA,i equals
1 when the cyberattack is performed against an actual EPES
asset, while sA,i is equal to 0 when the cyberattack targets
a honeypot. On the other side, sD,i ∈ {−1, 1} represents the
strategy of the Defender. sD,i equals −1 and 1 when the
cyberattack targets a real asset and a honeypot, respectively.
Both strategies are characterised by some weights. a1 denotes
the benefit of the Attacker for each attack against a honeypot.
a2 and a3 denote the cost of the Attacker for each attack
against a honeypot and any machine (honeypot or real device),
respectively. Similarly, d1 defines the benefit related to the
Defender for each attack against a honeypot, while d2 and
d3 imply the cost for each attack against a real device and the
cost for each real device that is replaced by a honeypot. Finally,
d4 denotes the cost of the Defender since N increases. For
the sake of clarity, Table I summarises the notation.

TABLE I: Notation
Notation Explanation

Nmax
The maximum number of the real EPES assets and
honeypots that can be simultaneously connected.

N
The number of the real EPES assets and honeypots that are
connected.

a1
The benefit of the attacker for each attack against a
real EPES asset.

a2 The cost of the attacker for each attack against a honeypot.

a3
The cost of the attacker for each attack against any
machine (honeypot or not).

d1
The benefit of the defender for each attack against a
honeypot.

d2
The cost of the defender for each attack against a real
EPES asset.

d3
The cost of the defender for each real EPES asset which is
replaced by a honeypot.

d4 The cost of the defender as N increases.
UA[t] The utility of the Attacker at the time interval t.
UD[t] The utility of the Defender at the time interval t.
θ The ratio of N utilised by honeypots.

Therefore, based on the aforementioned remarks, the util-
ity function of the Attacker in a time interval t (UA[t])
is given by Equation 1. In particular, UA[t] increases
based on

∑N
i=1

1+SD,i

2 sA,i and decreases according to∑N
i=1

1−SD,i

2 sA,i and
∑N

i=1 sA,i.
∑N

i=1
1+SD,i

2 sA,i refers to
the overall benefit of the Attacker in terms of the real
EPES assets attacked. In contrast,

∑N
i=1

1−SD,i

2 sA,i and∑N
i=1

1+SD,i

2 sA,i denote the overall damage of the Attacker
in terms of the honeypots attacked and the entire number of
the cyberattacks. The more cyber attacks the more possibilities

to reveal the identity of the Attacker.

UA[t] = f(ai∈{1,2,3},

N∑
i=1

1 + SD,i

2
sA,i,

N∑
i=1

1− SD,i

2
sA,i

,

N∑
i=1

sA,i)

(1)
Supposing the previous terms progress linearly, Equation 1 can
be expressed with Equation 2.

UA[t] = a1

N∑
i=1

1 + SD,i

2
sA,i − a2

N∑
i=1

1− SD,i

2
sA,i

− a3
N∑
i=1

sA,i)

(2)

In a similar manner, the utility function of the Defender in a
time interval t i.e., (UD[t]) is given by Equation 3. Equation 3
increases in terms of

∑N
i=1

1−SD,i

2 sA,i and decreases in terms
of

∑N
i=1

1+SD,i

2 sA,i,
∑N

i=1 and N .

UD[t] = g(di∈{1,2,34},

N∑
i=1

1− SD,i

2
sA,i,

N∑
i=1

1 + SD,i

2
sA,i

,

N∑
i=1

1 + sD,i

2
, N)

(3)
If we assume that the terms of Equation 3 progress linearly,
the Equation 3 can be written in the form of Equation 4.

UD[t] = d1

N∑
i=1

1− SD,i

2
sA,i − d2

N∑
i=1

1 + SD,i

2
sA,i

− d3
N∑
i=1

1 + sD,i

2
− d4N

(4)

Therefore, based on the security events received by the
Suricata our goal is to set the appropriate ratio θ in order
to maximise UD[t] each time (Equation 4). The previous
modelling relies on our previous work in [20]. To re-define,
the appropriate number of θ for each security event in the
time interval t can be expressed as a MAB problem, where
exploitation intends to maximise UD[t] (Equation 5) and
exploration aims to test different values of θ to discover
more information for the Attacker in terms of Equation 4.
TRUSTY plays the role of the gambler and the various
values of theta represent the slot machines. To solve the
MAB problem, we adopt the e−Greedy method, where we
commonly select that mean of theta providing the maximum
value UD[t] (Equation 5) and there is a small probability e
where other values of θ are selected in order to discover
how Equation 4 ranges. Algorithm 1 reflects how TRUSTY
decides to deploy θ honeypots, utilising e−Greedy.

max(UD[t]) =max(d1

N∑
i=1

1− SD,i

2
sA,i − d2

N∑
i=1

1 + SD,i

2

sA,i − d3
N∑
i=1

1 + sD,i

2
− d4N)

(5)

Algorithm 1: TRUSTY Honeypot Deployment
Data: Nmax, N , UD Matrix, sum θ Matrix,

mean θ Matrix, max mean,
securityEventCounter, a1, a2, a3, d1, d2, d3, d4

Result: θselected
size θ Matrix = [], UD Matrix = [],
sum θ Matrix = [], mean θ Matrix = [],
securityEventCounter = 0, max mean = 0, θselected
= 0, a1, a2, a3, d1, d2, d3, d4 = init();

while True do
Receive a security event;
securityEventCounter = securityEventCounter +1;
max mean = 0;
p = random number in [0,1];
if p < e then

θselected = random integer number in [1, N];
UD Matrix[θ] = d1

∑N
i=1

1−SD,i

2 sA,i −
d2

∑N
i=1

1+SD,i

2 sA,i − d3
∑N

i=1
1+sD,i

2 − d4N ;
sum θ Matrix[θ] = sum θ Matrix[θ] +
UD Matrix[θ];
mean θ Matrix = sum θ Matrix[θ] /

securityEventCounter;
end
else

for θ ← 1 to N by 1 do
UD Matrix[θ] = d1

∑N
i=1

1−SD,i

2 sA,i −
d2

∑N
i=1

1+SD,i

2 sA,i − d3
∑N

i=1
1+sD,i

2 −
d4N ;
sum θ Matrix[θ] = sum θ Matrix[θ] +
UD Matrix[θ];
mean θ Matrix = sum θ Matrix[θ] /

securityEventCounter;
if mean θ Matrix[θ] > max mean then

max mean = mean θ Matrix[θ];
θselected = θ;

end
end

end
end

IV. TRUSTY: A WEB-BASED DATA ANALYSIS PLATFORM

This section is devoted to the TRUSTY architecture.
As illustrated in Fig. 1, TRUSTY consists of two main
components, namely (a) Honeypot Sensors and (b) Honeypot
Analyser Server. Honeypot Sensors represent honeypots, while

the Honeypot Analyser Server collects and analyses their out-
comes. The following subsections provide more information
about each component.

A. Honeypot Sensors

Honeypot Sensors are Virtual Machines (VMs) hosting the
honeypot applications: (a) Conpot and (b) Dionaea as well
as external tools like Tshark, CICFlowmeter, Scapy and
Suricata to capture network traffic data periodically, the
network flows and the Suricata logs, respectively. In particular,
Conpot is an industrial honeypot emulating multiple indus-
trial protocols: Modbus, IEC 60870-5-104, BACnet and Eth-
erNet/IP. Dionaea is another popular honeypot that offers an
easy to use Python Application Programming Interface (API)
and emulates many protocols including MQTT. The network
traffic related to honeypot applications is captured using hark.
For extracting the network flow statistics, CICFlowMeter.
Suricata is applied in order to identify potential threats
based on the pcap files captured by Tshark. Scapy is a
network packet manipulation tool, which allows to process
the network packets captured by Tshark, extracting relevant
statistics based on the application-layer protocols. Finally, the
Honeypot Sensors calculate the risk related to their data, by
applying Equation 6 [7].

Fig. 1: TRUSTY architecture

Risk = log(nPackets) + log(nBytes) + log(duration+ 1)
(6)

B. Description of Honeypot Analyser Server

The honeypot applications usually produces text-based en-
tries with a complex structure. Consequently, the scalable
processing and visualisation of the honeypot-related data
are valuable capabilities for the security administrators. The
Honeypot Analyzer Server is responsible for aggregating and
processing the honeypot data. It consists of three modules:
(a) the Traffic Aggregator, (b) the Security Events Database
and (c) the Visualization Engine. The Traffic Aggregator
relies on Logstash and is responsible for receiving data from
multiple honeypots applications. Moreover, it performs a series
of transformation of this data and forwards the processed
information to the Security Event Database, which uses the

Elasticsearch database. The honeypot log entries are analysed,
stored and indexed. Finally, the Visualization Engine utilises
Kibana and is responsible for presenting the data through
interactive visualisations in a web-based environment.

−2 0 2 4 6

0

2

4

6

8

10

12

14

Bandit distributions after 1500 securit events
One EPES Hone pot
Two EPES Hone pots
Three EPES Hone pots

Fig. 2: Posterior Probability of UD[t] after 1500 honeypot-related security
events

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 10 20 50 100 200 500 1500

A
cc

u
ra

cy

Honeypot Security Events

e-Greedy Random Selection

Fig. 3: e-Greedy accuracy compared to the accuracy of a random choice

V. RESULTS AND DISCUSSION

This section focuses on the evaluation analysis related to
the proposed method for the strategic honeypot deployment.
To this end, we use a power plant simulation environment and
a dataset with honeypot-related security events. The dataset
was constructed by deploying TRUSTY with five Honeypot
Sensors during one year period. The honeypot applications
emulate industrial devices that use (a) Modbus/TCP, (b) IEC
60870-5-104, (c) MQTT, (d) BACnet and (e) EtherNet/IP,
respectively. Thus, we created a dataset with honeypot-related
security events, including pcap files, honeypots’ logs and
Comma-Separated Values (CSV) with the network flow statist-
cis. The dataset is provided publicly though this work. The
following sub-sections describe the honeypot dataset and the
evaluation results related to the proposed method for the
strategic honeypot deployment.

A. Honeypot Dataset Analysis

By inspecting the map in figure 4, we can observe that coun-
tries such as the USA and Netherlands are popular choices for
deploying bots. This is also validated by the alerts generated
by Suricata on each honeypot sensor. Countries such as
Russia and China are ranked third and fourth respectively. The
majority of the network flows was short TCP sessions. This
is a strong indication related to reconnaissance cyberattacks.
Table II lists the application-layer data collected for each
industrial protocol mentioned above. It is worth mentioning
that a considerable portion of the network traffic data (85%)
originate from the popular search engine Shodan. Using
reverse Domain Name System (DNS) queries, TRUSTY is
able to identify sub-domains of the shodan.io.

B. Strategic Honeypot Deployment

In order to evaluate the strategic honeypot deployment
process, we use a power plant simulation environment where
a1, a2, a3, d1, d2, d3 and d4 are defined experimentally by
security experts and electrical operators. The simulation ran in
an Ubuntu 18.04. Long-Term Support (L) computing system
with (a) Central Processing Unit (CPU): Intel Core i7-6700 at
3.40 GHz, (b) Random Access Memory (RAM): 16 GB and
(c) Solid State Drive (SSD): 240 GB. Furthermore, regarding
the advent of honeypot-related security events, we utilise the
honeypot dataset provided through this paper. First, we show
how the Probability Density Function (PDF) of UD[t] ranges.
Based on the available computing resources, we consider the
deployment of one, two and three EPES honeypots. Moreover,
e was defined to 0.1. Fig. 2 shows how PDF of UD[t] ranges
for 1500 honeypot-related security events. We can observe that
the proposed method converges briefly to the deployment of
three EPES honeypots. Finally, Fig. 3 shows the accuracy of
the proposed e-Greedy technique for the deploying the EPES
honeypots compared to a random selection. The accuracy of
e-Greedy method reaches 0.89 after 1500 honeypot-related
security events, while the accuracy of the random choice
reaches 0.55.

TABLE II: Industrial Protocol Data collected from the Analysis Process
Protocol Collected Data
MQTT topic, QOS
Modbus Function code, Unit ID, length, Type
EnIP command ID, length, session, status, sender, context,

options IEC104
start, ADPU length, testfr connection, testfr action,
stopdt con, stopdt act, startdt con, startdt act,
octet 1 1 2 octet 2, octet 3

VI. CONCLUSIONS

The rise of IoT offers multiple benefits and raises new
cybersecurity risks that require appropriate intrusion detection
and prevention mechanisms. Although the typical IDPS solu-
tions can detect and mitigate a plethora of known cyberthreats,
they face critical challenges, such as zero-day attacks, un-
known anomalies, FP and multi-step attack scenarios. To
this end, they should be enhanced with additional supportive

Fig. 4: Honeypot Geo-location information

mechanisms. Honeypots consitute an emerging technology that
can trap potential cyberattackers and gather valuable informa-
tion about their malicios activities. In this paper, we focus
our attention on a strategic and dynamic way for deploying
honeypots in an industrial environment, taking into account
the costs and benefits of the defender and the cyberattacker.
Moreover, we provide a platform called TRUSTY which
comprises industrial honeypot applications and analyses their
detection outcomes in terms of network traffic data, network
flow statistics and honeypots’ logs. Through TRUSTY , we
created a dataset with honeypot-related security events, in-
cluding the information mentioned earlier. This dataset is
provided publicly via this work. Finally, the evaluation results
demonstrate the efficiency of our work.

ACKNOWLEDGMENT

This project has received funding from the European
Union’s Horizon 2020 research and innovation programme
under grant agreement No. 833955.

REFERENCES

[1] P. Radoglou-Grammatikis, P. G. Sarigiannidis, and I. D. Moscholios,
“Securing the internet of things: challenges, threats and solutions,”
Internet of Things, vol. 5, pp. 41–70, 2019.

[2] P. I. Radoglou-Grammatikis and P. G. Sarigiannidis, “Securing the smart
grid: A comprehensive compilation of intrusion detection and prevention
systems,” IEEE Access, vol. 7, pp. 46 595–46 620, 2019.

[3] M. H. Almeshekah and E. H. Spafford, “Cyber security deception,” in
Cyber deception. Springer, 2016, pp. 23–50.

[4] C. Irvene, D. Formby, S. Litchfield, and R. Beyah, “Honeybot: A
honeypot for robotic systems,” Proceedings of the IEEE, vol. 106, no. 1,
pp. 61–70, 2017.

[5] D. Kumar and V. Vashishtha, “Snort based h-ids with kf sensor and
weka,” International Journal, vol. 2, no. 5, 2012.

[6] M. Tsikerdekis, S. Zeadally, A. Schlesener, and N. Sklavos, “Approaches
for preventing honeypot detection and compromise,” in 2018 Global
Information Infrastructure and Networking Symposium (GIIS). IEEE,
2018, pp. 1–6.

[7] M. Nawrocki, M. Wählisch, T. C. Schmidt, C. Keil, and J. Schönfelder,
“A survey on honeypot software and data analysis,” CoRR, vol.
abs/1608.06249, 2016. [Online]. Available: http://arxiv.org/abs/1608.
06249

[8] V. Sethia and A. Jeyasekar, “Malware capturing and analysis using
dionaea honeypot,” in 2019 International Carnahan Conference on
Security Technology (ICCST). IEEE, 2019, pp. 1–4.

[9] R. K. Shrivastava, B. Bashir, and C. Hota, “Attack detection and foren-
sics using honeypot in iot environment,” in International Conference on
Distributed Computing and Internet Technology. Springer, 2019, pp.
402–409.

[10] S. Gokhale, A. Dalvi, and I. Siddavatam, “Industrial control systems
honeypot: A formal analysis of conpot.” International Journal of Com-
puter Network & Information Security, vol. 12, no. 6, 2020.

[11] P. Radoglou-Grammatikis, P. Sarigiannidis, I. Giannoulakis, E. Kafet-
zakis, and E. Panaousis, “Attacking iec-60870-5-104 scada systems,” in
2019 IEEE World Congress on Services (SERVICES), vol. 2642. IEEE,
2019, pp. 41–46.

[12] I. Koniaris, G. Papadimitriou, and P. Nicopolitidis, “Analysis and visual-
ization of ssh attacks using honeypots,” in Eurocon 2013. IEEE, 2013,
pp. 65–72.

[13] A. Tiwari and D. Kumar, “Comparitive study of various honeypot tools
on the basis of their classification & features,” Available at SSRN
3565078, 2020.

[14] S. Manchekar, M. Kadam, and K. Jamdaade, “Application of honeypot
in cloud security: A review,” International Journal on Future Revolution
in Computer Science & Communication Engineering, vol. 4, no. 6, pp.
63–65, 2018.

[15] A. K. Seewald and W. N. Gansterer, “On the detection and identification
of botnets,” Computers & Security, vol. 29, no. 1, pp. 45–58, 2010.

[16] W. Zhang, B. Zhang, Y. Zhou, H. He, and Z. Ding, “An iot honeynet
based on multiport honeypots for capturing iot attacks,” IEEE Internet
of Things Journal, vol. 7, no. 5, pp. 3991–3999, 2019.

[17] C. Leita, V. Pham, O. Thonnard, E. Ramirez-Silva, F. Pouget, E. Kirda,
and M. Dacier, “The leurre.com project: Collecting internet threats
information using a worldwide distributed honeynet,” 2008 WOMBAT
Workshop on Information Security Threats Data Collection and Sharing,
2008.

[18] G. Portokalidis, A. Slowinska, and H. Bos, “Argos,” Proceedings of the
2006 EuroSys conference on - EuroSys 06, 2006.

[19] P. Radoglou-Grammatikis, P. Sarigiannidis, E. Iturbe, E. Rios, A. Sari-
giannidis, O. Nikolis, D. Ioannidis, V. Machamint, M. Tzifas, A. Gian-
nakoulias et al., “Secure and private smart grid: The spear architecture,”
in 2020 6th IEEE Conference on Network Softwarization (NetSoft).
IEEE, 2020, pp. 450–456.

[20] P. Diamantoulakis, C. Dalamagkas, P. Radoglou-Grammatikis, P. Sari-
giannidis, and G. Karagiannidis, “Game theoretic honeypot deployment
in smart grid,” Sensors, vol. 20, no. 15, p. 4199, 2020.

