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Abstract—The transformation of the conventional electrical
grid into a digital ecosystem brings significant benefits, such as
two-way communication between energy consumers and utilities,
self-monitoring and pervasive controls. However, the advent of
the smart electrical grid raises severe cybersecurity and privacy
concerns, given the presence of legacy systems and communica-
tions protocols. This paper focuses on False Data Injection (FDI)
cyberattacks against a low-voltage distribution system, taking
full advantage of Man In The Middle (MITM) actions. The first
cyberattack targets the communication between a smart meter
and an Active Distribution Management System (ADMS), while
the second FDI cyberattack targets the communication between
a smart inverter and ADMS. In both cases, the cyberattacks
affect the operation of the distribution transformer, thus resulting
in devastating consequences. Moreover, this paper provides an
Artificial Intelligence (AI)-based Intrusion Detection System
(IDS), detecting and mitigating the above cyberattacks in a timely
manner. The evaluation results demonstrate the efficiency of the
proposed IDS.

Index Terms—Anomaly Detection, Cybersecurity, False Data
Injection, Man In the Middle, Electrical Grid

I. INTRODUCTION

The smart technologies play an important role in the digiti-
sation of the conventional electrical grid into a new paradigm
(usually called smart grid), providing multiple benefits, such
as two-way communication, pervasive control and self-healing.
However, this evolution brings also severe cybersecurity and
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privacy concerns due to the presence of legacy systems and
new cyberthreats. In particular, legacy systems, such as Indus-
trial Control Systems (ICS) and Supervisory Control and Data
Acquisition (SCADA), use insecure communication protocols
designed without comprising essential authentication and au-
thorisation mechanisms [1]. In parallel, cyberattacks kits and
malware are continuously evolving, resulting in devastating
effects or even fatal accidents. A characteristic Advanced
Persistent Threat (APT) [2] related to the energy sector was
Indostroyer, generating a large-scale power outage in Ukraine.

In this paper, we focus our attention on False Data Injection
(FDI) attacks. The FDI attacks refer to unauthorised activities
that can violate both the confidentiality and integrity of the
involved systems. The goal is to inject malicious data, such
as wrong measurements, that can affect the normal opera-
tion of the target system. In particular, we investigate two
FDI cyberattacks against a low-voltage distribution system.
The first cyberattack targets the communication between a
smart meter and the Active Distribution Management System
(ADMS), while the second attack focuses on the communi-
cation between a smart inverter and ADMS. In both cases,
the confidentiality is violated through a Man In The Middle
(MITM) attack [3] against the Modbus/Transmission Control
Protocol (TCP) [4], [5]. Finally, a relevant Intrusion Detec-
tion System (IDS) is presented. The proposed IDS utilises
an autoencoder [6], (i.e., a kind of Deep Neural Network
(DNNs)) capable of discriminating FDI-related network flows
as oultiers/anomalies. Based on the aforementioned remarks,
the contribution of this paper is twofold:

• Modeling and Execution of FDI Cyberattacks against
Low-Voltage Distribution Grid: Two FDI cyberattacks
are investigated. The first attack targets the communica-
tion between the ADMS and a smart meter, while the
second attack targets the communication between the
ADMS and a smart inverter.

• Detection of FDI Attacks: An AI-based IDS is provided,
recognising efficiently the aforementioned cyberattacks.
The detection accuracy of the proposed IDS reaches 85%.

The rest of this paper is organised as follows. Section II
presents some similar works related to FDI cyberattacks.
Section III discusses the testbed utilised for the execution of
the FDI cyberattacks. Section IV analyses further each FDI
cyberattack, providing relevant technical details. Section V
presents the proposed IDS. Finally, section VI discusses the
experimental results, while section VII concludes this paper.978-1-6654-3540-6/22 © 2022 IEEE
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II. RELATED WORK

Several works have investigated the security issues related to
the smart electrical grid. Some of them are listed below [7]–
[13]. In general, it is evident that the electrical grid suffers
from a large number of cyberthreats. According to the goals
of this paper, next, we summarise some works emphasising
on FDI cyberattacks.

A survey on FDI attacks against active distribution systems
is presented in [14]. The authors propose a taxonomy of FDI
attacks based on the adversarial point of view. The threat
categories examined are: end-user level, field devices, control
centre and energy pricing and trading. The end-user level,
which is the most relevant with respect to the attack scenarios
studied in our work, includes FDI attacks targeting the energy
management systems, such as energy storage, photovoltaic
(PV) systems and Advanced Metering Infrastructures (AMIs).

The necessity for advanced detection methods against FDI
attacks is highlighted in [15]. The authors identify significant
challenges towards the development of efficient detection
mechanisms that can recognise FDI cyberattacks, given the
dynamic nature of the electrical grid, the uncertainty of elec-
tricity measurements, the data volume and factors that magnify
the complexity of identifying patterns and understanding the
FDI actions.

A MITM attack is demonstrated in [16] against a com-
mercial solar PV inverter. A large-scale laboratory setup was
employed, consisting of a Direct Current (DC) generator, an
inverter, an artificial load, a control unit for ancillary services
and the attacker. The attacker injects false measurements for
the active and reactive power via the Local Area Network
(LAN), causing the ancillary service-related controller to stop
feeding the power grid, thus resulting in a regional blackout.

III. TESTBED

The impact of each FDI cyberattack is investigated in a
realistic testbed composed of commercial components to
emulate an active low-voltage distribution grid. In this setup,
the Modbus/TCP protocol is used by the ADMS to collect
active and reactive power measurements from the underlying
smart meters. Moreover, Modbus/TCP is also used by the
ADMS to issue commands to the smart inverters, aiming to
compensate the power factor by regulating the reactive power
injection and avoiding reverse power flow conditions through
curtailments (for limiting the active power generation of PV).
The testbed architecture is depicted in Fig. 1. In particular,
the following equipment is utilised.

Load: A controllable three-phase load bank (4.5 kW, 1.5
kVAr) that emulates the load consumption of a consumer.
This load is monitored by a SOCOMEC DIRIS A-40 energy
meter (SM2), which retrieves the values of both the active
and reactive load consumption (PLoad, QLoad).
Photovoltaic System: The PV power generation is emulated
by the Chroma 62150H-1000S device, which is a
DC power supply with emulation capabilities. The DC
generator is integrated into the distribution grid via a

commercial inverter, Fronius Symo 5 kW (SM3), which
uses Modbus/TCP. This Modbus/TCP interface is utilised by
the ADMS to monitor the active and reactive power of the
PV inverter (PPV and QPV ). Moreover, the inverter accepts
control commands through the same Modbus/TCP interface.
Therefore, a reactive power regulation setpoint (Qsp) can
be issued to control the reactive power injection, while the
maximum active power (Pmax) can limit the active power
generation.

Low-Voltage Distribution Grid: Both the load and the PV
system are integrated into a small scale distribution grid
and the overall active and reactive power exchange with the
grid (Pgrid and Qgrid) are measured by the smart meter:
Janitza UMG 604 energy meter (SM1). Modbus/TCP is
used again by the ADMS to collect these measurements.

Active Distribution Management System (ADMS): The
ADMS emulate the control centre of the operator. To this end,
a server computer is utilised. The ADMS hosts an AMI-related
technology, which receives all the measurements (Pgrid, Qgrid

from SM1, PLoad, QLoad from SM2, PPV , QPV from SM3)
and stores them in a database. Based on the aforementioned
measurements, two control schemes, namely (a) Power Factor
Compensation Scheme and (b) Curtailment Control Scheme
generate the control setpoints for the inverter every four
seconds. The Power Factor Compensation Scheme aims to
compensate the reactive power consumed by the load in order
to achieve a unity power factor for the distribution grid. In
particular, the reactive power setpoint (Qsp) is generated by
the control scheme to control the reactive power injection of
the PV inverter. Thus, to achieve a Qgrid near to zero, the
power factor compensation scheme sets Qsp = QLoad. On
the other hand, the Curtailment Scheme aims to prevent any
intensive reverse power flow conditions. In such conditions,
active power flows from the low-voltage side (consumers and
prosumers) to the rest of the distribution grid. In order to limit
the reverse active power flow to 10% of the nominal trans-
former value (i.e., -500 W), the maximum power generation by
PV systems should be limited to 110% of the real-time active
power consumption by the loads. Consequently, the set-point
for the upper limit of the inverter is set as Pmax = 1.1 ·PLoad

in order to limit the generation according to the demand and
therefore to limit the reverse power flow from the low-voltage
distribution grid.

IV. FALSE DATA INJECTION ATTACKS

The low-voltage distribution grid is continuously monitored
by smart meters responsible for sending measurements
periodically to the ADMS. In turn, the ADMS processes
those measurements in order to manage the inverters with
respect to (a) power factor compensation and (b) curtailment.
The MITM actions target (a) the communication between
the smart meter and the ADMS and (b) the communication
between the ADMS and the inverter. Both scenarios intend
to violate the exchanged measurements or the coordination



Fig. 1: Testbed - Execution of FDI Cyberattacks against a Low-Voltage Distribution Grid

Fig. 2: Modbus/TCP Packet Flows Before and After the FDI Cyberattacks

setpoints, thereby resulting in critical effects, such as (a) loss
of energy and (b) overloading. More information for each
scenario is given below.

Attack Scenario A - Attacking Smart Meter
Measurements: In this scenario, a malicious user attempts
to malform the active and reactive power measurements
of the load (PLoad and QLoad) sent by the smart meter.
Since the power factor compensation and the curtailment
control scheme of the ADMS rely on the PLoad and QLoad

measurements, the overall operation of the distribution grid
is threatened.

Attack Scenario B - Attacking Control Signals: The reactive
power setpoint (Qsp) and the active power limits (Pmax)
coordination signals, (sent by the ADMS to the inverter), are
targeted by the malicious actor. As a result, it is possible to
alter the reactive power injection (QPV ) and reduce the active
power production (PPV ) of the PV inverter, thus affecting the
overall operation of the distribution grid.

With respect to the MITM actions, they intend to violate
the legitimate Modbus/TCP communication and alter the Mod-
bus/TCP payloads. A significant assumption is that the attacker
is part of the same LAN, thus monitoring and sniffing the
Modbus/TCP traffic transmitted within the broadcast domain.
The cyberattacker can be part of the targeted LAN by either

accessing the network via a mobile computing system or a
workstation or by remotely controlling a workstation that can
access the LAN. In particular, during the first step of a MITM
attack, the cyberattacker is placed between the smart meter and
ADMS in order to capture the relevant network packets. To
this end, Address Resolution Protocol (ARP) spoofing is used.
The attacker broadcasts its Medium Access Control (MAC)
address by sending forged ARP messages to the victim in order
to associate the malicious MAC address with the legitimate
one. For this purpose, Ettercap is used. The first stage of
Fig. 2 illustrates this step. Thus, the cyberattacker is able to
access the payload of the Modbus/TCP packets and identify
the appropriate registers including the measurements that will
be maliciously replaced. During this step, the cyberattacker
has to investigate the underlying devices with respect to what
Modbus/TCP function codes and registers are used. The final
step refers to the FDI process. This step is implemented
by custom Ettercap filters that replace the content of a
Modbus/TCP register. The second part of Fig. 2 depicts also
this process.

V. PROPOSED INTRUSION DETECTION SYSTEM

As illustrated in Fig. 3, the proposed IDS consists of four
modules: (a) Network Traffic Monitoring Module, (b) Flow
Extraction Module, (c) Analysis Engine and (d) Response
Module. The first module is responsible for capturing the
network traffic data on a periodical basis. For this purpose,
Tshark is used. Next, the Flow Extraction Module receives
the network traffic data and generates network flow statistics.
The Analysis Engine undertakes to classify whether a network
flow is normal or an FDI cyberattack. For this purpose, the
Analysis Engine uses an autoencoder illustrated in Fig. 4. In
particular, the autoencoder is composed of two complementary
networks called encoder and decoder. Both consist of two
layers with 62 and 34 nodes, respectively. In general, the
encoder receives high-dimensional input data x and transforms
it into a latent low-dimensional representation Z. On the other
side, the decoder receives the output of the encoder Z and
aims to reconstruct the initial data x′. However, in this paper,
the proposed autoencoder is not used as an identity function,



but the training process aims to minimise the reconstruction
error L(x, x′) between the initial input data x and the final
outcome of the decoder x′. The reconstruction error L(x, x′)
is compared to a threshold T , classifying all the data sample
y with L(y, y′) > T as anomalies (i.e., FDI attacks). T is
estimated in a heuristic manner based on the reconstruction
error L related to the training data. Finally, the Response
Module undertakes to inform the user about the presence of
FDI attacks and generate relevant firewall rules.

Fig. 3: Architecture of the Proposed IDS

Fig. 4: Architecture of the Porposed Autoencoder

VI. EXPERIMENTAL RESULTS

A. Attack Scenario A – Attack against the Smart Meter Mea-
surements

In the first attack scenario, an FDI cyberattack is performed
to alter the load measurements (PLoad, QLoad). As a result,
the ADMS receives false information and the operator is
misled about the load consumption of the consumer, leading to
mistaken decisions regarding the power factor compensation
or the curtailment control scheme, thus affecting the operation
of the distribution grid in different ways. The results of this
attack are illustrated in Fig. 5.

The execution of the first scenario is separated into two
phases, namely (a) the normal operation phases (N1-N4)

Fig. 5: Experimental Results of Attack Scenario A – Attack against the Smart
Meter Measurements

and (b) the attack phases (A1-A3). The main difference
between the phases is that during the normal operation
phases (N1-N4), the distribution grid operates under normal
conditions without any anomalies. In contrast, during the
attack phases (A1-A3), the FDI attacks are executed against
the load measurements, thus violating the active and reactive
power load. Each attack phase is further explained below.

Attack Phase 1 (A1) - QLoad = −3kV ar: In the first attack
phase, the FDI attack alters the QLoad from its actual value to
-3 kVar. The power factor compensation controller uses this
measurement to control the reactive power injection of the PV
inverter in a way to balance the reactive power consumption
of the load. As a result, the inverter is violated and injects
-3000 Var (inductive) instead of 1380 Var (capacitive). Hence,
during this attack, the reactive power exchange with the
grid changes from near to 0 Var (during normal operation)
to a high value (near to 4200 Var). Such a high reactive
power consumption can cause a significant increase in the
grid energy losses since it increases the current flow in
the distribution lines. Furthermore, a high reactive power
exchange with the grid in combination with the high net active
power of the grid is able to create overloading conditions
for the distribution grid. According to Fig. 5, during this
attack, the apparent grid power (Sgrid) is increased above 6
kVA, which is higher than the nominal power of the feeder
(5 kVA). Such conditions can trip the protection relay of the
distribution substation, resulting in a regional blackout for the
LV distribution grid.

Attack Phase 2 (A2) - PLoad = 50W : In the second phase,
the FDI attack alters the PLoad measurement from its actual



value to a close to zero value (i.e., 50 W). As a result, the
billing of the consumer can be violated since the overall
energy consumption is reduced by the attacker. Furthermore,
since the curtailment control scheme limits the active power
generation of PVs according to the real-time active power
consumption (maximum PV power is equal to 110% of the
load consumption) in order to prevent intense reverse power
flow conditions, the overall operation of the distribution grid
is also affected by this attack. As shown in Fig. 5, while the
PLoad is reduced by the attacker, the power generation of the
PV system is also affected, producing a loss of the PV energy
that results in a profit loss for the prosumer. In addition, the
reduction of the PV generation increases the active power
of the grid (Pgrid and Sgrid), which can potentially lead to
overloading conditions under specific circumstances.

Attack Phase 3 (A3) - PLoad = 4500W : During the last
attack phase, the FDI attack modifies the PLoad from its actual
value to a higher value (i.e., 4500 W). As a result, the billing
of the consumer can be violated since the overall energy
consumption appears to be increased. Similarly, since the
curtailment control scheme limits the active power generation
of PVs according to the real-time active power consumption
to prevent intense reverse power flow conditions, the overall
operation of the distribution grid is also affected by this
attack. As shown in Fig. 5, the attack (i.e., an increase of
PLoad leads to increased PV generation compared to the
consumption, leading to intense reverse power flow conditions.
This attack causes an intense reverse power flow of -2000
W which exceeds the reverse power limit (Pgrid−Min) of the
transformer (i.e., -500 W) and can lead to cascading events
for the distribution grid.

B. Attack Scenario B – Attack against Control Signals

In the second scenario, an FDI attack is performed to
modify the coordination signals sent by the ADMS to the PV
inverter (Pmax, Qsp). This attack aims to damage the overall
operation of the distribution grid. Moreover, the active and
reactive power injection of a PV inverter can be affected.
On the one hand, the attack related to the active power
limitation of a PV inverter (Pmax) can result in the loss of
PV generation, increasing the apparent power of the grid. On
the other hand, an attack related to the reactive power setpoint
of the inverter (Qsp) can vary the reactive power injection,
leading to increased grid losses and potentially overloading
conditions. The results of Attack Scenario B are demonstrated
in Fig. 6.

Similarly to the first case, the second scenario is also
separated into two main phases, namely the normal operation
phases (N1-N3) and the attack phases (A1-A2). During
normal operation phases, the distribution grid operates under
normal conditions, while the attack phases (A1-A2) refer to
an FDI attack against the active power limit and the reactive
power setpoint of the inverter. Each attack phase is further
explained below:

Fig. 6: Experimental Results of Attack Scenario B – Attack against Control
Signals

Attack Phase 1 (A1) - Pmax = 0: In this attack phase,
the cyberattacker sets the upper active power limit of the
PV inverter (Pmax) to a zero value. As a result, the active
power is limited to 0 W. The controller uses the active
power to control the reactive power of the PV inverter.
Therefore, an intense loss of the PV generation is observed,
associated with an intense loss of profit for the prosumer.
Furthermore, the reduction of the PV generation leads to an
increase in the net power of the grid (Pgrid) which under
specific circumstances can also lead to overloading conditions.

Attack Phase 2 (A2) - Qsp = −3000V ar: During this attack
phase, the FDI attack sets the reactive power setpoint of the PV
inverter to a high negative value (i.e., -3000 Var). Therefore,
instead of compensating the reactive power consumption of the
load according to the power factor compensation scheme, the
falsified operation of the inverter increases the overall reactive
power exchange with the grid (Qgrid). The increased reactive
power results in intense energy losses on the distribution
grid lines, while under specific circumstances (i.e., increased
net active power), this consumption can result in overloading
conditions, as shown in Fig. 6. Such overloading conditions
can trip the protection relays of the distribution transformer,
leading to a regional blackout for the low-voltage distribution
grid.

C. FDI Cyberattacks Detection

Before analysing the detection efficiency of the proposed
IDS, we need to introduce first the relevant evaluation met-
rics. True Positives (TP) denotes the number of the correct
classification with respect to the presence of the FDI attacks.
Similarly, True Negatives (TN) indicates the number of the



correct classification regarding the normal network flows. On
the other side, False Negatives (FN) and False Positives (FP)
implies the mistaken classification related to the FDI attacks.
Thus, based on the aforementioned terms, the following eval-
uation metrics are used.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

TPR =
TP

TP + FN
(2)

FPR =
FP

FP + TN
(3)

F1 =
2× TP

2× TP + FP + FN
(4)

Table I summarises the evaluation results of the proposed
autoencoder with other five outlier/novelty detection meth-
ods: (a) Isolation Forest, (b) Local Outlier Factor (LOF),
(c) OneClassSVM, (d) Principal Component Analysis (PCA)
and (e) Angle-base Outlier Detection (ABOD). Based on the
evaluation results, the proposed autoencoder achieves the best
performance where Accuracy = 0.864, TPR = 0.776,
FPR = 0.356 and F1 = 0.855. On the other side, the worst
efficiency is calculated by OneClassSVM where Accuracy =
0.432, TPR = 0.280, FPR = 0.312 and F1 = 0.382.

TABLE I: Evaluation Results of the Proposed Autoencoder with other
Outlier/Novelty Detection Methods

AI Models Accuracy TPR FPR F1
Isolation Forest 0.549 0.421 0.217 0.549
LOF 0.502 0.336 0.217 0.458
OneClassSVM 0.432 0.280 0.312 0.382
Autoencoder 0.864 0.776 0.356 0.855
PCA 0.487 0.306 0.102 0.453
ABOD 0.534 0.393 0.102 0.549

VII. CONCLUSIONS

Although the smart technologies offer valuable services with
respect to the typical electrical grid, severe cybersecurity and
privacy issues arise due the insecure communication protocols
and the presence of new cyberthreats and vulnerabilities. In
this paper, we focus on FDI attacks against a low-voltage dis-
tribution grid. In particular, two attack scenarios are examined:
(a) FDI attack between a smart meter and the ADMS and (b)
FDI attack between an inverter and the ADMS. Both scenarios
take full advantage of the Modbus/TCP protocol, which does
not include any authentication and authorisation mechanisms.
Thus, a cyberattacker can access and modify the Modbus/TCP
packets. Moreover, a relevant IDS is presented, utilising an
autoencoder, which can recognise the FDI-related network
flows. The evaluation results demonstrate the efficiency of the
proposed IDS.
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