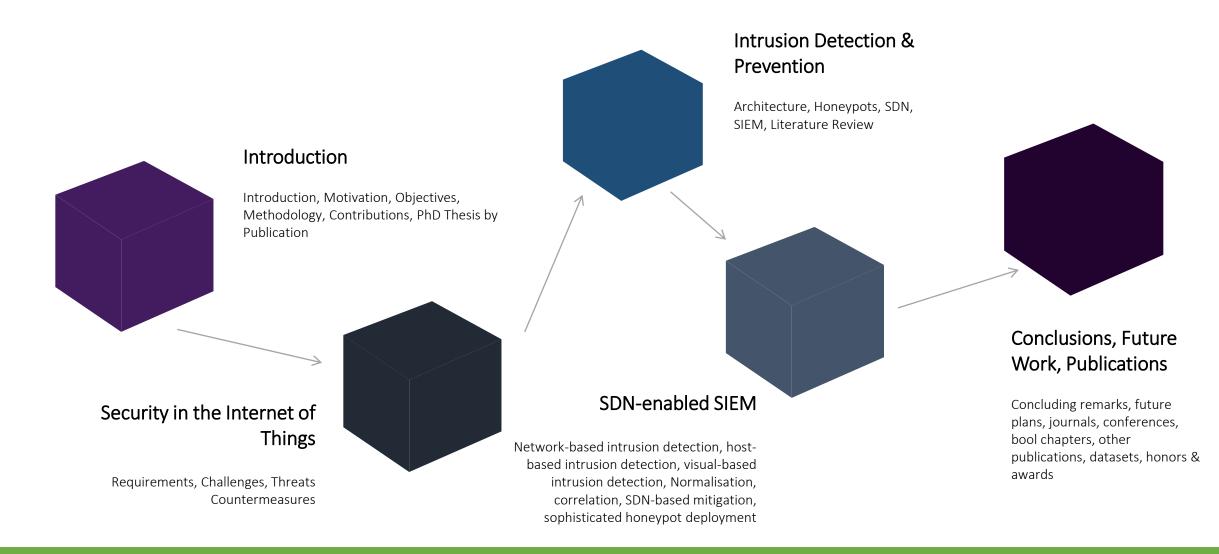


Security and Privacy in the Internet of Things

Panagiotis Radoglou Grammatikis

University of Western Macedonia

pradoglou@uowm.gr


iTHACA

https://ithaca.ece.uowm.gr/

This PhD thesis has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreements No. 787011 (SPEAR), No. 833955 (SDN-microSENSE), No. 957406 (TERMINET) and No. 101021936 (ELECTRON).

Outline

Introduction

Panagiotis Radoglou Grammatikis PhD - Security and Privacy in the Internet of Things

Introduction

Internet of Things

In the era of hyper-connected digital economies, the smart technologies play a vital role in the operation of the electrical grid, transforming it into a new paradigm.

Legacy Systems

The presence of legacy systems, such as ICS/SCADA remains a crucial issue, raising multiple threats and vulnerabilities.

Insecure Communication Protocols

Both smart and legacy EPES assets use insecure communication protocols like Modbus, EtherCAT, IEC 60870-5-104, etc. that do not comprise essential authentication and authorization mechanisms.

Existing Countermeasures

Despite the effectiveness of existing cybersecurity solutions they cannot mitigate coordinated EPES cyberattacks, such as Advanced Persistent Threats (APTs)

Lack of Standardization & Certification Activities

The existing countermeasures are not certified dynamically, ensuring their sufficiency.

Security and Privacy in the Internet of Things

- IoT Threats: A CAPEC Taxonomy
- SDN-enabled SIEM
- Al-powered Intrusion Detection Models
- SDN-based Mitigation
- Honeypot Mitigation and Resilience

This PhD thesis has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreements No. 787011 (SPEAR), No. 833955 (SDN-microSENSE), No. 957406 (TERMINET) and No. 101021936 (ELECTRON)

Motivation & Objectives

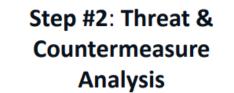
Objective #1: Threat Identification in the Internet of Things

- IoT Security Requirements and Challenges
- Analysis of IoT Security Threats in a Layered Approach
- IoT Threats: A CAPEC Taxonomy
- Attack Defense Trees, CVSS & OWASP Risk Rating Methodology

Objective #2: Countermeasure Analysis in the Internet of Things

- Strong and Weak Points of each Countermeasure in every IoT Layer
- Special emphasis to IoT Communication protocols: IEEE 802.15.4, ZigBee, Z-Wave, BLE, LoRaWan, 6LoWPAN, RPL, DTLS,
- Firewall, IDPS, Honeypots and SIEM
- Software Defined Networking

Objective #3: Development of AI-powered Intrusion Detection Mechanisms


- Network Flow-based Intrusion Detection
- Host-based Intrusion Detection
- Visual-based Intrusion Detection

Objective #4: Implementation of Sophisticated Mitigation and Prevention Mechanisms

- SDN-based Mitigation
- Honeypot Mitigation and Resilience

Methodology

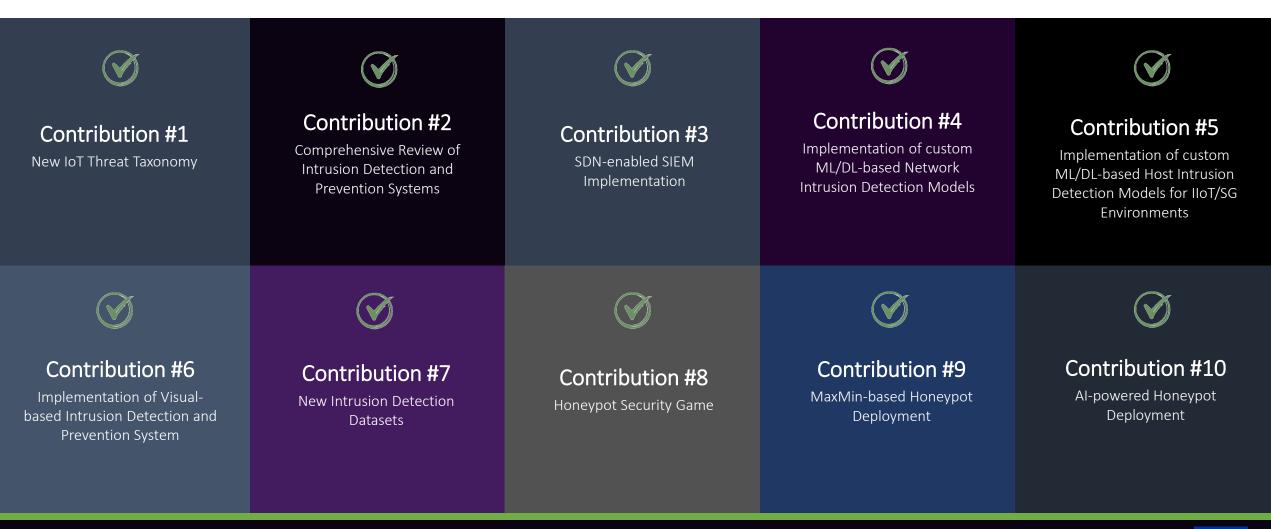
Analysis of the relevant threats and countermeasures

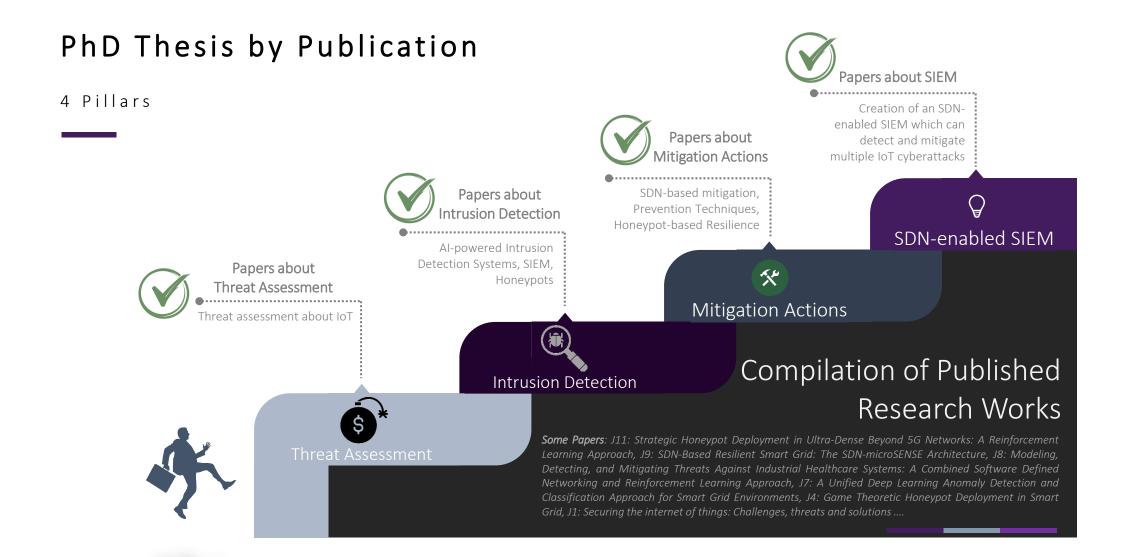
Step #1: Security Requirements

Identification of IoT Security Requirements Step #3: Architecture Design

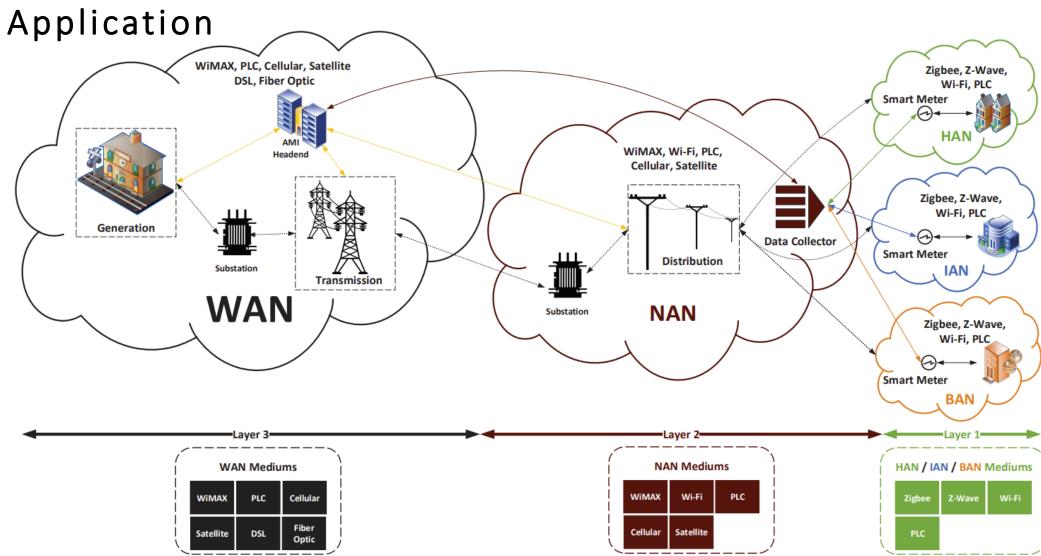
Architectural design of the detection and mitigation solutions

Step #4: Implementation


Implementation of the detection and mitigation solutions


Evaluation and validation of the proposed mitigation and evaluation solutions

Contributions



Internet of Things, Requirements,

Challenges, Threats & Countermeasures

Use Case: Smart Electrical Grid: The Biggest IoT Application

Security Requirements in the Internet of Things

The security requirements intend to specify a set of security principles that should be guaranteed in the context of the IoT applications.

Security Challenges in the Internet of Things

Interoperability

Not limit and impact the functionality of the IoT entities and applications

Limited Computing and Storage Resources: IoT cannot fully support heavy security mechanisms

Resilience against Physical Attacks and Natural Disasters

The computing resources, information and services shall be available when needed

Big Data

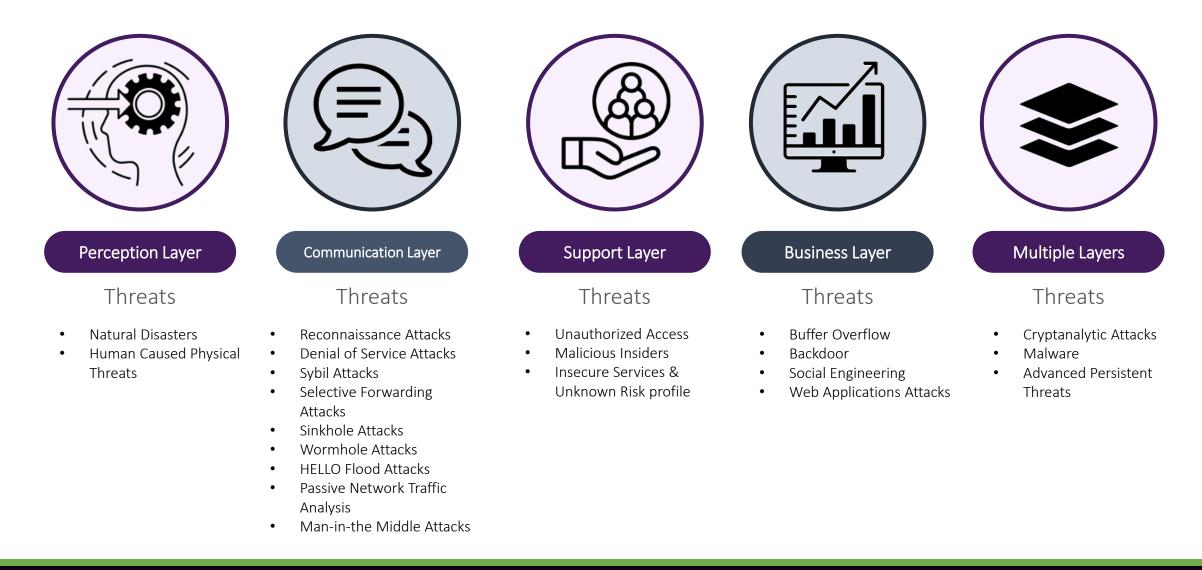
The IoT entities and applications generate, process and handle a massive amount of sensitive data that is an attractive target for a growing number of cyberattackers

Automated and Autonomous Control

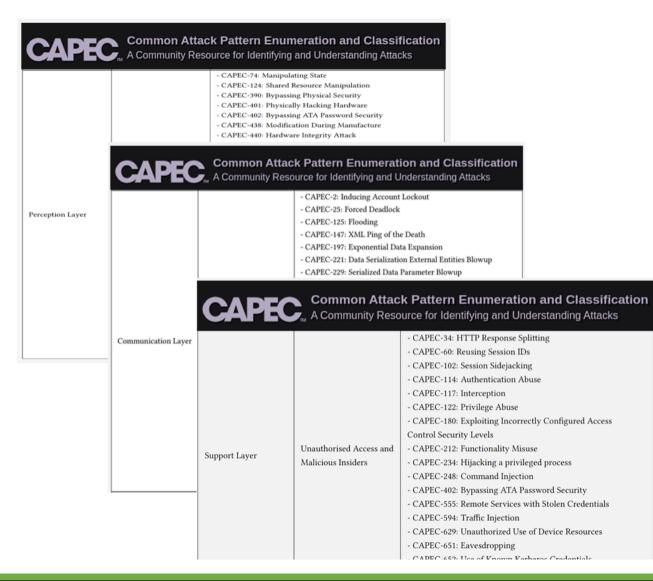
The IoT entities have the ability to configure and adjust their operation by themselves

Privacy

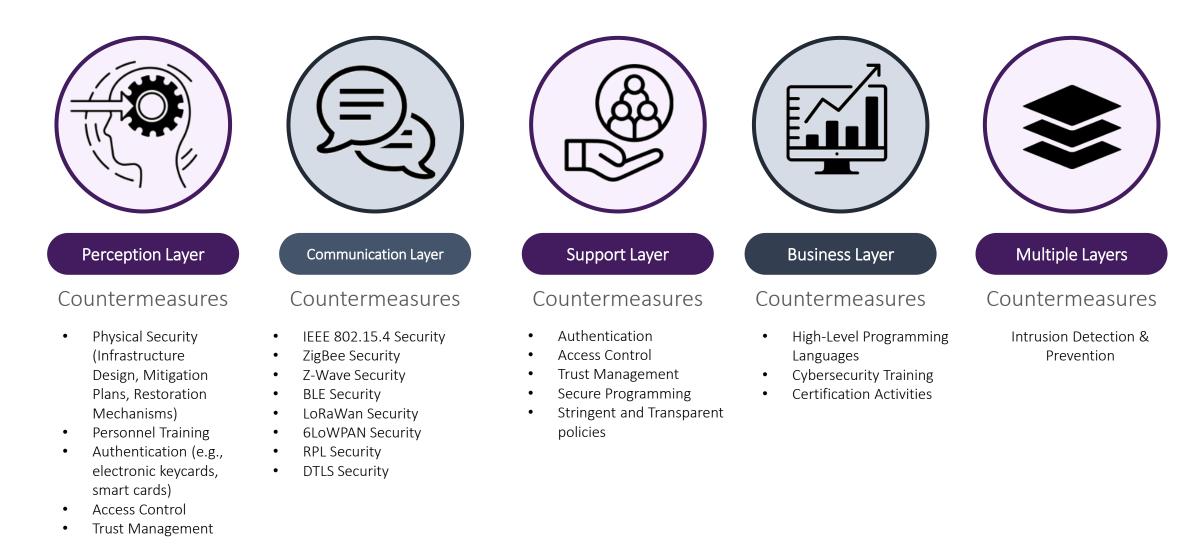
Sensitive data that must not be identifiable, traceable and linkable.


Scalability

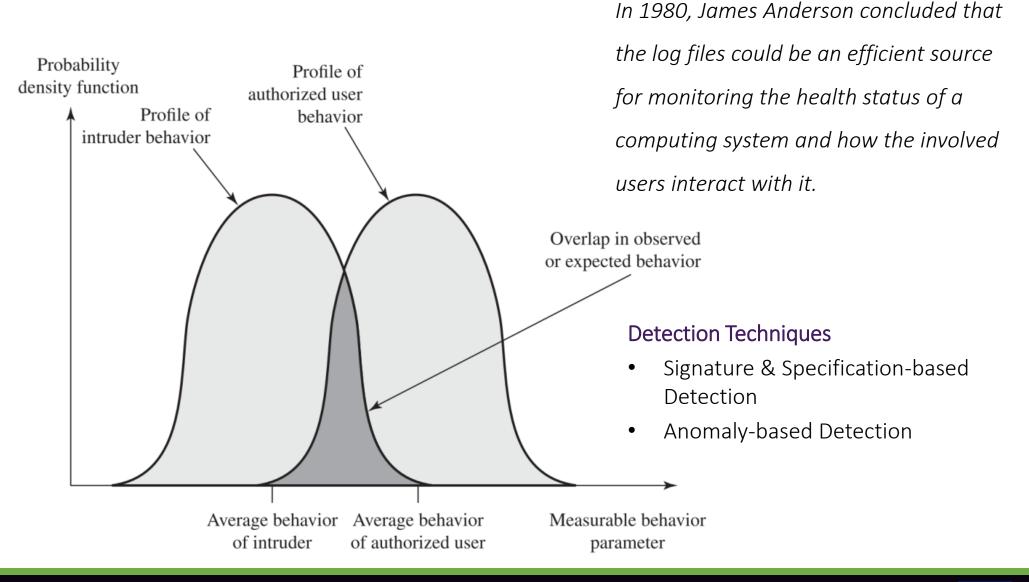
the security and privacy mechanisms should also be scalable



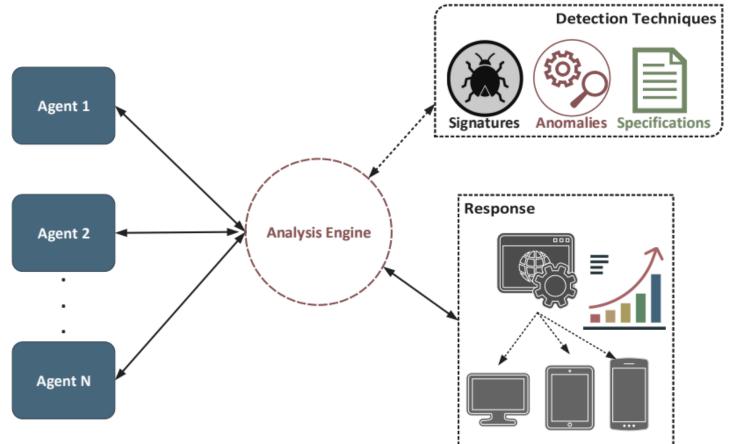
Security Threats in the Internet of Things


IoT Threats: A CAPEC Taxonomy

According to MITRE CAPEC

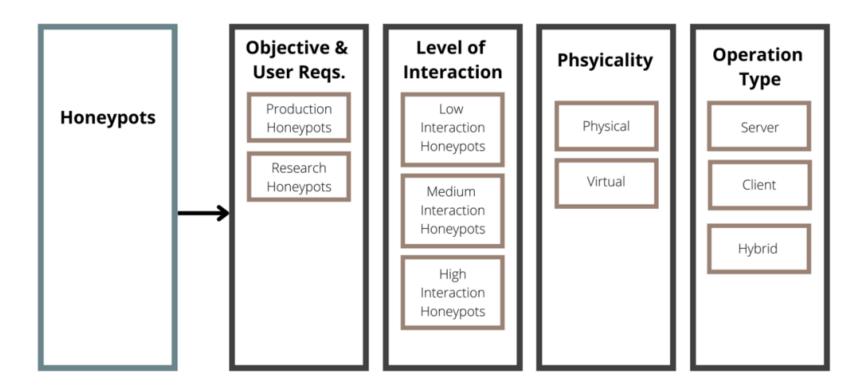


Countermeasures in the Internet of Things


Intrusion Detection & Prevention

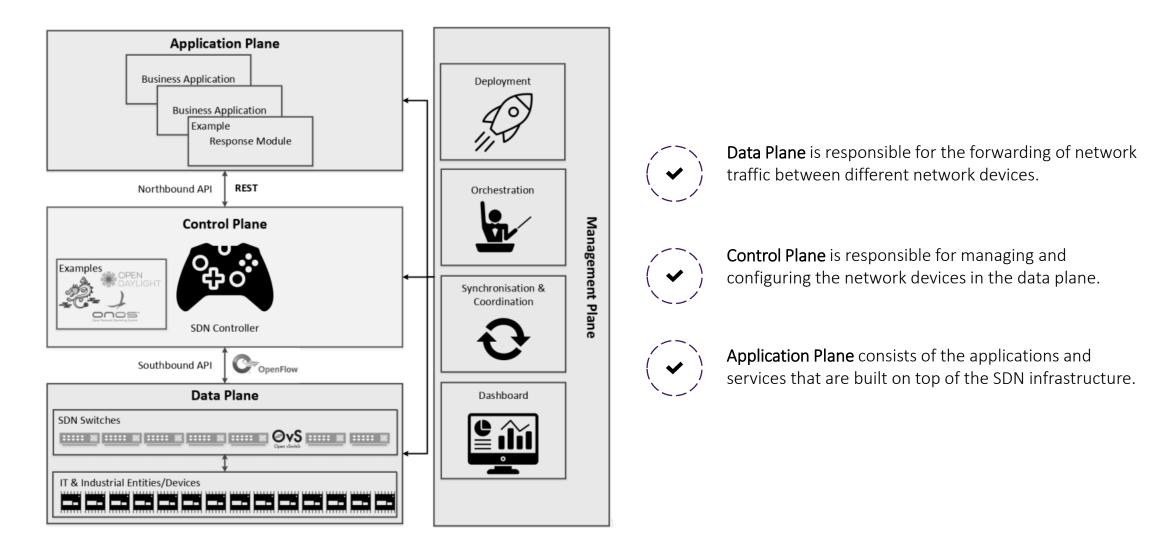
Intrusion Detection

Reference Architecture of Intrusion Detection and Prevention Systems



Dorothy E Denning. 1987. An intrusion-detection model. IEEE Transactions on software engineering SE-13, 2 (1987), 222–232.

In 1978, D. Denning defined the first concrete intrusion detection model.


Honeypots & Honeynets

Honeynets include multiple interconnected honeypots, which are decoy systems designed to attract and trap malicious actors, allowing cybersecurity analysts to observe their behavior and tactics in a controlled environment.

Intrusion Prevention: The Case of SDN-based Mitigation

SIEM: Security Information & Event Management

Log Collection			G "Real-time" Alerting
Log Analysis			User Activity Monitoring
Log Correlation			One Dashboards
Log Forensics	SIEM	\langle	Reporting
IT Compliance			File Integrity Monitoring
Application Log Monitoring			System & Device Log Monitoring
Object Access Auditing			Object Access Auditing

Analysis of Existing Intrusion Detection &

Prevention Systems in the Smart Grid

Literature Review of Existing IDPS for the Smart Grid

J2: P. I. Radoglou-Grammatikis and P. G. Sarigiannidis, "Securing the Smart Grid: A Comprehensive Compilation of Intrusion Detection and Prevention Systems", in IEEE Access, vol. 7, pp. 46595-46620, 2019, doi: 10.1109/ACCESS.2019.2909807. IEEE Access

P. I. Radoglou-Grammatikis, P. G. Sarigiannidis: Securing the SG: Comprehensive Compilation of IDPSs

TABLE 2. Summary of 37 IDPSs cases in SG.

VOLUME 7 2010

46505

IEEEAccess

Received March 7, 2019, accepted April 2, 2019, date of publication April 9, 2019, date of current version April 18, 2019 Divid Office Lifentifier 10.109/ACCESS.2019.2909007

Securing the Smart Grid: A Comprehensive Compilation of Intrusion Detection and Prevention Systems

PANAGIOTIS I. RADOGLOU-GRAMMATIKIS

AND PANAGIOTIS G. SARIGIANNIDIS[®], (Member, IEEE) Department of Informatics and Telecommunications Engineering, University of Western Macedonia, Kozani 501 00, Gre

Corresponding author: Panagiotis G. Sarigiannidis (psarigiannidis@uowm.gr)

This work was supported by the European Union's Horizon 2020 Research and Innovation Programme under Agreement 787011 (SPEAR

ABSTRACT The smart grid (SG) paradigm is the next technological leap of the conventional electrical grid, contributing to the protection of the physical environment and providing multiple advantages such as increased reliability, better service quality, and the efficient utilization of the existing infrastructure and the renewable energy resources. However, despite the fact that it brings beneficial environmental, economic, and social changes, the existence of such a system possesses important security and privacy challenges, since it includes a combination of heterogeneous, co-existing smart, and legacy technologies. Based on the rapid evolution of the cyber-physical systems (CPS), both academia and industry have developed appropriate measures for enhancing the security surface of the SG paradigm using, for example, integrating efficient, lightweight encryption and authorization mechanisms. Nevertheless, these mechanisms may not prevent various security threats, such as denial of service (DoS) attacks that target on the availability of the underlying systems. An efficient countermeasure against several cyberattacks is the intrusion detection and prevention system (IDPS). In this paper, we examine the contribution of the IDPSs in the SG paradigm, providing an analysis of 37 cases. More detailed, these systems can be considered as a secondary defense mechanism, which enhances the cryptographic processes, by timely detecting or/and preventing potential security violations. For instance, if a cyberattack bypasses the essential encryption and authorization mechanisms, then the IDPS systems can act as a secondary protection service, informing the system operator for the presence of the specific attack or enabling appropriate preventive countermeasures. The cases we study focused on the advanced metering infrastructure (AMI), supervisory control and data acquisition (SCADA) systems substations and synchrophasors Based on our comparative analysis the limitations and the shortcomings of the current IDPS systems are identified, whereas appropriate recommendations are provided for future research efforts.

INDEX TERMS Advanced metering infrastructure, cyberattacks, intrusion detection system, intrusion prevention system, SCADA, security, smart grid, substation, synchrophasor.

2169-3536 € 2019 IEEE. Translations and content mining are permitted for academic research Personal use is also permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.or/veb/ications/standards/oublications/iebEs/index.html for more inform

I. INTRODUCTION

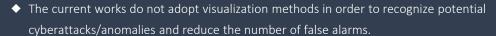
VOLUME 7, 2010

The Smart Grid (SG) constitutes a technological evolution of the traditional electrical grid, by introducing Information and Communications Technology (ICT) services. The functionality of a typical electrical grid is mainly based on the energy generation, transmission and distribution processes. More concretely, it includes power plants, step-up transmission substations, step-down transmission substations,

The associate editor coordinating the review of this manuscript and approving it for publication was Fangfei Li.

vides the required infrastructure and the communication channels that allow the real-time bidirectional interaction between the consumers and the utility companies. This communication can provide multiple benefits such as processes that enable auto metering and maintenance, self-healing, efficient energy management, reliability and security [2]–[6]. However, despite the fact that SG introduces multiple advantages, it also introduces reucial security challenges, since it combines heterogeneous communications

distribution substations and transmission and distribution


lines. On the other hand, as illustrated in Fig. 1 [1], SG pro

Literature work	Target System	Detection Technique	Protocols	Attacks	Performance	Dutaset	Software
A. Patel et al. [63]	Etire SG ecosystem	Anomaly-based	Not provided	1. Dos Attacks 2. Packet splitting 3. Command insertion 4. Shullcode mutation 5. Brate force attacks 6. Payload mutation 7. Duplicate Insertion	AUC = 0.99451	1. KDD CUP 1999 [65] 2. Simulated data	Protoge [66]
Y. Zhang et al. [67]	Entire SG ecosystem	Anomaly-based	Not provided	1. DoS attacks 2. U2R attacks 3. R2L attacks 4. Probing attacks	1. CLONALG ACC = [80.1%, 99.7%] 2. AIR52Parallel ACC = [82.1%, 98.7%]	NSL-KDD [65], [68], [69]	1. Matlab 2. WEKA [70], [71
Q.He and R.S. Blum [72]	Entire SG ecosystem	Anomaly-based	Not provided	Not provided	TPR = 95%	Not required	Not provided
M.A. Fainal et al. [73]	AMI	Anomaly-based	Not provided	1. DoS anados 2. R21. attacks 3. U2R anacka 4. Probing anacks	 ACC: FPR. HNR. Stor. Rearing time, RAM-Boarn of Anitse Classifier 94678, 3318, 9,1378, 13455 KB, 346 sees., 123E-7. ACC, FPR. FNR, Stor. Rearing time, RAM-Boars of Lowerging Burging = 93,33%, USN, 5359, 40104 KB, 2029 sees., 222E-6. ACC, FPR. NPR, Stor Rearing time, RAM-Boars of Single Classifier Deltit = 97,348, 1078, 6,79%. 	1. KDD CUP 1989 [65] 2. NSL-KDD [65], [68], [69]	MOA [74]-[76]
R. Vijayarand [77]	АМІ	Anomaly-based	Not provided	1. Exploits 2. DoS attacks 3. Fuzzers 4. Backdoor attacks 5. Worms 6. Generic attacks	$\begin{array}{l} 1. \ ACC > 90\% \\ 2. \ TPR = 89.2\% \\ 3. \ TNR = 93.4\% \end{array}$	ADFA-LD [78], [79]	Matlab
Y. Li et al [80]	AMI	Anomaly-based	Not provided	Not provided	1. ACC = 97.239% 2. FPR = 5.897% 3. FNR = 3.614%	CER Smart Metering Project [82]	Not provided
P.Y. Chen [83]	AMI	Anomaly-based	Not provided	False data injection attacks	1. FPR of the first attack = 0% 2. FPR of the second attack = 0.43%	Not required	Not provided
N. Boumkheld et al. [84]	АМІ	Anomaly-based	AODV [86]	Blackhole attacks	1. TPR = 100% 2. ACC = 90% 3. Precision = 66% 4. AUC = 1	Simulated data	1. NS2 [85] 2. WEKA [70], [71
I. Ullah and H. Mahmoud [87]	AMI	Anomaly-based	Not provided	1. DoS attacks 2. L2L attacks 3. Secure shell attacks 4. Botnet	1. Precision = 99.70% 2. TPR = 99.60%	ISCX2012 [88], [89]	WEKA [70], [71]
F.A.A. Alseiari and Z. Aatg [91]	AMI	Anomaly-based	Not provided	1. DoS attacks 2. Port scanning	Figures present the values of TPR and FPR.	Simulated data	Not provided
V. Gulisano et al. [92]	AMI	Anomaly-based	Not provided	Energy exhibitation attacks	TPR = 91%	Not provided	Not provided
R. Berthier and W.H. Sanders [94]	AMI	Specification- based	ANSI C12.22	1. Meter reading attacks 2. Service switch attacks	1. TPR = 100% 2. TNR = 99.57% 3. CPU Consumption = 0.3% 4. RAM Consumption = 10MB	Not required	1. Table TstBench [94] 2. VirtualBex [162] 3. Python
X. Liu et al. [97]	AMI	Specification- based	Not provided	False data injection attacks	Figures present the values of TPR	Not required	Not provided
R. Mitchell and R. Chen [98]	АМІ	Specification- based	Not provided	1. Reckless attacks 2. Random attacks	1. TPR = 100% 2. FPR of reckless attacks ≤ 0.2% 3. FPR of random attacks ≤ 0.0% 4. ROC curves are presented	Not required	Not provided
P.Jokar and V.Leung [99]	AMI	Specification- based	1. ZigBee	I. Spooling attacks 2. Radio Javring 3. Repty attacks 4. Sterography attacks 5. Back-off murphalation 6. DxS against CFP 7. DxS against GTS		Not required	Matlab
M. Attia et al. [102]	AMI	Specification- based	Not provided	1. Blackhole attacks 2. Time delay attacks	1. TPR = 90% 2. FPR = 6%	Not required	Matlab
T.H. Morris et al. [103]	SCADA	Signature-based	Molbus [55]-[57]	Not provided	Not provided	Not required	Saort [104]-[106]
H. Li et al. [107]	SCADA	Signature-based	DNP3 [58]	1. Protocol anomalios 2. Reconnaissance ottacks 3. DoS attacks	Not provided	Not required	Smort [104]-[106]

Lessons Learnt

- Most of the IDPS focus on network traffic data without considering heterogeneous operational data and values.
- ◆ Although many works focus on industrial protocols, like Modbus/TCP, DNP3 and IEC 61850, they do not investigate and analyse their attributes at the application layer.

Visualization

Scalability

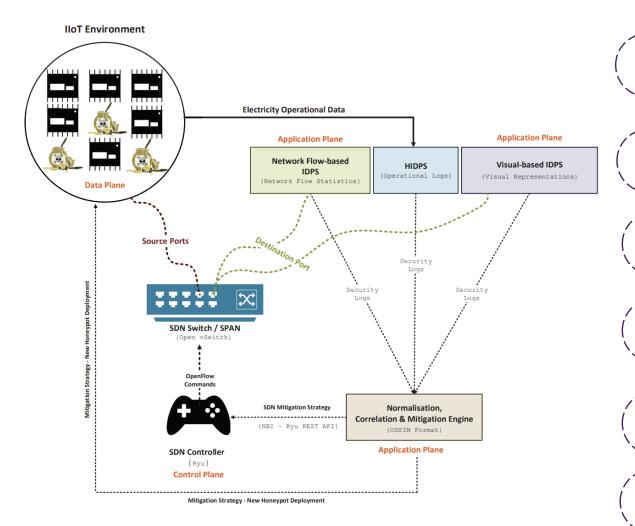
Mitigation

03

- The visualization mechanisms can enhance the explainability of the IDPS
- SDN can lead to the automated mitigation of malicious activities, the presence of false alarms can result in more disastrous consequences.
- Therefore, a wrong decision can lead the SDN controller to stop a normal and legitimate operation with the corresponding negative effects.

X-Layered Situational Awareness

()4


- Cross-layer mechanisms focusing on situational awareness are necessary.
- Four layers of Situation Awareness: (a) Perception of Information, Comprehension of Information and Projection

Detection & Mitigation of Cyberattacks

and Anomalies against the Smart Grid

Architecture of the Proposed SDN-enabled SIEM

NF-IDPS: Network Flow-based IDPS

NF-IDPS focuses on detecting cyberattacks and anomalies against application-layer industrial communication protocols, such as Modbus/TCP, DNP3, IEC 60870-5-104, IEC 61850 (GOOSE), HTTP and SSH.

H-IDPS: Host-based IDPS

H-IDPS is responsible for detecting potential anomalies based on operational electricity data from IIoT/SG environments.

V-IDPS: Visual-based IDPS

V-IDPS focuses on detecting malicious Modbus/TCP network flows, taking full advantage of binary visual representations and AI.

NCME: Normalisation, Correlation & Mitigation Engine

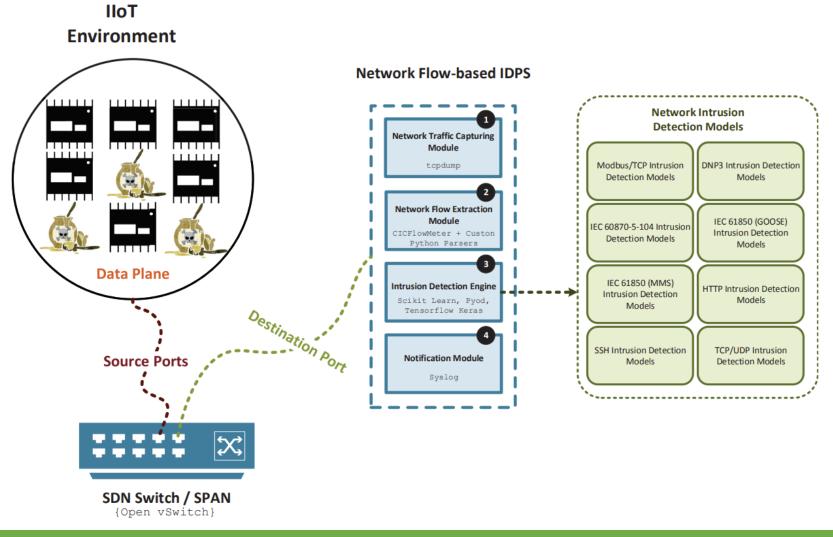
NCME undertakes to normalise and correlate the security events from the previous IDPS. It also include RL-base mitigation actions (executed by the SDN-C) and sophisticated honeypot deployment mechanisms.

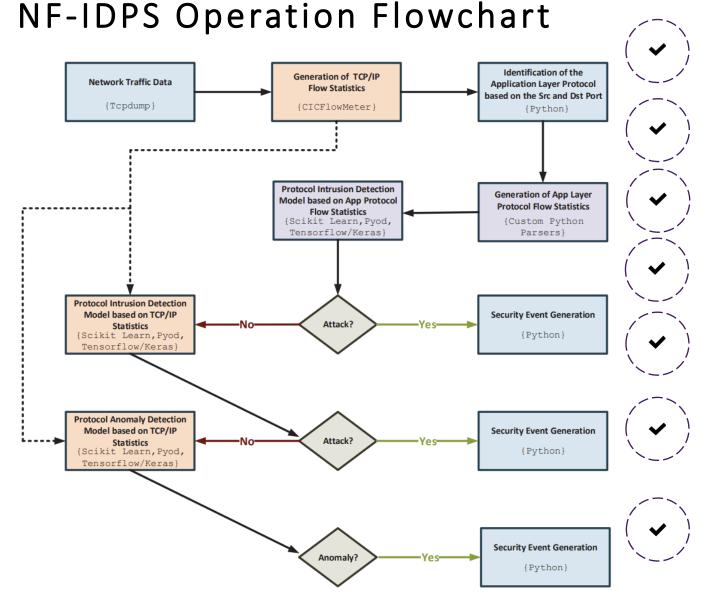
SDN-C: SDN Controller

SDN-C executes the mitigation actions of NCME

Honeypots

The honeypots act as detection and mainly prevention mechanisms systems in this PhD thesis.




NF-IDPS: Network Flow-based Intrusion

Detection and Prevention System

NF-IDPS: Network Flow Intrusion Detection & Prevention System

Step #1: Network Traffic Capturing

Tcpdump is utilized for capturing the network traffic data (i.e., PCAP files)

Step #2: Generation of TCP/IP Flow Statistics

 $\ensuremath{\mathsf{CICFlow}}\ensuremath{\mathsf{Meter}}$ is used to generate the $\ensuremath{\mathsf{TCP}}\xspace/\ensuremath{\mathsf{IP}}\xspace$ flow statistics

Step #3: Identification of the Application Layer Protocol

Based on the TCP/IP flow statistics the application-layer protocol is identified

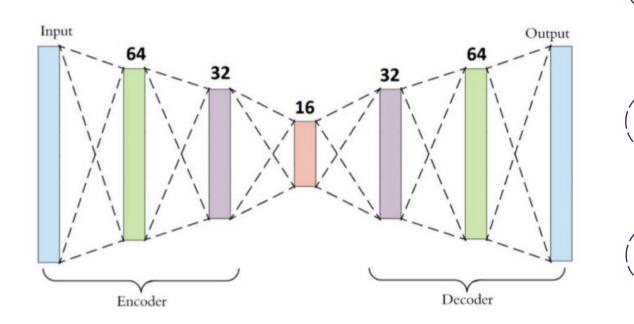
Step #4: Generation of APP-L Protocol Flow Statistics

Custom Python parsers are used to generate the APP-L protocol flow statistics

Step #5: Protocol Intrusion Detection Model based on App Protocol Flow Statistics & Security Event Generation

Next, based on the APP-L protocol, the corresponding intrusion detection model is applied, using the APP-L flow statistics. Depending on the results, the security events are generated

Step #6: Protocol Intrusion Detection Model based on TCP/IP Flow Statistics & Security Event Generation


Next, based on the APP-L protocol, the corresponding intrusion detection model is applied, using the TCP/IP flow statistics. Depending on the results, the security events are generated

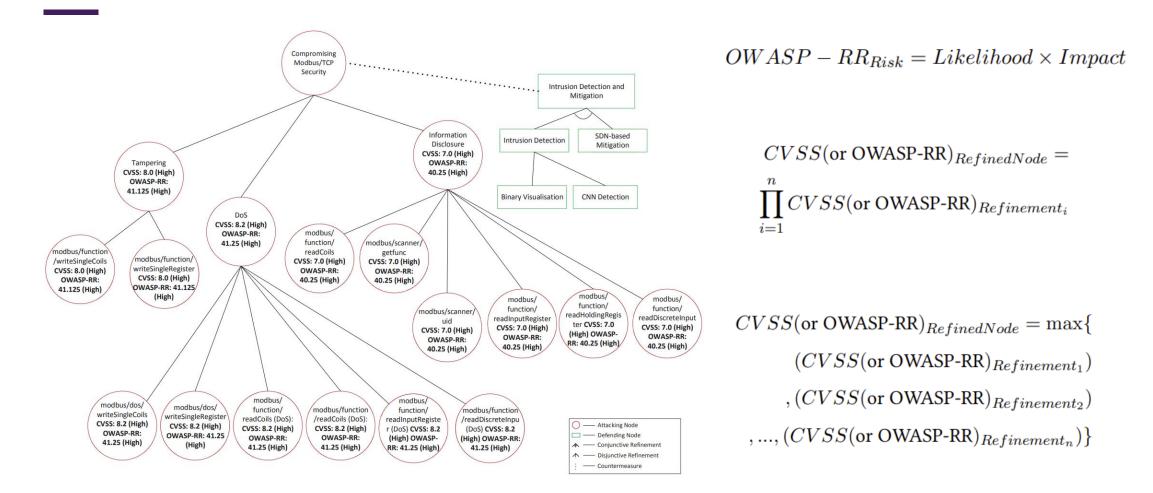
Step #7: Protocol Anomaly Detection Model based on TCP/IP Flow Statistics & Security Event Generation

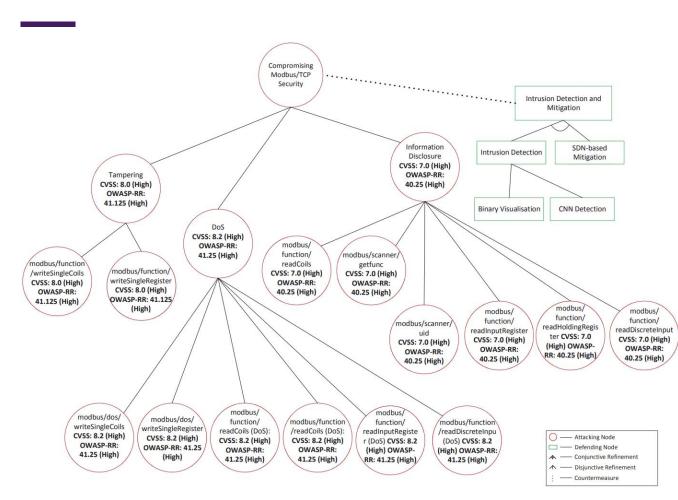
Next, based on the APP-L protocol, the corresponding anomaly detection model is applied, using the TCP/IP flow statistics. Depending on the results, the security events are generated

NF-IDPS: AI-Powered Anomaly Detection - Proposed Autoencoder

The proposed Autoencoder maps input data $x \in X = \mathbb{R}^n$ to an **output** $x' \in X$. It consists of an encoder $f: X \to Z$ and a decoder $g: Z \to X$, each implemented as a deep neural network. The encoder and decoder together result the output x' = g(f(x)).

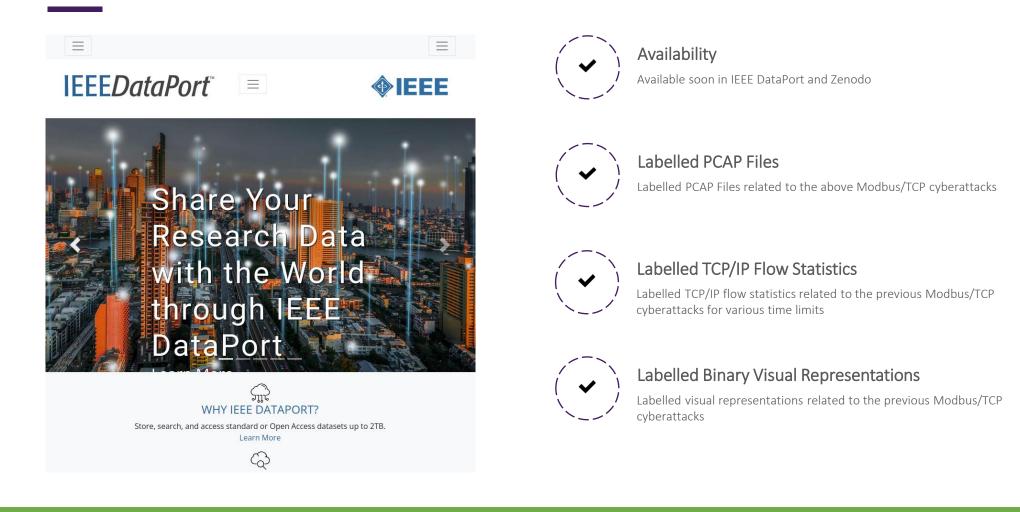
The low-dimensional latent representation of x is obtained from the encoder and is defined as $z = f(x) \in Z = R^m$ ($m \ll n$). The proposed Autoencoder avoids to become an identity function and the training process aims to minimise the reconstruction error L(x, x').


Anomalies are detected by measuring the reconstruction error L(x,x') and comparing it with a threshold T, classifying all operational data samples y with L(y, g(f(y))) > T as anomalies. T is estimated heuristically based on the reconstruction error L of all normal training data samples. The threshold T in order to be more robust is selected to be a large percentile of the reconstruction error $T = p0.9(L(x, x')|x \in X)$ or if a validation dataset is available is selected to maximise the performance for the validation data.


NF-IDPS: Modbus/TCP Intrusion &

Anomaly Detection Models

Modbus/TCP Threat Assessment



Modbus/TCP Threat Assessment

Modbus/TCP Threat	CP Threat Description CVSS Representation OWASP-RR Representation		CVSS Score	OWASP Score	
modbus/function/ writeSingleCoils	It changes the value of a single coil via function code 05	AV:N/AC:L/PR:L/UI:R/S:C/C:N /I:H/A:N/E:F/RL:T/RC:R/CR:H /IR:H/AR:H/MAV:N/MAC:L/ MPR:L/MUI:R/MS:C/MC:N/ MI:H/MA:N	SL:1/M:9/0:4/S:4/ED:9/ EE:9/A:7/ID:4/LC:0/LI:8/ LAV:3/LAC:8/FD:8/RD:7/ NC:7/PV:6	8.0	41.125
modbus/function/ writeSingleRegister	It changes the value of a single register via function code 06	AV:N/AC:L/PR:L/UI:R/S:C/C:N/ I:H/A:N/E:F/RL:T/RC:R/CR:H/ IR:H/AR:H/MAV:N/MAC:L/ MPR:L/MUI:R/MS:C/MC:N/ MI:H/MA:N	SL:1/M:9/O:4/S:4/ED:9/ EE:9/A:7/ID:4/LC:0/LI:8/ LAV:3/LAC:8/FD:8/RD:7/ NC:7/PV:6	8.0	41.125
modbus/function/ readCoils	It reads the value of a single coil via function code 01	AV:N/AC:L/PR:L/UI:R/S:U/C:H /I:L/A:N/E:F/RL:T/RC:R/CR:H/ IR:H/AR:H/MAV:N/MAC:L/ MPR:L/MUI:R/MS:U/MC:H/ MI:L/MA:N	SL:1/M:9/O:4/S:4/ED:9/ EE:9/A:7/ID:3/LC:9/LI:0/ LAV:0/LAC:6/FD:7/RD:8/ NC:7/PV:6	7.0	40.25
modbus/scanner/ getfunc	It lists all function codes of the target system	AV:N/AC:L/PR:L/UI:R/S:U/C:H /IL/A:N/E:F/RL:T/RC:R/CR:H/ IR:H/AR:H/MAV:N/MAC:L/ MPR:L/MUI:R/MS:U/MC:H/ MI:L/MA:N	SL:1/M:9/O:4/S:4/ED:9/ EE:9/A:7/ID:3/LC:9/LI:0/ LAV:0/LAC:6/FD:7/RD:8/ NC:7/PV:6	7.0	40.25
modbus/function/ readHoldingRegister	It reads the content of a holding register via a function code 03	AV:N/AC:L/PR:L/UI:R/S:U/C:H /I:L/A:N/E:F/RL:T/RC:R/CR:H/ IR:H/AR:H/MAV:N/MAC:L/ MPR:L/MUI:R/MS:U/MC:H/ MI:L/MA:N	SL:1/M:9/O:4/S:4/ED:9/ EE:9/A:7/ID:3/LC:9/LI:0/ LAV:0/LAC:6/FD:7/RD:8/ NC:7/PV:6	7.0	40.25
modbus/scanner/uid	It enumerates the user IDs of the target system	AV:N/AC:L/PR:L/UI:R/S:U/C:H/ I:L/A:N/E:F/RL:T/RC:R/CR:H/ IR:H/AR:H/MAV:N/MAC:L /MPR:L/MUI:R/MS:U/MC:H/ MI:L/MA:N	SL:1/M:9/O:4/S:4/ED:9/ EE:9/A:7/ID:3/LC:9/LI:0/ LAV:0/LAC:6/FD:7/RD:8/ NC:7/PV:6	7.0	40.25
modbus/function/ readInputRegister	It reads the content of an Input Register via function code 04	AV:N/AC:L/PR:L/UI:R/S:U/C:H/ I:L/A:N/E:F/RL:T/RC:R/CR:H/ IR:H/AR:H/MAV:N/MAC:L/ MPR:L/MUI:R/MS:U/MC:H/ MI:L/MA:N	SL:1/M:9/O:4/S:4/ED:9/ EE:9/A:7/ID:3/LC:9/LI:0/ LAV:0/LAC:6/FD:7/RD:8/ NC:7/PV:6	7.0	40.25
modbus/function/ readDiscreteInput	It reads the content of a discrete input via function code 02	AV:N/AC:L/PR:L/UI:R/S:U/C:H/ I:L/A:N/E:F/RL:T/RC:R/CR:H/ IR:H/AR:H/MAV:N/MAC:L/ MPR:L/MUI:R/MS:U/MC:H/ MI:L/MA:N	SL:1/M:9/O:4/S:4/ED:9/ EE:9/A:7/ID:3/LC:9/LI:0/ LAV:0/LAC:6/FD:7/RD:8/ NC:7/PV:6	7.0	40.25
modbus/dos/ writeSingleCoils	It floods the target system with packets with function code 05	AV:N/AC:L/PR:L/UI:R/S:C/C:L/ I:L/A:H/E:F/RL:T/RC:R/CR:H/ IR:H/AR:H/MAV:N/MAC:L/ MPR:L/MUI:R/MS:C/MC:L/ MI:L/MA:H	SL:1/M:9/O:4/S:4/ED:9/ EE:8/A:6/ID:3/LC:2/LI:1/ LAV:8/LAC:8/FD:8/RD:8/ NC:8/PV:6	8.2	41.25
modbus/dos/ writeSingleRegister	It floods the target system with packets with function code 06	AV:N/AC:L/PR:L/UI:R/S:C/C:L/ I:L/A:H/E:F/RL:T/RC:R/CR:H/ IR:H/AR:H/MAV:N/MAC:L/ MPR:L/MUI:R/MS:C/MC:L/ MI:L/MA:H	SL:1/M:9/O:4/S:4/ED:9/ EE:8/A:6/ID:3/LC:2/LI:1/ LAV:8/LAC:8/FD:8/RD:8/ NC:8/PV:6	8.2	41.25
modbus/function/ readCoils (DoS)	It floods the target system with packets with function code 01	AV:N/AC:L/PR:L/UI:R/S:C/C:L/ I:L/A:H/E:F/RL:T/RC:R/CR:H/ IR:H/AR:H/MAV:N/MAC:L/ MPR:L/MUI:R/MS:C/MC:L/ MI:L/MA:H	SL:1/M:9/O:4/S:4/ED:9/ EE:8/A:6/ID:3/LC:2/LI:1/ LAV:8/LAC:8/FD:8/RD:8/ NC:8/PV:6	8.2	41.25
modbus/function/ readHoldingRegister (DoS)	It floods the target system with packets with function code 03	AV:N/AC:L/PR:L/UI:R/S:C/C:L/ I:L/A:H/E:F/RL:T/RC:R/CR:H/ IR:H/AR:H/MAV:N/MAC:L/ MPR:L/MUI:R/MS:C/MC:L/ MI:L/MA:H	SL:1/M:9/O:4/S:4/ED:9/ EE:8/A:6/ID:3/LC:2/LI:1/ LAV:8/LAC:8/FD:8/RD:8/ NC:8/PV:6	8.2	41.25
modbus/function/ readInputRegister (DoS)	It floods the target system with packets with function code 04	AV:N/AC:L/PR:L/UI:R/S:C/C:L/ I:L/A:H/E:F/RL:T/RC:R/CR:H/ IR:H/AR:H/MAV:N/MAC:L/ MPR:L/MUI:R/MS:C/MC:L/ MI:L/MA:H	SL:1/M:9/O:4/S:4/ED:9/ EE:8/A:6/ID:3/LC:2/LI:1/ LAV:8/LAC:8/FD:8/RD:8/ NC:8/PV:6	8.2	41.25
modbus/function/ readDiscreteInput (DoS)	It floods the target system with packets with function code 02	AV:N/AC:L/PR:L/UI:R/S:C/C:L/ I:L/A:H/E:F/RL:T/RC:R/CR:H/ IR:H/AR:H/MAV:N/MAC:L/ MPR:L/MUI:R/MS:C/MC:L/ MI:L/MA:H	SL:1/M:9/O:4/S:4/ED:9/ EE:8/A:6/ID:3/LC:2/LI:1/ LAV:8/LAC:8/FD:8/RD:8/ NC:8/PV:6	8.2	41.25

Modbus/TCP Intrusion Detection Dataset

Intrusion Detection using TCP/IP Flow Statistics - Evaluation Results

Classification Problem	Multi-Class Classification						
Dataset		odbus/TCP Intrusion Detection Dataset will be published in IEEE Dataport and Zenodo)					
Features	Appendi	x E					
Training Dataset Size	70%						
Testing Dataset Size	30%						
ML/DL Method	ACC	TPR	FPR	F1			
Logistic Regression	0.943	0.603	0.030	0.603			
LDA	0.943	0.604	0.030	0.604			
Decision Tree Classifier	0.964	0.749	0.019	0.749			
Naïve Bayes	0.928	0.497	0.038	0.497			
SVM RBF	0.918	0.426	0.044	0.426			
SVM Linear	0.921	0.453	0.042	0.453			
Random Forest	0.947	0.633	0.028	0.633			
MLP	0.938	0.570	0.033	0.570			
Adaboost	0.887	0.214	0.060	0.214			
Quadratic Discriminant Analysis	0.941	0.593	0.031	0.593			
Dense DNN Relu	0.945	0.619	0.029	0.619			
Dense DNN Tanh	0.945	0.619	0.029	0.619			

modbus/function/readInputRegister (DoS) 0.064 modbus/function/writeSingleCoils 0 modbus/scanner/getfunc 0 modbus/dos/writeSingleRegister 0 modbus/function/readDiscreteInputs (DoS) 0 Normal 0 modbus/function/readHoldingRegister (DoS) 0.001 modbus/function/readCoils (DoS) 0

 modbus/function/readInputRegister
 0.008
 0
 0

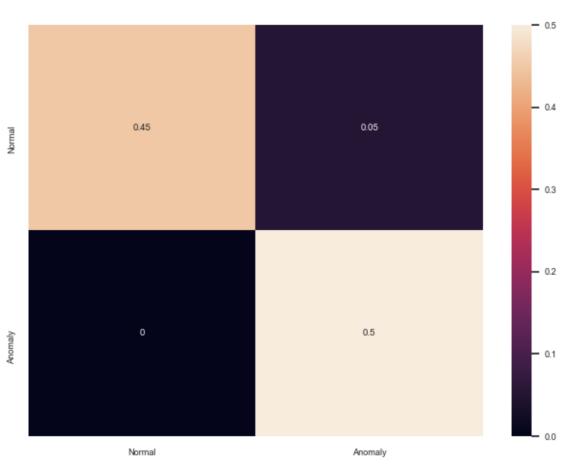
 modbus/function/writeSingleRegister
 0
 0.034
 0
 0

 modbus/function/writeSingleRegister
 0
 0.034
 0
 0
 0

 modbus/function/readDiscreteInput
 0
 0
 0
 0
 0
 0

 modbus/function/readDiscreteInput
 0
 0
 0
 0
 0

 modbus/function/readCoils
 0
 0
 0
 0
 0


064	0	0	0	0	0	0	0	0.008	0	0	0	0	0		
0	0.06	0	0	0	0	0	0	0	0.012	0	0	0	0		
0	0	0.07	1 0	0	0	0	0	0	0	0	0	0	0	- 0	.060
0	0	0	0.057	0	0	0	0	0	0 0	0.013	0	0.002	2 0		
0	0	0	0	0.033	0	0	0.006	0	0	0	0.02	0	0.012		
0	0	0	0	0	.07	1 0	0	0	0	0	0	0	0	- 0	.045
001	0	0	0	0	0	0.067	0	0.003	0	0	0	0	0		
0	0	0	0	0.012	0	0	0.03	0	0	0	0.015	0	0.015		
008	0	0	0	0	0	0	0	0.064	0	0	0	0	0	- 0	.030
0	0.034	0	0	0	0	0	0	0	0.037	0	0	0	0		
0	0	0	0.015	0	0	0	0	0	0	0.055	0	0.001	0		
0	0	0	0	0.009	0	0	0.003	0	0	0	0.05	0	0.008	- 0	.015
0	0	0	0	0	0	0	0	0	0	0	0	0.07	0		
0	0	0	0	0.011	0		0.004		0		0.017		0.039		
		-												- 0	000.

modbus/function/readInputRegister (DoS) modbus/function/writeSingleCoils modbus/dos/writeSingleRegister modbus/function/readDiscreteInputs (DoS) Normal nodbus/function/readHoldingRegister (DoS) modbus/function/readInputRegister modbus/function/readInputRegister

Anomaly Detection using TCP/IP Flow Statistics - Evaluation Results

Classification Problem	Outlier/Novelty Detection							
Dataset	Modbus/TCP Intrusion Detection Dataset							
Dataset	(it will be	(it will be published in IEEE Dataport and Zenodo)						
Features	Appendix E							
Training Dataset Size	70%							
Testing Dataset Size	30%							
ML/DL Method	ACC	TPR	FPR	F1				
ABOD	0.949	0.999	0.100	0.951				
Isolation Forest	0.950	0.999	0.099	0.952				
PCA	0.540	0.846	0.567	0.488				
MCD	0.948	0.999	0.102	0.950				
LOF	0.947	0.999	0.104	0.950				
Autoencoder	0.950	0.999	0.099	0.952				

NF-IDPS: DNP3 Intrusion &

Anomaly Detection Models

DNP3 Threat Assessment

DNP3 Enumerate

This is reconnaissance attack aims to discover which DNP3 services and functional codes are used by the target system.

DNP3 Info

This attack constitutes another reconnaissance attempt, collecting various DNP3 diagnostic information.

DNP3 Disable Unsolicited Messages Attack

This attack targets an outstation device, establishing a connection with it while acting as a master station. The false master then transmits a packet with the DNP3 Function Code 21, which requests to disable all the unsolicited messages on the target.

DNP3 Cold Restart Message Attack

The attacker acts as the master station and sends a DNP3 packet that includes the Cold Restart function code. When the target receives this message, it initiates a complete restart and sends a reply with the time window available before the restart.

DNP3 Threat Assessment

DNP3 Warm Restart Message Attack

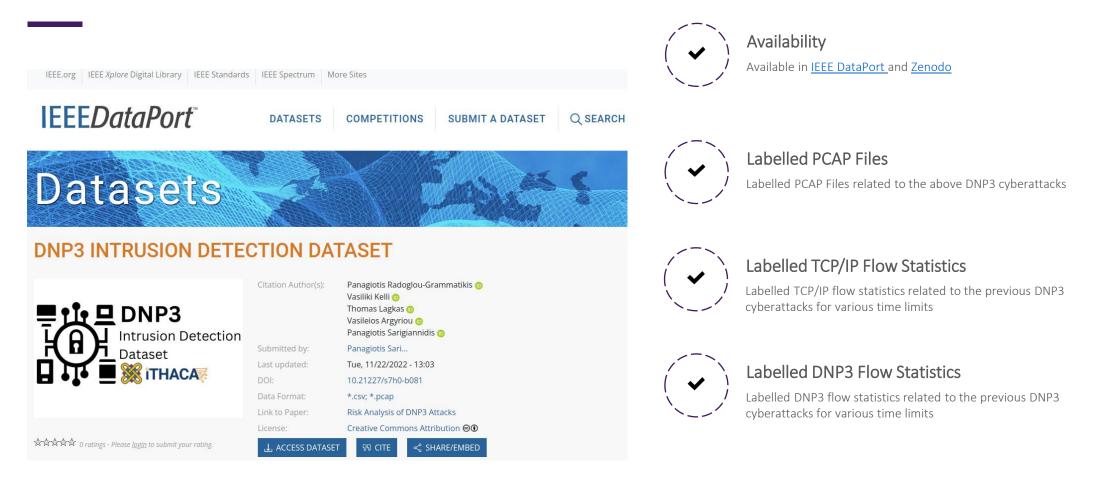
This attack is quite similar to the Cold Restart Message, but aims to trigger a partial restart, re-initiating a DNP3 service on the target outstation.

Stop Application

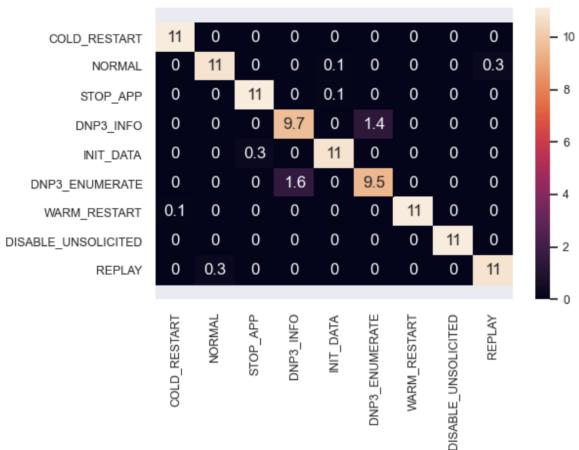
This attack is related to the Function Code 18 (Stop Application) and requires from the slave to stop its function so that the slave cannot receive messages from the master.

Data Initialisation

This cyberattack is related to Function Code 15 (Initialize Data). It is an unauthorised attack, which demands from the slave to reinitialise possible configurations in their initial values, thus changing potential values defined by legitimate masters.


Replay Attack

Thiis cyberattack replays DNP3 packets coming from a legitimate DNP3 master or slave.

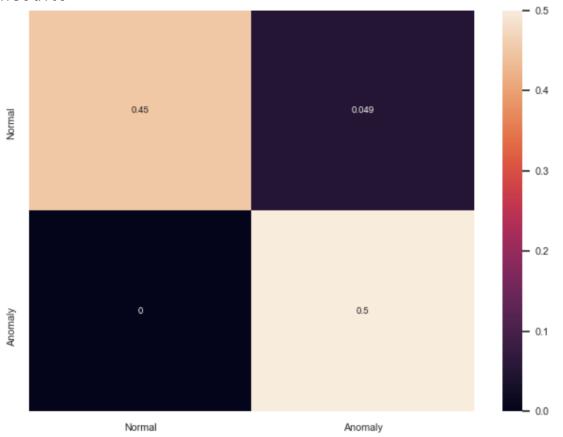


DNP3 Intrusion Detection Dataset

Intrusion Detection using DNP3 Flow Statistics - Evaluation Results

Classification Problem	Multi-Cl	ass Classifica	tion			
Dataset	DNP3 Intrusion Detection Dataset					
Dataset	(it will b	e published ir	n IEEE Datap	ort and Zenodo)		
Features	Appendi	x F				
Training Dataset Size	70%					
Testing Dataset Size	30%					
ML/DL Method	ACC	TPR	FPR	F1		
Logistic Regression	0.756	7567	0.030	0.750		
LDA	0.702	0.702	0.037	0.687		
Decision Tree Classifier	0.959	0.959	0.005	0.959		
Naïve Bayes	0.683	0.683	0.039	0.649		
SVM RBF	0.690	0.690	0.038	0.651		
SVM Linear	0.651	0.651	0.043	0.580		
Random Forest	0.708	0.708	0.036	0.692		
MLP	0.706	0.706	0.036	0.665		
Adaboost	0.222	0.222	0.097	0.111		
Quadratic Discriminant Analysis	0.716	0.716	0.035	0.660		
Dense DNN Relu	0.755	0.755	0.030	0.737		
Dense DNN Tanh	0.755	0.755	0.030	0.734		

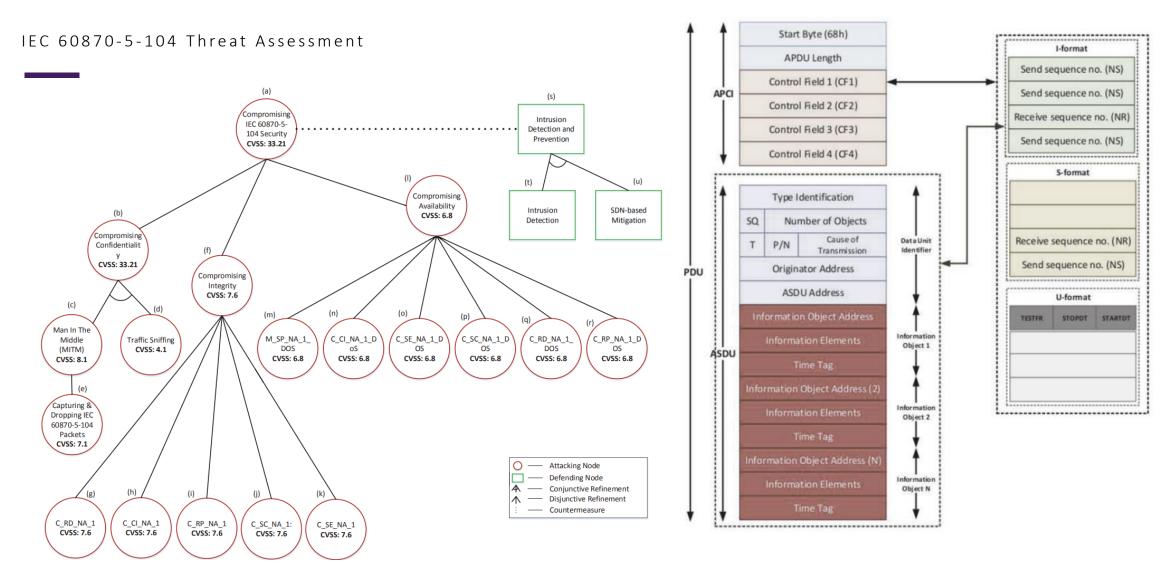
Intrusion Detection using TCP/IP Flow Statistics - Evaluation Results

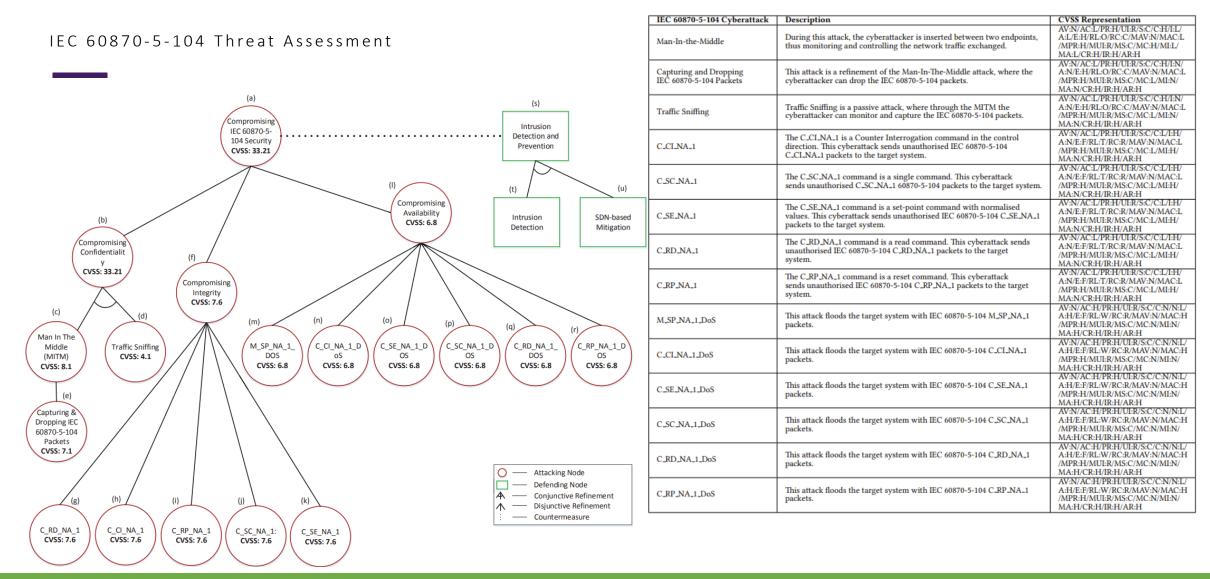

Classification Problem	Multi-Cl	ass Classificat	tion			
Dataset	DNP3 Intrusion Detection Dataset					
Dataset	(it will b	e published ir	1 IEEE Datapo	ort and Zenodo)		
Features	Appendi	x E				
Training Dataset Size	70%					
Testing Dataset Size	30%					
ML/DL Method	ACC	TPR	FPR	F1		
Logistic Regression	0.490	0.490	0.050	0.444		
LDA	0.627	0.627	0.037	0.612		
Decision Tree Classifier	0.797	0.797	0.020	0.782		
Naïve Bayes	0.690	0.683	0.030	0.655		
SVM RBF	0.554	0.554	0.044	0.500		
SVM Linear	0.593	0.593	0.040	0.523		
Random Forest	0.726	0.726	0.027	0.672		
MLP	0.475	0.475	0.052	0.423		
Adaboost	0.272	0.272	0.072	0.168		
Quadratic Discriminant Analysis	0.090	0.090	0.090	0.015		
Dense DNN Relu	0.584	0.584	0.041	0.539		
Dense DNN Tanh	0.552	0.552	0.044	0.505		

ARP_POISONING	9.1	0	0	0	0	0	0	0	0	0	0	- 8
COLD_RESTART	0	2.1	0	0	0	0	0	0	7	0	0	0
REPLAY	0	0	8.1	0	0	0.5	0.5	0	0	0	0	
DNP3_ENUMERATE	0	0	0	3.4	0	0	0	5.7	0	0	0	- 6
STOP_APP	0	0	0	0	7.5	0	0.1	0	0	0	1.5	
MITM_DOS	0	0	0	0	0	9.1	0	0	0	0	0	
NORMAL	0	0	0.2	0	0	0	8.8	0	0	0	0	- 4
DNP3_INFO	0	0	0	0.7	0	0	0	8.4	0	0	0	
WARM_RESTART	0	1.1	0	0	0	0	0	0	8	0	0	- 2
DISABLE_UNSOLICITED	0	0	0	0	0	0	0	0	0	9.1	0	2
INIT_DATA	0	0	0	0	2.8	0	0.2	0	0	0	6.1	
												- 0
	ARP_POISONING	COLD_RESTART	REPLAY	DNP3_ENUMERATE	STOP_APP	MITM_DOS	NORMAL	DNP3_INFO	WARM_RESTART	DISABLE_UNSOLICITED	INIT_DATA	

Anomaly Detection using TCP/IP Flow Statistics - Evaluation Results

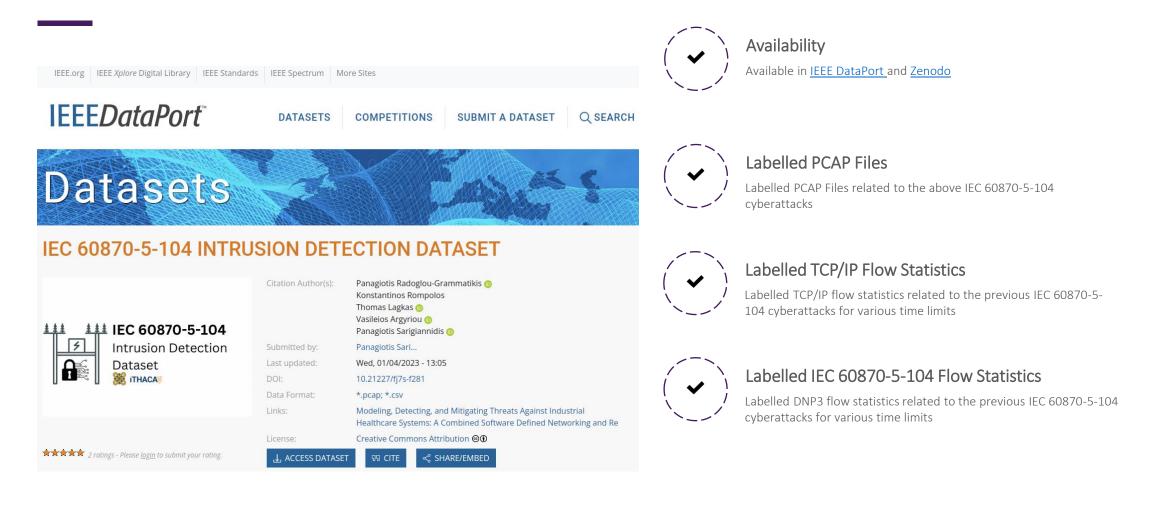
Classification Problem	Outlier/N	Outlier/Novelty Detection				
Dataset	DNP3 In	trusion Detec	tion Dataset			
Dataset	(it will be	e published in	IEEE Datapo	ort and Zenodo)		
Features	Appendi	x E				
Training Dataset Size	70%					
Testing Dataset Size	30%					
ML/DL Method	ACC	TPR	FPR	F1		
ABOD	0.951	0.999	0.097	0.953		
Isolation Forest	0.950	0.999	0.098	0.953		
PCA	0.500	0.000	0.000	0.000		
LOF	0.942	0.999	0.114	0.945		
MCD	0.946	0.999	0.107	0.949		
Autoencoder	0.948	0.999	0.104	0.950		



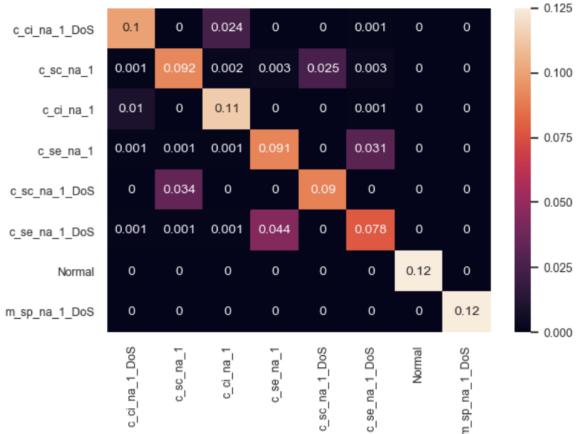


Normal

NF-IDPS: IEC 60870-5-104 Intrusion &


Anomaly Detection Models

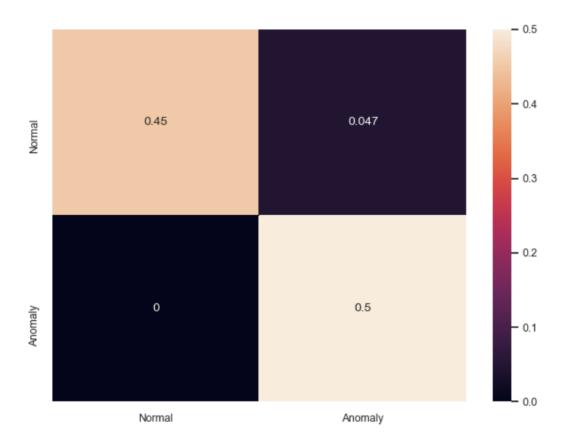
IEC 60870-5-104 Intrusion Detection Dataset


Intrusion Detection using IEC 60870-5-104 Flow Statistics - Evaluation Results

Classification Problem	Multi-Class Classification						
Dataset	IEC 608	70-5-104 Int	trusion Det	ection Dataset			
Dataset	(Availab	ole in IEEE I	Dataport an	d Zenodo)			
Features	Append	ix G					
Training Dataset Size	70%						
Testing Dataset Size	30%						
ML/DL Method	ACC	TPR	FPR	F1			
Logistic Regression	0.622	0.622	0.034	0.605			
LDA	0.618	0.618	0.034	0.605			
Decision Tree Classifier	0.831	0.831	0.015	0.825			
Naïve Bayes	0.558	0.558	0.040	0.474			
SVM RBF	0.553	0.553	0.040	0.480			
SVM Linear	0.508	0.508	0.044	0.4144			
Random Forest	0.664	0.664	0.030	0.647			
MLP	0.590	0.590	0.037	0.570			
Adaboost	0.250	0.250	0.068	0.181			
Quadratic Discriminant Analysis	0.608	0.608	0.035	0.534			
Dense DNN Relu	0.642	0.642	0.032	0.598			
Dense DNN Tanh	0.576	0.576	0.038	0.517			

c_rp_na_1	8.2	0	0	0	0	0	0	0	0.1	0	0	0		7.5
c_se_na_1_DoS	0	3.2	0	0	0	0	5.1	0	0	0	0	0		
c_sc_na_1_DoS	0	0	5.9	0	0	0	0	0	0	0	2.5	0		
c_ci_na_1	0	0	0	8.3	0	0	0	0	0	0	0	0		- 6.0
c_rd_na_1_DoS	0	0	0	0	8.3	0	0	0	0	0	0	0		
m_sp_na_1_DoS	0	0	0	0	0	8.3	0	0	0	0	0	0		- 4.5
c_se_na_1	0	3.3	0	0	0	0	4.2	0.5	0	0	0.1	0.1		
c_ci_na_1_DoS	0	0	0	0	0	0	0	8.3	0	0	0	0		- 3.0
c_rp_na_1_DoS	0	0	0	0	0	0	0	0	8.3	0	0	0		0.0
NORMAL	0	0	0	0	0	0	0	0	0	8.3	0	0		
c_sc_na_1	0	0.6	1.3	0	0.2	0	0.5	1.8	0.1	0	3.4	0.3		1.5
c_rd_na_1	0	0	0	0	0	0	0	0	0	0	0	8.3		
														- 0.0
	a_	SoC	SoC	a_1	SoC	DoS	a_1	SoC	SoC	AAL	a_	e L		
	<u>c_p_na_</u>		-	c_ci_na_1	-		c_se_na_			NORMAL	c_sc_na_1	c_rd_na_1		
	0	c_se_na_1_DoS	c_sc_na_1_boS	0	c_rd_na_1_boS	m_sp_na_1	U U	c_ci_na_1_DoS	c_rp_na_1_DoS	£.,	0	0		
		SI	ö		0	a s		0	0					

Intrusion Detection using TCP/IP Flow Statistics - Evaluation Results


Classification Problem	Multi C	lass Classifi		
Classification Problem				
Dataset	IEC 608	70-5-104 Int	rusion Dete	ction Dataset
Dutaset	(Availab	le in IEEE I	Dataport and	l Zenodo)
Features	Append	ix E		
Training Dataset Size	70%			
Testing Dataset Size	30%			
ML/DL Method	ACC	TPR	FPR	F1
Logistic Regression	0.900	0.602	0.056	0.602
LDA	0.904	0.619	0.054	0.619
Decision Tree Classifier	0.953	0.815	0.026	0.815
Naïve Bayes	0.855	0.421	0.082	0.421
SVM RBF	0.853	0.413	0.083	0.413
SVM Linear	0.843	0.375	0.089	0.375
Random Forest	0.918	0.672	0.046	0.672
MLP	0.904	0.619	0.054	0.619
Adaboost	0.843	0.375	0.089	0.375
Quadratic Discriminant Analysis	0.899	0.598	0.057	0.598
Dense DNN Relu	0.909	0.636	0.051	0.636
Dense DNN Tanh	0.916	0.664	0.047	0.664

Feb 23, 2023

Anomaly Detection using TCP/IP Flow Statistics - Evaluation Results

Classification Problem	Outlier/	Novelty Det	tection					
Dataset	IEC 608	IEC 60870-5-104 Intrusion Detection Dataset						
Dataset	(Availab	le in IEEE D	Dataport and	d Zenodo)				
Features	Append	ix E						
Training Dataset Size	70%							
Testing Dataset Size	30%							
ML/DL Method	ACC	TPR	FPR	F1				
ABOD	0.947	0.999	0.105	0.949				
Isolation Forest	0.950	0.999	0.094	0.955				
PCA	0.500	0.000	0.000	0.000				
LOF	0.949	0.999	0.101	0.951				
MCD	0.880	0.857	0.097	0.877				
Autoencoder	0.881	0.852	0.089	0.877				

50

NF-IDPS: HTTP Intrusion &

Anomaly Detection Models

HTTP Threat Assessment

DoS This DoS attack floods the target system with HTTP packets

SQL-Injection

This attack aims to exploit vulnerabilities of web applications in order to access unauthorised information.

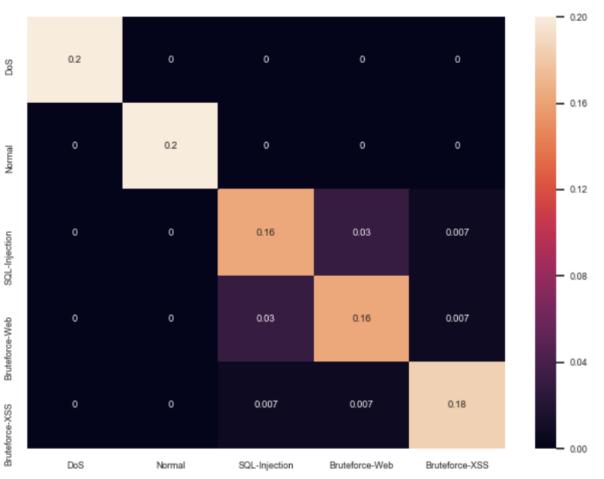
Bruteforce-Web

This attack attempts to access a password-protected web application by using multiple password combinations.

XSS is a type of injection attack where malicious scripts are injected into web applications

HTTP Intrusion Detection Dataset

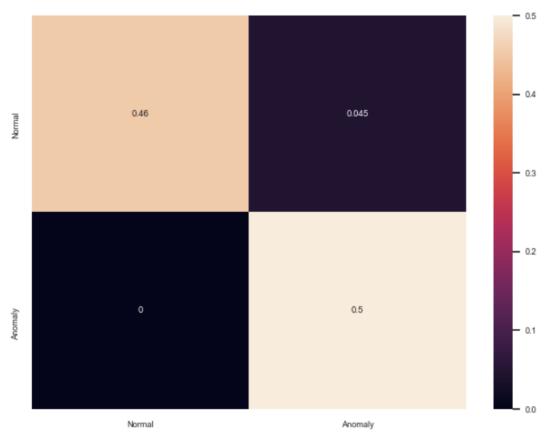
EST. 1785 UNIVERSI						Give to UNB	Apply	۵
Canadi	an Institute f	or Cybersecurit	J					
*	About	Research	Members	Datasets	Contact Us			


CIC	Intrusion Detection Evaluation Dataset
About the CIC >	(CIC-IDS2017)
Membership >	
Research >	Intrusion Detection Systems (IDSs) and Intrusion Prevention Systems (IPSs) are the most important
Datasets 🗸	defense tools against the sophisticated and ever-growing network attacks. Due to the lack of reliable
	test and validation datasets, anomaly-based intrusion detection approaches are suffering from
Webinars >	consistent and accurate performance evolutions.
Global EPIC Program 🔉	
Cybersecurity Workshop >	Our evaluations of the existing eleven datasets since 1998 show that most are out of date and
5 5 1	unreliable. Some of these datasets suffer from the lack of traffic diversity and volumes, some do not
	cover the variety of known attacks, while others anonymize packet payload data, which cannot reflect
	the current trends. Some are also lacking feature set and metadata.

CIC-IDS2017

Iman Sharafaldin, Arash Habibi Lashkari, and Ali A. Ghorbani, "Toward Generating a New Intrusion Detection Dataset and Intrusion Traffic Characterization", 4th International Conference on Information Systems Security and Privacy (ICISSP), Portugal, January 2018

Intrusion Detection using HTTP TCP/IP Flow Statistics - Evaluation Results


Classification Problem	Multi-Class Classification
Dataset	CSE-CIC-IDS2018
Features	Appendix E
Training Dataset Size	70%
Testing Dataset Size	30%
ML/DL Method	ACC TPR FPR F1
Logistic Regression	0.937 0.844 0.038 0.844
LDA	0.946 0.866 0.033 0.866
Decision Tree Classifier	0.964 0.911 0.026 0.911
Naïve Bayes	0.878 0.696 0.075 0.696
SVM RBF	0.908 0.770 0.057 0.770
SVM Linear	0.928 0.822 0.044 0.822
Random Forest	0.922 0.807 0.048 0.807
MLP	0.940 0.851 0.037 0.851
Adaboost	0.760 0.400 0.150 0.400
Quadratic Discriminant Analysis	0.911 0.777 0.055 0.777
Dense DNN Relu	0.940 0.851 0.037 0.851
Dense DNN Tanh	0.940 0.851 0.0370 0.851

Anomaly Detection using HTTP TCP/IP Flow Statistics - Evaluation Results

Classification Problem	Outlier/Anomaly Detection
Dataset	CSE-CIC-IDS2018
Features	Appendix E
Training Dataset Size	70%
Testing Dataset Size	30%
ML/DL Method	ACC TPR FPR F1
ABOD	0.577 0.571 0.416 0.558
Isolation Forest	0.833 0.948 0.281 0.850
PCA	0.596 0.592 0.400 0.581
MCD	0.719 0.545 0.106 0.660
LOF	0.946 0.954 0.058 0.938
DIDEROT Autoencoder	0.934 0.927 0.061 0.902

NF-IDPS: SSH Intrusion &

Anomaly Detection Models

HTTP Threat Assessment

SSH Bruteforce Attacks

SSH bruteforce attacks are a type of cyber attack in which an attacker attempts to gain unauthorized access to a remote system by systematically trying different username and password combinations until a successful login is achieved.

```
msf5 > use auxiliary/scanner/ssh/ssh_login 
msf5 auxiliary(scanner/ssh/ssh_login) > set rhosts 192.168.0.8
msf5 auxiliary(scanner/ssh/ssh_login) > set user_file user.txt 
user_file ⇒ user.txt
msf5 auxiliary(scanner/ssh/ssh_login) > set pass_file password.txt 
pass_file ⇒ password.txt
msf5 auxiliary(scanner/ssh/ssh_login) > run 
[+] 192.168.0.8:22 - Success: 'shubh:123' uid=1000(shubh) gid=1000(shubh) grou
4(cdrom),27(sudo),30(dip),46(plugdev),120(lpadmin),131(lxd),132(sambashare) Lin
ric #44-Ubuntu SMP Tue Jun 23 00:01:04 UTC 2020 x86_64 x86_64 x86_64 GNU/Linux
[*] Command shell session 1 opened (192.168.0.9:40347 → 192.168.0.8:22) at 202
[*] Scanned 1 of 1 hosts (100% complete)
[*] Auxiliary module execution completed
```

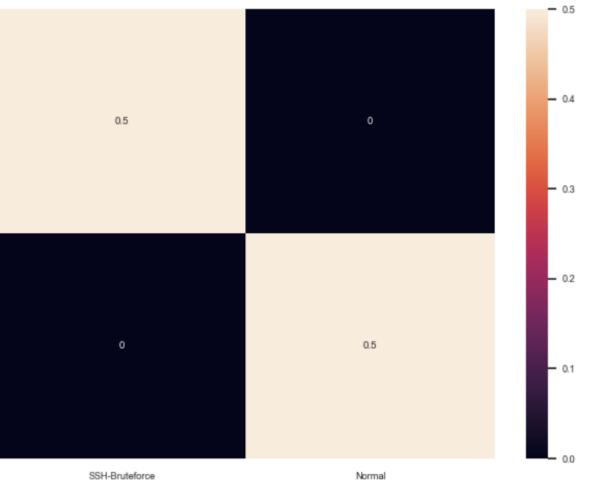

HTTP Intrusion Detection Dataset

EST. 1785 UNIVERSI						Give to UNB	Apply	Q
Canadi	an Institute f	or Cybersecuritų	J					
^	About	Research	Members	Datasets	Contact Us			

CIC	Intrusion Detection Evaluation Dataset
About the CIC >	(CIC-IDS2017)
Membership >	
Research >	Intrusion Detection Systems (IDSs) and Intrusion Prevention Systems (IPSs) are the most important
Datasets 🗸	defense tools against the sophisticated and ever-growing network attacks. Due to the lack of reliable
	test and validation datasets, anomaly-based intrusion detection approaches are suffering from
Webinars >	consistent and accurate performance evolutions.
Global EPIC Program >	
Cubersecurity Workshop >	Our evaluations of the existing eleven datasets since 1998 show that most are out of date and
5 5 1	unreliable. Some of these datasets suffer from the lack of traffic diversity and volumes, some do not
	cover the variety of known attacks, while others anonymize packet payload data, which cannot reflect
	the current trends. Some are also lacking feature set and metadata.

CIC-IDS2017

Iman Sharafaldin, Arash Habibi Lashkari, and Ali A. Ghorbani, "Toward Generating a New Intrusion Detection Dataset and Intrusion Traffic Characterization", 4th International Conference on Information Systems Security and Privacy (ICISSP), Portugal, January 2018



SSH-Bruteforce

Normal

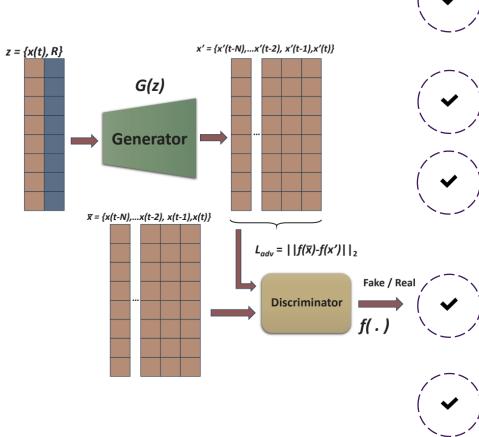
Intrusion Detection using SSH TCP/IP Flow Statistics - Evaluation Results

Classification Problem	Multi-Class Classification					
Dataset	CSE-CIC-IDS2018					
Features	Appendix E					
Training Dataset Size	70%					
Testing Dataset Size	30%					
ML/DL Method	ACC TPR FPR F1					
Logistic Regression	0.859 0.750 0.058 0.821					
LDA	0.945 0.920 0.038 0.928					
Decision Tree Classifier	0.960 0.958 0.038 0.955					
Naïve Bayes	0.823 0.741 0.154 0.640					
SVM RBF	0.837 0.660 0.339 0.788					
SVM Linear	0.799 0.845 0.307 0.307					
Random Forest	0.955 0.903 0.009 0.942					
MLP	0.903 0.841 0.010 0.910					
Adaboost	0.950 0.890 0.010 0.934					
Quadratic Discriminant Analysis	0.500 0.500 0.250 0.666					
Dense DNN Relu	0.916 0.985 0.014 0.906					
Dense DNN Tanh	0.916 0.836 0.011 0.904					

Anomaly Detection using SSH TCP/IP Flow Statistics - Evaluation Results

Classification Problem	Outlier/Anoamly Detection					
Dataset	CSE-CIC-IDS2018					
Features	Appendix E					
Training Dataset Size	70%					
Testing Dataset Size	30%					
Classification Problem	Outlier/Novelty Detection					
ML/DL Method	ACC TPR FPR F1					
ABOD	0.935 0.870 0.013 0.922					
Isolation Forest	0.943 0.901 0.013 0.941					
PCA	0.701 0.596 0.247 0.564					
MCD	0.957 0.970 0.050 0.944					
LOF	0.925 0.913 0.066 0.909					
DIDEROT Autoencoder	0.946 0.954 0.058 0.938					

Normal


Anomaly

H-IDPS: Host-based Intrusion Detection

Prevention and System

H-IDPS: Host-based Intrusion Detection Prevention and System

ARIES GAN

Datasets

(a) a training dataset $D = \{X_1, ..., X_M\}$, which contains M normal occurrences and (b) a testing dataset $\hat{D} = \{(\hat{X}_1, y_1), ..., (\hat{X}_N, y_N)\}$ which includes N both normal and abnormal occurrences and $y_i \in [0, 1]$ denotes the label of each occurrence. It is worth noting that $M \gg N$.

GAN - Generative Adversarial Network for Anomaly Detection

Two adversarial networks trained simultaneously: (a) Generator and (b) Discriminator

Generator - x' = G(z)

- Receives input data $z = \{x(t), R\}$ that includes the actual data at time t and the noise vector R.
- Encoder E: transforms z to x' using Batch Normalization and Leaky Relu

Discriminator

- Classifies x' as a real or fake
- When there is a dissimilarity between x' and z, then there is an anomaly

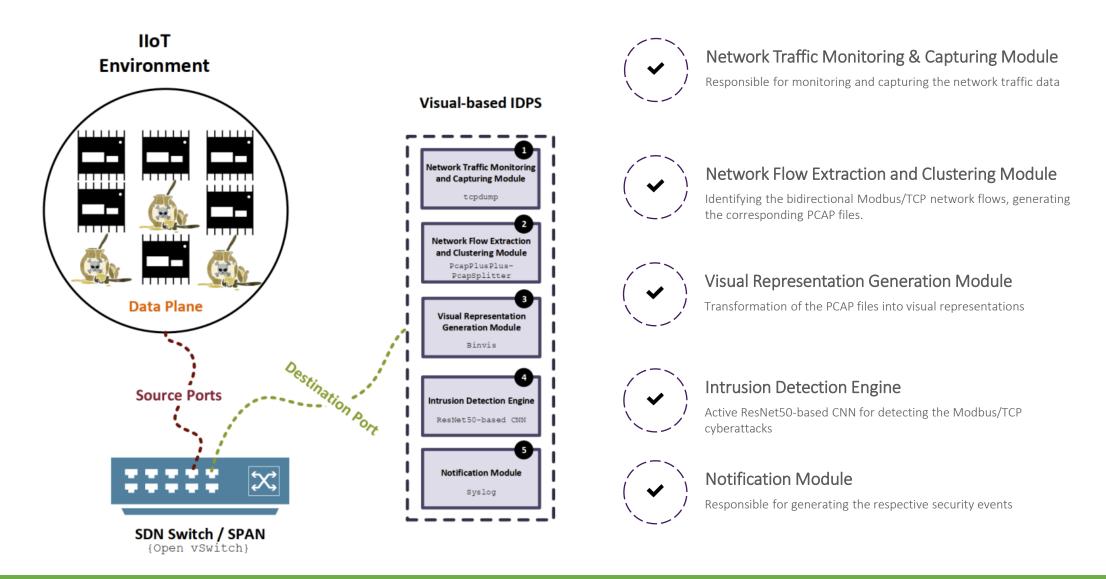
 $L_{adv} = \|f(\bar{x}) - f(x')\|_2$

H-IDPS: Host-based Intrusion Detection Prevention & System

Anomaly Detection using Operational Data

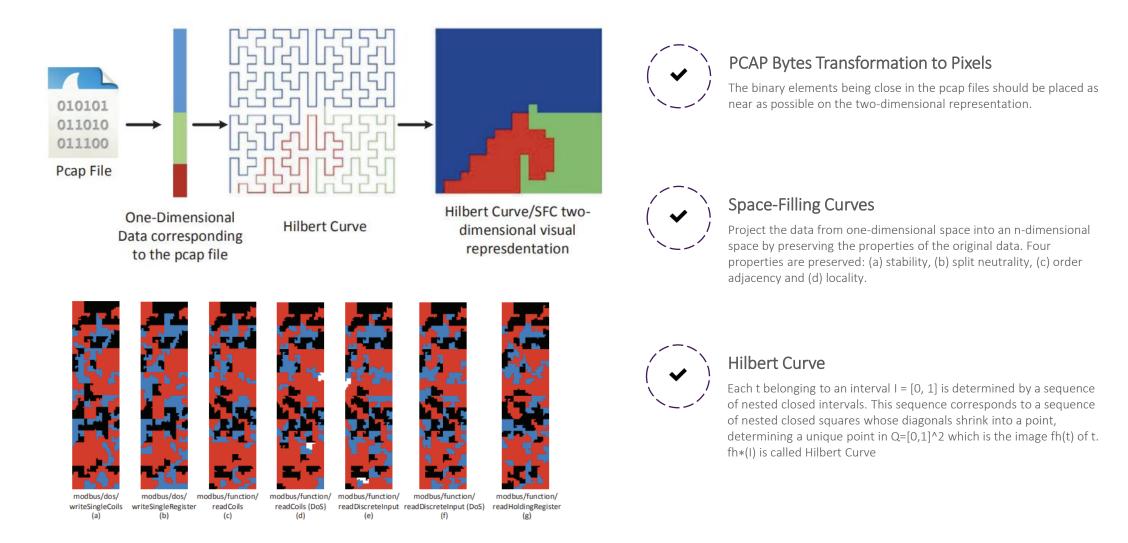
Classification Problem	Outlier/Novelty Detection				Classification Problem	Outlier/Novelty Detection			
Data Type	Oprational Data - Hydropower Plant Use Case				Data Type	Operational Data - Substation Use Cas			on Use Case
Features	Appendi	хH			Features	Appendix I			
Training Dataset Size	70%				Training Dataset Size	70%			
Tesing Dataset Size	30%				Tesing Dataset Size	30%			
ML/DL Method	ACC	TPR	FPR	F1	ML/DL Method	ACC	TPR	FPR	F1
ABOD	0.581	0.993	0.522	0.487	ABOD	0.839	0.995	0.200	0.713
Isolation Forest	0.716	0.948	0.341	0.572	Isolation Forest	0.850	0.951	0.175	0.718
РСА	0.745	0.978	0.312	0.606	PCA	0.847	0.961	0.181	0.716
MCD	0.733	0.210	0.135	0.240	MCD	0.822	0.991	0.220	0.691
LOF	0.579	0.996	0.525	0.486	LOF	0.873	0.993	0.157	0.759
ARIES GAN	0.746	0.978	0.311	0.607	ARIES GAN	0.840	0.961	0.189	0.708

H-IDPS: Host-based Intrusion Detection Prevention & System

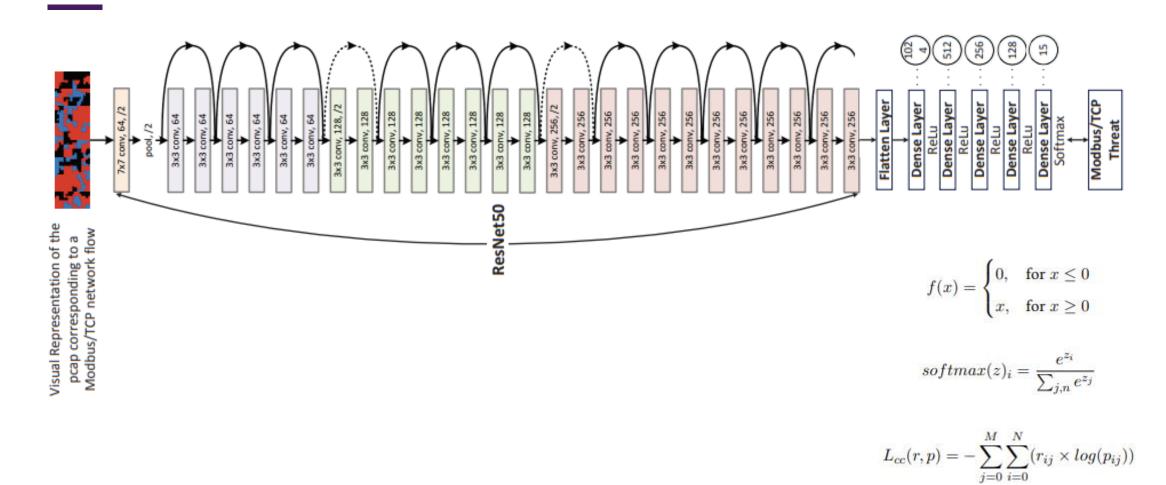

Anomaly Detection using Operational Data

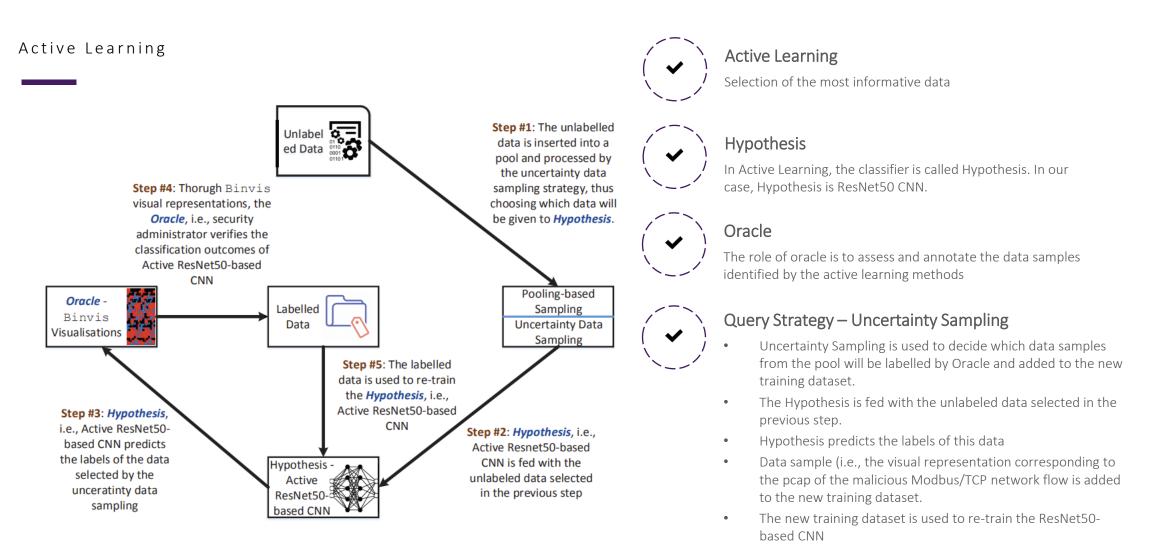
Classification Problem Outlier/Novelty Detection				Classification Problem	Outlier/Novelty Detection				
Data Type	Operational Data - Power Plant Use Case				Data Type	Operational Data - Smart Home Use Case			
Features	Append	ix J			Features	Appendix K			
Training Dataset Size	70%				Training Dataset Size	70%			
Tesing Dataset Size	30%				Tesing Dataset Size	30%			
ML/DL Method	ACC	TPR	FPR	F1	ML/DL Method	ACC	TPR	FPR	F1
ABOD	0.692	0.989	0.397	0.600	ABOD	0.649	0.668	0.362	0.597
Isolation Forest	0.813	0.960	0.231	0.705	Isolation Forest	0.769	0.976	0.279	0.615
PCA	0.851	0.982	0.187	0.755	PCA	0.859	0.976	0.167	0.724
MCD	0.715	0.299	0.158	0.329	MCD	0.729	0.992	0.332	0.581
LOF	0.829	0.992	0.220	0.730	LOF	0.690	0.735	0.344	0.676
ARIES GAN	0.851	0.982	0.188	0.755	ARIES GAN	0.859	0.976	0.167	0.725

V-IDPS: Visual-based Intrusion Detection


Prevention and System

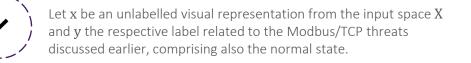
Architecture of V-IDPS


Binary Visualization


Active ResNet50-based CNN Detection

ResNet50

Active ResNet50-based CNN Detection


Active ResNet50-based CNN Detection

Active Learning

Algorithm 1: Active ResNet50-based CNN: Pooling-based Sampling and Uncertainty Samplin
Strategy
Data: U, L, h
Result: Re-train h
Гrain h;
while $size(U) > 0$ do
if $uncertainty(h(U(i))) > \delta$ then
h predicts y(i);
The security administrator verifies the prediction of h;
Add U(i) and y(i) in L;
Re-train h
end
if $size(L) == t$ then
Re-train h;
Clear U;
end
end

$$H = -\sum_{i=1}^{m} p_{\theta}(y_i|x) \log_2(p_{\theta}(y_i|x))$$

$$x^* = argmax(x) + H > \delta$$

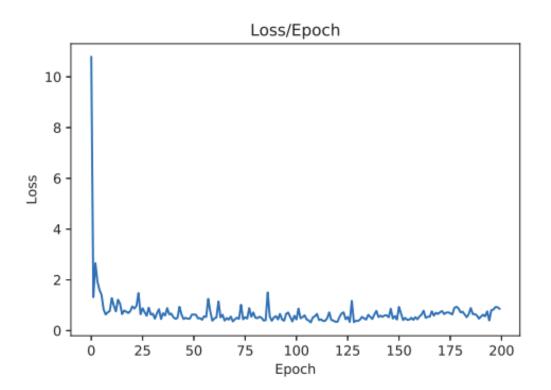
U denotes a set of unlabelled visual representations within the pool, while L indicates the new training dataset, which will be used to re-train ResNet50.

f(x) = y is the target function that discriminates and classifies the visual representations accurately without any functional error. h(x) = y' represents the Active ResNet50-based CNN predicting the label of the visual representation

The goal is to minimize the generalization error given by

 $E[l(h)]\int_{-\infty}^{\infty} l(h(x), f(x))\,dx$

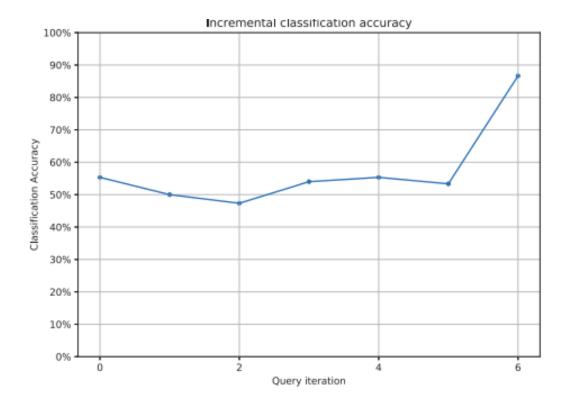
 $l(h(x), f(x)) = (h(x) - f(x))^2$


- The Hypothesis' uncertainty can be calculated with various criteria: (a) entropy, (b) least confidence of prediction and (c) least margin. In this thesis, entropy is used.
- where $p\theta$ denotes the probability of class i for the visual representation x, while θ implies the parameters of the Hypothesis.
- The entropy criterion chooses the visual representations $x\ast$ from $U.~\delta$ is determined experimentally

V-IDPS: Visual-based Intrusion Detection Prevention & System

Experimental Results

Pre-trained CNN Model	Accuracy	TPR	FPR	F1
DenseNet121	0.975	0.814	0.013	0.814
DenseNet169	0.975	0.818	0.012	0.819
DenseNet201	0.979	0.837	0.010	0.843
EfficientNetB0	0.981	0.858	0.009	0.859
EfficientNetB7	0.962	0.697	0.018	0.713
MobileNet	0.981	0.862	0.009	0.862
MobileNetV2	0.980	0.850	0.010	0.850
NASNetLarge	0.964	0.714	0.017	0.728
NASNetMobile	0.961	0.704	0.020	0.709
ResNet50	0.984	0.885	0.008	0.885
ResNet50V2	0.980	0.854	0.010	0.854
ResNet101	0.981	0.864	0.009	0.864
ResNet101V2	0.980	0.853	0.010	0.853
ResNet152	0.982	0.865	0.009	0.865
ResNet152V2	0.978	0.805	0.009	0.831
VGG16	0.977	0.822	0.011	0.829
VGG19	0.981	0.863	0.009	0.863
Xception	0.975	0.806	0.012	0.812



V-IDPS: Visual-based Intrusion Detection Prevention & System

Experimental Results

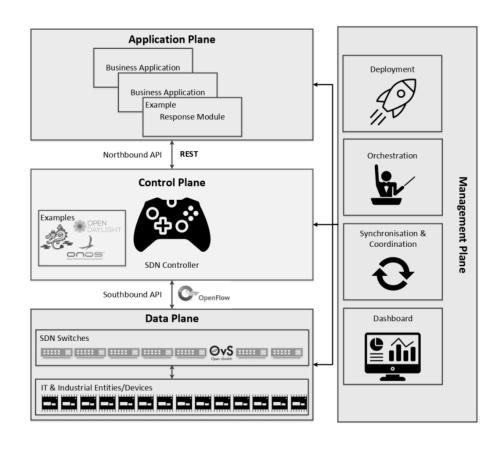
Pre-trained CNN Model	Accuracy	TPR	FPR	F1
DenseNet121	0.975	0.814	0.013	0.814
DenseNet169	0.975	0.818	0.012	0.819
DenseNet201	0.979	0.837	0.010	0.843
EfficientNetB0	0.981	0.858	0.009	0.859
EfficientNetB7	0.962	0.697	0.018	0.713
MobileNet	0.981	0.862	0.009	0.862
MobileNetV2	0.980	0.850	0.010	0.850
NASNetLarge	0.964	0.714	0.017	0.728
NASNetMobile	0.961	0.704	0.020	0.709
ResNet50	0.984	0.885	0.008	0.885
ResNet50V2	0.980	0.854	0.010	0.854
ResNet101	0.981	0.864	0.009	0.864
ResNet101V2	0.980	0.853	0.010	0.853
ResNet152	0.982	0.865	0.009	0.865
ResNet152V2	0.978	0.805	0.009	0.831
VGG16	0.977	0.822	0.011	0.829
VGG19	0.981	0.863	0.009	0.863
Xception	0.975	0.806	0.012	0.812

NCME: Normalisation, Correlation and

Mitigation Engine

Normalisation

Security Event Field Name	Security Event Field Description				
Date	Date and time of the security event.				
Sensor	The sensor, which processed the security event.				
Device IP	The IP address of the sensor, which processed the security				
	event.				
Event Type ID	Identifier assigned by the component, which generates the				
	security event.				
Unique Event ID	Unique identifier assigned by the component, which				
onque Lvent ib	generates the security event.				
Protocol	Protocol related to the security event.				
Category	Event taxonomy for the security event.				
C 1	Subcategory of the security event taxonomy type listed				
Subcategory	under Category.				
Data Source Name	Name of the external application or device that produced				
	the security event.				
Data Source ID	Identifier related to the external application or device which				
Data Source ID	generated the security event.				
Product Type	Product type related to the security event.				
Additional Info	URL including more details				
	about the security event.				
Duitautha	It reflects the significance of the security event in the				
Priority	range between 0-5.				


Security Event Field Name	Security Event Field Description			
Date	Date and time of the security event.			
Sensor	The sensor, which processed the security event.			
Device IP	The IP address of the sensor, which processed the security			
	event.			
Event Type ID	Identifier assigned by the component, which generates the			
	security event.			
Unique Event ID	Unique identifier assigned by the component, which			
	generates the security event.			
Protocol	Protocol related to the security event.			
Category	Event taxonomy for the security event.			
Subcategory	Subcategory of the security event taxonomy type listed			
	under Category.			
Data Source Name	Name of the external application or device that produced			
	the security event.			
Data Source ID	Identifier related to the external application or device which			
	generated the security event.			
Product Type	Product type related to the security event.			
Additional Info	URL including more details			
	about the security event.			
Priority	It reflects the significance of the security event in the			
	range between 0-5.			
Rule Detection	AlienVault OSSIM NIDS rule used to detect the			
Kule Detection	security event.			

Correlatio	rrelation		f there are X events denoting a modbus/scanner/uid attack and ight after X events denoting a modbus/function/writeSingleCoils, hen an alert called 'modbus/function/writeSingleCoils' is raised. X is defined by the user. f there are X events denoting a modbus/scanner/getfunc attack and			
No	No Description Rule #1 If there are X or more consecutive events denoting a modbus/function/ readInputRegister (DoS) attack, then an alert called 'modbus/function/ readInputRegister (DoS)' is raised. X is defined by the user. Rule #2 If there are X or more consecutive events denoting a modbus/dos /writeSingleRegister attack, then an alert called 'modbus/dos /writeSingleRegister' is raised. X is defined by the user. Rule #2 If there are X or more consecutive events denoting a modbus/function/ readDiscreteInputs (DoS) attack, then an alert called 'modbus/function/readDiscreteInputs (DoS)' is raised. X is defined by the user. Rule #3 If there are X or more consecutive events denoting a modbus/ function/readHoldingRegister (DoS) attack, then an alert called 'modbus/function/readHoldingRegister (DoS)' is raised. X is defined by the user. Rule #4 If there are X or more consecutive events denoting a modbus/ function/readHoldingRegister (DoS) attack, then an alert called 'modbus/function/readHoldingRegister (DoS)' is raised. X is defined by the user. Rule #5 If there are X or more consecutive events denoting a modbus Rule #6 /function/readCoils (DoS) attack, then an alert called 'modbus/function/readCoils (DoS)' is raised. X is defined by the user. Rule #6 If there are X or more consecutive events denoting a modbus/ /function/readCoils (DoS)' is raised. X is defined by the user. Rule #6 If there are X or more consecutive events denoting a modbus/dos /writeSingleCoils attack, then an alert called 'modbus/dos /wri		right after X events denoting a modbus/function/writeSingleCoils, then an alert called 'modbus/function/writeSingleCoils' is raised.			
			X is defined by the user.			
Rule #1		Dula sto	If there are X or more consecutive events denoting a modbus/function $(-1)^{1/2} = (1 - 1)^{1$			
Rule #2	If there are X or more consecutive events denoting a modbus/dos /writeSingleRegister attack, then an alert called 'modbus/dos	Rule #12	e /writeSingleCoils, then an alert called 'modbus/function/ writeSingleCoils' is raised. X is defined by the user. If there are X events denoting a modbus/scanner/uid attack and right		Rule #20	If there are X events denoting a modbus/scanner/getfunc attack and right after X events denoting a modbus/function/readDiscreteInput, then an alert called 'modbus/function/readDiscreteInput' is raised.
		Rule #13	after X events denoting a modbus/function/readInputRegister, then			X is defined by the user.
Rule #3	readDiscreteInputs (DoS) attack, then an alert called		an alert called 'modbus/function/readInputRegister' is raised. \boldsymbol{X} is defined by the user.			If there are X or more consecutive events denoting a modbus/function
		Dalasta	If there are X events denoting a modbus/scanner/getfunc attack and right after X events denoting a modbus/function/readInputRegister,		Rule #21	/readDiscreteInput, then an alert called 'modbus/function /readDiscreteInput' is raised. X is defined by the user.
Rule #4	function/readHoldingRegister (DoS) attack, then an alert called	Rule #14	then an alert called 'modbus/function/readInputRegister' is raised. X is defined by the user.			If there are X events denoting a modbus/scanner/uid attack and right
	by the user.	Rule #15	If there are X or more consecutive events denoting a modbus/function /readInputRegister, then an alert called 'modbus/function/		Rule #22	after X events denoting a modbus/function/readHoldingRegister, then an alert called 'modbus/function/readHoldingRegister' is raised. X
Rule #5	/function/readCoils (DoS) attack, then an alert called		readInputRegister' is raised. X is defined by the user. If there are X events denoting a modbus/scanner/uid attack and right after X events denoting a modbus/function/writeSingleRegister, then			is defined by the user. If there are X events denoting a modbus/scanner/getfunc attack and
Rule #6	If there are X or more consecutive events denoting a modbus/dos /writeSingleCoils attack, then an alert called 'modbus/dos	Rule #16	and it's events deforing a modula/function/writeSingleRegister' is raised. X is defined by the user.		Rule #23	right after X events denoting a modbus/function/readHoldingRegister, then an alert called 'modbus/function/readHoldingRegister' is raised.
			If there are X events denoting a modbus/scanner/getfunc attack and			X is defined by the user.
Rule #7	If there are X events denoting a modbus/scanner/uid attack and right after X events denoting a modbus/scanner/getfunc, then an alert called 'Modbus Reconnaissance'. X is defined by the user.	Rule #17	right after X events denoting a modbus/function/writeSingleRegister, then an alert called 'modbus/function/writeSingleRegister' is raised. X is defined by the user.		Rule #24	If there are X or more consecutive events denoting a modbus/function /readHoldingRegister, then an alert called 'modbus/function /readHoldingRegister' is raised. X is defined by the user.
Rule #8	If there are X or more consecutive events denoting a modbus/ scanner/getfunc attack, then an alert called 'Modbus Reconnaissance' is raised. X is defined by the user.	Rule #18	If there are X or more consecutive events denoting a modbus/function /writeSingleRegister, then an alert called 'modbus/function /writeSingleRegister' is raised. X is defined by the user.			/reautioningregister is faised. A is defined by the user.
Rule #9	If there are X or more consecutive events denoting a modbus/scanner /uid attack, then an alert called 'Modbus Reconnaissance' is raised. X is defined by the user.	Rule #19	If there are X events denoting a modbus/scanner/uid attack and right after X events denoting a modbus/function/readDiscreteInput, then an alert called 'modbus/function/readDiscreteInput' is raised. X is defined by the user.			

SDN-based Mitigation as Multi-Armed Bandit Problem

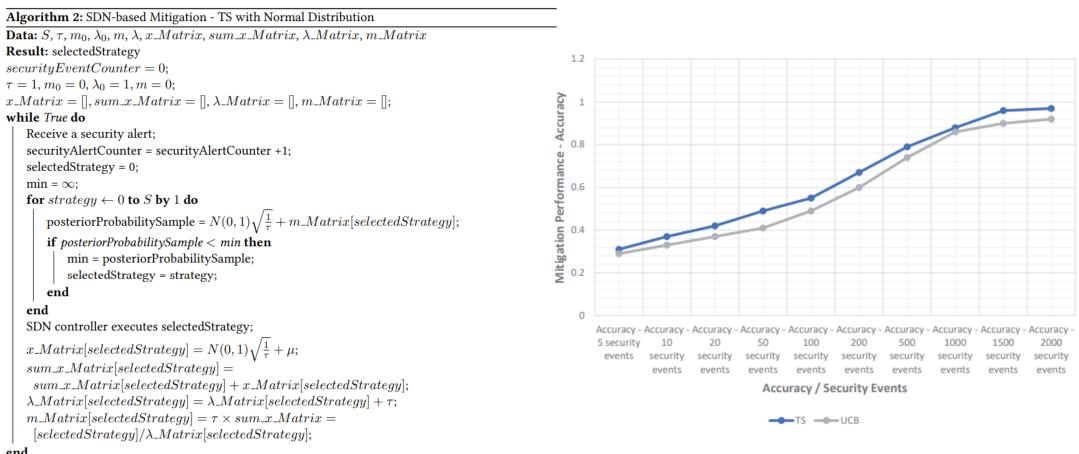
S1: NCME will instruct SDN-C to isolate the assets affected by the security alerts, thus corrupting entirely the malicious network flows

S2: NCME will instruct SDN-C to drop some of the malicious network flows with a probability pc

S3: NCME will wait for the security administrator to decide

Each strategy is characterized by a relevant cost (xi). The goal is to instruct the SDN-C to take the appropriate action each time. $xi \sim N(\mu, \tau^{-1})$

Exploration: Discover more information about the cost of the various strategies **Exploitation:** Mitigate the security alerts with the minimum cost


SDN-based Mitigation

 $p(\mu \mid X)$

Algorithm 2: SDN-based Mitigation - TS with Normal Distribution
Data: $S, \tau, m_0, \lambda_0, m, \lambda, x_Matrix, sum_x_Matrix, \lambda_Matrix, m_Matrix$
Result: selectedStrategy
securityEventCounter = 0;
$\tau = 1, m_0 = 0, \lambda_0 = 1, m = 0;$
$x_Matrix = [], sum_x_Matrix = [], \lambda_Matrix = [], m_Matrix = [];$
while True do
Receive a security alert;
<pre>securityAlertCounter = securityAlertCounter +1;</pre>
selectedStrategy = 0;
$\min = \infty;$
for $strategy \leftarrow 0$ to S by 1 do
posteriorProbabilitySample = $N(0, 1)\sqrt{\frac{1}{\tau}} + m_Matrix[selectedStrategy]$
if <i>posteriorProbabilitySample < min</i> then
min = posteriorProbabilitySample;
selectedStrategy = strategy;
end
end
SDN controller executes selectedStrategy;
$x_Matrix[selectedStrategy] = N(0,1)\sqrt{\frac{1}{\tau}} + \mu;$
$sum_x_Matrix[selectedStrategy] =$
$sum_x_Matrix[selectedStrategy] + x_Matrix[selectedStrategy];$
$\lambda_Matrix[selectedStrategy] = \lambda_Matrix[selectedStrategy] + \tau;$
$m_Matrix[selectedStrategy] = \tau \times sum_x_Matrix =$
$[selectedStrategy]/\lambda_Matrix[selectedStrategy];$
end

$$\begin{split} \mu | X \sim N(m, \lambda^{-1}) \quad \text{Given } \tau \text{ and } \mu \sim N\left(m_{0}, \lambda_{0}^{-1}\right) \\ & \text{standard normal distribution, (i.e., m_{0} = 0 \text{ and } \lambda_{0} = 1)} \\ &= (\prod_{i=1}^{N} \sqrt{\frac{\tau}{2\pi}} e^{\frac{-\tau}{2}} (x_{i} - \mu)^{2}) (\sqrt{\frac{\lambda_{0}}{2\pi}} e^{\frac{-\lambda_{0}}{2}} (\mu - \mu_{0})^{2} \\ &= ([\sqrt{\frac{\tau}{2\pi}}]^{N} e^{-\frac{\tau}{2}} \sum_{i=1}^{N} (x_{i} - \mu)^{2}) (\sqrt{\frac{\lambda_{0}}{2\pi}} e^{-\frac{\lambda_{0}}{2}} (\mu - m_{0})^{2}) \quad p(\mu|X) = \sqrt{\frac{\lambda}{2\pi}} exp(-\frac{\lambda}{2}(\mu - m)^{2}) \\ &= ([\sqrt{\frac{\tau}{2\pi}}]^{N} e^{-\frac{\tau}{2}} \sum_{i=1}^{N} (x_{i} - \mu)^{2} (\sqrt{\frac{\lambda_{0}}{2\pi}} e^{\frac{\lambda_{0}}{2}} (\mu - m_{0})^{2}) \\ &= ([\sqrt{\frac{\tau}{2\pi}}]^{N} e^{-\frac{\tau}{2}} \sum_{i=1}^{N} (x_{i} - \mu)^{2} (\sqrt{\frac{\lambda_{0}}{2\pi}} e^{\frac{\lambda_{0}}{2}} (\mu - m_{0})^{2}) \\ &= e^{-\frac{\tau}{2}} \sum_{i=1}^{N} (x_{i} - \mu)^{2} (e^{-\frac{\lambda_{0}}{2}} (\mu - m_{0})^{2}) \\ &= e^{-\frac{\tau}{2}} \sum_{i=1}^{N} (x_{i} - \mu)^{2} - \frac{\lambda_{0}}{2} (\mu - m_{0})^{2} \\ &= e^{-\frac{\tau}{2}} \sum_{i=1}^{N} (x_{i} - \mu)^{2} - \frac{\lambda_{0}}{2} (\mu - m_{0})^{2} \\ &= e^{-\frac{\tau}{2}} \sum_{i=1}^{N} (x_{i} - \mu)^{2} - \frac{\lambda_{0}}{2} (\mu - m_{0})^{2} \\ &= e^{-\frac{\tau}{2}} \sum_{i=1}^{N} (\mu^{2} - 2\mu x_{i} + x_{i}^{2}) - \frac{\lambda_{0}}{2} (\mu^{2} - 2\mu m_{0} + m_{0}^{2}) \\ &= exp(-\frac{\tau}{2} (N\mu^{2} - 2\mu \sum_{i=1}^{N} x_{i}) + \sum_{i=1}^{N} x_{i}^{2}) - \frac{\lambda_{0}}{2} (\mu^{2} \\ &= exp(-\frac{\tau}{2} (N\mu^{2} - 2\mu \sum_{i=1}^{N} x_{i}) + \sum_{i=1}^{N} x_{i}^{2}) - \frac{\lambda_{0}}{2} (\mu^{2} \\ &= \frac{1}{\tau N + \lambda_{0}} (\tau \sum_{i=1}^{N} x_{i} + \lambda_{0} m_{0}) \\ &- \frac{\lambda_{0}}{2} (m^{2} - 2\mu m_{0})) = exp(-\frac{\tau N + \lambda_{0}}{2} \mu^{2} + \\ (\tau \sum_{i=1}^{N} x_{i} + \lambda_{0} m_{0}) \mu) \\ &\qquad N(m, \lambda^{-1}) \rightarrow N(0, 1) \sqrt{\frac{\tau}{\tau}} + m, \end{aligned}$$

SDN-based Mitigation

Honeypot Security Game

Calculation of the Appropriate Number of Honeypots

Symbol & Notation	Explanation			
N _{max}	The maximum number of the real IIoT/SG assets and			
	honeypots that can be simultaneously connected.			
N	The number of the real IIoT/SG assets and honeypots that are			
	connected.			
$s_{a,i}$	The strategy of the attacker for the i-th host.			
$s_{d,i}$	The strategy of the defender for the i-th host.			
<i>a</i> ₁	The benefit of the attacker for each attack against a			
	real IIoT/SG asset.			
a_2	The cost of the attacker for each attack against a honeypot.			
0-	The cost of the attacker for each attack against any			
a_3	machine (honeypot or not).			
d	The benefit of the defender for each attack against a			
d_1	honeypot.			
d	The cost of the defender for each attack against a real			
d_2	IIoT/SG asset.			
d_3	The cost of the defender for each real IIoT/SG asset which is			
	replaced by a honeypot.			
d_4	The cost of the defender as N increases.			
$U_A[t]$	The utility of the <i>Attacker</i> at the time interval <i>t</i> .			
$U_D[t]$	The utility of the $Defender$ at the time interval t .			
θ	The ratio of N utilised by honeypots.			
4	Portion of the number of hosts (N) that are attacked in the t-th			
ϕ	time interval.			

$$U_A[t] = f(a_{i \in \{1,2,3\}}), \sum_{i=1}^N \frac{(1+s_{d,i})}{2} \times s_{a,i}, \sum_{i=1}^N \frac{1-s_{d,i}}{2} \times s_{a,i}, \sum_{i=1}^N s_{a,i}$$

$$U_{\rm A}[t] = a_1 \sum_{i=1}^{N} \frac{(1+s_{{\rm d},i})}{2} s_{{\rm a},i} - a_2 \sum_{i=1}^{N} \frac{1-s_{{\rm d},i}}{2} s_{{\rm a},i} - a_3 \sum_{i=1}^{N} s_{{\rm a},i}.$$

$$U_{\mathrm{D}}[t] = g\left(d_{i \in \{1,2,3,4\}}, \sum_{i=1}^{N} \frac{(1-s_{\mathrm{d},i})}{2} s_{\mathrm{a},i}, \sum_{i=1}^{N} \frac{(1+s_{\mathrm{d},i})}{2} s_{\mathrm{a},i}, \sum_{i=1}^{N} \frac{(1+s_{\mathrm{d},i})}{2}, N\right)$$

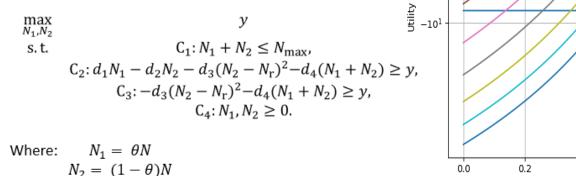
$$\begin{array}{lll} \max_{\phi} & U_{A} & \max_{\theta,N} & U_{D} \\ \text{s.t.} & C_{1}: 0 \leq \phi \leq 1 & \text{s.t.} & C_{1}: 0 \leq \theta \leq 1 \\ & & C_{2}: 0 \leq N \leq N_{max} \end{array}$$

Nash Equilibrium – MaxMin Honeypot Deployment

Calculation of the Appropriate Number of Honeypots

Input

N_r: Number of real connected devices, **N_max**: Maximum number of connected devices and honeypots that can be deployed in an infrastructure in terms of computing resources, **a**: attacker's weights, **d**: defender's weights



Output

a) Number of honeypots to be deployed, b) Number of real devices to be disconnected

When NA does not exist

$$\begin{array}{l} (0, \frac{2d_3N_r - d_4}{2d_3}, 0), \text{ if } 0 \leq \frac{2d_3N_r - d_4}{2d_3} \leq N_{\max} \text{ and } a_1 \leq a_3 \\ (0, 0, 0), \text{ if } \frac{2d_3N_r - d_4}{2d_3} < 0 \\ \left(\frac{d_1 + d_2 + 2d_3N_{\max} - 2d_3N_r}{2d_3N_{\max}}, N_{\max}, 1\right), \text{ if } 0 \leq \frac{d_1 + d_2 + 2d_3N_{\max} - 2d_3N_r}{2d_3} \leq N_{\max} \\ \text{ and } d_1 > d_4 \text{ and } (a_1 + a_2)N_r \geq (a_2 + a_3)N_{\max} + \frac{(a_1 + a_2)(d_1 + d_2)}{2d_3} \\ \left(0, N_r - \frac{d_2 + d_4}{2d_3}, 1\right), \text{ if } \frac{d_1 + d_2 + 2d_3N_{\max} - 2d_3N_r}{2d_3} < 0 \text{ and } a_1 > a_3, \\ \overrightarrow{2}, \text{ elsewhere} \end{array}$$

N = (

— N = 3

- N = 2 - N = 3

• N = 4 • N = 5

N = 6 N = 7 N = 8 N = 9

N = 10

1.0

Defender Utility

Simulation Parameters:

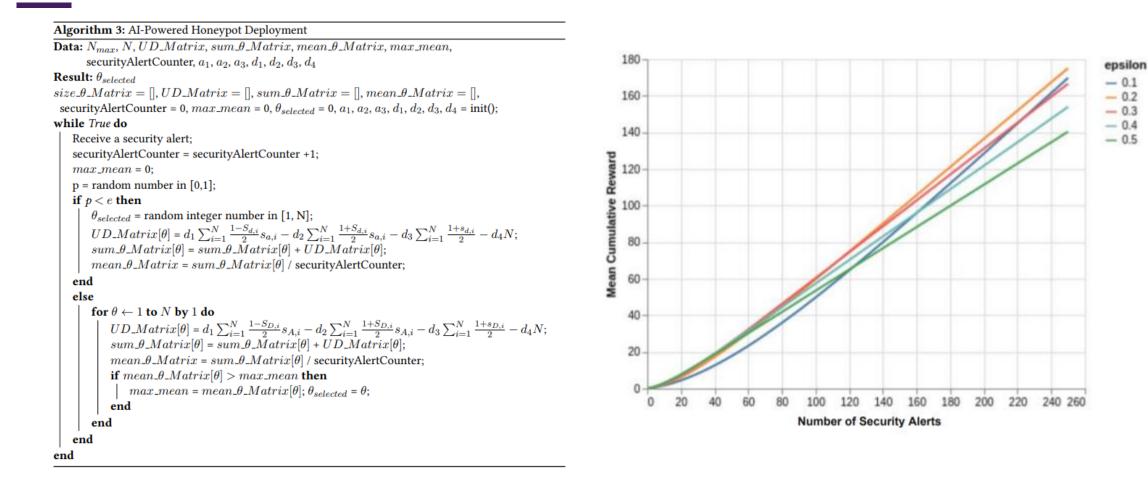
- Nr = 3, Nmax = 1020000 random solutions
- a1 = 0.366, a2 = 0.103, a3 = 0.001
- d1 = 0.1, d2 = 0.744, d3 = 0.941, d4 = 0.04

Results:

N = 10, θ = 0.744

0.4

theta


0.6

0.8

Honeypot Security Game – Al-powered Deployment

Calculation of the Appropriate Number of Honeypots

Conclusions

IoT Security Requirements

New assumptions and constraints about confidentiality, integrity, availability, authenticity and accountability

IoT Security Threats

IoT Threat Taxonomy in a Layered Approach, MITRE ATT&CK, APT against the Energy Sector

Security Countermeasures

IoT Protocols, security mechanisms, Intrusion Detection, Honeypots, SIEM, SDN-mitigation

SDN-enabled SIEM

NF-IDPS, H-IDPS, V-IDPS and NCME

83

Conclusions

NF-IDPS: Network Flow-based Intrusion Detection & Prevention System

Intrusion Detection and Anomaly Detection for many APP-L IIoT Protocols, Parsing APP-L IIoT Protocols, Custom Autoencoder for Anomaly Detection

H-IDPS: Host-based Intrusion Detection & Prevention System

ARIES GAN, Anomaly Detection based on various Operational Data in the Energy Domain

V-IDPS: Visual-based Intrusion Detection & Prevention System

Active ResNet50-based CNN for Modbus/TCP Cyberattacks Detection

NCME: Normalisation, Correlation & Mitigation Engine

Normalisation, Correlation, SDN-based Mitigation, Honeypot Security Game, Nash Equilibrium, MaxMin Honeypot Deployment, AI-Powered Honeypot Deployment

Future Work

Federated Detection

Intrusion Detection, taking full advantage of Federated Learning against

Sophisticated Correlation

MITRE ATT&CK and Association Rule Learning Techniques (Eclat, Apriori)

SDN-based Mitigation

Advanced RL Techniques such as Deep Q Learning, Deep Deterministic Policy Gradient (DDPG) and Twin-Delayed DDPG and Graph Neural Networks (GNNs)

XAI in Cybersecurity

Visual-based XAI, SHAP, DeepSHAP, LIME, etc

Publications in International Scientific

Peer-Reviewed Journals

Publications in International Scientific Peer-Reviewed Journals

- 1. P. I. Radoglou Grammatikis, P. G. Sarigiannidis, and I. D. Moscholios, "Securing the internet of things: Challenges, threats and solutions", Internet of Things, vol. 5, pp. 41–70, 2019, doi: 10.1016/j.iot.2018.11.003.
- 2. P. I. Radoglou-Grammatikis and P. G. Sarigiannidis, "Securing the Smart Grid: A Comprehensive Compilation of Intrusion Detection and Prevention Systems", in IEEE Access, vol. 7, pp. 46595-46620, 2019, doi: 10.1109/ACCESS.2019.2909807.
- **3. P. Radoglou-Grammatikis**, P. Sarigiannidis, T. Lagkas, and I. Moscholios, "A compilation of UAV applications for Precision Agriculture", Computer Networks, vol. 172, p. 107148, 2020, doi: 10.1016/j.comnet.2020.107148.
- 4. P. Diamantoulakis, C. Dalamagkas, P. Radoglou-Grammatikis, P. Sarigiannidis, and G. Karagiannidis, "Game Theoretic Honeypot Deployment in Smart Grid", Sensors, vol. 20, no. 15, p. 4199, Jul. 2020, doi: 10.3390/s20154199.
- **5. P. Radoglou Grammatikis**, P. Sarigiannidis, G. Efstathopoulos, and E. Panaousis, "ARIES: A Novel Multivariate Intrusion Detection System for Smart Grid", Sensors, vol. 20, no. 18, p. 5305, Sep. 2020, doi: 10.3390/s20185305.
- 6. P. Radoglou-Grammatikis, P. Sarigiannidis, E. Iturbe, E. Rios, S. Martinez, A. Sarigiannidis, G. Eftathopoulos, I. Spyridis, A. Sesis, N. Vakakis, D. Tzovaras, E. Kafetzakis, I. Giannoulakis, M. Tzifas, A. Giannakoulias, M. Angelopoulos, and F. Ramos, "SPEAR SIEM: A Security Information and Event Management System for the Smart Grid", Computer Networks, p. 108008, 2021, doi: 10.1016/j.comnet.2021.108008.
- 7. I. Siniosoglou, P. Radoglou-Grammatikis, G. Efstathopoulos, P. Fouliras and P. Sarigiannidis, "A Unified Deep Learning Anomaly Detection and Classification Approach for Smart Grid Environments", in IEEE Transactions on Network and Service Management, vol. 18, no. 2, pp. 1137-1151, June 2021, doi: 10.1109/TNSM.2021.3078381.

Publications in International Scientific Peer-Reviewed Journals

- 8. P. Radoglou-Grammatikis, K. Rompolos, P. Sarigiannidis, V. Argyriou, T. Lagkas, A. Sarigiannidis, S. Goudos and S. Wan, "Modeling, Detecting, and Mitigating Threats Against Industrial Healthcare Systems: A Combined Software Defined Networking and Reinforcement Learning Approach", in IEEE Transactions on Industrial Informatics, vol. 18, no. 3, pp. 2041-2052, March 2022, doi: 10.1109/TII.2021.3093905.
- 9. P. Radoglou-Grammatikis, P. Sarigiannidis, C. Dalamagkas, Y. Spyridis, T. Lagkas, G. Efstathopoulos, A. Sesis, I. L. Pavon, R. T. Burgos, R. Diaz, A. Sarigiannidis, D. Papamartzivanos, S. A. Menesidou, G. Ledakis, A. Pasias, T. Kotsiopoulos, A. Drosou, O. Mavropoulos, A. C. Subirachs, P. P. Sola, J. L. Domínguez-García, M. Escalante, M. M. Alberto, B. Caracuel, F. Ramos, V. Gkioulos, S. Katsikas, H. C. Bolstad, D.-E. Archer, N. Paunovic, R. Gallart, T. Rokkas, and A. Arce, "SDN-Based Resilient Smart Grid: The SDN-microSENSE Architecture", Digital, vol. 1, no. 4, pp. 173–187, Sep. 2021, doi: 10.3390/digital1040013.
- I. Nwankwo, M. Stauch, P. Radoglou-Grammatikis, P. Sarigiannidis, G. Lazaridis, A. Drosou and D. Tzovaras, "Data Protection and Cybersecurity Certification Activities and Schemes in the Energy Sector", Electronics, vol. 11, no. 6, p. 965, Mar. 2022, doi: 10.3390/electronics11060965.
- **11.** P. Radoglou-Grammatikis, P. Sarigiannidis, P. Diamantoulakis, T. Lagkas, T. Saoulidis, E. Fountoukidis and G. Karagiannidis, "Strategic Honeypot Deployment in Ultra-Dense Beyond 5G Networks: A Reinforcement Learning Approach", in IEEE Transactions on Emerging Topics in Computing, 2022, doi: 10.1109/TETC.2022.3184112.
- **12.** P. Radoglou-Grammatikis, P. Sarigiannidis and G. Efstathopoulos, T. Lagkas, A. Sarigiannidis, V.Mladenov, N. Siaxabanis, "Defending Industrial Internet of Things Against Modbus/TCP Threats: A Combined AI-Based Detection and SDN-Based Mitigation Solution", in Internet of things, 2022.

Publications in International Scientific

Peer-Reviewed Conference Proceedings

Publications in International Scientific Peer-Reviewed Conference Proceedings

- 1. P. I. Radoglou-Grammatikis and P. G. Sarigiannidis, "Flow anomaly based intrusion detection system for Android mobile devices", 2017 6th International Conference on Modern Circuits and Systems Technologies (MOCAST), 2017, pp. 1-4, doi: 10.1109/MOCAST.2017.7937625.
- 2. P. I. Radoglou-Grammatikis and P. G. Sarigiannidis, "An Anomaly-Based Intrusion Detection System for the Smart Grid Based on CART Decision Tree", 2018 Global Information Infrastructure and Networking Symposium (GIIS), 2018, pp. 1-5, doi: 10.1109/GIIS.2018.8635743.
- **3. P. Radoglou-Grammatikis**, P. Sarigiannidis, T. Liatifis, T. Apostolakos and S. Oikonomou, "An Overview of the Firewall Systems in the Smart Grid Paradigm", 2018 Global Information Infrastructure and Networking Symposium (GIIS), 2018, pp. 1-4, doi: 10.1109/GIIS.2018.8635747.
- 4. P. Radoglou-Grammatikis, P. Sarigiannidis, I. Giannoulakis, E. Kafetzakis and E. Panaousis, "Attacking IEC-60870-5-104 SCADA Systems", 2019 IEEE World Congress on Services (SERVICES), 2019, pp. 41-46, doi: 10.1109/SERVICES.2019.00022.
- G. Efstathopoulos, P. Radoglou-Grammatikis, P. Sarigiannidis, V. Argyriou, A. Sarigiannidis, K. Stamatakis, M. K. Angelopoulos and S. Athanasopoulos, "Operational Data Based Intrusion Detection System for Smart Grid", 2019 IEEE 24th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD), 2019, pp. 1-6, doi: 10.1109/CAMAD.2019.8858503.
- 6. P. Radoglou-Grammatikis, P. Sarigiannidis, A. Sarigiannidis, D. Margounakis, A. Tsiakalos and G. Efstathopoulos, "An Anomaly Detection Mechanism for IEC 60870-5-104", 2020 9th International Conference on Modern Circuits and Systems Technologies (MOCAST), 2020, pp. 1-4, doi: 10.1109/MOCAST49295.2020.9200285.

Publications in International Scientific Peer-Reviewed Conference Proceedings

- 7. P. Radoglou-Grammatikis, I. Siniosoglou, T. Liatifis, A. Kourouniadis, K. Rompolos and P. Sarigiannidis, "Implementation and Detection of Modbus Cyberattacks", 2020 9th International Conference on Modern Circuits and Systems Technologies (MOCAST), 2020, pp. 1-4, doi: 10.1109/MOCAST49295.2020.9200287.
- P. Radoglou Grammatikis, P. Sarigiannidis, E. Iturbe, E. Rios, A. Sarigiannidis, O. Nikolis, D. Ioannidis, V. Machamint, M. Tzifas, A. Giannakoulias, M. K. Angelopoulos, A. Papadopoulos and F. Ramos, "Secure and Private Smart Grid: The SPEAR Architecture", 2020 6th IEEE Conference on Network Softwarization (NetSoft), 2020, pp. 450-456, doi: 10.1109/NetSoft48620.2020.9165420.
- 9. P. Radoglou-Grammatikis, P. Sarigiannidis, G. Efstathopoulos, P.-A.Karypidis, and A. Sarigiannidis, "Diderot: An intrusion detection and prevention system for dnp3-based scada systems", in Proceedings of the 15th International Conference on Availability, Reliability and Security, ser. ARES '20.New York, NY, USA: Association for Computing Machinery, 2020, doi: 10.1145/3407023.3409314.
- 10. V. Mladenov, V. Chobanov, P. Sarigiannidis, P. I. Radoglou-Grammatikis, A. Hristov and P. Zlatev, "Defense against cyberattacks on the Hydro Power Plant connected in parallel with Energy System", 2020 12th Electrical Engineering Faculty Conference (BulEF), 2020, pp. 1-6, doi: 10.1109/BulEF51036.2020.9326016.
- **11.** P. Radoglou-Grammatikis, P. Sarigiannidis, G. Efstathopoulos, T. Lagkas, G. Fragulis and A. Sarigiannidis, "A Self-Learning Approach for Detecting Intrusions in Healthcare Systems", ICC 2021 IEEE International Conference on Communications, 2021, pp. 1-6, doi: 10.1109/ICC42927.2021.9500354.

Publications in International Scientific Peer-Reviewed Conference Proceedings

- **12.** P. Radoglou-Grammatikis, A. Liatifis, E. Grigoriou, T. Saoulidis, A. Sarigiannidis, T. Lagkas and P. Sarigiannidis, "TRUSTY: A Solution for Threat Hunting Using Data Analysis in Critical Infrastructures", 2021 IEEE International Conference on Cyber Security and Resilience (CSR), 2021, pp. 485-490, doi: 10.1109/CSR51186.2021.9527936.
- **13.** P. Radoglou-Grammatikis, C. Dalamagkas, T. Lagkas, M. Zafeiropoulou, M. Atanasova, P. Zlatev, A-A. Boulogeorgos, V. Argyriou, E. K. Markakis, I. Moscholios and P. Sarigiannidis, "False Data Injection Attacks against Low Voltage Distribution Systems", 2022 IEEE Conference and Exhibition on Global Telecommunications (GLOBECOM), 2022.
- **14. P. Radoglou-Grammatikis**, M. Zafeiropoulou, M. Atanasova, P. Zlatev, S. Giannakidou, T. Lagkas, A-A. Boulogeorgos, V. Argyriou, E. K. Markakis, I. Moscholios and P. Sarigiannidis, "False Data Injection Attacks against High Voltage Transmission Systems", 2023 IEEE International Conference on Communications (ICC), 2023.

Book Chapters

Panagiotis Radoglou Grammatikis PhD - Security and Privacy in the Internet of Things

Book Chapters

1. P. Radoglou-Grammatikis and P. Sarigiannidis, "Chapter 5: Network Threats, Book: CyberSecurity Threats, Actors, and Dynamic Mitigation", 2021, doi: 10.1201/9781003006145.

Other Authoring Activities

Other Authoring Activities

- 1. P. Sarigiannidis, G. Kakamoukas, D. Pliatsios, P. Radoglou-Grammatikis, A. Traintafyllou, Η Αρχιτεκτονική SPEAR, European Union's Horizon 2020 Framework Programme For Research and Innovation, 2018.
- 2. P. Radoglou-Grammatikis and Panagiotis Sarigiannidis, "Secure and Private Smart Grid: The SPEAR Project ", in The Project Repository Journal (PRj), 2021.
- **3. P. Radoglou-Grammatikis**, T. Lagkas and Panagiotis Sarigiannidis, "Secure and resilient electrical power and energy systems: the SDN-microSENSE project", in The Project Repository Journal (PRj), 2021.

Datasets

Panagiotis Radoglou Grammatikis PhD - Security and Privacy in the Internet of Things

Datasets

- 1. P. Radoglou-Grammatikis, T. Lagkas, V. Argyriou and P. Sarigiannidis, September 23, 2022, "IEC 60870-5-104 Intrusion Detection Dataset", IEEE Dataport, doi: 10.21227/fj7s-f281.
- 2. Panagiotis Radoglou-Grammatikis, Vasiliki Kelli, Thomas Lagkas, Vasileios Argyriou, Panagiotis Sarigiannidis, November 22, 2022, "DNP3 Intrusion Detection Dataset", IEEE Dataport, doi: https://dx.doi.org/10.21227/s7h0-b081.

Honors & Awards

Panagiotis Radoglou Grammatikis PhD - Security and Privacy in the Internet of Things

Honors & Awards

- Best Paper Award G. Efstathopoulos, P. Radoglou-Grammatikis, P. Sarigiannidis, V. Argyriou, A. Sarigiannidis, K. Stamatakis, M. Angelopoulos and S. Athanasopoulos, «Operational Data Based Intrusion Detection System for Smart Grid», in IEEE International Workshop on Computer Aided Modeling and Design of Communication Links and Networks, Limassol, Cyprus, 2019, pp. 1-6.
- 2. Best Student Paper Award P. Radoglou-Grammatikis et al., "TRUSTY: A Solution for Threat Hunting Using Data Analysis in Critical Infrastructures," 2021 IEEE International Conference on Cyber Security and Resilience (CSR), 2021, pp. 485-490, doi: 10.1109/CSR51186.2021.9527936.
- **3.** Editor's Choice Article The paper entitled "ARIES: A Novel Multivariate Intrusion Detection System for Smart Grid" was selected by the MDPI Sensors Editors-in-Chief as a work of particular interest, and was deemed to be highly important in its research area.
- 4. Top 2% of Scientists in the World for 2022 in Stanford University's List Ioannidis, John P.A. (2022), "September 2022 dataupdate for "Updated science-wide author databases of standardized citation indicators", Mendeley Data, V4, doi: 10.17632/btchxktzyw.4

Thank You & Q/A

Contact

pradoglou@uowm.gr

https://ithaca.ece.uowm.gr/el/

https://www.linkedin.com/in/panagiotisrg/ ?originalSubdomain=gr

https://orcid.org/0000-0003-1605-9413

Thank You

Q/A

This PhD thesis has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreements No. 787011 (SPEAR), No. 833955 (SDN-microSENSE), No. 957406 (TERMINET) and No. 101021936 (ELECTRON).

