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Abstract—The progression of Software Defined Networking
(SDN) and the virtualisation technologies lead to the beyond
5G era, providing multiple benefits in the smart economies.
However, despite the advantages, security issues still remain. In
particular, SDN/NFV and cloud/edge computing are related to
various security issues. Moreover, due to the wireless nature of the
entities, they are prone to a wide range of cyberthreats. Therefore,
the presence of appropriate intrusion detection mechanisms
is critical. Although both Machine Learning (ML) and Deep
Learning (DL) have optimised the typical rule-based detection
systems, the use of ML and DL requires labelled pre-existing
datasets. However, this kind of data varies based on the nature of
the respective environment. Another smart solution for detecting
intrusions is to use honeypots. A honeypot acts as a decoy with
the goal to mislead the cyberatatcker and protect the real assets.
In this paper, we focus on Wireless Honeypots (WHs) in ultra-
dense networks. In particular, we introduce a strategic honeypot
deployment method, using two Reinforcement Learning (RL)
techniques: (a) e−Greedy and (b) Q−Learning. Both methods
aim to identify the optimal number of honeypots that can be
deployed for protecting the actual entities. The experimental
results demonstrate the efficacy of both methods.

Index Terms—Honeypot, Intrusion Detection, Reinforcement
Learning, Wireless Communication

I. INTRODUCTION

Through the evolution of the softwarisation and virtu-
alisation technologies, such as Software Defined Net-

working (SDN), Network Function Virtualisation (NFV) and
cloud/edge computing, 5G has become a digital reality, provid-
ing multiple benefits to the individuals’ aspects, such as higher
connectivity, lower latency and improved energy efficiency.
Already, most of the developed countries offer commercial
5G services. Based on the 5G Public-Private Partnership (5G-
PPP), 5G will be able to connect approximately seven trillion
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wireless entities [1]. Therefore, many Internet of Things (IoT)
and Industrial IoT (IIoT) applications such as the smart electri-
cal grid and remote healthcare services, will benefit from 5G.
However, the aforementioned technologies are characterised
by several security issues [2], [3]. In [1], A. Ahmad et al.
provide a detailed overview about the 5G security challenges.
Other similar studies are listed in [4], [5]. Moreover, it is
noteworthy that despite the security characteristics of 5G, such
as the sufficient encryption mechanisms, the wireless systems
within the Radio Access network (RAN) are prone also to
various cyberthreats from their first-generation (1G). Their
evolution even beyond 5G (B5G) or 6G can lead to new
sophisticated and complicated cyberattacks with devastating
consequences.

Based on the aforementioned remarks, it is evident that
the presence of efficient intrusion detection mechanisms
is necessary. The rise of Artificial Intelligence (AI) tech-
niques, such as Machine Learning (ML) and Deep Learning
(DL), has evolved significantly the conventional signature and
specification-based Intrusion Detection Systems (IDS). Many
studies investigate in detail the efficiency of ML and DL-based
IDS [6], [7]. In particular, through ML and DL, the current
IDS are capable of detecting and discriminating unknown
anomalies and zero-day cyberattacks. However, in contrast to
signature/specification-based IDS, ML and DL-based IDS are
usually linked to a high number of misclassifications due to
the presence of False Positive (FP) and False Negative (FN) re-
sults. Moreover, ML and DL require the existence of a labelled
dataset that can differ from environment to environment. Due
to the sensitive nature of this kind of data, usually, there are
not publicly available intrusion detection datasets especially
related to the 5G domain. Another smart detection mechanism
that can contribute to the timely detection of a cyberattacker
is a honeypot. A honeypot is an intentional security hole that
aims to mislead the cyberattackers and protect the real assets.
However, it is noteworthy that despite the defensive nature of
the honeypot, it can also be used by a cyberattacker to reach
the real assets.

The goal of this paper is twofold. First, we focus our
attention on deploying honeypots in a strategic manner, taking
full advantage of Reinforcement Learning (RL). In particular,
the deployment problem is transformed into a Multi-Armed
Bandit Problem (MAB), where our goal is to deploy the
optimal number of honeypots, taking into account the benefits
and costs of the Defender and the Attacker. In particular, we
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adopt two RL methods: (a) e−Greedy and (b) Q−Learning.
Based on the various security events detected by the honeypots
or other detection systems, both e−Greedy and Q−Learning
converge to the appropriate number of honeypots that should
be deployed. Second, we first introduce the theoretic frame-
work of the presence and the role of Wireless Honeypots
(WHs) in ultra-dense networks. Finally, we evaluate the RL-
based honeypot deployment methods with respect to deploying
WHs in ultra-dense networks. Consequently, the contribution
of this work is summarised in the following bullet points.

• Strategic RL-based Honeypot Deployment: We intro-
duce an RL-based honeypot deployment method, taking
advantage of e−Greedy and Q−Learning. The proposed
method identifies how many honeypots can be deployed
in an infrastructure, taking into various costs and benefits
of the Defender and the Attacker.

• Wireless Honeypots in Ultra-Dense Networks: We first
introduce the role and use of WHs in ultra-dense networks
in order to mitigate security risks. For this purpose, the
impact of density in wireless networks is investigated
and modelled. Finally, we evaluate the above RL-based
honeypot deployment method in ultra-dense networks.

The rest of this paper is organised as follows. Section II
provides a background about honeypots and RL. Section III
presents some relevant works and discusses our contribution.
In section IV, the concept of the honeypot orchestrator is
provided as an RL agent. In section V, we introduce the
strategic RL-based honeypot deployment method. Section VI
investigates the deployment of WHs in ultra-dense networks.
Next, section VII focuses on the evaluation analysis with
respect to deploying WHs in ultra-dense networks. Finally,
section VIII concludes this work.

II. BACKGROUND

A. Honeypot: A Security Trap

Honeypots are assets with no production value that imitate
the behaviour of the real assets, thereby protecting them and
collecting valuable information about the cyberattackers. In
particular, the honeypots can be classified into two categories:
(a) production honeypots and (b) research honeypots. The
production honeypots are placed into the production network,
trying to hide the real assets from potential malicious insiders.
On the other side, the research honeypots are exposed to
public networks like the Internet, attracting potential cyber-
attackers and collecting important information related to their
behaviour. It is noteworthy that any interaction with a honeypot
is considered suspicious since the legitimate users do not
have any reason to interact with it. Moreover, the honeypots
can be classified based on the interaction level as (a) Low-
Interaction Honeypots (LIH), (b) Medium-Interaction Honey-
pots (MIH) and (c) High-Interaction Honeypots (HIH). LIH
can simulate some network services in terms of the various
communication protocols, without emulating completely the
network behaviour of the real assets. MIH can emulate better
the network behaviour of the real assets, transmitting, for
instance, similar network packets as the real entity. Finally,

HIP represents a complete copy of the real asset, comprising
all of its hardware and software characteristics.

Both academia and industry have implemented several hon-
eypots. In particular, Deception Toolkit (DTK) [8] was the first
honeypot released in 1997, emulating known vulnerabilities
of UNIX. HoneyBOT [9] is a LIH for Windows Operating
Systems (OS), simulating relevant vulnerabilities. Similarly,
KFSensor [10] is a commercial honeypot for Windows OS.
HoneyD [11] is probably the most known honeypot capable of
emulating at the same time multiple hosts. Tiny Honeypot [12]
is a server-based honeypot, which listens to all Transmission
Control Protocol (TCP) ports, logging all interaction activities.
Dionaea [13] is written in Python and emulates the MQ
Telemetry Transport (MQTT) protocol. Jackpot [12] is related
to Simple Mail Transfer Protocol (SMTP) and aims to combat
email spam. Cowrie [14] is a LIH emulating SSH. Conpot
[15] is an industrial honeypot emulating multiple relevant
protocols like Modbus and IEC 60870-5-104. In addition, an
overview of WHs along history is discussed in [16], where
they are defined as nodes that offer wireless access whose
value is being probed, attacked, or compromised, letting the
attackers to interact with them. In more detail, the main goal of
WHs is to gather information about the attacks performed on
wireless networks and the associated technologies, focusing on
the attacks that exploit the wireless technologies’ weaknesses,
which are mainly due to the use of unguided transmission
medium [17]. The main principles of the WHs can be used
in several types of networks, including cellular, Local Area
Networks (LANs), sensor networks and Unmanned Aerial
Vehicles (UAVs)-based networks [18].

Many supporting tools have been developed in order to
analyse the data retrieved from honeypots or to extend their
functionalities [19]. In particular, Bait-n-Switch [20] aims
to redirect all malicious traffic to a honeypot. Accordingly,
Honeynet Security Console (HSC) [21] analyses, correlates
and visualises honeypots logs. Honeysnap [22] processes
Packet Capture (PCAP) files that were collected by server-
based honeypots. GSOC-Honeyweb [12] is devoted to the
management of client-based honeypots via a user-friendly
environment. Moreover, TraCINg [12] aggregates data from
multiple honeypots and correlates this information in order to
discover possible worms.

It is noteworthy that many honeypots projects have been
organised in order to exploit at the maximum level the
benefits of honeypots and discover potential zero-day attacks.
In particular, the Honeynet Project was started in 1999 to
explore and investigate zero-day cyberattacks. Furthermore,
the Leurre.com project [23] deployed multiple LIHs in more
than 30 counties, aiming at collecting quantitative data re-
lated to cyberthreats and vulnerabilities. Accordingly, NoAH-
Project coordinated by Foundation for Research and Technol-
ogy Hellas (FORTH) deployed an HIH called Argos [24] to
enhance the protection of Internet Service Providers (ISPs)
and investigate potential zero-day attacks. The mw-collect
Alliance project collected information about various malware
by deploying multiple Nepenthes sensors [12]. Moreover,
Telekom-Fruhwarnsystem [12] was started in 2013 to collect
various datasets related to honeypot activities. Finally, H2020
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SPEAR [25] and H2020 SDN-microSENSE [26] implemented
various industrial honeypots for the smart electrical grid.

B. Reinforcement Learning

The goal of an RL agent is to identify the optimal policy
performed in an environment based on the various states and
the possible actions. An action at can be performed at time
t in the state (st), thus leading to a new state st+1 and a
reward R(st, at). The optimal policy refers to maximising the
accumulated rewards over time. There are various kinds of RL
methods, such as e − Greedy, Thompson Sampling, SARSA,
Q−Learning and Deep Q−Learning. In this paper, we focus
on e−Greedy and Q− Learning. However, after defining the
environment with respect to the available states and actions,
each of the aforementioned methods follows two phases: (a)
training process and (b) inference. During the training process,
the RL model (based on the corresponding method) is trained
to identify the best policy. In particular, after initialising the
parameters of each method, the RL model starts interacting
with the environment, thus leading to new states and obtaining
the corresponding rewards. At the end of each episode, the
parameters are adjusted appropriately in order to gain a better
reward during the next episode. This process is repeated till
convergence. Finally, inference follows, which means that the
RL model is ready to be used in the environment without
adjusting the parameters of the RL method. More information
about the various RL methods is given in [27].

III. RELATED WORK

Several studies have investigated the role of honeypots and
relevant optimisation techniques with AI and game theory
in order to protect critical organisations and infrastructures.
Some of them are listed below [12], [28]–[34]. In particular,
in [28], J. Franco et al. provide a survey about honeypots and
honeynets for the IoT and IIoT. In [12], M. Nawrocki et al.
present a comprehensive study about honeypot software and
relevant data analytics. Similarly, in [29], the authors discuss
the decoy and security operations of honeypots, presenting a
detailed taxonomy. On the other hand, in [30], C. Dalamgkas
et al. focus on honeypots related to the smart electrical grid. In
[31], C. Kiekintveld et al. present a study about game theory
methods used to deploy honeypots in an efficient manner,
modelling the behaviour of the attacker and the defender. In
[32], L. Shi et al. investigate the performance of honeypots
through Petri nets. In [33], W. Zhang et al. present a honeynet
composed of multiport honeypots for countering IoT attacks.
Finally, in [34], L. Shi et al. provide a blockchain-based
dynamic and distributed honeypot. Next, we discuss some
relevant works in a more detailed manner and show the novel
points of our paper. Each paragraph focuses on a separate
paper.

In [35], P. Radoglou-Grammatikis et al. provide TRUSTY.
TRUSTY is a web-based platform capable of collecting,
normalising and processing security logs originating from hon-
eypot applications. In particular, the authors focused mainly
on industrial honeypots, thus using TRUSTY to generate a
dataset related to honeypot events. Based on this dataset, a

strategic method for deploying honeypots in a smart electrical
grid environment is also provided. First, the behaviour of
the attacker and the defender is modelled in terms of the
various costs and benefits with respect to attacking a real
asset or a honeypot. Consequently, the utility functions of
the attacker and the defender are defined, respectively. Next,
the deployment process is formed as a Multi-Armed Bandit
(MAB) problem with the goal to optimise the utility function
of the defender. The MAB problem is solved through the
e − Greedy method. The evaluation results demonstrate the
efficiency of the proposed deployment method with respect to
selecting the optimal number of honeypots.

In [36], P. Diamantoulakis et al. present a sophisticated
honeypot deployment method, taking full advantage of game
theory. After defining the utility function of the defender and
the attacker, a one-shot game is formulated. For this purpose,
the various costs and benefits for the defender and the attacker
are determined, respectively. Next, the solution of this game is
given by calculating the Nash Equilibrium (NE). If NE is not
available, the decision of the defender is modelled through
a non-convex min-max optimisation analysis. Subsequently,
the authors investigate a continuous scenario related to the
previous one-shot game. This means that the defender and the
attacker play the one-shot game more than one time. Thus, a
Bayesian game is modelled, and the corresponding Bayesian
NE (BNE) is determined. The simulation results demonstrate
the effectiveness of each method regarding the selection of
the optimal number of honeypots in a smart electrical grid
environment.

In [37], K. Wang et al. introduce a Bayesian honeypot
model in order to protect an Advanced Metering Infrastructure
(AMI) against Denial of Service (DoS) attacks. In particular,
the authors investigate three cases provided by a service
provider: (a) a real AMI communication, (b) honeypot service
and (c) anti-honeypot service. The first two are related to
a legitimate user, while the anti-honeypot services refer to
actions performed by a cyberattacker in order to recognise the
presence of honeypots and bypass them. The goal is to balance
the detection rate and the energy consumption. Thus optimal
strategies are defined for the attacker and the defender. Next,
several BNEs are identified. The experimental results show
that the proposed game can enhance the honeypots’ detection
rate and the energy consumption.

In [38], Y. Zhang et al. introduce an adaptive honeypot
deployment mechanism based on Learning Automata (LA).
LA is an RL method used to select an optimal action based
on a finite set of actions and the interactions with a random
environment. LA can be defined as a tuple of five elements,
namely (a) actions, (b) rewards, (c) states, (d) state transfer
function and (e) output function. An attack-defence scenario
is formed with two players (a) attacker and (b) defender.
The actions of the attacker fall into two main phases: (a)
the preparation phase and (b) the attack phase. The first one
refers to the preparation activities before the execution of the
attack, while the attack phase denotes the actual malicious
activities. On the other hand, the actions of the defender can
also be classified into two main phases: (a) the planning phase
and (b) the defending phase. The planning phase indicates the
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deployment of the necessary defensive mechanisms, while the
defence phase refers to the countermeasures applied during the
execution of a cyberattack. The proposed method considers the
entirety of the nodes as the LA, and each node is considered as
an action. Based on the malicious activities and the evolution
of the LA, a particular number of honeypots are deployed.
The experimental results show the efficacy of the proposed
method in terms of the honeypots’ detection rate and selecting
the appropriate number of honeypots.

In [39], M. Du and K. Wang investigate the role of honey-
pots against Distributed DoS (DDoS) in SDN environments.
First, the authors provide an anti-honeypot strategy capable
of identifying the presence of honeypots in an SDN network.
In particular, the first step of the anti-honeypot strategy is to
identify whether there is a honeypot in the SDN network. Next,
the honeypot type is clarified, and the optimal attack strategy is
determined. To protect the SDN network from the above anti-
honeypot strategy, the authors provide also a Bayesian pseudo-
honeypot game with respect to the deployment of various kinds
of honeypots in an SDN network. The authors also show the
existence of several BNEs and prove that the proposed BNEs
can accomplish the optimal equilibrium between the legitimate
users and attackers. The evaluation results demonstrate that the
proposed method can effectively counter DDoS attacks with
low energy consumption.

In [40], U. Bartwal et al. provide a Security Orchestration
Automation and Response (SOAR) engine that deploys hon-
eypots based on security events related to DDoS and botnets.
In particular, the proposed SOAR engine is composed of
ten architectural components: (a) Host Machine, (b) Virtual
Machines, (c) Honeypots, (d) Container Registry, (e) Storage,
(f) Traffic Tracker, (g) Botnet Detector, (h) DDoS Detector, (i)
Orchestration Engine and (j) Access Logs. The orchestration
engine is responsible for deploying the honeypots located in
the Container Registry based on the security events recognised
by the Botnet and DDoS detectors. The detectors adopt
both Machine Learning (ML) and signature/specification rules.
Initially, no honeypot is deployed. Next, based on the security
events, the orchestration engine undertakes to start the first
honeypots. If the attackers start interacting with the honeypots,
new honeypots are deployed by the orchestration engine, thus
minimising the attack probability against the real assets.

In [41], W. Fan et al. present HoneyDoc, an SDN-based
architecture about the honeypot deployment. The architectural
model of SDN consists of three main planes: (a) Data Plane,
(b) Control Plane and (c) Application Plane. The data plane
refers to the physical and virtualised entities connected to
SDN switches. Next, the control plane is devoted to the SDN
controllers responsible for orchestrating and managing the
SDN switches. Finally, the application plane refers to the SDN
application that can interact with the SDN controller. Honey-
Doc is composed of three main modules: (a) Decoy Manager,
(b) Captor Manager and (c) Orchestration Core. The Decoy
Manager is responsible for deploying the various honeypots,
including LIH, MIH and HIH. All the honeypots are located in
the control plane. Next, the Capture Manager refers to an SDN
application consisting of three submodules, namely (a) Data
Capture, (b) Data Control and (c) Data Analysis, responsible

for capturing, controlling and analysing the honeypot data,
respectively. Finally, the Orchestration Core is located in the
Control Plane and is responsible for coordinating the actions
of the Decoy and Captor Managers.

Undoubtedly, the previous works provide useful insights,
methodologies and tools. Several papers adopt game theory
and RL methods in order to deploy honeypots in a strategic
manner. Characteristic examples are [36], [37], [39]. However,
despite the evaluation results, this kind of modelling cannot
be adopted easily during the production mode of real environ-
ments. Moreover, the parameters of the game models should be
re-adjusted based on the impact of the various security events
and alarms. On the other hand, the previous RL methods do
not consider the detection of security events through other de-
tection mechanisms than honeypots. Finally, it is worth noting
that the current works do not consider the use of WHs in ultra-
dense networks. Based on the aforementioned remarks, in this
paper, we introduce first an RL-based honeypot deployment
method modelling the behaviour of the Defender with the
use of WHs and other detection measures. In terms of 5G,
a WH can emulate a vulnerable gNB. The smart deployment
of the WHs is modelled as security game in terms of the
costs and benefits of the Defender. The security game is
solved through two RL methods, namely: (a) e − Greedy
and (b) Q − Learning. Finally, we model and introduce in
a theoretic manner the use of WHs in ultra-dense networking
environments.

Fig. 1. RL-based Security Game: Deploying a Number of Honeypots
in Ultra-Dense Networks

IV. SECURITY ANALYSIS

Based on the aforementioned remarks, Fig. 1 illustrates
the goal of our RL-based security agent in the context of
an ultra-dense networking environment. Based on the various
security events, the RL agents tries to deploy the appropriate
number of WHs in order to protect the real access points. In
the context of 5G networks, the access points can refer to
gNB. Therefore, the RL agent play the role of a honeypot
orchestrator, deploying the appropriate number of honeypots.
To this end, the unique characteristics of the ultra-dense
network should be considered. Thus, the utility function of
the Defender should take into account not only the security
characteristics but also the quality of the network in terms of
the services provided. Thus, the RL agent interacts with the
environment and receives an corresponding reward and state
(i.e., ste of observations about the security and the quality of
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the network) given the new security events. For each security
events detected either by WHs or other detection mechanisms,
the honeypot orchestrator is triggered with respect to deploying
the appropriate number of honeypots.

TABLE I
SYMBOLS AND NOTATION

Notation Explanation
N The number of the real access points and honeypots

that are connected.
UD[t] The utility of the Defender at the time interval t.
g() A function expressing initially the utility of the

Defender at the time interval t.
SD,i The strategy of the Defender regarding each asset.
SA,i The strategy of the Attacker regarding each asset.
Ir,i It denotes whether the attack against the asset i is

detected.
δ1 The benefit of the Defender for each attack against

a honeypot.
δ2 The benefit of the Defender for each attack against

an access point is detected.
δ3 The cost of the Defender for each attack not detected.
θ The probability that an asset is used as a honeypot.
ϕ The probability that a real asset is under an attack.
ŨD The expected value of the Defender’s utility.
Pr The probability that an attack against a real asset is

detected.
C The cost induced by the use of honeypots.
C̃ The expected value of the cost induced by the use

of honeypots.
λ The density of the remote radio heads deployment.
L The number of the deployed access points.
M The number of the deployed WHs.
di The distance between the i-th user and its closest

AP.
fX,i(x) The probability density function of xi.
FX,i(x) The cumulative density function of xi.
Ri The achievable communication rate of user i.
γi The signal-to-noise ratio at the reference distance of

1 m.
hi The small scale fading power gain of user i.
β The path loss exponent.
Pi The transmit power of user i.
σ2 The power of the additive white Gaussian noise.
Lref The path loss at the reference distance.
Rt,i The transmission rate of the i-th user.
Pi,out The outage probability of the i-th user.
Z The number of re-transmissions.
P(·) It denotes probability.
exp(·) It denotes the exponential function.
κ The parameter of the exponential distribution.
Ci The cost induced to the i-th user due to the use of

honeypots
.

E [·] It denotes expectation.
puc The price in the unit commitment stage.
ped The price in the economic-dispatch stage.
µi The mean energy demand of the i-th device.
Emax The maximum energy consumption of the i-th de-

vice.
r The actual energy consumption of the i-th device.
S The space of states
A The space of actions
st The current state at time t
at The action performed in the state st
R(st, at) The reward of action at in the state st
TD Temporal Difference
SE A set of security events
aLearningRate The learning rate, which denotes how fast the Q

values are updated

V. STRATEGIC HONEYPOT DEPLOYMENT WITH
REINFORCEMENT LEARNING

We consider the honeypot deployment problem as a security
game with two antagonistic players: (a) Attacker and (b)
Defender. The goal of the Attacker is to attack the real
access points, while the Defender intends to deploy/use the
appropriate number of honeypots that will provide the maxi-
mum protection, taking into account the available computing
resources and the behaviour of the Attacker. Let N be the
total number of the connected stations that can serve either
as honeypots or access points. The ratio of N utilised by
honeypots is symbolised by θ. sD,i ∈ {−1, 1} represents
the strategy of the Defender. sD,i equals −1 and 1 when
the cyberattack targets a real access point or a honeypot,
respectively. Similarly, δ1 defines the benefit related to the
Defender for each attack against a honeypot, while δ2 implies
the benefit of the Defender for each attack detected without
the use of a honeypot. Finally, δ3 is the cost of the Defender
for each attack not detected in a timely manner. For the sake
of clarity, Table I summarises the notation.

The utility function of the Defender in a time interval t i.e.,
UD[t], is given by Equation 1.

UD[t] = g(

N∑
i=1

1− SD,i

2
sA,i,

N∑
i=1

1 + SD,i

2
sA,i,

N∑
i=1

1 + sD,i

2
, Ir,i).

(1)

In Equation 1, Ir,i is equal to 1, when the attack is
detected by the node i and equal to 0 when it is not
detected. Of course, when SD,i = −1, i.e., the attacked
device is a honeypot, Ir,i = 1, while if SD,i, Ir,i ∈
{0, 1} is a random variable. Also, g(·) increases in terms
of
∑N

i=1
1−SD,i

2 sA,i and
∑N

i=1
1+SD,i

2 sA,iIr,i and decreases
in terms of

∑N
i=1

1+SD,i

2 sA,i(1 − Ir,i), and
∑N

i=1
1+sD,i

2 . If
we assume that the terms of Equation 1 progress linearly, the
Equation 1 can be written in the form of Equation 2, where
C is related to the cost induced by the use of honeypots (e.g.,
due to the use of extra resources or due to the degradation of
the system’s performance).

UD[t] = δ1

N∑
i=1

1− SD,i

2
sA,i + δ2

N∑
i=1

1 + SD,i

2
sA,iIr,i−

δ3

N∑
i=1

1 + SD,i

2
sA,i(1− Ir,i)− C

(
N∑
i=1

1 + sD,i

2

)
,

(2)
The best strategy for the Defender is to randomly allocate

the honeypots so that the Attacker will not be able to recognise
their presence. Since the Defender cannot know a priori the
number of attacks, the goal is to optimise the expected value
of UD, denoted by ŨD. This can be achieved by knowing the
probability ϕ that each connected device receives an attack
and by controlling the probability related to the portion of the
assets that correspond to honeypots, i.e., θ. Thus, the expected
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value of the Defender’s utility function can be written by
Equation 3.

ŨD = δ1θϕN+δ2(1−θ)ϕNPr−δ3(1−θ)ϕ(1−Pr)N−C̃(θ)
(3)

Also, Pr is the probability that an attack is detected without
the presence of a honeypot. It is worth noting that in the
case where Pr = 1, the use of honeypots does not offer
any gain to the Defender. Moreover, g̃(θ) is related to the
expected cost induced by the use of honeypots. Therefore,
based on the security events detected by the honeypots and
other potential detection mechanisms, such as signature-based
detection systems and ML/DL-based classification, our goal
is to define the appropriate θ in order to maximise UD[t]
(Equation 3). To re-define, the appropriate value of θ for each
security event in the time interval t can be expressed as a
MAB problem, where exploitation intends to maximise UD[t]
(Equation 3) and exploration aims to check different values of
θ to discover more information for the Attacker. In particular,
the deployment process plays the role of the gambler and
the various values of θ represent the slot machines. To solve
the MAB problem, we adopt first the e − Greedy method
(Algorithm 1), where we commonly select that mean of θ
providing the maximum value ŨD[t] and there is a small
probability e where other values of θ are selected in order to
discover how Equation 2 ranges. However, although e−Greedy
is a suitable option about the exploration, sometimes, we
choose a sub-optimal action randomly. Thus, we also use
Q − Learning (Algorithm 2) in order to avoid this situation.
In both algorithms. data Data denotes the input data, while
Result indicates the output of the algorithm. The number of
honeypots already deployed denotes the current state s and
the number of honeypots that can be deployed in a subsequent
security event represents the possible actions a. In a specific
case, all the states are defined in the space S, while all the
actions are defined in the space A. Both S and A rely on
N . Finally, the reward R(at, st) of each action at performed
in the state st is given by Equation 2. The functionality of
Q − Learning relies on (a) the Q(s, a) values, (b) Temporal
Difference TDt(st, at) (Equation 4) and (c) the Bellman
equation (Equation 5). Q(s, a) represents the estimated reward
of the action a performed in the state s. Next, TDt(st, at) ex-
presses the difference between R(st, at)+γmaxa(Q(st+1, a))
and Q(st, at). R(st, at) + γmaxa(Q(st+1, a)) denotes the
reward R(st, at) received by executing the action at in the
state st plus the Q value of the most optimal action executed in
the future state st+1 discounted by a factor γ ∈ [0, 1]. During
the training process, by interacting with the environment,
Q− Learning intends to identify a high reward R(st, at) and
increase the respective Q(st, at). At some point in the course
of the training process, Q − Learning will identify all the
transitions leading to high rewards and high Q values. At this
point, TD will decrease. In order to update the Q values for
each security event, the Bellman equation is used. For each
new security event detected, the Q values are updated from
t − 1 (i.e., when the previous security event received) to t
(i.e., the current security event). aLearningRate ∈ [0, 1] represents

the learning rate, which denotes how fast the Q values are
updated. Q − Learning is an off-policy method. This means
that the actions can be dictated by an action selection policy
(i.e., behaviour policy), such as e − Greedy, however, with
respect to the training procedure, always the greedy option
(i.e., target policy) is chosen.

TDt(st, at) = R(st, at) + γmaxa(Q(st+1, a))−Q(st, at)
(4)

Qt(st, at) = Qt−1(st, at) + aLearningRateTDt(st, at) (5)

Algorithm 1: e-Greedy Honeypot Deployment
Data: Nmax, N , UD Matrix, sum θ Matrix,

mean θ Matrix, max mean,
securityEventCounter, δ1, δ2, δ3, C̃(θ), e

Result: aselected = θselected
size θ Matrix = [], UD Matrix = [],
sum θ Matrix = [], mean θ Matrix = [],
securityEventCounter = 0, max mean = 0,
a = θselected = 0, δ1, δ2, δ3, C̃(θ) = init(), e = 0.1;

while True do
Receive a security event;
securityEventCounter = securityEventCounter +1;
max mean = 0;
p = random number in [0,1];
if p < e then

θselected = random integer number in [1, N];
UD[t] = δ1

∑N
i=1

1−SD,i

2 sA,i +

δ2
∑N

i=1
1+SD,i

2 sA,iIr,i −
δ3
∑N

i=1
1+SD,i

2 sA,i(1− Ir,i)−
C(
∑N

i=1
1+sD,i

2 )
sum θ Matrix[θ] = sum θ Matrix[θ] +
UD Matrix[θ];
mean θ Matrix = sum θ Matrix[θ] /

securityEventCounter;
end
else

for θ ← 1 to N by 1 do
UD[t] = δ1

∑N
i=1

1−SD,i

2 sA,i +

δ2
∑N

i=1
1+SD,i

2 sA,iIr,i −
δ3
∑N

i=1
1+SD,i

2 sA,i(1− Ir,i)−
C(
∑N

i=1
1+sD,i

2 )
sum θ Matrix[θ] = sum θ Matrix[θ] +
UD Matrix[θ];
mean θ Matrix = sum θ Matrix[θ] /

securityEventCounter;
if mean θ Matrix[θ] > max mean then

max mean = mean θ Matrix[θ];
θselected = θ;

end
end

end
end
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Algorithm 2: Q-Learning Honeypot Deployment
Data: Q(S,A), γ, alearningRate, SE,

securityEventCounter
Result: aaction
γ = 0.9;
alearningrate = 0.1;
SE = init();
securityEventCounter = 0;
for s byS do

for a byA do
Q(s, a) = 0;

end
end
for securityEventCounter ← 1 to SE by 1 do

st = random();
at = e-Greedy();
st+1, R(st, at) = deploy(at);
TDt(st, at) =
R(st, at) + γmaxa(Q(st+1, a))−Q(st, at)
Qt(st, at) =
Qt−1(st, at) + alearningRateTDt(st, at)

end

VI. DEPLOYMENT WIRELESS HONEYPOTS IN
ULTRA-DENSE NETWORKS

A. Communication Network Model

Let us assume a wireless network that consists of N Remote
Radio Heads (RRHs), which are deployed with a Poisson point
process with density λ [42], [43]. Each of the RRHs can
operate either as an Access Point (AP) or a WH. Thus, at a
specific time instance, L APs and M WHs are deployed with
L+M = N , as depicted in Fig. 2. The role of the WHs is to
imitate the behaviour of APs in order to attract and directly
detect potential attacks. Also, we assume that the network
serves K legitimate users, while the potential existence of
malicious users who aim to access the real network is also
considered. To mitigate their impact, the allocation of APs
and WHs is dynamically adjusted and fully controlled by the
network coordinator, which communicates with both the APs
and WHs. However, although the WHs imitate the behaviour
of APs in order to attract potential attacks, they do have access
to the real network. Also, it is assumed that a normal user will
never attempt to access a WH, while a malicious user may try
to access either an AP or a WH. Hereinafter, let L = (1−θ)N
and M = θN . Moreover, we assume that the APs follow a
Poisson point process (PPP) with density (1− θ)λ, while the
WHs also follow a PPP with density θλ. Moreover, similarly
to the scenario that has been considered in the former section,
the Attacker attacks a specific RRH with probability ϕ. In the
considered setup, the density of WHs deployment needs to
be specified in order to provide the required level of security,
without degrading the quality of service that is offered by the
wireless communication network.

!"

#"$%!

$%"

$%#

&'!

&'$

!"#$%&"'()*+

!()*+,-./++,0123)+,

&'%

Fig. 2. Network architecture.

B. Defender Utility Function

It is assumed that each user is served by the AP that is
closest to the user. The Probability Density Function (PDF) of
the distance di between user i and its closest AP is given by:

fD,i(d) = 2πdλ(1− θ) exp
(
−λ(1− θ)πd2

)
, (6)

while the cumulative density function (CDF) is given by

FD,i(d) = 1− exp
(
−λ(1− θ)πd2

)
. (7)

The achievable rate is given by

Ri = log2

Ç
1 +

hiγi

dβi

å
, (8)

where hi denotes the small scale fading power gain and
γi denotes the Signal-to-Noise Ratio (SNR) at the reference
distance of 1 m and is given by

γi =
Pi

σ2Lref
, (9)

with Lref being the equivalent path-loss. In addition, Pi, σ2,
and β denote the transmit power, the noise power and the
path-loss exponent, respectively.

It is assumed that each smart device has N transmission
opportunities within an hour to report its demand for the next
hour. Assuming that the transmission rate is equal to Rt,i, the
outage probability after Z re-transmission can be defined as

Pi,out = P[Ri < Rt,i]
Z , (10)

where, by following similar steps as in [42],

P[Ri < Rt,i] = P
ï
di ≥ (

hiγi
2Rt,i − 1

)
1
β

ò
=∫ ∞

0

Ç
1− FD,i

ÇÅ
hγi

2Rt,i − 1

ã 1
β

åå
fH,i(h)dh,

(11)

with fH,i(h) being the PDF of the small scale fading power
gain. By assuming Rayleigh fading, hi follows the exponential
distribution with parameter κ. Thus, (11) can be written as

P [Ri < Rt,i] =∫ ∞

0

exp

Ç
−λ(1− θ)π

Å
hγi

2Rt,i − 1

ã 2
β

å
κ exp(−κh)dh.

(12)
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Hereinafter, it is assumed that β = 4, for which (11) can
be written as
P [Ri < Rt] =

1−
π3/2(1−θ)λ

…
γi

2
Rt,i−1

e

π2γi(1−θ)2λ2

4κ(2Rt,i−1) erfc

Ö
π(1−θ)λ

 
γi

2
Rt,i−1

2
√

κ

è
2
√
κ

.

(13)

When some nodes operate as WHs, more potential attacks
are captured, however the density of nodes that operate as
APs reduces, which in turn leads to an increase of the outage
probability, and thus, the estimation error-cost.

Taking into account this trade-off, the aim of the Defender
is to maximize its utility, given by (3), in which g̃(θ) is the
expected overall cost due to the outage events. In more detail,
g̃ is related to the induced cost to each user, denoted by Ci,
and can be expressed as

C̃(θ) =
∑
i∈K

E [Ci]Pi,out, (14)

with K being the set of users.

C. Cost of Outage Events

Indicatively, to give further insight into the definition of g̃
in real-world applications, the case of the smart grid can be
considered, in which the cost might be related to the impact of
outage events on dynamic energy management or to the case
of equipment failure. To this end, next, an example that is well-
known from the existing literature will be considered, which
is related to Dynamic Energy Management (DEM). Assuming
that the DEM operation is implemented over two consecutive
stages, the unit-commitment and economic-dispatch stages, the
utility generates and reserves the energy supply based on the
estimated energy demand of the consumers. Thus, if the energy
supply is over-estimated, the utility needs to pay for the surplus
of energy that has been unnecessarily reserved with price puc.
On the other hand, if the energy supply is under-estimated, the
utility needs to buy the energy difference between the actual
and the generated energies in the economic-dispatch stage
to prevent the under-supply situation [44]. In this case, the
expected cost of under or overestimating the energy demand
of the devices that did not successfully report their demand is
given by [44]–[46]

E [Ci] = puc

∫ µi

0

(δi − r)fR,idr + ped

∫ Emax

δi

(r − µi)fR,idr,

(15)
where fR,i is the probability density function of the actual
energy consumption, µi is the mean energy demand of the
i-th device, Emax is the maximum energy consumption, and
puc and ped are the energy prices in the unit commitment and
economic-dispatch stages, respectively.

E [Ci] = puc

∫ µi

0

(δi − r)fR,idr + ped

∫ Emax

δi

(r − µi)fR,idr,

(16)
where fR,i is the PDF of the actual energy consumption, µi

is the mean energy demand of the i-th device, Emax is the

maximum energy consumption, and puc and ped are the energy
prices in the unit commitment and economic-dispatch stages,
respectively.

VII. EVALUATION ANALYSIS

This section focuses on evaluating the proposed RL honey-
pot deployment methods: (a) e−Greedy and (b) Q− learning
with respect to the number of WHs in ultra-dense networks.
To the best of our knowledge, this is the first work related to
honeypots in ultra-dense networks. Therefore, there are not
publicly available datasets that can be used in the context
of the evaluation analysis. To this end, we are going to use
the Honeypot Intrusion Detection Dataset of our previous
work in [35]. Furthermore, it is noteworthy that the e-Greedy
method of [35] was appropriately adjusted in the context of
this work based on the parameters of the ultra-dense networks.
The aforementioned dataset includes network traffic data and
relevant network flow statistics over one year from various
research honeypots. This kind of data was used to create a
simulation environment, identifying the values of δ1, δ2, δ3,
Pr, N , e and C̃(θ) given the communication network model
of subsection VI-A. Since the dataset of our work in [35] is
related to smart electrical systems, it can be utilised in the
context of this work, taken into consideration the modelling
and assumptions of section VI. Moreover, since this dataset is
ready, the various security events occur by one second. Each
network flow of the dataset corresponds to a security event.
Thus, for each security event, we consider how many WHs
will be deployed.

We consider a simulation environment where N = 6.
Regarding the other parameters, various values of them were
checked during our experiments. Therefore, we can deploy up
to six WHs based on the available APs. First, with respect to
the e−Greedy method, we investigate how the PDF of UD[t]
ranges based on Equation 2. Fig. 5-Fig. 14 show how the PDF
of UD[t] ranges based on 5, 10, 20, 50, 100, 200, 500, 1000,
1500 and 2000 security events. After 2000 security events, we
see that the best option is to deploy 2 WHs. Moreover Fig. 3
shows the accuracy of the e-greedy model with respect to the
number of the various security events and random choice.
Although due to randomness, it seems that the accuracy of
the random model increases, e − Greedy achieves a better
accuracy. Finally, Fig. 4 shows the cumulative reward based
on the iterations of Q− Learning for 2000 security events.

VIII. CONCLUSIONS

The evolution of the 5G technology has led IoT and IIoT
applications to the 5G era. However still security issues
remain. In this paper, we investigate the use of WHs in ultra-
dense networks. In particular, first, we introduce a strategic
honeypot deployment method, taking full advantage of two
RL methods, namely (a) e−Greedy and (b) Q−Learning.
The deployment process is converted into a MAB problem
with the goal to deploy the optimal number of WHs in an
ultra-dense environment, taking into account the costs and
benefits of the Defender. The evaluation results demonstrate
the efficiency of the proposed methods. Our future work will
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Fig. 3. e-Greedy Accuracy vs Random Choice
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Fig. 4. Q-Learning Reward per Security Events

Fig. 5. Honeypots Distribution after 5 sec. events

Fig. 6. Honeypots Distribution after 10 sec. events

Fig. 7. Honeypots Distribution after 20 sec. events

Fig. 8. Honeypots Distribution after 50 sec. events
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Fig. 9. Honeypots Distribution after 100 sec. events

Fig. 10. Honeypots Distribution after 200 sec. events

Fig. 11. Honeypots Distribution after 500 sec. events

Fig. 12. Honeypots Distribution after 1000 sec. events

Fig. 13. Honeypots Distribution after 1500 sec. events

Fig. 14. Honeypots Distribution after 2000 sec. events

This article has been accepted for publication in IEEE Transactions on Emerging Topics in Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TETC.2022.3184112

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



11

focus on investigating more complex RL techniques for using
WHs in the 5G-RAN, 5G Core and B5G networks.
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