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Abstract

In the digital era of smart economies, the Internet of Things (IoT) plays a significant role in Criti-
cal Infrastructures (Cls), providing several benefits such as improved productivity, efficient operation
management and self-healing. However, this rapid evolution raises severe security and privacy issues,
especially in critical environments. In particular, on the one hand, [oT introduces a set of new and
heterogeneous technologies that rely on the vulnerable Internet model (Transmission Control Pro-
tocol/Internet Protocol (TCP/IP) networks). On the other hand, Industrial IoT (IloT) environments
are characterised by the presence of legacy systems that are prone to a wide range of security weak-
nesses and vulnerabilities. For instance, industrial communication protocols, such as Modbus/TCP,
Distributed Network protocol 2 (DNP3) and [EC 60870-5-104 do not include any authentication and
authorisation mechanisms. Therefore, cyberattackers are able to execute unauthorised activities, such
as Man In The Middle (MITM) and Denial of Service {IDoS) attacks. In addition, the TloT-based Cls are
an attractive target for a growing number of cyberattackers and Advanced Persistent Threats (APTs).
Characteristic APT campaigns are Industrover (also known as Crashoverride), Stuxnet and TRITON.
Finally, it is worth mentioning that [IoT" is characterised by constrained computing resources that do

not allow the deployment of conventional security mechanisms.

Based on the aforementioned remarks, it is evident that the presence of appropriate defensive mecha-
nisms for the IoT paradigm is necessary. Therefore, the main goal of this PhD thesis is to investigate
the security and privacy issues of loT, providing effective security solutions. After the introductory
chapter to this PhD thesis {Chapter 1), the security requirements, challenges and threats are examined
in Chapter 2, paying special attention to the unique characteristics and constraints of the IoT entities.
In particular, a new loT threat taxonomy is provided, utilising the Common Attack Pattern Enumer-
ation and Classification (CAPEC) system, while also the efficiency of the existing countermeasures is
analysed. It is noteworthy that both academia and industry have provided sufficient solutions, such as
the encryption and authorisation mechanisms of the IoT communication protocols. However, they can-
not be adopted in [loT ecosystems due to the role of Industrial Control Systems (ICS) and Supervisory
Control and Data Acquisition (SCADA) systems. Consequently, the presence of Intrusion Detection

and Prevention Systems (IDPS) is necessary.

According to the countermeasure analysis of Chapter 2, next, Chapter 3 focuses on intrusion detec-
tion and mitigation mechanisms. In particular, a special emphasis is given to the architectural design
and specifications of IDPS. In addition, the categories of IDPS are analysed, taking full advantage of
Artificial Intelligence (Al) techniques. Moreover, mitigation and resilience mechanisms like honey-
pots and Software-Defined Networking (SDNj) are discussed. Finally, this chapter analyses the role of
Security Information and Event Management (SIEM) systems in [o], paying special attention to the

normalisation and correlation of the various security events.



Next, in Chapter 4, a thorough analysis of the intrusion detection and mitigation mechanisms in the
smart electrical grid (or Smart Grid (SG)) follows. In particular, SG is the largest [oT application, includ-
ing multiple architectural elements, such as the Advanced Metering Infrastructure (AMI), ICS/SCADA
systems, substations and synchrophasors. Therefore, for each of the previous SG elements, relevant
intrusion detection and mitigation solutions {such as IDPS, honeypots and SIEM) are studied in terms
of their architecture and detection performance. Based on this comparative analysis, the strengths
and limitations of the existing solutions are further discussed, thus guiding the implementation of the

proposed SDN-enabled SIEM in the following chapter.

Subsequently, Chapter 5 presents the proposed SDN-enabled SIEM, which is composed of three IDPS,
namely (a) Network Flow-based [DPS (NF-IDPS), (b) Host-based IDPS (H-IDPS) and (¢) Visual-based
IDPS (V-IDPS). First, NF-IDPS incorporates multiple ML and DL meodels that can discriminate cyber-
attacks and anomalies against a wide range of industrial communication protocols. Next, H-IDPS can
recognise operational anomalies against four SG environments: (a) hydropower plant, (b) substation,
(c) power plant and (d) smart home. Finally, V-IDPS can detect Modbus/TCP cyberattacks, using visual
representations and Convolutional Neural Networks (CNNsj. It is worth menticning that the proposed
V-1IDPS follows a self-learning approach that can re-train the pre-trained CNN during the inference
mode. The security events of the previous IDPS are normalised, correlated and mitigated by the Nor-
malisation, Correlation and Mitigation Engine (NCME). For the correlation process, custom security
rules are used, while mitigation relies on the SDN controller. In particular, NCME adopts a Reinforce-
ment Learning (RL) agent, which guides the SDN controller about the appropriate mitigation actions.
Finally, NCME includes a sophisticated honeypot deployment mechanism, which relies on a honey-
pot security game between two players: (a) attacker(s) and (b) defender(s). For the previous honeypot
security game, the Nash Equilibrium (NE) is identified, while when NE is not available based on the
parameters of the game, two alternative approaches are provided: (a) maxmin-based honeypot devel-

opment and Al-powered honeypot deployment.

Then, after the description of the proposed detection and mitigation solutions, Chapter 6 summarises
the respective evaluation results. In particular, first, a concrete evaluation framework is defined, intro-
ducing (a) the evaluation environments, (b) the datasets, (¢) comparative methods and {d) the evalua-
tion metrics. Next, the evaluation results for each component of the proposed SDN-enabled SIEM are

summarised and discussed, while Appendices M-N provide a detailed comparative analysis.

Finally, Chapter 7 concludes this PhD thesis, providing also potential directions for future research
work in this field. In particular, after discussing the key results studied and implemented in the con-
text of this PhD programme, next, five research directions for future work are discussed: {a) Intrusion
and Anomaly Detection using Federated Learning (FL), (b) Correlation Mechanisms using Association
Learning, (c) RL-based Mitigation Strategies, (d) SDN-powered recovery mechanisms using Graph Neu-
ral Networks (GNN) and (e) Explainable Al (XAI) Techniques for Al Detection and Mitigation Models.



Keywords: Artificial Intelligence, Cybersecurity, Industrial Control Systems, Internet of Things, In-

trusion Detection, Intrusion Prevention, Privacy, Software-Defined Networking



[MepiAnyn

211 ymeprocen) oy Tev $Eumvey owovopdy, 7o Awedintuo tov Hpaypdrov (Atll) (Internet of Things
- IoT) SioedporpoetiCel onpovtnd pdro otov x0uAo Lwhg Twv xploiwy vTodopoy, Topéy ovtag Suupo-
POL TTAEOVEXTI HOCTO, OTTC 1) PEATULEVT) TTOpOry oy AN Tor, AT peaie cutodepamelog wol Suvatdtnteg
cepLféotepou ehéyyou won Suweyeiplong. Qordoo, 1) paydodie e£EMEN Tov emovOVIOHOY CLOTNPETWY
eyeipel cofoapl {nTpate aogdislog, »uplng ot Plopnyovikd owosuothpete. Ebdwdrepa, 1o Atll
elodryel £vee SOVOAD €TEPOYEVAV TEXVOAOYLAV, OL OToieg XpNolonooby to cupfotied povrédo Tov
dwxduetov (Internet), To dmoto yopertnpileton amd éva peyéro ebpog evmodewdy. Eniong, ta Plopn-
KOVE O OSVSTIHOTE X po T pllovron amd Ty mopovsio SUpPa Ty SueThpdtoy, To omole elvat
emippenh ot éve eupl oo aduveldy rol eumadeldy copdieiog. Do mopdderypoe, To Propnyevisd
TPOTOROAANL eMMOVEVioG Sev mepLAUUPEVOLY U YEVISHOUE TISTOMONGN G TOLTOTNTHS ol E0UG10-
dotnornc. Emopévewg, mavol emitidépevol éxouy T SuvatodTnTe vor exTerfoovy enL3EcEeLg dpvnong
vanpesiav (Denial of Service — DoS) ko « Avdpamow Xm Méon» (Man In The Middle - MITM). Exniong,
ol xploeg vodopég amotehovy évoy eAuvaTind oTdyo Yyl fvoy cvfovopevo opldpd kvPepvoemiti-
Dépevav, ol omolol Stvovro vor oxedidlouy kol vor exTEAOTV MPOYPOULHOTISHEVE PO YHEVES EMIPOVEG
amelhég (Advanced Persistent Threats - APT) . Xoporznpiotnd mapodeiypote APT amoteholy oL ex-
otporeiec: Industroyer, Stusnet wot TRITON. Téhog, afiCel va onpewsdel mog 7o Al yaportnpileta
amd MEPLOPLOPEVOLG UIOACYLOTIHONG mhpoug, oL omolol Sev emizpémovy TNy avéntull cupPetindy

HI XV IS ey aopdhelag,

Me Béorn Tig npocvogepdeioeg mopatnphoelg, elvol mpogavig 1 amapoitnTh noepovsio xatdrinioy
HIXoevIs v aopddelag yioe 7o ATLL Zovendg, o nbplog otdyoc ¢ napotoug Sidoutopwig St pLptig
elvoel 1) Stepetiviot) Twv TNTnpdtoy eopdieg kol WiwtwdTntog oto Atll, mepéyovrag amoteAecjlo-
g Aboelg aopahewng. Emopéveog, petd 1o Kegddoto 1, to onolo amotehel Tnv ewcaywyf| ornv
mapotaa Sidotopnn) ST plpn, Aapovaidlovtag Toug oToyouG, T pedodoroyle, ™ cvvelspopd kot
71 Sopf] TNG epYROLUS, Ol WMAUITAOELS, TPORATELS KEll OL RTELALS Ao piAelng oTo oioooTpe Tou ATl
eEeTérlovron avahTnd oto Kegpddono 2, Slvovrag Bwxilrepn mposoyn ot 18wite por 3o posetn plaTind
HO(L TOUG MEPLOPLOHOVG TV OVTOTHTwY 670 ooc ot Tov ATl Zuyuexpipéve, mopéyeton pioe véo
TocEvdun ot Teov amelidv Tov ATl aflomowbvrog to otatue (Common Attack Pattern Enumeration
and Classification - CAPEC), evd avodletal entiong 1) amoTeAeCpoTudTNTO TRV VPLOTEPEVDV CEVTL-
HéTpwv. AELe vor onpelodel 6TL TOGO 1) auodTHainn xoWdTTa G o xorl 1) flopnyevier £Xouy avamTtisl
AMOTELECPOTIEG ADTELG OOPHALLOG, HTLWS OL PITXOVIOHOL ¥ pLTTOYpouptong kol efovaloddTnoTg Twy
TpeToRdAAV emolveviag Tov Atll (Qotdoo, ol vgustduevol pnyoviapol aogéieicg Sev éxouy
duvardTnTo vor vodetndodv A pwg oe Plopnyovied mep PaAiiovte Adyw Tov avaryraiov pdAov Twv
Zuatnpétey Blopnyavuot EAéyyou (Industrial Control Systems - [CS) »ol twv Zvamnuétoy Enonti-
1ol EAéyyou not Zviroyhc Aedopévey (Supervision Control And Data Acquisition - SCADA). Katé
SUVENELX, T e pousic ZuoTpdroy Aviyvevang xol [lpdanymg Ewsforov (ZALIE) (Intrusion Detection

and Prevention Systems - IDPS) eivol anopaiznTn.



Me Péon v oaveALST) TV GULVTIHGY UXEVISHOV OTO TRONYOUHEVO KEPHANLD, ST SUVEXELX TO
Kegodhowo 3 emutevrpovetot oty aviyveuon xow tpodinyn sicfordv. Auxpféctepa, Siepevvétal o
APRLTERTOVIRG POVTEAD Mol oL Mpodloypopés Tev suoTnpdtov ZAIIE, avoeitovtag TI¢ xatnyopleg
Toug pe Péorn Tig pedddoug aviyvevong xot Ty Tonoditnon tovg. Eniong, Wbwxitepn épgpaot divetat
ot texvinég Texvn e Nonpoostwng (Artificial Intelligence — Al), ou omolec Stvorvran ver epopposToty
amd o svaTiuata ZALE ywo v avayvaplon wuPepvosmiltéceny wol oveopaildy, Emumiéoy, ove-
Abovtol pnyeviopol mpoAinyng ewPforav, dmwg oL moyideg ewoPorov (honeypots) xow oL pnyevicpol
nodopldpevol amd roylopwd (Software-Defined Networking - SDN). Téhoc, oto ouyrerpylévo ne-
paholo avahbetal o pdrog Ty Zuotnpdtov Awgyelpiong IIAnpogopdv xol Zupfovtov aogpdhelog
(ZAIIXA) (Security Information and Event Management -SIEM) ota owosvatripota Atll, eotidd ovrog

OTIG HEFOAOUG KAVOVIXOTOIN TG Kol CLOYETIONG Ty Slepd prv cUPPavTwy aophiaixg.

21 ovvéxelr, 010 Kegddoio 4, oxorovdel pior Stelodnt] orvdAuoT) Teov WX OVISHGY avixveran g Kol
npdinyn ewoPorav oe mepiparrovro ‘EEvmvay Autdwv Hientpoddtnone (EAH) (Smart Grid - SG).
Zuyrerpipéve, 1o cvotipore EAH amorehoty n peyarldtepn sqoppoyn tov ATl mepidopfévovrog
TOAAUITAL CPXLTERTOV MY ovoToTd, dmwg 1) Ilponypéveg Ynodopég Mérpnong (Advanced Metering
Infrastructure - AMI), 7o svoTApeTa Blopnyervstod sA&yxor, oL VITOGTEIIOL KoL OL SUYXPOVIGTEG, Zu-
VETLOG, Yo xoedEve ammd To LPOT YOUHEVH XPYLTEXTOVIHG GToLXEl Ty SvoThpdTwy EAH peietdvran
oyeTnég Aboelg aviyvevang kol mpdanymg ewofordv (dmwe ZALIE wo moyldeg ewoPoioy), sotélo-
VTOG OTNY opyLrentovint xol Ty amddoot) toug. Emopéveoc, pe Péon outh Tn cuykplzu avidoor,
BlepeuvdvToL TEPALTEPE TOL MALOVEXTIUGTH KL OL MEPLOPIOUOL TV TPLeTEPeveY AlTewy, Kododh)-
yoOVTHG £TGL TNV vAoToineT tov mpotewdpevon ZAIIZA pe Svvatdrnteg nodoplldpevor AoyIopixod

UOL TEXVNTHG VONHOCUVIG OTO emOpeEVe xepdholo.

21 ovvéxelr, oto Kepdholo 5 mapovsudderol to apotsvdusvo ZAIXA, 1o onolo amoteieiton wmd
zpice ZAITE: (o) 2ALIE pe Péon dietvaxésg poég, (B) ZAIIE pepovopévoy cvotnpatoy xo (y) SATIE
pe SuvoetdTnTeg OMTWOmoINGNG. Apywd, 10 mpidTo ZALE evowpatdvel MOAAGTAR LOVTEAD [T XOVL-
uAG neet Podxg pécdnonc, oo omolor Soveevrot v dwosepivouy xuPepvoemidicelg ol cevawpodieg fvarvTt
£vOG EVPEDC PUSHUATOC PLOPTXAVIXGY TPWTORGAAWDY EMMOLVvicg. 2Tn suvéyelr 7o dehrepo ZAIIE
propel voo avaryvwpioel Aettovpyméc cevwpodleg Evavtl teocabpoy nepPouriovroy EAH: (o) vdpon-
Aentpund epyostioio, (B) vmootadpds, (y) oTtodpog mopaywyng NAerTpnng evépyslag xot (8) ¢éEvmvo
onit.. T¢hog, to ZAIIE pe SvvatdTnteg ontivomoinorng dovotol voe aviyveboel xuPfepvoemdécelsg woe-
Té TOV MpwToxdAAOL emolvaviog (Modbus/TCE), ypnoHOmOLOVTOG OMTINEC VETTAPRSTHSELS KAl
ouvenTuypévo vevpovued divtvo. ALilel va onpewodel 6T 70 mpotewvopevo ZATIE pe Svvatdrnreg
ontwonolnong axorovdel et Tpostyylon LToeRIOON oG, N omola SUverTol vor emorverTondetel To
TPO-eTMOUSEVUEVO GUVETITUYHEVD VELpwVIKO BlxTuO roetd T1) Sudprele Tng Aettovpylog mpofatfewy ot
mporypaTind xpovo. To svpPdvro aogpdrewng v mponyotpévay ZAILE kovoviomolobvrol, cuoye-
Tilovrol ol perpedovrol amd n Mryov Kovoviomolneong, Zuayétiong xat Merploopot (MKEM).
Zoyuerpipéve, v tr) Siaediva oo SUoYETIO NG X PO LIOTOLO0VIHL TP OC U PHOSHEVOL KavOVES TPAAELXG,

EVEG 0 peTplaspdg Pasiletal oy Texvoroyla xadoplldpevn amd Aoylopxd, Xuyrenpuéve, 1 MKEM



viodetel évay mpdutopo eVaYLTIHNG PaONoTE, 0 omolog xoedodnyel v Texvoroyic xadoplldpewn
amd Aoylopud oxeTwmd pe T xordhhnieg cpuvrmic evépyeteg. TéAog, 1 MEKEM mepihoapBéver éveey
eEeALYPEVO PN yorvIopd avémTudng moyidov sisfoldy, o omolog Paciletal o évor oy vidL opdrieiog
petaeEd Sto monwrdw: (o) emmdépevog(-on) ko (B) apuvopevog-oy). Do To mponyolbusvo maiyvio,
npocsdlopileral 1 wopponia (Nash), sve dtoy 1 wopporio (Nash) Sev sivo Swodéoun pe Péon g
TAPAPET POV TOL Moy viov, mopéyovrol S0 evoddouTég mposeyyloels: (o) ovémtuln mayldawv s
offoidv pe Pon aviioon peylotomolnong xo ehaylotomoinong ke (B) aviorzuln moyidov seioPohdy

He Péon TexvnTr] vonposhv.

2t ouvvéyewr, HeTd TNV mepLypagl] Ty mpoTetvdpeveoy Aboewy aviyvevorng ol mpdinmng, to Ke-
péhoLo 6 suvolilel Ta avtioroya amotehéopata cflordynone. Edwdrepo, apyund opileton évo ou-
yrexplpévo micioo aflohdynong, napovasdlovtog (o) To meplBaiiovro abloidynong, (B) Ta octvola
dedopévav, (y) Tic suyrprrwée pedddovg o (8) Tig petpueéc abloddynone. Xtn cuvéysla, svvoyilo-
vroel kol SlepevvdvTol Tor amoteAiopata afloAoynaong yie xilde cuaTaTind oTolXelo TOV TpoTELVOpLE-
vou ZAIIYA pe Suvvatdtnto xadopllopevn amd Aoyispnd, evedr oo mapopTipote M-N mopéyouy

AETTONEPT TLUYRPITIKY CEVEALCT.

Térog, 70 Kegpdhono 7 chondnpovel mnv mopotse Sidontopwn Swtplfn, mapéyovroag enione mba-
véG HaTeLDUVOELG Yot LeAAOVTIHES epELVITIHEG epyaoieg oTo ovyrerppévo Topéa. Eidudtepe, oupod
sulnmoodv 1o Pacwd anotsAéoparo o peAet)Onuoay kol vAomomdnroy oto mAalclo Tov mo-
povTog SIdouToP oD TPOYPEPPKTOS, OTI CUVEXELX, CVEADOVTUL TTEVTE EPEUVITIXEG RUTEVTOVOELS YLOL
HEAAOVTIMEG epeLVITWEG mpoomddeleg: (o) Aviyvevon ElsPfoldv no Aveopaiidv e Xprion Oposmov-
Bduwnrig Méwdnong, (f) Mnyaviopol Zvoyétiong pe Xprjon Méadnong Zvoyeticewy, (y) ZTpatnymig
Mezpraopot pe Teyxvinég Evioyvtieig Médnorne, (8) Mnyoviopol Avéxrznong pe xphion Texvohoylog
Kodoplopevng amd Aoyiopud pe Xpron Nevpoviedy Authov Ipégov ko (8) Teyxvinée EERynong kot
Avéadvong Texvnthg Nonpoovng yiee Movtého Avixvevong kot Merplaopot Texvntig Nonpootvnc.

AgEerg Kierdd: Aviyvevon EwsBoidv, Bopnyevud Zvotrpore EAfyyov, Awedibervo twv Hpoypdroy,
Buorwdtnre, KuPepvoaagdiew, [Ipdinym EwPordv, Texvnt Nonpostvn, Texvoroyla Kadoplldpe-

Vi) oo AoYLoHO
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Chapter 1

Introduction

This chapter provides an introduction to this PhD thesis, describing (a) the motivation, (b) the objec-
tives, (¢) the methodology and (d) the contributions and finally, {e) the structure ofthis thesis. Therefore,
first, the motivation behind this PhD program is provided, considering the wide range of threats and
vulnerabilities that characterise the overall Internet of Things (IoT) ecosystem. Next, the objectives of
this thesis are enumerated and described. In particular, four main objectives are determined, guiding
the definition and implementation of the relevant security solutions developed in this thesis. Next,
the methodological framework is presented. Then, based on the implementation and validation ac-
tivities, the contributions of this thesis are briefly described. Moreover, it is worth highlighting that
a list of publications ((a) published papers in international scientific peer-reviewed journals, (b) pub-
lished papers in international scientific peer-reviewed conference proceedings, (¢) book chapters and
(d) datasets) that support the achievements of this thesis is provided. Finally, the structure of this thesis

is presented.

1.1 Motivation and Objectives

The technological leap of the IoT leads the Critical Infrastructures (Cls) and, in general, the operational
environments into a new digital era with multiple benefits, such as self-monitoring, self-healing and
pervasive control. However, this evolution raises severe cybersecurity and privacy issues due to the
heterogeneous nature of smart and legacy entities. In particular, the operation of legacy systems re-
lies on insecure communication protocols. On the other hand, the smart technologies can result in
new security threats and vulnerabilities. In addition, it is worth mentioning that the vast amount of
data generated by smart devices, such as sensors and actuators, is an attractive target for potential
cyberattackers, while making harder the security and information management of various entities. A

cybersecurity incident against a sensitive loT environment can result in disastrous consequences. A



characteristic example was the Advanced Persistent Threat (APT) against a Ukrainian substation, lead-
ing to a power outage for more than 225, 000 people [180]. Other relevant APTs were Stuxnet [23],
Duqu [23], Flame [23], Gaus [23], DragonFly [23], WannaCry [11] and TRITON [98].

Consequently, it is evident that the presence of reliable detection and mitigation mechanisms is nec-
essary. First, despite the efficiency of the conventional methods, it is evident that they cannot predict
and discriminate zero-day cyberattacks. On the other hand, although Artificial Intelligence (Al) and
particularly Machine Learning (ML) and Deep Learning (DL) solutions have already proved their capa-
bility to detect unknown cyberattacks and anomalies, the operational characteristics and constraints
of the IoT environments make the use of ML and DL models challenging [139]. In particular, the ToT
ecosystem includes multiple sensitive infrastructures and entities that cannot allow the generation
and distribution of the necessary datasets for the ML and DL solutions. Furthermore, these datasets
are rarely available, especially in the case of Industrial loT (IloT) environments. This fact complicates
the cybersecurity analysts to construct appropriate intrusion detection datasets and train their models.
Moreover, the heterogeneous nature of the loT ecosystem makes the implementation of such models
harder since each IoT environment is characterised by different attributes. Therefore, based on the

aforementioned remarks, the following objectives of this thesis are defined.

Objective #1: Threat Identification in the Internet of Things

The first objective of this thesis refers to identifying and studying the security threats in the [oT. First,
the security requirement and challenges are identified, taking into account the unique nature and op-
erational characteristics of the loT entities. Next, depending on the architectural layers of the IoT
(Perception Layer, Communication Layer, Support Layer and Business Layer) and the characteristics
of the IoT applications, the corresponding security threats are listed and analysed. In particular, after
a study of the loT services and applications, special emphasis is given to malicious activities against
the smart electrical grid (Smart Grid (8G)), which is the largest application in the IoT ecosystemn [183].
In addition, complex cyberattacks are investigated in terms of identifying the multiple attack steps.
For this purpose, threat and risk analysis techniques (such as Attack Defence Trees (ADT), Common
Vulnerability Scoring System (CVSS) and Open Web Application Security Project (OWASP) risk rating
methodology), security rules and specifications are also investigated in order to estimate the severity of
actual cyberattacks supported by available and custom penetration testing tools (e.g., Smod, Metasploit,

Nmap and THC Hydra).

Objective #2: Countermeasure Analysis in the Internet of Things

After the identification and analysis of the security threats in the IoT, the second objective of this the-
sis focuses on identifying and studying relevant security solutions and countermeasures. A similar
approach is utilised by identifying the appropriate countermeasures for each architectural layer. In
particular, for each layer, the strong and weak points of each countermeasure are described. A special
emphasis is given to the security mechanisms of the ToT communication protocols, such as the encryp-

tion methods of Institute of Electrical and Electronics Engineers (IEEE) 802.15.4, IPv6 over Low-Power



Wireless Personal Area Networks (6 LoWPAN]), Routing Protocol for Low-Power and Lossy Networks
(RPL) and Datagram Transport Layer Security (DTLS). In addition, the critical role of intrusion detec-
tion and prevention mechanisms in the [oT is highlighted. More specifically, a comprehensive analysis
of the current Intrusion Detection and Prevention Systems (IDPS) for the IoT paradigm is conducted by
identifying their requirements and weaknesses. Finally, the role of novel technologies, such as Software
Defined Networking (SDN), Al honeypots and Security Information and Event Management (SIEM)
systems, is provided, highlighting how they can be used to secure and protect the [oT applications.

Objective #3: Development of Al-powered Intrusion Detection Mechanisms

According to the countermeasure and threat analysis, the third objective of this thesis refers to the
efficient and timely detection of loT-related cyberattacks and anomalies. For this purpose, novel Al
mechanisms are adopted, taking full advantage of ML and DL methods. Multiple ML and DL-based
intrusion and anomaly detection models are implemented, focusing on the largest lloT application, i.e.,
the SG [183]. In particular, three types of intrusion detection mechanisms are implemented: (a) network
flow-based intrusion detection, (b) host-based intrusion detection and {c) visual-based intrusion detec-
tion. Fach of the previous types includes multiple intrusion and anomaly detection models depending
on the industrial communication protocols and the operational data of each lloT/SG environment. Fur-
thermore, it is worth mentioning that the security events generated by the previous mechanisms are
normalised into a specific format, while also security rules are defined in order to correlate the secu-
rity events with each other, thus synthesising security alerts. Based on the aforementioned remarks, a

SIEM system is implemented, focusing on lloT/SG environments.

Objective #4: Implementation of Sophisticated Mitigation and Prevention Mechanisms

After the detection mechanisms, the mitigation and prevention of the corresponding cyberattacks and
anomalies follow. For this purpose, novel technologies, such as SDN and honeypots, are investigated
and utilised, taking into consideration the unique characteristics and constraints of the [oT/SG envi-
ronments. In particular, SDN is used to stop the cyberattacks in a timely and reliable manner, while
honeypots are used to increase the resilience of the underlying TloT/SG infrastructure. In both cases,
sophisticated methods are studied and provided in order to optimise the SDN-based mitigation and the
deployment of honeypots.

1.2 Methodology

Fig. 1.1 illustrates the methodological framework used in this PhD thesis. In particular, five main
steps are followed in order to implement the proposed security solutions and validate their efficiency.
Initially, the loT security and privacy requirements are defined, taking into consideration the essential
security principles and the special characteristics and constraints of the IoT entities. Next, the relevant
security threats are analysed, utilising a layered approach based on the architecture stack of IoT. In

addition, the corresponding security solutions are investigated, thus identifying their strong and weak



points. Next, based on the previous countermeasure analysis, it is evident that the presence of reliable
IDPS is necessary in a timely manner. Therefore, a detailed literature review takes place, focusing on
IDPS systems that monitor and protect IIoT/SG environments. Next, based on this literature review,
the overall architecture of the proposed detection and mitigation solutions (provided by this thesis) is
designed. Then, their implementation takes place, taking full advantage of novel technologies, such
as AL SDN and honeypots. Finally, the evaluation of the proposed solutions follows, identifying the

respective evaluation metrics, comparative methods and simulation experiments.

Step #2: Threat &
Countermeasure Step #4:
Analysis Implementation
Analysis of the Implementation of

relevant threats and the detection and
countermeasures mitigation solutions

Step #5:
Evaluation

Step #1: Security
Requirements

Step #3:

Architecture Design

_— Evaluation and
Identification of loT

. ) Architectural design of validation of the
Security Requirements the detection and proposed mitigation
mitigation solutions and evaluation
solutions

FIGure 1.1: Methodology

1.3 Contributions

According to the previous objectives, the contributions of this thesis are defined as follows.

« Contribution #1 - New IoT Threat Taxonomy: A new threat taxonomy was specified for
IoT ecosystems. Based on Common Attack Pattern Enumeration and Classification (CAPEC),
this taxonomy follows a layered approach, identifying the relevant security threats and CAPEC
codes. Additionally, the APT campaigns against the energy sector are identified, utilising the
MITRE ATT&CK.

« Contribution #2 - Comprehensive Review of Intrusion Detection and Prevention Sys-

tems: A comprehensive review of IDPS was conducted, focusing on the energy domain.

« Contribution #3 - SDN-enabled SITEM Implementation: The third contribution refers to the
implementation of an SDN-enabled SIEM system capable of detecting, normalising and correlat-
ing multiple security events that are related to IIoT/SG environments. In addition, the proposed

SIEM system can mitigate security alerts, taking full advantage of SDN and Al



Contribution #4 - Implementation of custom ML/DL-based Network flow-based Intru-
sion Detection Models: The fourth contribution refers to the implementation of custom ML

and DL models for detecting cyberattacks and anomalies against [loT communication protocols.

Contribution #5 - Implementation of custom ML/DL-based Host Intrusion Detection
Models for IIoT/SG Environments: A Host-based Intrusion Detection and Prevention System
(H-IDPS) was implemented, recognising anomalies based on operational data (related to four

IToT/SG use cases) and custom ML/DL models.

Contribution #6 - Implementation of Visual-based Intrusion Detection and Prevention
System: A Visual-based Intrusion Detection and Prevention System (V-IDPS) was developed,
focusing on Modbus/Transmission Control Protocol (TCF) cyberattacks. The proposed V-IDPS
follows a custom self-learning approach in order to train the pre-trained Convolutional Neural

Network (CNN) used for the detection process.

Contribution #7 - New Intrusion Detection Datasets: In this thesis, three new labelled in-
trusion detection datasets were generated. They are related respectively to three IloT communi-
cation protocols: (a) Modbus/TCP, (b) International Electrotechnical Commission (IEC) 60870-5-
104 and (c) Distributed Network Protocol 3 (DNP3). They are/will be publicly available in IEEE
Dataport and Zenodo. These datasets can be used to implement other ML/DL models.

Contribution #8 - Honeypot Security Game: A new honeypot security game was imple-
mented, considering how many production honeypots can be deployed in an [IoT/SG environ-
ment in order to increase its resilience. In addition, the Nash Equilibrium (NE) of this security

game is identified and proved.

Contribution #9 - MaxMin-based Honeypot Deployment: Based on the previous honeypot
security game, a max-min solution is provided in order to calculate the appropriate number of

honeypots when the NE is not available.

Contribution #10 - Al-powered Honeypot Deployment: Based on the previous honeypot
security game, a Reinforcement Learning (RL)-based solution is provided in order to calculate

the appropriate number of honeypots when the NE is not available.

Based on the previous contributions, the results of this thesis are also supported by the following

publications, honors and awards. It is worth mentioning that the content of the following publications

was used appropriately to structure and compose this PhD thesis.

Publications in International Scientific Peer-Reviewed Journals:

[J1] P. Radoglou-Grammatikis, P. G. Sarigiannidis, and . D. Moscholios, “Securing the internet
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1.4 Thesis Structure

This thesis is as structured as follows.

« Chapter #1 - Introduction: The first chapter provides an introduction to this PhD thesis.
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Chapter #2 - Security and Privacy in the Internet of Things: A New Threat Taxonomy
and Countermeasure Analysis: The second chapter focuses on the new IoT threat taxonomy,

discussing the security requirements, challenges, threats and countermeasures.

Chapter #3 - Intrusion Detection and Prevention: The third chapter provides a background

on intrusion detection and prevention mechanisms.

Chapter #4 - Review of Intrusion Detection and Prevention Systems for Smart Grid:

Chapter 4 provides a comprehensive literature review of the IDPS systems in the energy domain

(ie., SG).

Chapter #5 - Detection and Mitigation of Cyberattacks and Anomalies against Smart
Grid: Next, the fifth chapter focuses on the proposed SDN-enabled SIEM system, describing in

detail its detection and mitigation mechanisms.

Chapter #6 - Evaluation Analysis: Chapter 6 focuses on the evaluation results related to the

detection and mitigation mechanisms of the proposed SDN-enabled STEM.

Chapter #7 - Conclusions & Future Work: Finally, Chapter 7 concludes this report.



Chapter 2

Security and Privacy in the Internet of
Things: A New Threat Taxonomy and

Countermeasure Analysis

The IoT reflects an optimistic digital era, where the objects take full advantage of the typical Internet
model and create intelligent synergies with each other, anywhere and anytime. In particular, the [oT
incorporates a wide range of technologies, such as sensors, actuators, cloud/edge computing and nu-
merous communication infrastructures and protocols. While the [oT was born in 1999 by K. Ashton
[145], the idea of this technology was envisioned many years ago. N. Tesla, in the Colliers magazine
in 1926, stated that: “When wireless is perfectly applied the whole earth will be converted into a huge
brain, which in fact it is, all things being particles of a real and rhythmic whole and the instruments
through which we shall be able to do this will be amazingly simple compared with our present tele-
phone”. Similarly, in 1950, the British scientist A. Turing said: “Tt can also be maintained that it is best
to provide the machine with the best sense organs that money can buy, and then teach it to under-
stand and speak English. This process could follow the normal teaching of a child” [145]. Today, loT
is adopted by several and critical technological areas such as energy, health and transportations. It is
expected that over than 28 billion objects will be able to connect to the Internet by 2025. Many stan-
dardisation bodies both from academia and industry have defined the ToT term. For instance, according
to the International Telecommunication Union (ITU-T Y.4000/Y.2060 {06/2012)): “A global infrastruc-
ture for the information society, enabling advanced services by interconnecting (physical and virtual)
things based on existing and evolving, interoperable information and communication technologies”

[145].

However, as in any communication network, the loT is prone to various kinds of security threats and
vulnerabilities originating from the conventional Internet model and other technologies such as Wire-

less Sensor Networks {(WSN), 5G and legacy industrial systems. Moreover, it is noteworthy that the

11
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objects can interact with each other and their environment in an automatic and autonomous manner,
thus increasing the security and privacy concerns. In addition, the multiple IoT communications gener-
ate a vast amount of valuable and sensitive data, representing an attractive goal for a growing number
of cyberattackers. This chapter provides a comprehensive overview of the security and privacy issues

in the IoT, paving special attention to requirements, challenges, threats and countermeasures.

2.1 Entities in the Internet of Things

The IoT can include multiple communication networks where the various hardware or virtualised en-
tities can interact with each other. In particular, in the IoT paradigm, the entities are commonly named
“things”, “objects”, “entities”, or "nodes”. As illustrated in Fig. 2.1, they are characterised by six at-
tributes: (a) Identification, (b) Sensing, {c) Communication, (d) Computation, {e) Services and (f) Se-

mantics.

loT idantiffeation Sans] [~ leation Campuratian Services Samantics
Entity

Ficure 2.1: Attributes of the IoT entities [145]

Each of the above attributes is described briefly below, while in [5], A. Al-Fugaha et al. provide more
details.

+ Identification: Each IoT entity holds an identifier, such as an Internet Protocol version 4 (IPv4)

or version 6 (IPvé) address used for its communications.

« Sensing: Sensing denotes that an IoT entity can retrieve useful data from the physical environ-

ment through sensors or actuators.

« Communication: Communication refers to the interconnection means utilised for the interac-

tion with other IoT entities or users.

» Computation: Computation refers to the computing resources for processing the information

originating from the (a) physical environment, (b) the user and (c) other IoT entities.

» Services: Services denote core functions provided by the IoT entities to the users based on their

computations.

» Semantics: Semantics implies that IoT entities are capable of receiving the appropriate infor-

mation and providing the required services.
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Characteristic examples of loT entities are Rasberry Pi [177], Arduino [177], BeagleBone [33], Omega
[124], Particle Photon [177], Tessel [124], CubieBoard [124], PLCs [3] and Remote Terminal Units
(RTUs) [207]. The first seven devices refer to generic loT-related boards, while PLCs and RTUs re-
fer to industrial logic controllers utilised in IloT environments. The aforementioned devices usually
hold a microcontroller, memory and several analog and digital General Purpose Input/Qutput (GPIO)
pins. Moreover, they use sensors and actuators, such as temperature sensors, proximity sensors, ac-
celerometers, potentiometers, vibration sensors and moisture sensors. Finally, the functionality of the
10T entities relies on a Real-Time Operating System (RTOS) responsible for managing the communica-
tion, computation and storage services. Indicative loT-related operating systems are Contiki [57, 75],
TinyOS [57, 75], FreeRTOS [57], Mbed OS [57], Brillo [57], Windows CE [57] and RIOT [57, 75]. Since
this thesis focuses on IloT environments, a special emphasis will be given to RTU and Programmable
Logic Controller (PLC) devices composing Supervisory Control and Data Acquisition (SCADA) sys-

tems.

2.2 Communication Architecture in the Internet of Things

As in the case of any Information and Communication Technology (ICT) network, the loT can be sepa-
rated into communication layers. Although an official communication stack has not been specified yet
by a standardisation body [72], the research community has introduced several suggestions, including
three, four or five layers. As depicted in Fig. 2.2, this thesis adopts a communication architecture com-
posed of four layers, namely: {a) Perception Layer, (b) Communication Laver, (¢) Support Layer and (d)
Business Layer. The first layer focuses on the ToT entities and their sensing capabilities. Next, the Com-
munication Layer is devoted to the data transmission, including six sublayers: (a) Physical Sublayer, (b)
Data Link Sublayer, (c) Network Layer, (d) Transport Layer, (e) Session Layer and (f) Application Layer.
Each of the aforementioned sublayers adopts respective communication protocols. In the context of
this thesis, particular importance will be attached to industrial protocols, such as Modbus/TCP [146],
DNP3 [138], [EC 60870-5-104 [141], IEC 61850 (Manufacturing Message Specification (MMS)) [71] and
IEC 61850 (Generic Object Oriented Substation Event (GOOSE)) [71]. Next, the Support Layer refers to
cloud and edge computing rescurces, thus facilitating and enhancing the operation of the other layers.
Finally, the Business Layer denotes the business applications implemented according to the end-user

needs and requirements.

2.3 Services and Applications in the Internet of Things

Based on the attributes of the IoT entities, the relevant services can be classified into four main cate-
gories: (a) identity-related services, (b) information aggregation services, (c) collaborative-aware ser-

vices and (d) ubiquitous services [5]. The first category is the most significant since any physical or
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( \ Application Sublayer Protocols
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Ficure 2.2: 10T Communication Architecture and Protocols [145]

virtual object should be identified first in order to participate in the digital reality of IoT. Next, the in-
formation aggregation services refer to retrieving and aggregating operational data from the physical
environment. The operational data is used by the collaborative-aware services for decision making and
responding appropriately. Finally, the ubiquitous services denote that the collaborative-aware service
can be provided anytime to anyone and anywhere. Although the main goal of the IoT applications
is to provide ubiquitous services, most of the current IoT applications can support identity-related,
information aggregation and collaborative-aware services. The smart electrical grid and healthcare
environments are more related to the information aggregation service, while smart home and Intelli-
gent Transportation Systems (ITS) refer mainly to the collaborative-aware services. Subsequently, a
short description is provided about smart home, ITS, smart healthcare and smart cities, while special

emphasis is given to the smart electrical grid, which constitutes the biggest IoT application [183].

In the context of a smart home [88], the IoT services intend to optimise the personal quality of life, offer-
ing a convenient and easy manner to monitor and adjust automatically and remotely home appliances,
such as heating systems, smart meters and air conditioners. For instance, a smart home can close the
windows and adjust the temperature based on the weather conditions. The IoT entities within a smart
home are needed to interact with their internal and external environment. The internal environment
refers to the home appliances, while the external environment includes entities that are not under the
control of the smart home, such as the electrical grid. On the other side, ITS [133, 163] refers to intel-
ligent communication and computation services that monitor and control the transportation network.

ITS intends to increase the reliability, availability and safety of the transportation ecosystem. An ITS
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consists of four main subsystems, namely: {a) vehicle subsystem, (b) station subsystem, {¢) monitoring
centre and (d) security subsystem. Audi, Google and Volvo have provided remarkable outcomes in this
area [183]. Given the COVID-19 pandemic, smart healthcare services, such as personalised healthcare,
remote monitoring, health education, preventive care and faster diagnosis, are necessary than ever.
The evolution of the Internet of Medical Things (loMT) [214] leads healthcare organisations to adopt
medical telemetry solutions, such as wearables, medical implantables and intelligent Electronic Health
Records (EHRs). Finally, a smart city [221] takes full advantage of the previous applications and implies
a set of collaboration and ubiquitous services interconnected to each other, improving the quality of

life in the city.

2.4 Smart Electrical Grid: The Biggest IoT Application

The smart electrical grid or differently SG has been determined by several organisations, such as the
United States (US) Department of Energy (DoE), the European Commission Task Force for Smart Grid
and the Electric Power Research Institute (ERPI). SG is considered the interconnection between the
existing electrical grid and ICT, allowing the two-way communication between the energy consumers
and utilities. The main goal of SG is to ensure the appropriate sustainability with respect to energy
generation, transmission and distribution through distributed generation, storage and smart measure-
ment. Moreover, it is worth mentioning the ability of SG to form and create microgrids or islands,
taking full advantage of Distributed Energy Resources (DERs) relying on renewable, such as solar and
wind energy. The main architectural components of the SG are SCADA systems, Advanced Metering
Infrastructure (AMI), substations and synchrophasors [148]. Each of them is described further below.

The goal of a SCADA system is to monitor and control the automatic function of other components. In
particular, a SCADA system is composed of five main ingredients, namely: (a) measuring instruments,
(b) logic controllers, {¢) Master Terminal Unit (MTU), (d) communication network and (e) Human Ma-
chine Interface (HMI) [148]. First, the measuring instruments refer to sensors and actuators capable
of monitoring and retrieving operational measurements, such as pressure, temperature and voltage.
Next, based on the data of the measuring instrument, the logical controllers recognise potential abnor-
malities with respect to the system behaviour, thus activating or deactivating appropriate controlling
mechanisms. Characteristic examples of logical controllers are PLCs and RTUs. The logical controller
communicates with MTU, which refers to a centralised server through which the system operator can
send various commands to the logical controllers. The communication network refers to the communi-
cation between the logical controllers and MTU, utilising industrial protocols, such as Modbus, Profinet
and BACnet. Finally, HMI is a Graphical User Interface (GUI) used by the system operator in order to

contact the logical controllers.

The AMI provides the necessary services behind the two-way communication between the energy con-

sumers and utilities. The AMI is composed of three primary components: (a) smart meters, (b) Data
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Collectors and {¢) the AMI headend [147]. First, the smart meters are responsible for monitoring the en-
ergy consumption and other electricity measurements. Next, the data collectors store and pre-process
the data generated by several smart meters belonging to different geographic areas. Finally, the AMI
headend usually refers to the computing resources of the utility company, such as centralised or decen-
tralised servers. The AMI headend receives, processes, stores and manages the information of each data
collector, thus providing the ability to the utility company to re-consider or apply different policies.
On the other hand, the energy consumers are able to monitor and control in real-time their energy
consumption. It is worth mentioning that the components mentioned above can belong to different
geographic regions with varying characteristics and constraints. Consequently, each component uses

different communication technologies and mediums that will be further analysed subsequently.

The conventional model of the electrical grid relies on three main actions: (a) energy generation, (b)
transmission and (c) distribution. The role of a substation in the electrical grid is crucial with respect
to the energy transmission and distribution. In particular, both transmission and distribution substa-
tions handle the energy produced, configure the transmission or distribution process, respectively and
control the power increase [148]. They include several hardware and software components, such as In-
telligent Electronic Devices (IEDs), Global Position System (GPS), a Global Information System (GIS),
RTUs, PLCs and HMI. Usually, the TEC 61850 protocol [71] is adopted with respect to the IEDs within

a substation.

A synchrophasor system refers to an emerging technology critical for the reliability and sustainability
of the modern electrical grid. Similarly to the SCADA systems, a synchrophasor system consists of
Phasor Measurement Units {(PMUs), Phasor Data Concentrators (PDCs), a communication network
and HMI [148]. First, a Phasor Measurement Unit (PMU) refers to a device responsible for calculating
various measurements from current/voltage waveforms like phase angle, frequency, reactive power
and active power. Next, a Phasor Data Concentrator (PDC) plays the role of MTU, collecting and
converting the data of multiple PMUs into a single flow. Usually, [EEE C37.118.2 [70] is utilised for the
communications between PDC and PMUs. Finally, HMI visualises the outcomes of PDC.

The SG ecosystem consists of different geographic areas utilising different communication means and
protocols. Fig. 2.3 illustrates a high-level architectural diagram of SG in terms of the main communi-
cation features. The first layer includes three types of are networks: (a) Home Area Network (HAN),
(b) Business Area Network (BAN) and (c) Industry Area Network (IAN). The common characteristic
of HAN, BAN and AN is the presence of smart meters monitoring the energy consumption and sim-
ilar measurements. In particular, HAN denotes a network comprising home-related appliances, such
as a washing machine, fridge and microwave. On the other side, BAN refers to a network including
devices and technologies used by small and medium organisations and enterprises, such as desktop
computers. Finally, [AN refers to networks related to large-scale organisations using multiple servers
and heavy computing resources. The various devices in the aforementioned networks usually adopt

ZigBee, Z-Wave, [EEE 802.11 {i.e., Wireless Fidelity (Wi-Fi)) and rarely power line communications.
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FIGURE 2.3: The SG architecture in terms of communication mediums [148]

Next, the second and third layers are devoted to several Neighbor Area Networks (NANs) and Wide
Area Networks (WANS), respectively. First, a NAN is related to a small geographic area comprising
multiple HANs, BANs and [ANs, respectively. The main characteristic of a NAN is the presence of one
or more data collectors responsible for aggregating the data originating from the smart meters of the
first layer. The communication between the first and the second layer usually relies on [EEE 802.16
(i.e., Worldwide Interoperability for Microwave Access (WiMAX)) and IEEE 802.11 (i.e,, Wi-Fi). On
the other side, a WAN is responsible for connecting the data of the various NANs with AMI headends
in order to optimise the processes related to the energy generation, transmission and distribution.
The communication mechanisms behind a WAN can include IEEE 802.16, power line communications,

cellular, satellite and Digital Subscriber Line (DSL) communications.

Based on the aforementioned remarks, it is evident that a cyberattack against the SG can produce
disastrous consequences. A characteristic example was the APT against a Ukrainian substation in De-
cember 2016, resulting in a power outage for more than 225000 households. Appendix B and Appendix
C summarise APT campaigns and well-known malware targeting energy-related organisations and In-
dustrial Control Systems (ICS), respectively. In Appendix B, for each APT campaign, the corresponding

techniques and malware are given, while similarly, in Appendix C, for each malware, the respective

techniques are enumerated.



18

2.5 Security Requirements in the Internet of Things

Before investigating the various security threats related to the ToT and the appropriate countermea-
sures, first, the security requirements have to be identified. The security requirements intend to specify
a set of security principles that should be guaranteed in the context of the IoT applications. Several
studies have already defined precisely the security requirements for the [oT. For instance, some of them
are listed in [8, 56, 73, 82, 111, 126, 145, 185]. Therefore, based on them, the following security principles

are considered.

« Confidentiality: This term refers to two interrelated terms. First, Confidentiality implies that
unauthorised users, entities and services must not access private information. Second, Confi-

dentiality ensures that privacy and proprietary information are protected.

« Integrity: Integrity denotes that the attributes of the IoT entities and their interchangeable in-

formation shall not be violated, modified and used by unauthorised users, entities and services.

« Availability: Availability denotes that the computing resources, information and services shall
be available when needed. This means that the IoT entities, the communication channels and the
computation mechanisms should operate properly based on the user and business requirements

of each IoT application.

« Authenticity: Authenticity refers to the fact that the various information and transactions must
be genuine. This security principle means that the parties participating in a transaction must be

the ones that they claim to be.

« Accountability: Accountability means that each 10T entity must be able to be identified and
mapped in a unique way. To this end, non-repudiation, fault isolation, deterrence, intrusion de-
tection and prevention and recovery mechanisms can be supported. Given that absolutely secure
and private loT entities and applications are not yet an attainable goal, the security breaches must

be recognised with respect to the affected loT entities.

2.6 Security Challenges in the Internet of Things

The ToT constitutes an evolutionary paradigm of the typical Internet model, incorporating its security
weaknesses and vulnerabilities but also a heterogeneous set of technologies allowing the physical world
to meet the digital era. Therefore, the security mechanisms should consider the unique nature and the
functionality of the loT entities and their communications. Several studies have already identified the
security and privacy challenges in the ToT. Indicative examples are [56, 73, 75, 145]. According to them,

the following challenges are listed and described.
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« Interoperability: The security mechanisms should not significantly limit and impact the func-

tionality of the ToT entities and applications.

+ Limited Computing and Storage Resources: The [oT entities are characterised by limited
computing, memory and storage resources. Therefore, they cannot fully support heavy security

mechanisms like conventional asymmetric encryption.

« Resilience against Physical Attacks and Natural Disasters: The entities in the [oT are usu-
ally small without including any protection measure with respect to the physical security. For
instance, a mobile device or sensor can be stolen, while fixed entities and facilities can be de-

stroyed by natural disasters and environmental threats.

« Automated and Autonomous Control: The conventional information systems are configured
by the users. However, on the other side, the loT entities have the ability to configure and adjust

their operation by themselves.

« Big Data: The IoT entities and applications generate, process and handle a massive amount of

sensitive data that is an attractive target for a growing number of cyberattackers.

« Privacy: Several [oT entities and applications are related to sensitive data that must not be iden-
tifiable, traceable and linkable. A typical example is the loT entities and applications processing

medical and financial data.

« Scalability: The IoT applications can include and expand multiple networks, including numer-
ous [oT entities and computing systems. Consequently, the security and privacy mechanisms

should also be scalable.

2.7 Security Threats in the Internet of Things

This section introduces a threat taxonomy with respect to the layers mentioned above in subsection 2.2.
Consequently, for each layer, the various threats are described and linked to the entries of the CAPEC
catalogue established by the US Department of Homeland Security. In particular, Appendix A provides
a summary of the various [oT threats and corresponds them to the relevant CAPEC codes. The CAPEC
catalogue provides attack patterns explaining how the adversaries can take full advantage of potential
weak points in cyber-physical applications in order to violate their security. Moreover, a CAPEC attack
pattern provides the challenges of the cyberattacker and includes information with respect to the design
and execution of the cyberattacks. Consequently, according to (a) the nature of each layer, (b) the role
of the [oT entities and (¢) the relevant interfaces, the corresponding threats are discussed. For instance,
at the perception layer, the adversaries focus on the physical security, while at the communication

layer, the attackers usually aim to exploit the weaknesses of the communication protocols through
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network and routing attacks. Furthermore, subsection 2.7.5 is dedicated to threats belonging to one or

more layers. Finally, it is noteworthy that this threat taxonomy is industry and vendor agnostic.

2.7.1 Security Threats at the Perception Layer

The security measures at the perception layer focus mainly on the physical security of the [oT entities
based on two complement requirements. First, the security measures should ensure the availability
of the physical infrastructure, preventing and mitigating potential accidents and disasters. Second,
integrity and authenticity should be guaranteed in terms of preventing misuse of the physical infras-
tructure that can lead to abuse or fraudulent use of sensitive information. Based on the aforementioned

remarks, the main threats of this layer are discussed below.

Natural Disasters and Environment Threats: Characteristic examples of natural disasters are
floods, tornadoes, earthquakes, hurricanes and ice storms. Such phenomena can destroy the physi-
cal facilities behind the IoT applications. On the other side, environmental threats like chemical and
water accidents or inappropriate values of temperature and humidity can also affect the physical secu-
rity of the loT applications. Although the likelihood of such events is not high and effective prevention

and detection measures are in place, their impact can be disastrous.

Human-caused Physical Threats: In contrast to the previous case, the human-caused physical
threats represent a more challenging category since the malicious activities can bypass potential de-
tection and mitigation mechanisms. Vandalisms, eavesdropping, misuse and device tampering are in-
dicative examples of this category. The human-caused physical threats can affect and violate all the
security requirements discussed in section 2.5, thus resulting in devastating consequences. Despite the
fact that there are effective detection and prevention mechanisms, their probability of occurrence is

high.

2.7.2 Security Threats at the Communication Layer

The attack vectors related to the network services are mainly due to the weaknesses of the respective
communication protocols. Many of them were designed without including sufficient cybersecurity
measures, such as authentication and authorisation. Characteristic examples are the Address Res-
olution Protocol (ARP), Domain Name System (DNS), Modbus, DNP3 and various routing protocols.
Therefore, the potential cyberattackers have the capability to take advantage of the various weak points
and compromise the security requirements of the involved entities. For example, the unauthorised ac-
cess attacks against many application-layer protocols, such as Modbus, can lead a cybercriminal to

cause disastrous consequences against an industrial environment. On the other side, the weaknesses
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of the ARP protocol can result in Man-In-The-Middle (MITM) attacks, which in turn can cause replay,
Denial of Service (DoS) and data modification attacks. This subsection is devoted to the threats at the
communication layer. First, various kinds of reconnaissance and DoS attacks are discussed. Next, a
special attention is given to cyberattacks against routing protocols like RPL and Ad hoc Gn-Demand

Distance Vector {AODV). Finally, the MITM attacks are discussed.

Reconnaissance Attacks: Through the reconnaissance attacks, the cyberattacker intends to gather
valuable information about the victim, such as potential weak points and vulnerabilities. Usually, a
reconnaissance attack is the first step before other attacks. A typical example in this category is port
scanning, exploring what ports and services are available. Moreover, through port scanning, the cy-
berattacker can retrieve useful information about the operating system and the version of the services
running on the target system. In addition, vulnerability scanning and analysis is another example
falling into this category. Through vulnerability scanning and analysis, the cyberattacker can identify

potential Common Vulnerabilities and Exposures (CVEs) and exploits.

Denial of Service Attacks: The DoS attacks target the availability of the involved systems and
mainly the network services running on them. Based on the National Institute of Standards and Tech-
nology (NIST) Computer Security Incident Handling Guide, a DoS attack is defined as an action ex-
hausting the computing resources like the Central Processing Unit (CPU), bandwidth, memory and disk
space in order to prevent or impair the authorised use of systems, networks and applications. Based
on this definition, three main Do§ attacks can be distinguished targeting network bandwidth, system
resources and application resources, respectively. Moreover, DoS attacks can be classified based on the
number of potential attackers. A single cyberattacker or a small number of them may launch a Do$ at-
tack. On the other side, several cyberattackers can collaborate in order to form a Distributed Denial of
Service (DDoS) or an amplification attack. The network bandwidth refers to the capacity of the network
links that connect a server with the Internet. In most cases, this is the connection between the organ-
isations and their Internet Service Provider (ISP). Typically, this connection has a lower capacity than
ISPs. This means that over such higher-capacity connections, more traffic can arrive at the [SP’s routers
than can be transported over the connection to the organisation. Therefore, the ISP’s routers should
discard some packets, transmitting only those that can be supported by the communication links. In
a normal scenario, this behaviour is usually noticed when popular servers receive a large number of
requests, resulting in not supporting a random portion of users. On the other side, in the case of a Do§
attack targeting the network bandwidth, the cyberattackers generate a plethora of malicious requests
that exceed the normal ones. Thus, the legitimate users cannot access the available services. The goal
of the D oS attacks targeting the system resources is to overload or crash the network services by using
specific network packets that usually take advantage of the limited resources or the network protocols’
weaknesses. More specifically, in contrast to the DoS attacks consuming network bandwidth, this kind

of DoS either uses packets that consume limited resources, such as temporary buffers, tables of open
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connections and similar memory data structures or exploits network protocols’ vulnerabilities. SYN
spoofing and ping of death attacks are characteristic examples, respectively. The DoS attacks against
a software application, such as a web server, usually are conducted by transmitting several malicious,
but valid network packets so that the server cannot respond to the legitimate requests. For instance, a
web server might provide the ability to access a specific database via appropriate queries. In this case,
the attacker aims at generating and transmitting continuously multiple queries that will not allow the
server Lo respond to the legitimate requests. Finally, another DoS attack of this category can target a

potential vulnerability of a software application that will result in its termination.

Sybil Attacks: In the Sybil attack, the malicious nodes forge or create multiple identities to de-
ceive other nodes, in order to monitor various parts of the network [135]. According to P. Radoglou-
Grammatikis and P. Sarigiannidis in [135], a general model of the Sybil attack is presented in Fig. 2.4,
where nodes X, Y, and Z forge the identities of the various nodes. This attack can be divided into three
types: SA-1, SA-2 and SA-3 [135]. In general, SA-1 attackers create connections inside a Sybil group,
as shown in Fig. 2.5. In this case, the Sybil nodes are closely related to other Sybil nodes. The SA-1
Sybil attacks are usually performed against sensing environments or mobile sensing systems. For in-
stance, a voting system can be significantly impacted since an SA-1 Sybil attack will try to forge a large
number of identities, thus affecting the final vote outcome. On the other side, SA-2 and SA-3 Sybil
attacks (Fig. 2.6 and Fig. 2.7) are capable of creating connections not only with the malicious nodes
but also with the legitimate ones. Both of them attempt to imitate the behaviour of legitimate nodes
by transmitting appropriate messages. The difference between SA-2 and SA-3 is that SA-3 focuses on
mobile networks, where the connections among the nodes cannot exist for a long time. However, this
characteristic of the mobile networks makes it difficult to detect SA-3 attacks since the network topol-
ogy is changed frequently, and the nodes’ behaviour patterns cannot be identified. Hence, based on
the aforementioned remarks, Sybil attacks can compromise the confidentiality and authenticity of a
network. Their impact is considered important; however, IDPS can detect and mitigate them. In [200],
L. Wallgren et al. simulate such attacks, using the Contiki Operating System {OS) and Cooja simulator.
On the other side, K. Zhang et al. in [220] study relevant detection methods devoted to SA-1, SA-2 and
SA-3. Finally, P. Sarigiannidis et al. in [165] focus on Sybil attacks against WSN, providing a relevant
detection method, using Ultra-Wideband (UWB) ranging-based information.

Selective Forwarding Attacks: A selective forwarding attack is a routing threat designed to com-
promise the availability and integrity of the network by corrupting selectively or not the network
packets [135]. Fig. 2.8 illustrates a general model of this attack, where the node 7 arbitrarily drops
those packets coming from the nodes A and Z. In particular, there are two main types of selective
forwarding attacks, namely (a) blackhole and (b) grayhole. In the first category, blackhole constitutes
a kind of DoS attack at the routing layer, where the attacker drops all the packets. A notable survey
related to blackhole attacks is presented by F. Tseng et al. in [192]. Similarly, L. Wallgren et al. [200]



23

FIGURE 2.4: Typical Svbil Attack

FIGURE 2.5 SA-1 Svbil Attack

erulate such an attack against BPL. Onthe contrarny, grayvholes cormupt athitranily orly some packets
gither comning from particular nodes or choosing a time interval, where the pacleets will be discarded.
Moreover, grayhaoles can operate randcmnly, deciding which pa cket will Be dropped ornot, thus making
theirmitigation more difficult. In [191], M. Tripathi et al. emulate grayhols attaces against Low-Energy
Adaptive Clustering Hierarchy (LEACH) protocal, using the Netwot: Somulator 2 (INS2), On the other
gide, regarding the poterfial countermeasures agamst this kind of threat, many ramartkable research
papers have been proposed. In particular, E. Karapistoli et al. in [80], focus their attention on the
detection of selective forwarding attacks by presenting a visualisation system called SEMET. The fiunc
tionality of SENET relies onthe network traffic analysis as well as on visualisation methods that aim
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FIGURE 2.6 SA-2 Svbil Attack

FlauRg 2.7: SA-35 Sybil Attack

to identify the root canse of these attacks, Similady, D, Shila et al, in [172] presented a Channel Aware
Detaction (CADY algorithm agamst grayhole attacks, The propozed algorithim relies on two strategies,
namely channel estimation and traffic monitoring, Specifically, if the monitored 1oss rate overcomes

the estimated one, the orrolved nodes are considered as oyberattackers,

Sinkhole Attacks: nsmlhole attacks, the goal of the attacker iz to forward the networl: traffic toa
specific node [135, 172)], In particular, the attacker promotes a particular moute and attempts to persuade
the other members of the netwonk to utilise it Usually, this route is fonned wia a wonnhele attacl,
which iz analysed subsequently. Fig. 2.9 depicts a sinkhole attack where the node E is the attacker,
while the nodes 4, B, K and £ are affected. The node B tries to advertise itzelf in order to receive the
networl: packets of the other cnes The specific attack type is not very hazardous, howeser, when it is
cotnbined with other routing attacles, such as a wonnhaole attadk, it can have a significart mpact, In

particular, a sinkhole attacker has the ability to violate all the essertial security principles since it can
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FIGURE 2.8 Selective Forwarding Attack

modify, drop or delay the various packets, A sinkhele attack can be dassified mto three categorias: (a)
Sinkhole Message Modification, (b) Sinkhole Message Dropping and (2] Sinldhole Meszage Delay, Inthe
first category, the attackermodifies the pack et before re-tranamitting therm, Accordingly, inthe second
category, the attacdrer drops the padeets entitely or selectively, Fmally, the third sinkhole attack delays
the packet forwarding, In [200], L Wallgran et al. emulates a sinkhole attack against RPL, usally
adopted inthe IoT networks, On the other side, 5. Baza et al. in [151] presents an IDPS called SVELTE,
which can detect such kinds of attacks in [oT networos Finally, Y. Li et al, in [113], present the Probe
Eoute Based Defenze Sinkhole Attaclk (FEDSA) scheme, which iz capable of detecting, locating and
bypazsing a potential sinldiole, More specifically, FEDSA combines minimum hop mouting, equal-hop
routing and far-sik reverse routing, thus circumventing sirlchole attaces and discovering a safe route,

Wormhole Attacks: Inawonmhole attack, the goal of the intruder isto capture the netwots paclets,
transmit ("tunnel ™) them ina specific node {destination node) and then select ively drop or replay them
tothe networ [135] Inorder to establish a wormhele, the attaders should construct with sach other
a direct communication link through which the packets will be transmitted with a better efficiency
cotnparad to the nommal communication paths i terms of various networs metrics, such as through-
put, latency and network speed [66] Fig. 2.10 depicts a wonmhole attack formed between the nodes
H and £ It iz worth mentioning that if the two collaborating members of a wonmhele do not intend
to cornpramise the networts security, then the wonmhele does not refer to a cyberthreat and can be
used for usefil purposes. On the other sida, it should be noted that a potential attacker is inan advan-
tageous position with the ability to manipulate the network packets maliciously @ a variety of ways.
For instance, due tothe nature of the wireless networlks, the attacoer is able to monitor and transmit
maliciously the packets exchanged among the other nodes, Therefore, wonnhole attacks constitute a
critical threat, especially fior the ad hoc networcs, In [200], L Wallgren simulates a wormhole attack
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Freure 2.9 Sinkhole Attack

against RFL based on Contild 08 and Cooja Simulator Onthe other hand, in [194], N, Tsitsiroudi et al,
presart EveSim, a visual-based IDES capabla of detecting wonmholes, Similady, in [81], E. Karapistoli
et al. describe ancther visualization-based anomaly detection method named VA-WAD, which adopts

routing dynamics in order to expose potential wonmhole atfaccers,

FIGURE 2.10: Wormhole Attacl:

HELLO Flood Attacks: Typically, the HELLD messages are used by a node n orderto infroduce
or adwertise itself to the other nodes of the netwods, Nevertheless, this kind of message can alzo
be uzed in a malicious matiner, aiming either to axhaust the camputing resources of the nodes or

to mislead theam, considering the attacker as a neighbour [125]. Fig. 2.11 fllustrates a HELLO flood
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attack, where the node 2 plays the role of attacker, sending HELLO messages to the other nodes,
L. Wallgren et al. in [200] simulate HELLO flood attacks against EPL. Based on their experimental
results, although at the begirming, the HELLD flood attack was successfill, after the activation of the
EFL selfhealing mechanism, the attacl was mitigated fast. Hence, this attack carmot last for a long
time, as the routing protocols indude sufficient mitigation services, Similady, in [171], M. Sharma et
al. emulate alzo routing attades agamst RFPL, mcluding also the HELLG flood attades Thus, a labelled
datazet was constructed and used for ML and Dl-based detection mechanizms, Fmally, T. Srivinas
and 5 Manivarnan in [178] provide an ML model capable of countering HELLD flood attacks. In
particular, their model adopts (a) k-paths generation, (b) Cluster head salection, (¢) HELLO flooding
attack detection and (d) optitnal shortest path selection,

Frsure 2.11: Hello Flood Attack

Passive Network Traffic Analysis: 4 passive network traffic analysis attack indudes the capturing
and analysis of the network packets exchanged in a networs, In particular, this kind of attack requires
from the attacker to activate the promiscuous mode of the Network Interface Controller (NIC) i order
not to ignore those packets that are not destined to the attacking machine [125]). There are mary
software applications that can be used for mplementme this attack, such as Wireshade, Tepdump and
Scapy. The previous applications are composed usually of two main elements called (a) sniffer and
(b) protocal atalyser The miffer undertalces to capture and copy the netwods traffic data while the

protocel analyser decodes, processes and analyses the various pacleets,

Man In The Middle Attacks: The MITHM attacles refer to a kind of networ: traffic eavesdropping,
In particular, the attacker can monitor and handle the network padkets exchanged betwesn two or
more parties. Characteristic examples of MITM attacks are ARP poisoning, session hijackimg, and
Secure Sockets Layer (SSLNWTL MITM cyberattacks With respect to ARP poisonmg, although ARF



28

is widely used in any internal computer network, it does not include authorisation mechanisms. In
particular, a potential attacker can change the victims® ARP tables, associating the TP address of a
system with another forged Medium Access Control (MAC) address. Thus, the attacker can access
confidential information. Session hijacking refers to the malicious activities that allow a potential
attacker to impersonate a party of a session by sniffing the relevant network traffic. Finally, according
to M. Conti et al. in [36], SSL/Transport Layer Security {TLS) MITM attacks can be discriminated into
two main categories: (a) MITM based on a certificate and (b) MITM based on the private key. Regarding
the first category, the attacker either possesses a certificate of the target system by compromising the
respective Certificate Authority (CA) or differently an invalid certificate can be used. In the second

case, the victim should ignore the relevant security warnings, which is a common phenomenon.

2.7.3 Security Threats at the Support Layer

The support layer offers key technologies, such as cloud and edge computing supporting heavy com-
putational services in terms of data storage and computing power. However, despite their valuable
benefits, both of them are related to critical security threats, such as unauthorised access, malicious
insiders, insecure software services and unknown risk profile. The aforementioned threats are further

analysed below.

Unauthorised Access and Malicious Insiders: The unauthorised access refers to accessing and/or
using illegally the computing resources of an organisation or environment. Based on the nature of
the cloud and edge computing, it is necessary for the involved users and organisations to provide
an unusual level of trust to the cloud/edge providers [145]. Consequently, this kind of threat can
compromise all the security requirements discussed above with critical consequences depending on

the actions of the malicious users.

Insecure Services and Unknown Risk Profile: Both cloud and edge computing provide a wide
range of computing services, such as applications, virtual machines, storage services and containerised
applications. Such services might be compromised by a cyberattack or malware. Furthermore, it is
noteworthy that the various services can be controlled by external providers. For instance, a cloud
provider can use the computing and storage resources of another cloud provider. It is obvious that
the security level of the cloud/edge services can rely on the security measures of other organisations,

services and entities. Therefore, insecure services and unknown risks can occur.

business
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2.7.4 Security Threats at the Business Layer

The business layer focuses on applications based on the users’ needs and requirements. Therefore, the
respective threats intend to exploeit the security gaps of the business applications. Characteristic ex-
amples are buffer overflows, backdoors, social engineering techniques and web attacks. Although the
social engineering attacks do not exploit a weakness or vulnerability, they adopt and use information
about the nature of the application in order to mislead and violate potential victims. The aforemen-

tioned cyberattacks are further detailed below.

Buffer Overflow: According to NIST, a buffer overflow allows the intruder to insert more data in a
buffer than the capacity limit allows. The attacker aims to overwrite the existing information in the
buffer in order to insert a malicious code that will take control of the overall system. Some indica-
tive examples of buffer overflow attacks are stack overflow, global data area overflow, format strings
overflow, heap overflow and integer overflow. Commonly, a cyberattacker adopts assembly in order to

perform a buffer overflow attack.

Backdoor: A backdoor is a code segment in software that enables a cyberattacker to bypass poten-
tial security controls. A backdoor is usually activated when particular credentials are used or a specific
sequence of events is performed. It is noteworthy that a backdoor is not necessarily a security threat
since the security administrator can use a backdoor to bypass time-consuming procedures and control
or restore the normal operation expeditiously. However, extremely adverse effects can be caused if
a cyberattacker is aware of the specific block of code. The malicious backdoors usually act as a net-
work service allowing the cyberattacker to connect to an unusual network port and execute malicious

activities.

Social Engineering Attacks: Social engineering is a psychological attack aiming to mislead the
users to reveal confidential information or unwittingly perform malicious activities. A phishing attack
is the most productive social engineering technique. The goal of the attacker is to gain the trust of
the user by using spoofed emails, instant messages and DNS spoofing processes. Usually, the users
are re-directed to a fake website that prompts them to provide sensitive information. Spear-phishing
is a more dangerous case of this attack. In this kind of attack, the attacker has investigated the recip-
ients thoroughly, and each fake message is carefully generated and sent in order to suit the recipient
profile. With respect to the security requirements, the social engineering techniques focus mainly on
confidentiality, integrity and authenticity. Although there are efficient countermeasures against such
techniques like security management policies and training processes, their probability of occurrence

is very high, and their consequences can be destructive.
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Web Application Attacks: As in the case of all software, web applications can present severe
security issues if they are not properly sanitised. For example, misconfigured authentication and au-
thorisation web services can lead a cyberattacker to viclate important unauthorised information. Char-
acteristic examples of web-application attacks are (a) malicious proxies, (b) Structured Query Language
(SQL) injection, (c) Local File Inclusion (LFI), (d) Remote File Inclusion (RF1), {e) command execution at-
tacks and (f) Cross-Site Scripting (XSS) attacks. A proxy is a hardware or a software component placed
between two communication parties to monitor and control their communications. In particular, the
role of the proxy is to receive the messages coming either from the client or the server and forward
them, respectively. Therefore, the proxy has the capability to capture and control the exchanged net-
work traffic between the parties. If a proxy has not been instantiated by a potential cyberattacker, then
it can enhance the overall security and Quality of Service (QoS8) of this interaction. However, on the
other hand, since a proxy operates as an intermediary, it can be used for MITM attacks. Next, the main
goal of SQL injection attacks is to bulk extraction of data. For instance, an attacker can try to dump
database tables, including customers’ personal information. However, SQL injection attacks can also be
used to modify or delete the content of a database, execute DoS attacks or launch malicious operating
system commands. In particular, such attacks can occur when SQL commands are filtered wrongfully
for escaped characters or the types of the various fields in the SQL database are not very strong, thus
allowing the attackers to create combinations capable of returning or modifying unauthorised content.
Another web application attack is LFI, which allows a cyberattacker to access files without appropriate
permissions. Moreover, this vulnerability can induce more dangerous consequences, such as the cre-
ation of a reverse shell for the attacker, thus providing him/her with the overall control of the infected
target system. RFI is similar to LFI, enabling the cyberattacker to perform malicious scripts located
everywhere in the target system. Next, a command execution attack is another web attack, giving the
ability to a cyberattacker to execute remotely malicious commands. For instance, an IoT application
with a registration service could execute specific commands organising the content of each user. If
the appropriate security measures have not been applied, a malicious user could expleit this vulner-
ability by introducing a suitable code block, which in turn will allow to perform various operations,
such as the creation of a reverse shell. Finally, XSS allows the attacker to inject a malicious Javascript
code into a web application. When the malicious code is executed, it will affect the client using the
web application. There are three main types of XS85: (a) persistent/sored XSS, (b) reflected XSS and
(c) DOM-based XSS, The persistent/sored XSS is stored persistently in the web application. Therefore,
each time, the legitimate user accesses and uses the web application, the malicious code is executed.
On the other side, the malicious code of a reflected XSS is executed when the victim accesses a specific
Uniform Resource Locator (URL) created by the cyberattacker. Finally, the malicious code in the case

of the DOM-based XSS is executed by the client side without interacting with the web server.
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2.7.5 Multi-Layer Security Threats

This subsection is devoted to describing threats that can be executed in more than one layer. In partic-

ular, three kinds of threats are described: (a) Cryptanalytic attacks, (b) Malware and (c¢) APTs.

Cryptanalytic Attacks:  Cryptanalysis refers to an attacker trying to discover the original message
(i.e., plaintext) from the scrambled message (i.e., ciphertext). Although the cryptanalytic attacks focus
mainly on viclating confidentiality, they can also affect the integrity and authenticity of the target sys-
tem. Indicative examples of cryptanalytic attacks are: (a) Known-plaintext attack, (b) Ciphertext-only
attack, {c) Chosen-plaintext attack, (d) Chosen-ciphertext attack and (e) Chosen-ciphertext attack. It is
noteworthy that despite the fact that communication protocols adopt efficient encryption mechanisms
at the session sublayer, the evolution of quantum computing threatens and solves easily the mathe-
matical problems behind the existing encryption mechanisms. In [1], D. Aggarwal discusses quantum
attacks against Bitcoin, while in [46], T. M. Fernadez-Xaramez provides a survey discussing quantum-

resistant cryptosystems for securing the communications of the ToT.

Malware Attacks: Malware refers to a malicious program inserted into a system, targeting all the
security requirements mentioned earlier. There are various kinds of malware, such as adware, attack
kits, downloaders, exploits, spyware, botnets, rootkits and ransomware. In particular, adware refers
to a malicious program, which advertises its presence through pop-up ads or re-directing a browser
to a particular webpage. An attack kit denotes a set of attacking tools used to generate malware in an
automatic manner. Next, a downloader installs other items on a computing system under attack. An
exploit refers to a malicious program leveraging specific vulnerabilities. Spyware is a kind of malware
devoted to collecting and propagating useful information from the target system, such as credentials,
screenshots and keystrokes. A bot intends to take under control the resources of a computing system
and use them to perform malicious activities. For example, the infected system can participate in a
group of bots (i.e., botnet) executing a DDo$S attack. Subsequently, a rootkit allows the attacker to get
access to the infected system with administrator permissions. Finally, ransomware is a kind of malware
encrypting the files of a device, thus making it unusable. Characteristic examples of ransomware are
Petya, WannaCry and Locky. In [20], S. Aurangzeb presents a survey about ransomware, while in

[123], A. Costin et al. provide a comprehensive analysis of [oT-related malware.

Advanced Persistent Threats: An APT does not refer to a particular threat but denotes organised
and persistent multi-step malicious campaigns against a particular target over a long period. Usu-
ally, several attackers cooperate with each other in order to execute an APT, using a big number of
computing resources. The targets originate mainly from the political and business area. Appendix B

summarises the main APT campaigns against the energy sector based on MITRE ATT&CK. Moreover,
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in [103], A. Lemay et al. present a survey about APT campaigns, while in [13], A. Alshamrani et al.
provide a detailed analysis with respect to modelling, detecting and mitigating APTs.

2.8 Existing Security Solutions in the Internet of Things

Based on the aforementioned threats, this section describes relevant countermeasures. While the ideal
solution is to prevent and mitigate the various attacks in a timely manner, this objective is generally
not feasible given the presence of zero-day vulnerabilities and unknown anomalies. Therefore, for each
layer, the respective countermeasures are presented. In particular, with respect to the perception layer,
physical security measures are described. On the other side, regarding the communication layer, the
encryption mechanisms of the respective protocols, and other defensive mechanisms, such as firewalls
and [DPS are discussed. In the same way, security measures are foreseen regarding the support and

business layer.

2.8.1 Countermeasures at the Perception Layer

The security measures at the perception layer intend to prevent and mitigate the corresponding threats,
such as natural disasters, environmental threats and human-caused malicious activities. According to
OWASP, physical security remains one of the top ten loT weaknesses. On the one side, physical security
measures like infrastructure design, mitigation plans, restoration mechanisms and personnel training
can effectively handle the natural disasters and the environmental threats. On the other side, the first
step to counter the human-caused malicious activities is to ensure that only legitimate users can access
the IcT entities and their information. Consequently, authentication, access control and trust manage-
ment mechanisms are necessary. Characteristic authentication schemes are password-based schemes,
token-based schemes (e.g., electronic keycards, smart cards) and static or dynamic biometric systems
(e.g., recognition by fingerprints, retina, iris, facial characteristics, hand geometry, voice). Next, access
control defines the access permissions of the authenticated users and entities.Finally, trust management

aims to establish a secure environment consisting only of trusted entities and users.

2.8.2 Countermeasures at the Communication Layer

The security of the communication layer relies mainly on the encryption mechanisms used by the IoT
protocols. Therefore, this subsection aims to provide an overview of how such mechanisms operate
in the context of the following protocol: (a) IEEE 802.15.4, (b) ZigBee, (c) Z-Wave, {(d) Bluetooth En-
ergy (BLE), (e) LoRa Wide Area Network (LoRaWAN), {f) 6LoWPAN, (g) RPL, and (h) DTLS. Based on
Fig. 2.2, each protocol mentioned above is related to a particular sublayer. It is worth mentioning that

application-sublayer protocols are not discussed in this chapter since depending on their nature and
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attributes, the data encryption relies mainly on protocols of the session sublayer. Finally, the role of

additional countermeasures, such as firewall and IDPS is described.

IEEE 802.15.4 Security:  The IEEE 802.15.4 protocol is a typical option for short-range communica-
tions in IoT environments. In particular, it controls and ensures the data transmission at the Physical
and Data Link sublayers. First, at the Physical sublayer, it controls the radio frequency, the energy
consumption, the signal management and the communication channel. With respect to the Data Link
sublaver, apart from the data processing, [EEE 802.15.4 supports additional services, such as node as-
sociation, security mechanisms and packets validation. The security mechanisms of IEEE 802.15.4 are
not mandatory and related only to the Data Link sublayer. In particular, the Frame Control field in-
cludes a bit named Security Enabled Bit (SEB), which specifies whether the security services of the
Authentication Security Header (ASH) will be activated or not. ASH is responsible for constructing
the encryption key and combining the encryption algorithms depending on the security requirements
of the IoT applications. For instance, the IoT applications demanding only confidentiality can use the
security mode: Advanced Encryption Standard (AES) in Counter (AES-CTR). Next, the loT applications
demanding both confidentiality and integrity can use the security mode: AES in the Cypher Block
Chaining (AES-CBC). Finally, the loT applications requiring confidentiality, integrity and authenticity
can ufilise the security mode: AES in the combined Counter with CBC (AES-CCM). It is also notewor-
thy that [EEE 802.15.4 is resilient against replay attacks since the sender can split the original message
into 16 blocks encrypted through a nonce or an initialisation vector. Finally, I[EEE 802.15.4 incorporates
Access Control Lists {(ACLs) defining the access permissions. However, [EEE 802.15.4 cannot handle
forged acknowledgement packets, thus allowing a cyberattacker to execute DoS$ attacks. Moreover, the
ACLs cannot efficiently manage records using the same encryption key. Consequently, a cyberattacker

can re-use a nonce resulting in the plaintext. Finally, IEEE 802.15.4 cannot support all keying models.

ZigBee Security: As [EEE 802.15.4, ZigBee is utilised in short-range communications, paying spe-
cial attention to energy consumption. ZigBee is composed of four layers: (a) Physical layer, (b) Data
Link Layer, (c) Network Layer and {d) Application Layer corresponding to the sublayers of the com-
munication layer. Moreover, ZigBee uses three main entities, namely (a) Coordinator, (b) Routers and
(c) end-nodes. The coordinator undertakes to establish and initialise the ZigBee network, configuring
the communication channel and handling the permissions of the other entities. In addition, the coordi-
nator is responsible for orchestrating the security mechanisms, thus determining continuously which
end-node can access the ZigBee network. The routers are responsible for the intermediate communi-
cation between the end-nodes and between the coordinator and the end nodes. Finally, the end-nodes
refer to the [oT entities. They can communicate with each other only through the routers, and they

can also operate in a sleep mode, thus minimising the energy consumption.

With respect to the security mechanisms of ZigBee, the [EEE 802.15.4 encryption is adopted, using
the AES-CCM™ mode, which is a variation of AES-CCM. In particular, AES-CCM" offers the capability
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to select either encryption or authentication while both of them are applied necessarily in AES-CCM.
Reagrding the other ZigBee layers, different security models can be chosen. The centralised security
model is the most reliable option, using five encryption keys. First, regarding the network layer, a 128-
bit key is adopted and shared with all entities either without encryption or using additional encryption
measures. The first case is a well-known ZigBee weakness. In the second case, a global link key is used
to encrypt the network key. The global link key is predefined between the coordinator and the end
nodes. This key is also used when a new node enters the ZigBee network. Ina similar manner, a unique
link key is utilised with respect to the communication of the coordinator and an end node that is not
a member of the established ZigBee network. This key is predefined between the coordinator and the
end node. Furthermore, the coordinator or otherwise the Trust Centre {TC) uses a different key, called
TC link key regarding its communication with the end nodes. The TC link key is randomly generated
by the coordinator. Finally, with respect to the application layer, an application key is utilised and
encrypted via the network key. The application key is also generated by the coordinator. It is worth
mentioning that Message Integrity Code (MIC) is adopted, thus ensuring the data integrity. Finally,
regarding the replay attacks, the ZigBee entities use a frame counter which is increased when a new

frame is received.

Despite the aforementioned defensive mechanisms, it is evident that they cannot fully address DoS
and replay attacks. For instance, the AVR RZ Raven Universal Serial Bus (USB) can be used either as
a ZigBee Personal Area Network (ZPAN) or end node to sniff and capture the ZigBee network traffic
and, accordingly, the network key if it is not appropriately encrypted. Also, Killerbee can be used
to intercept and analyse the ZigBee packets. In particular, Killerbee consists of three modules: (a)
zbdsniff, (b) zbstumbler and (¢) zbassocflood. zbdsniff is responsible for capturing and analysing the
ZigBee network traffic. zbstumbler is a ZigBee network discovery tool and zbassocflood can flood a
ZigBee entity with multiple packets. Finally, based on N. Vidgren et al. in [198], another usual attack
against the ZigBee entities is a DoS targetting the battery lifetime of the end nodes.

Z-Wave Security: 7Z-Wave is a proprietary technology, which is designed for short-range IoT com-
munications. Z-Wave is provided by the Z-Wave Alliance, which includes more than 600 companies.
Characteristic examples are Huawei and Siemens. In particular, Z-Wave is deployed in a mesh network
utilising a four-layer architecture: (a) Physical Layer, (b) Data Link Laver, (¢) Network Layer and (d)
Transport Layer [117]. The Physical and Data Link layers have been standardised as the G.9959 stan-
dard by [TU. Z-Wave can interconnect 232 devices. In particular, the [oT entities in a Z-Wave network
are divided into two categories: (a) controllers and (b) slaves. The controllers are responsible for the
network management by determining the respective specifications and controlling whether a new de-
vice can join the network or not. Moreover, a primary controller specifies a unique identifier for the
network. On the other hand, the slaves represent typical loT devices. With respect to the security, Z-
Wave categorises the security measures into two main classes: (a) Security 0 (S0) and (b) Security 2 (52)

[145]. Furthermore, S2 consists of three subclasses: (a) S2-Access Control subclass, (b) $2-Authenticated
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subclass and (c) $2-Unauthenticated subclass [117]. $2-Access control is considered the most secure
option, while S2-Unauthenticated and S0 focus on very constrained and legacy devices, respectively.
Apart from S2-Unauthenticated subclass, the security of the previous classes and subclasses use AES-
128 CCM encryption and authentication processes. Regarding the key exchange process, 52 allows
sharing only between the devices of the same subclass. For example, a device belonging to S2-Access
Control cannot exchange the network key with a device of the S2-Unauthenticated subclass. The key
exchange process of the S2 class is conducted via the Curve25519 model, which is considered a safe
option. However, a side-channel attack against this model was recently discovered [145]. On the other
side, the Elliptic Curve Diffie Hellman (ECDH) scheme is utilised for the key exchange process of the
S0 class. Finally, S2 provides AES-128 Cipher-based Message Authentication Code (AES-128-CMAC)
and predetermined nonces, thereby ensuring the data integrity and the protection against the replay

attacks, respectively.

So far, there are no specific security issues against Z-Wave. There are only some successful cyberattacks
against specific implementations. In particular, Z-Wave allows the communication with legacy devices
that may not include sufficient security mechanisms. This fact can lead to various security threats, such
as replay attacks. Moreover, although Z-Wave integrates AES-128 encryption, in many cases, the man-
ufacturers do not activate this kind of encryption. In [145], the authors tested various Z-Wave devices.
They state that only 9 of 33 incorporate the available security measures. Moreover, they demonstrate
a successful cyberattack against a Z-Wave-based door lock application by exploiting a vulnerability
of the key sharing process. The severity score of this vulnerability is 6.5 according to the CVSS [29].
Finally, in [87], M. Smith introduces a tool called EZ-Wave. EZ-Wave can perform various penetration
tests against Z-Wave. The efficiency of this tool is demonstrated by turning on and off various bulbs
of a Z-Wave network, thus leading to their destruction. The CVSS score of this vulnerability is 6.5. In
conclusion, Z-Wave provides valuable security mechanisms that can largely guarantee the security of
the network. The manufacturers and vendors should always follow the security updates, configuring

appropriately the corresponding devices.

BLE Security: BLE is a variation of Bluetooth to support short-range communications, especially
for constrained IoT devices, providing them with the ability to form wireless networks, called piconets.
Bluetooth was introduced under a nonprofit consortium of many organisations and companies, called
Bluetooth Special Interest Group (SIG). More specifically, BLE was generated from the Bluetooth 4.0
specification and subsequently, the specifications 4.1 and 4.2 updated its characteristics. The architec-
ture of a BLE piconet mainly consists of two kinds of entities: (a) master nodes and (b) slave nodes.
The master node is responsible for initiating the network, while the slave nodes are power-constrained
entities sensing the physical environment. It is noteworthy that a slave node can be a master node in
a different piconet. A chain of piconets is named scatternet [145]. Moreover, BLE allows the existence
of broadcasters and observers that periodically broadcast and listen to messages, respectively. Finally,

BLE allows the communication up to 50m, while the maximum data rate is calculated to 1Mbps.
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With respect to security, BLE focuses on authentication, confidentiality, integrity and pairing. Pairing
refers to the secret key generation and storage used for the encryption and authentication procedures
of BLE. There are three keys distributed: (a) Long-Term Key (LTK), (b} Identity Resolving Key (IRK)
and (c) Connection Signature Resclving Key (CSRK). LTK is utilised for the encryption mechanisms.
IRK and CSRK are responsible for determining private addresses and data signing, respectively. LTK is
divided into Master LTK (MLTK) and Slave LTK (SLTK). In particular, two security modes are defined.
The first security mode (Security Mode 1) includes four levels. The first level does not integrate any
security mechanism. The second level includes encrypted communication, but it does not require any
authenticated pairing. The third level requires both authenticated pairing and encryption processes.
Finally, level 4 introduces upgraded encryption and authentication processes, called Secure Connec-
tions. On the other side, the second security mode (Security Mode 2) comprises two levels related to
the signing processes. In particular, the first level defines data signing with non-authenticated pair-
ing, while the second demands authenticated pairing and data signing. Regarding the pairing process,
there are four models: (a) Numeric Comparison, (b) Passkey Entry, (¢) Just Works and (d) Out of Band
(OOB). The devices following the specifications 4.0 and 4.1 use a legacy pairing process. Thus, the
devices use first a Temporal Key (TK) to exchange some random values and then, based on TK, they
generate a Short Term Key (STK) used to distribute securely LTK, IRK and CSRK. On the other side, the
devices following the specification 4.2 use the pairing process defined by the Secure Connections. In
this case, the LTK is not distributed but is generated autonomously in each device utilising AES-128-
CMAC. Subsequently, LTK is used to distribute securely IRK and CSRK. It is worth mentioning that
in contrast to specifications 4.0 and 4.1, specification 4.2 enhances the security of the pairing process
through the addition of AES-128-CMAC as well as the P-256 Elliptic curve. Finally, concerning the data
confidentiality, BLE adopts AES-CCM, while there is not an explicit authentication mechanism, as the

encryption of the link satisfies the authentication process.

Despite the above security mechanisms, BLE presents various security vulnerabilities. First, through a
replay attack, the attackers can violate the legacy pairing process by capturing L'TK, IRK and CSRK. In
[97], G. Kwon et al. demonstrate this vulnerability by predicting and identifying TK within 20 seconds.
The CVSS score of this vulnerability is rated at 7.4. Furthermore, a crucial issue is that the first level of
Security Mode 1 does not incorporate any security mechanism [145]. In addition, although specification
4.2 introduced mechanisms ensuring several security requirements, the manufacturers and vendors
have the ability to adjust and change the security level, thus leading to potential weaknesses [145].
Finally, the specifications themselves are characterised by high complexity, resulting in several security

issues and weaknesses [145].

LoRaWan Security: LoRaWan was initially adopted to enhance the functionality of Low Power
Wide-Area Networks (LPWAN) regarding mainly the consumption capability, storage capacity, long-
range communication and transmission cost. The architecture of LoRaWan relies on four main entities:

(a) end nodes, (b) gateways, (c) network server and (d) application server. The end nodes are usually
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10T entities collecting information from the physical environment and transmitting it to gateways via
the LoRa physical layer. In turn, the gateways send this data to a network server. This communication
is achieved through various protocols, such as IEEE 802.3 (Ethernet) and [EEE 802.11 (Wi-Fi). The
network server is responsible for controlling the data by executing the appropriate security operations
and checking redundant packets. Finally, it transmits the data to the application servers representing

software applications.

Regarding the security measures of LoRaWan, it includes two security layers. The first one under-
takes to authenticate the end nodes. In particular, the authentication process is conducted through
an AES-CTR 128 secret key, called Network Session Key (NwkSKey). This key is utilised between the
end nodes and the network server. On the other side, the second layer is responsible for assuring the
privacy of end nodes by utilising an AES-CTR 128 secret key called Application Key {(AppSKey). This
key is used by the end nodes and the application servers. Consequently, a crucial issue for the Lo-
RaWAN technology is the safety of the above keys. If a cyberattacker manages to steal them, then the
respective data is exposed. Furthermore, concerning the communication between the end nodes and
the gateways, it is worth mentioning that the payload length remains unchanged before and after the
encryption process. An attacker can take advantage of this issue, trying to restore NwkSKey from the
encrypted messages [145]. Moreover, an attacker with physical access to the end nedes has the ability
to extract the aforementioned keys. In particular, an end node includes a LoRa radio module and an
MCU. The LoRa radio module interacts with MCU, utilising Universal Asynchronous Receiver Trans-
mitter (UART) and Serial Peripheral Interface (SPI) interfaces. However, LoRa radio module does not
include embedded encryption mechanisms, thus allowing the attacker to extract the keys. To this end,
external means, such as a Future Technology Devices International (FTDI) interface can be used [16].
In addition, it is noteworthy that the LoRaWAN packets do not integrate time information to verify
the integrity of the messages. This issue can lead to replay and wormhole attacks. In [16], E. Aras et
al. describe the process of a possible wormhole attack against LoRaWAN. Finally, in [156], B.Reynders

et al. demonstrate that the LoRa transmissions are prone to jamming attacks.

6LoWPAN Security: Based on [EEE 802.15.4, the Low Power WPANs can use only 102 bytes for
the data transmission with respect to the other communication layers. However, the value of the
maximum transmission unit required for [Pv6 is equal to 1280 bytes. The purpose of 6LoWPAN is to
solve this issue by deploying an adaptation layer between IEEE 802.15.4 and [Pv6. This adaptation layer
takes advantage of compression, fragmentation and encapsulation mechanisms and transmits the [Pvé

packets to the Data Link Layer.

Currently, 6LoWPAN does not provide any security mechanism, such as [IPSec. However, research ef-
forts [145] investigate how security solutions can be adopted in 6LoWPAN, by designing, for instance,
compressed security headers for 6LoWPAN, as in the case of [PSec, which adopts Encapsulating Se-
curity Payload (ESP) and Authentication Header (AH). Moreover, some studies [69, 86] investigate
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security mechanisms against 6LoOWPAN fragmentation attacks. In particular, [86] H. Kim discusses the
addition of a timestamp and a nonce field to the 6LOWPAN fragmentation header in order to address
such attacks. Furthermore, in [69], R. Hummer et al. present a mechanism supporting fragment authen-
tication and preventing suspicious messages. Finally, a significant security addition to the 6LoWPAN
standard is the key management since the security keys must be regularly renewed in order to as-
sure the principles of confidentiality, integrity and authenticity. Towards this end, the Internet Key
Exchange version 2 (IKEv2) protocol could be used.

RPL Security: The RPL protocol was created by the Internet Engineering Task Force (IETF) for rout-
ing messages in Low Power and Lossy Networks (LLNs). Its operation relies on a Destination Oriented
Directed Acyelic Graph (DODAG) utilising an objective function [200]. In particular, DODAG consists
of a set of nodes possessing oriented edges in order not to create loops. The creation of a DODAG
starts when the root node transmits a DODAG Information Object {DIO) message to its neighbours.
The neighbouring nodes receive the DIO message and take the decision whether they can join the
graph or not. If a node does join the graph, then the corresponding path to the root node is created.
Next, using the objective function, the new node of the graph calculates a value called “rank”. This pro-
cedure is repeated for each node within the graph. Finally, it is worth mentioning that the nodes can
transmit a DODAG Information Solicitation (DIS) message in order to discover new DODAGs. On the
other side, they can also send DODAG Destination Advertisement Object (DAQO) messages to advertise
a routing path.

The security mechanisms of RPL rely mainly on the variations of the RPL messages, such as DIS, DIO,
DAQO, DAO-Acknowledgement (DAO-ACK). The variations can guarantee message integrity, replay
protection, delay protection and confidentiality. In particular, the cryptographic methods behind RPL
are identified by the security field. Moreover, RPL supports three security modes: (a) unsecured, (b)
preinstalled and (¢) authenticated. The first one is the default choice without including any security
mechanism. In the second mode, the nodes hold a pre-configured key used to connect to DODAG as a
router or host. Finally, the third mode adopts a pre-configured key as in the previous case and another
one from a validation authority. Despite the fact that RPL includes valuable security mechanisms, the

routing attacks discussed above remain a severe issue.

DTLS Security:  DTLS is a variation of the TLS protocol assuring the presence of confidentiality,
integrity and authenticity in IoT environments at the session sublayer. DTLS operates over datagrams
that can be lost, duplicated or received in a wrong order. For this reason, DTLS supports some addi-
tional measures compared to TLS. First, the TLS record protocol is enhanced with two additional fields:
(a) an epoch and (b) a sequence number. Second, DTLS does not allow stream cyphers. Finally, the TLS
handshake protocol is improved with the addition of a stateless cookie, thus addressing potential frag-
mentation, message loss and reordering issues. The Request for Comments (RFC) 6347 document [145]

describes in detail the aforementioned measures.
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Several [oT application-layer protocols rely on the security mechanisms of DTLS. However, DTLS is
characterized by some limitations. First, DTLS cannot support some [oT communications since large
messages have to be fragmented at the 8LoWPAN adaptation sublayer. Thus, some packets have to
be re-transmitted. Moreover, the preparation and transmission of the finished DTLS messages are
computationally expensive with respect to the resources of the loT entities. Furthermore, DTLS cannot
be used yet with some [oT protocols, such as Modbus and DNP3. Finally, it is also noteworthy that the

current DTLS version cannot support multicast communications.

Firewalls: A firewall is a protection system in the form of hardware or software that continuously
monitors and controls the network activities based on predefined rules. A firewall can monitor the net-
work traffic data with respect to the attributes of the communication protocols at the various sublayers.
This choice relies on the firewall policy defined by risk management and assessment procedures. In
particular, a firewall can be classified either by its operation mode or its placement. Regarding the
first case, four categories are defined: {a) packet filtering firewall, (b) status inspection firewall, (c)
application-level gateway and (d) circuit-level gateway. Each category mentioned earlier is further
analysed in [145]. On the other side, a firewall can be installed in various locations. For instance, the
loT entities can carry a lightweight firewall system. Otherwise, a centralised loT entity can also play the
role of a firewall monitoring the activities of the entire JoT network. In [143], P. Radoglou-Grammatikis
et al. provide an overview of the firewall systems with respect to the SG ecosystem. In [55], N. Gupta
et al. present a firewall using a Raspberry Pi device as a gateway, which adopts appropriate heuristic

functions and signature rules.

Intrusion Detection and Prevention Systems:  An IDPS system aims to detect, record and mit-
igate timely potential cyberattacks. For this purpose, an IDPS can monitor and process information
originating from multiple sources, such as system logs, network traffic data and operational data. As
in the case of a firewall, an IDPS can be categorised either by its operation mode or its placement. In
the first case, three kinds of IDPS are defined: (a) signature-based IDPS, (b) anomaly-based IDPS and
(c) specification-based IDPS. The signature-based IDPS utilise a predefined set of malicious patterns.
The second category uses statistics and Al methods, while the specification-based IDPS adopt a set of
patterns defining the normal behaviour. On the other side, there are three types of IDPS: (a) Host-based
1IDPS (HIDPS), (¢} Network-based IDPS (NIDPS) and Hybrid IDPS. HIDFS is responsible for monitor-
ing the system logs and activities of an individual entity. In contrast, NIDPS undertakes to monitor
the entire network. Finally, the last category combines the characteristics of the previous ones. The
following chapter describes in detail the various kinds of IDPS and how they work. Several papers
investigate how IDPS can protect the [oT entities and apllications. For instance, in [151], S. Raza et al.
present “Svelte”, an TDPS capable of detecting sinkhole, sybil and selective forwarding attacks. Tn [181],
M. Surendar and A. Umamakeswari provide an IDPS, which focuses on sinkhole attacks. In a similar

manner, in [118] D. Midi et al. present “Kalis”, an TDPS system for the ToT, combining signature-based
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and anomaly-based detection. Finally, in [30], C. Cervantes et al. presents “INTT?, an IDPS for 6LoW-
PAN. Finally, in [217], B. Zarpelao et al. provide a comprehensive survey of various loT-related IDPS
systems, while Chapter 3 presents a similar analysis about SG-related IDPS.

2.8.3 Countermeasures at the Support and Business Layers

The respective countermeasures at the support layer have to counter unauthorised access activities,
malicious insiders, insecure services and potential unknown threats. Consequently, first, only the le-
gitimate users and IoT entities should be able to access and use the services and information of the sup-
port layer. For this purpose, the presence of an authentication and access control system is necessary.
Moreover, a trust management {ramework is paramount of importance. Next, secure programming,
firewall and IDPS can prevent data loss or leakage. Finally, stringent and transparent policies with re-
spect to the security and safety rules are essential to address and mitigate potential malicious insiders.
On the other side, the security threats of the business layer are mainly related to the insecure program-
ming and the human factor. Therefore, high-level programming languages could be adopted in order to
minimise potential security gaps and vulnerabilities. Moreover, cybersecurity training and certification

activities are necessary since they can protect the users from social engineering techniques.

2.9 Chapter Summary

This chapter provides an introduction to IoT, giving particular emphasis to the relevant security and
privacy issues. In particular, first, the entities of [oT are briefly described, providing characteristic
examples like PLCs and RTUs. Next, despite the fact that an ToT communication stack has not been
standardised vet, a proposed one is discussed in terms of the various layers: (a) Perception Layer, (b)
Communication Layer, (¢) Support Layer and (d) Business Layer. Next, the applications and services in
the loT paradigm are presented, payving special attention to SG, the largest application in the loT era.
Subsequently, the IoT security requirements and challenges are enumerated and discussed, considering
the unique characteristics and limitations of the participating entities. Next, a threat taxonomy is
presented based on the aforementioned layers and the CAPEC catalogue. Finally, in a similar manner,

for each layer, the relevant security solutions and countermeasures are organised and discussed.



Chapter 3

Intrusion Detection and Prevention

It is evident that despite the benefits of the IoT, the corresponding entities and applications are prone
to a wide range of threats and cyberattacks. While the optimal security policy is to prevent the various
attacks in a timely manner, this goal is generally not achievable due to zero-day vulnerabilities and
unexpected security events. A realistic solution is the timely detection of cyberattacks and anoma-
lies without affecting the normal operation of the ToT applications. Therefore, the presence of intru-
sion detection mechanisms is necessary. This chapter provides an overview about intrusion detection
and prevention mechanisms. According to RFC 2828 (Internet Security Glossary), intrusion detection
is related to monitoring, auditing and evaluating security events in order to detect any malicious or
anomalous behaviour in a timely manner. In 1980, the term "IDS” was coined, referring to a hardware
and/or software system that automates the aforementioned activities. In 1980, James Anderson [148]
concluded that the log files could be an efficient source for monitoring the health status of a computing
system and how the involved users interact with it. In 1978, D. Denning et al. defined the first concrete
intrusion detection model [41]. On this basis, several engineers start implementing the first IDS. This
chapter summarises (a) the objectives and requirements of IDPS, (b) an IDPS reference architecture,
(c) the intrusion detection techniques, (d) the role and types of honeypots, {e) the intrusion prevention

techniques and finally, (f) the role of the STEM systems and the Security Operation Centres {(SOCs).

3.1 Objectives and Requirements of Intrusion Detection and Preven-

tion Systems

According to RFC 2828 (Internet Security Glossary), a security intrusion is defined as: “A security event,
or a combination of multiple security events, that constitutes a security incident in which an intruder
gains, or attempts to gain, access to a system (or system resource) without having authorisation to do
$0.”. On the other side, intrusion detection is defined as: “A security service that monitors and ana-

lyzes system events for the purpose of finding, and providing real-time or near real-time warning of,

41
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attempts to access system resources in an unauthorized manner.”. Although the intruders intend to
take advantage of new weaknesses and bypass potential countermeasures, they usually adopt a com-
mon attack methodology consisting of six steps: (a) Target Acquisition, (b) Initial Access, (c) Privilege
Escalation, (¢) System Exploit, {(d) Maintaining Access and (e) Covering Tracks [179]. Despite the fact
that the main goal of IDPS is to detect and mitigate potential intrusions in a timely manner, the con-
strained nature of the [oT entities and applications leads to new requirements about their role in loT

[148]. According to P. Radoglou-Grammatikis et al. in [148], these requirements are given below.

« Detection of a wide range of cyberattacks and anomalies: Based on the threats discussed
in Chapter 2, the IDPS shall be able to detect and discriminate a wide range of cyberattacks and

anomalies.

« Timely Intrusion Detection: Depending on the criticality of each IoT application, the corre-

sponding cyberattacks and anomalies should be detected in near real-time.

« High Detection Accuracy: The detection efficiency is the most critical challenge of an [DPS in

terms of recognising the various cyberattacks and anomalies in an accurate manner.

+ Lightweight Resource Scaling: Due to the constrained nature of IoT entities and applications,
an [DPS should be able to operate in an accurate and timely manner without consuming a lot of

computing resources and affecting the core operation of the IoT entities and applications.

« Scalability: Given the size of the IoT applications consisting of multiple ToT entities, a relevant

IDPS should be capable of monitoring and controlling them efficiently.

+ Resiliency against Cyberattacks: The IDPS should be able to detect and counter cyberattacks
targeting itself.

« Friendly User Interface: Similarly, given the large amount of data and security events in loT
applications, the respective IDPS should be able to visualise and correlate the various security

events and alerts in a clear and organised manner.

3.2 Reference Architecture of Intrusion Detection and Prevention Sys-

tems

As illustrated in Fig. 3.1, a typical IDPS consists of three main components, namely (a) Agent(s), (b)
Analysis Engine and (¢) Response Module. The agents are responsible for monitoring the activities of
the various entities, thus collecting and pre-processing the necessary data. Next, this data is sent to
the Analysis Engine. It is worth mentioning that based on the placement of an agent, an IDPS can

be classified into three categories: (a) HIDPS, (b) NIDPS and {cj Hybrid IDPS. In particular, an HIDPS



43

monitors the characteristics and the activities of a single entity, such as system calls and log files. On
the other hand, a NIDPS is capable of monitoring the network traffic data of a network segment. Fi-
nally, the Hybrid IDPS combines the aforementioned types {i.e., HIDPS and NIDPS). Next, the Analysis
Engine receives the data from the various agents and is responsible for recognising the presence of a
cyberattack or anomaly. For this purpose, three main detection techniques can be utilised, namely (a)
signature-based detection, (b) anomaly-based detection and (c) specification-based detection. Each of
them is further detailed below. Finally, the Response Module receives the security events and alerts gen-
erated by the Analysis Engine and notifies the user. In some cases, the Response Module can perform
some mitigation and prevention activities, such as activating the appropriate firewall rules. Usually,
the terms Intrusion Detection System (IDS) and Intrusion Prevention System (IPS) are used depend-
ing on the mitigation and prevention actions provided by the Response Module. In the first case, the
Response Module can generate some security messages without executing any mitigation/prevention
actions. [n the second case, the Response Module can perform some of the mitigation/prevention mea-

sures discussed in subsection 3.5. In this thesis, the term IDPS will be used for both options.

Detection Techniques E

Signatures Anomalies Specifications

Response

Agent 2 Analysis Engine
i

LY

e e e

Agent N

FIGURE 3.1: Typical IDPS Architecture [148]

3.3 Intrusion Detection Techniques

The function of the Analysis Engine relies on the assumption that the behaviour of an intruder differs
from that of a normal/legitimate user, and this kind of difference can be quantified based on various
methods. However, there is an overlap between the two behaviour profiles. Therefore, a loose interpre-
tation of the intruder’s behaviour will result in the detection of more cyberattackers but, at the same
time, will lead to more False Positives (FP). On the other hand, a stricter interpretation of the intruder’s

behaviour will lead to more False Negatives (FN). Fig. 3.2 illustrates this overlap between the behaviour
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profile of an intruder and a normal/legitimate user. Consequently, it is evident that there is a practical
element of compromise with respect to detecting intrusions and anomalies. Based on the methods used
by the Analysis Engine, an [DPS can be classified into three categories: (a) signature-based detection,
(b) anomaly-based detection and (c) specification-based detection. Each method is further analysed in

the following subsections.

Probability Profile of

density function authorized user

A Profile of behavior
intruder behavior

N

Overlap in observed
or expected behavior

Average behavior Average behavior Measurable behavior
of intruder of authorized user parameter

F1GURE 3.2: Behaviour Profiles of an Normal/Legitimate User and an Intruder [179]

3.3.1 Signature & Specification-based Detection

The signature-based techniques (also known as misuse detection) adopt a set of known malicious pat-
terns or attack rules (i.e., signatures) compared with the characteristics of the current behaviour, thus
identifying the presence of an attacker or not. This kind of detection is characterised by a high detection
accuracy and a relatively low computation and time cost; however, it cannot detect unknown anomalies
and zero-day attacks. On the other hand, specification-based techniques use a set of rules (i.e., speci-
fications) that determine the normal behaviour. Consequently, any action violating the specifications
is considered an anomaly. The specification-based techniques include the aforementioned advantages
and can detect unknown anomalies. However, they cannot discriminate the attack type. Based on the
syntax of the patterns/rules, the IDPS is considered a signature-based IDPS or specification-based IDPS.
Snort [32], Suricata [203] and Bro [195] are popular NIDPS of this category. Similarly, OSSEC [186] is
a HIDPS of this category.
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3.3.2 Anomaly-based Detection

The anomaly-based IDPS uses a model, which can recognise normal and malicious behaviour patterns
based on statistical and Al methods. In particular, ML and DL methods are usually adopted for the
implementation of this model, following a training process based on the data of the various agents.
The training process can take place at distinct times or in a continuous manner, thus updating the
model with the presence of new attacks and malware. Such methods can detect unknown anomalies
and zero-day attacks, but they are characterised by a significant number of false alarms. Moreover,
a drawback of this category is the necessary presence of an intrusion detection dataset, including
malicious data samples. Due to the sensitive nature of this data (especially in the energy sector), such
datasets are rarely available [139]. In addition, each environment is specified by unique characteristics
and requirements, thus complicating the adoption of publicly available datasets. Despite the fact that
there are many ML/DL methods, all of them follow the phases below.

« Pre-processing Phase: Given a pre-existing dataset (either labelled or not), in this phase, each
data point/instance is pre-processed appropriately based on their features and the hyperparam-
eters of the ML/DL methods, which will be used in the following phase. Usually, pre-processing
methods like normalisation, min-max scaling, standardisation, max abs scaling and robust scal-

ing are used [47].

+ Training Phase: In this phase, the model responsible for the prediction/detection is trained and
generated based on the pre-processed data of the previous phase. As mentioned, there are vari-
ous ML/DL models for this purpose. In general, they can be classified into four main categories:
(a) supervised detection [37], (b) unsupervised/outlier detection [22], (¢c) semi-supervised/novelty
detection [197] and (d) RL [17]. The first category relies on a labelled dataset, thus including a par-
ticular label like “Anomaly”, “Normal”, or “Unauthorised Activity” for each data point/instance.
Characteristics ML/DL methods for this category are Decision Trees [114], Random Forest [154]
and Neural Networks [54]. On the other side, the second category can use clustering techniques
[166] and unlabelled datasets based on the assumption that most of the data points/instances
are normal. However, the training data can include outliers. Stochastic Outlier Selection (SOS),
Isolation Forest [60] and Local Outlier Factor (LOF) [9] are indicative methods of this category.
Next, in the this category, the training dataset does not include outliers, and the goal is to identify
whether a new observation is an outlier or not. OneClassSVM [107] is a typical example of this
category. In the last category, the goal is to create an agent interacting with the environment in

order to identify the most efficient policy in terms of particular states, actions and rewards.

« Inference: After the training procedure, the model is ready to be used by the Analysis Engine
described above. Based on the decision of the model, the relevant alert can be triggered or not

by the Response Module.
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Next, various ML/DL methods of the second phase are briefly described. These methods are used in

Chapter 5 in a comparative study for detecting various cyberattacks against industrial protocols.

Logistic Regression: Logistic Regression [39] is a supervised ML methoed that is used to model and
identify the probability of a particular event. It can be adopted when the data samples are linearly
separable, and the prediction outcome is binary. However, it can also be used with multiclass clas-
sification problems based on the extended version of logistic Regression called multinomial logistic

Regression. In summary, a model using Logistic Regression works as follows. First, a linear represen-

1
1+e—%"

the outcome y. To evaluate the efficiency of the model, a loss function is used, calculating the error

between y and the actual 4. Although the Mean Squared Error (MSE) (M SE = % S (v — 907)

tation z is calculated and given to a sigmoid function ¢ = Next, ¢ is responsible for predicting

is one of the most well-known loss functions [159], the outcome of Logistic Regression is between
0 and 1; therefore, MSE is not an appropriate loss function for a model relying on Logistic Regres-
sion. To this end, the Cross-Entropy Loss Function (H(P*|P) = — >, P*(i)logP(i)) or Log Loss
(% Zﬁl —(yi+log(y:) + (1 —y;) * log{1 — 9;)) can be used. In contrast to Linear Regression, Logistic
Regression is suitable when there are outliers or the predicted value exceeds the range between 0 and

1.

Naive Bayes: Naive Bayes [76] is a probabilistic ML-supervised method, which relies on the Bayes’
theorem P(Y|X) = w, assuming that the features of vector X are independent with equal
importance. This means that changing the value of a feature does not affect the other features. More-
over, it is noteworthy that all the features contribute equally to the successful prediction. Consequently,
based on n number of features, the Naive Bayes model can be representedas P(Y = k| X1, Xa, ..., Xpn)
P(Y) T2, (X:]Y). Supposing that values of the various features are continuous, then their distribu-
tion should be considered. Consequently, there can be various Naive Bayes classifiers based on the
distribution P(X;|Y"). A characteristic example is the Gaussian Naive Bayes, which relies on the as-

sumption that the values of the various features follow the Gaussian distribution.

Support Vector Machine (SVM):  SVM [31] is an ML-supervised method that can be used for clas-
sification and regression problems. However, it is usually adopted for classification problems. The
goal of SVM is to create a hyperplane capable of distinguishing the various classes. The form of the
hyperplane relies on the corresponding dimensionality space. For instance, in two-dimensional space,
the hyperplane is represented by a single line. In a similar manner, in a three-dimensional space, the
form of a hyperplane is a plane. The dimensicnality of the hyperplane relies on the number of features
used for the training procedure. The data points near the hyperplane in each case are called support
vectors. These data points are responsible for the position of the hyperplane. The distance between the
support vectors and the hyperplane is called margin. During the training procedure, one of the goals is

to identify the appropriate hyperplane, which maximises the margin between the support vectors and
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the hyperplane. Given a linear problem, mathematically, SVM is summarised by the following equa-
tion: m@n%\ |W| |2, sty (WX + b) > 1, VX, For non-linear problems, various kernel functions can
be used. They refer to functions that convert low-dimensional input space into a higher-dimensional
space. There are various kernel functions, such as Radial Basis Function (RBF), polynomial kernel and

sigmoid kernel.

K-Nearest Neighbour (KNN): KNN [38] is a lazy M1, method for both classification and regression
problems. It can be used as a supervised or unsupervised method. In particular, given a new data point,
KNN calculates the distance between the new data point and the existing ones. Next, the distances are
sorted in ascending order. Then, the first K distances are chosen. Finally, the mode or mean of the
distances are calculated depending on whether the type of the problem is classification or regression,
respectively. Regarding the calculation of the distance, various distance metrics can be used, such as
Minkowski, Manhattan, Euclidean, Cosine and Jaccard. On the other hand, K is a hyperparameter
which is chosen mainly based on the nature and characteristics of each domain. There are several

algorithms implementing the KNN method, such as kd_tree, ball tree, auto and brute.

Decision Tree: A decision tree is another ML-supervised method for both classification and re-
gression problems [147]. Focusing mainly on the classification problem, a decision tree can be rep-
resented as a set of 1f-else statements, categorising the various instances into particular classes
based on the various features. As indicated by their name, a decision tree consists of internal nodes
and leaves. On the one hand, the internal nodes represent the if-else statements responsible for the
decision about the classification problem in terms of splitting the overall data space into smaller data
spaces given the available features. This decision can rely on various criteria, such as Entropy defined
by E(S) = —p(ptogpy — pylogp(y where p. denotes the probability for the positive class, while
p; indicates the probability for the negative class. Finally, S implies a subset of the training dataset.
The Entropy indicates the degree of uncertainty related to a node. The lower the Entropy, the higher
the purity of this node. Although the Entropy can identify the uncertainty of a node, it cannot provide
the Entropy of the parent node. In particular, the Entropy cannot identify whether the Entropy of the
parent nodes has been decreased or not. For this purpose, Information Gain: IG = E(Y)— E(Y|X) is
used. IG can measure the reduction of uncertainty based on the various features and play an important
role as a deciding factor regarding which nodes will act as internal ones or leaves. Based on the afore-
mentioned remarks, many algorithms can generate decision trees based on a labelled dataset, such as
the Classification and Regression Tree (CART), Iterative Dichotomiser 3 (ID3), J48, Chi-square Auto-
matic Interaction Detector (CHAID), C4.5 and Quick, Unbiased, Efficient, Statistical Tree (QUEST). In
this thesis, CART is utilised. In particular, CART separates the dataset based on a single feature = and a
relevant threshold £. To this end, CART searches for the best pair between x and {, which will provide
the purest subsets. Next, for each subset, the same method is used according to a hyperparameter called

max depth which defines when the splitting process will stop, thus avoiding overfitting issues.
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Random Forest: Random Forest is an ensemble ML-supervised method, combining multiple ML
models using the bagging method [154]. This means that different training subsets are generated ran-
domly from the initial training dataset with replacement. It is worth mentioning that there is a high
possibility that each data subset will not include unique data samples. Next, the various ML models
are trained individually based on each subset. This step is known as row sampling or bootstrap. Then,
the final outcome relies on the majority voting of the various ML models. This process is known as

aggregation. The ML models usually refer to decision trees that were described earlier.

AdaBoost:  AdaBoost [162] is another ML-supervised ensemble method which adopts the boosting
method. This means that the prediction efficacy is improved by converting a number of weak learners
into strong learners. In general, the rationale behind the boosting methods is that a first ML/DL model
is generated based on an existing dataset; next, the second model intends to correct the error of the first
model. This process is repeated until the error is minimised. AdaBoost usually adopts decision trees
with one level. These trees are also known as decision stumps. First, an equal weight value is assigned
to all the data points of the dataset. Therefore based on N data points, w(z;,y;) = %,i =1,2,..n
Next, for each feature, a decision stump is calculated by calculating the Gini Index (another criterion
like entropy). The decision stump with the lowest Gini Index is selected. Next, the “Importance” or
“Influence” of this classifier is calculated by a = %EongotalError Total Error indicates
the sum of the misclassified data points. The “Importance” or “Influence” of the classifier is also known
as the “Amount of Say”. After computing the “Amount of Say”, the weight values will be updated for
each data point according to w = w # e™?. The positive @ is used when the data point was classified
correctly, while the negative a is used when the data was misclassified. Consequently, the mistaken
classifications will lead to higher weight values, while the correct classifications will result in lower
weights. Next, the data points with the higher weight values are chosen repetitively to compose the

updated dataset that will be used for the new training process.

Linear Discriminant Analysis (LDA) and Quadratic Discriminant Analysis (QDA) LDAis a
linear ML-supervised method used for dimensionality reduction and classification problems [188]. In
particular, the goal of LDA is to transform the data from a dimensional space IJ to a dimensional
space D' where D > D', thus maximising the variability between the classes and minimising the
variability within the classes. Next, the transformed data can be used to construct a discriminant,
taking full advantage of Bayes’ theorem. Next, a linear score 8x(z) = z! E_l mg iy + logpiy
[21] is computed, thus classifying a data point to the class with the highest score. In order to use LDA
with non-linear problems, kernel functions can be used. The goal is to project the input data into a
new high-dimensional space where the inner products can be calculated by the kernel functions. It is
noteworthy that LDA relies on the assumption that the various data follow the Gaussian distribution
while the classes are characterised by specific means and equal variance/covariance. On the other side,

QDA [187] is an extension of LDA without using the assumption that the classes should have an equal
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covariance. In other words, the covariance matrices can differ for each class. Consequently, LDA is

appropriate for small datasets, while QDA can be used for large datasets.

Principal Component Analysis (PCA): PCA is an unsupervised ML method which is commonly
adopted for dimensionality reduction tasks [157]. However, it can also be used for detecting outliers.
In general, the goal of PCA is to reduce the dimensionality of a d-dimensional dataset by projecting it
into a k-dimensional subspace where & < d, retaining in parallel most of the information. To this end,
the first step is to standardise the initial dataset. Next, the eigenvectors and eigenvalues are received
from the covariance matrix or the correlation matrix. Otherwise, singular vector decomposition can
also be used. The next step is to sort the eigenvalues in descending order and choose the k eigenvectors
that correspond to the k largest eigenvalue, where & is the number of dimensions of the new feature
subspace. Next, the projection matrix W is constructed from the selected & eigenvectors. Finally, the
k-dimensional feature subspace Y is generated by appropriately transforming the original dataset X
through W. It is worth mentioning that PCA does not remove some features from the initial dataset X
but creates some new different features called principal components. Regarding the outlier detection
process through PCA, the goal is to reconstruct the original data X from the principal components. The
reconstructed data points/instances will not be the same as the original ones; however, they should be
similar. By comparing the original data points/instances and the reconstructed ones, the reconstruction
error is calculated. Consequently, based on the reconstruction error and a relevant threshold value, the
outliers can be detected. Alternatively, the outlier scores can be computed based on the sum of the

projected distance of the original data and the eigenvectors.

Isolation Forest:  Isolation Forest is an ensemble unsupervised ML method which is capable of
recognising anomalies/outliers based on the assumption that the anomalies/outliers are few and dif-
ferent [60]. In particular, Isolation Forest utilises binary decision trees that, in turn, handle a subset
of data samples according to randomly selected features. Such trees are usually named Isolation Trees
(iTrees). The data samples travelling deeper into the iTrees have a low probability of being anomalous.
On the other hand, the data samples that end up shortly based on the structure of the iTree denote
potential anomalies/outliers. First, some randomly selected samples are assigned to the iTree. Based
on a random feature and the relevant threshold, the structure of the iTree is formed by creating left
and right nodes. In particular, if the value of this feature is smaller than the threshold, then this data
point is placed in the left node. Otherwise, the data point is placed in the right node. This process is
conducted recursively until every data point is completely classified or differently a maximum depth
is defined and reached. Consequently, a set of iTrees is created, and the training procedure of Isola-
tion Forest is completed. During the inference mode, the new data point is passed through each of the
previously-trained iTrees. Next, an anomaly score is calculated in an aggregate manner based on the

depth achieved in each iTree. Practically, according to the contamination parameter given during the
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training procedure, an anomaly score of —1 indicates the potential anomalies/outliers, while 1 denotes

the normal points.

Local Outlier Factor (LOF): LOF is an unsupervised ML method which calculates the local density
of a data point/finstance based on its neighbours [9]. The outliers/anomalies are characterised by a
lower density than the relevant neighbours. In particular, LOF is defined as the ratio of the mean Local

Reachability Distance (LRD) of the K neighbours of a data point/instance A to the LRD of A, that is

LOF,(A) = Xjelr]kv(;ziipk(xj) X LRle(A) where Ni(A) denotes the K-neighbours of A. Moreover,
LEDy(A)isdefinedas LED(A) = L 7o7ax;y Where RD implies the Reachability Distance

Xien,ray A
(RD) which is the maximum k-distance of X; and the distance between X; and X;. Consequently, if

a data point/instance is not an outlier/anomaly, LOF is approximately equal to the LRD of this data

point/instance. On the other side, LOF will be greater.

Minimum Covariance Determinant (MCD): MCD [68] is an unsupervised ML method used to
estimate the multivariate location and scatter with a high degree of confidence. Although it was intro-
duced in 1984, it was widely adopted when Rousseeuw and Van Driessen introduced the FAST-MCD
method. Due to its resistance to outlier observations, MCD is also highly useful for detecting outliers.
In particular, the goal of MCD is to find the % observations with the lowest determinant in the covari-
ance malrix. Thus, the MCD estimates of location and scatter are calculated by using the average and

the covariance matrix of these h data points. Thus, given a data space S with n data points and p fea-

tures, MC'D = (X;f, S;) where X7 = % >iejxiand Sy = %ZieJ(zi — X;f)(m2 — X;)t. Finally, .J
denotes a set of & points so that |S%|<< | S} |7 sets K s.t. #|K|= h where #|w| denotes the number of
elements in set w. A can be considered as the minimum number of data points that will not be outliers.
Given a particular cluster, the points that are outliers are not involved in the calculations related to the

location and scatter.

Angle-Based Outlier Detection (ABOD): ABOD [91]is a geometric unsupervised ML method used
for detecting outliers given a multivariate feature space. Unlike distance-based methods, ABOD can
work well with a high-dimensional feature space. In particular, ABOD relies on the angle formed by
the various features. The variance of the angle seems to vary with respect to the normal data points/in-
stances and the outliers/anomalies. In particular, the variance for the normal data points/instances is
greater compared to the outliers/anomalies. First, the angle of each data point/instance is formed and
stored in a relevant list. Next, the variance of this list is calculated. Finally, the variance values that are

smaller than a specific threshold indicate a potential outlierfanomaly.
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Deep Neural Networks (DNNs) DNNs refer to DL methods that can be supervised, unsupervised
or semi-supervised [131]. In this thesis, custom Multi-Layer Perceptron (MLP) [184], CNN [84], au-
toenceders [219] and Generative Adversarial Networks (GANs) [48] are utilised. More information
about these DNNs is given in Chapter 5. In general, regarding classification and intrusion/anomaly
detection problems, a DNN is composed of several neurons that can cooperate with each other in or-
der to predict the potnetial class. Regarding MLP, also known as Artificial Neural Networks (ANNs),
first, the various weights are initialised. Next, for each data point/instance in the dataset, the relevant
neuron is created in the input layer. Subsequently, the neurons are activated, taking full advantage of
an activation function like the sigmoid function. The outcomes of the neurons are propagated from left
to right (forward-propagation), thus predicting the class y. Next, y is compared to the actual 3/, thus
measuring the relevant error. Various loss functions can be used for this purpose, such as for example
the MSE. Next, the error is back-propagated to the neurons, updating the relevant weights. The goal is
to minimise the value of the relevant cost function. Two popular methods for this purpose are gradient
descent and stochastic gradient descent. It is noteworthy that the previous steps are repeated for each
data point/instance of the dataset. When this process is completed for all the data points/instances of
the datasets, this leads to an epoch. On the other side, CNNs are mainly utilised for classifying images.
Finally, Autoencoders and GANs are composed of two networks, namely {a) encoder and (b) decoder
- {a) generator and (b) discriminator, respectively, that are mainly used to generate new data points.
However, they can also be utilised for detecting anomalies/outliers. More information about CNNs is

given in [84].

3.4 Honeypots

Honeypots are non-valuable assets that intend to mimic the behaviour of the actual assets, thus safe-
guarding them and gathering important information about the malicious activities of the cyberattackers
[121]. Tt is worth mentioning that a honeypot is considered as a security hole, including intentionally
security weaknesses and vulnerabilities in order to trap the potential cyberattackers. Fig. 3.3 illustrates
how a honeypot can be categorised based on four main criteria: (a) Objectives and User Requirements,
(b) Level of Interaction, {c) Physicality and (d) Operation Type. First, according to the goal and the user
requirements, a honeypot may be divided into two types: (a) production honeypots and (b) research
honeypots. The production honeypots are deployed in the production network in an attempt to con-
ceal the actual assets from malicious insiders. On the other hand, research honeypots are accessible
to public networks such as the Internet, enticing potential cyberattackers and gathering valuable in-
formation about their behaviour. It is worth noting that any engagement with a honeypot is seen as
suspect because legitimate users have no incentive to communicate with it. Furthermore, honeypots
may be classed as (a) Low-Interaction Honeypots (LIH), {b) Medium-Interaction Honeypots (MIH), and
(c) High-Interaction Honeypots (HIH). LIH can imitate some network services in terms of communi-

cation protocols without totally simulating the network behaviour of the real assets. MIH can better
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mimic the network behaviour of the actual assets by broadcasting network packets as the genuine asset.
Finally, HIH is a full replica of the genuine asset, including all hardware and software features. Next,
a honeypot can be categorised as physical or virtual depending on how it was implemented and used.
For instance, a physical honeypot can be an unused hardware entity/device, while a virtual honeypot
can rely on software specially designed to play the role of a honeypot. Usually, the physical honeypots
are characterised as MIH or HIH, while the virtual ones are LIH or HIH. Finally, depending on the
operation type, an Information Technology (IT} asset may be characterised as a server or client. Thus,
accordingly, a honeypot can play the relevant role (i.e., server or client) or can support both of them.
In the last case, the honeypot is characterised as a hybrid. A detailed survey on honeypots is provided
by M. Nawrocki et al. in [121].
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Ficure 3.3: Honeypot Classification Criteria and Types

3.5 Intrusion Prevention Techniques

After the detection phase, mitigation and prevention actions can follow by the response module. A
characteristic example is the activation of some firewall rules responsible for isolating the cyberat-
tacker. Another example is the use of honeypots in order to mislead and trap future malicious activities.
Finally, the response module can take full advantage of the SDN [204] technology in order to mitigate
the cyberattacks or anomalies in near real-time. In this thesis, both honeypots and SDN are used by
the proposed SIEM system in order to mitigate the various cyberattacks. In particular, as illustrated in
Fig. 3.4, the SDN architectural design consists of four planes, namely {a) Data Plane, (b) Control Plane,
{c) Application Plane and (d) Management Plane. The Data Plane refers to the entities/devices that
are connected to hardware or software SDN switches. Next, the Control Plane is characterised by the
presence of the SDN Controller (SDN-C), which is responsible for managing the network elements of
the Data Plane through the southbound Application Programming Interface (API). To this end, vari-
ous southbound protocols can be used, such as OpenFlow, NETCONF, OpFlex and the Simple Network
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Management Protocol (SNMP). The Application Plane includes applications (such as the response mod-
ule) that guide and communicate with the SDN-C in order to apply efficient policies with respect to the
entities of the data plane. For this purpose, northbound APTs are utilised regarding the communication
between the applications and the SDN-C, such as REpresentational State Transfer (REST). Finally, the
Management Plane is a cross-layer block responsible for the deployment, configuration and manage-

ment of the various entities/devices and components of the other planes.
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FIGURE 3.4: SDN Architectural Model

3.6 Security Information and Event Management Systems

The SIEM system is in charge of organising and coordinating the monitoring, detection, and mitigation
processes of a smart ecosystem like the SG. In particular, a STEM has the ability to aggregate, normalise,
correlate, and visualise a wide range of security events, allowing it to detect and analyse potential se-
curity breaches [51]. A security event refers to a message or a security log that has been normalised in
a specific format and is related to the security status of the monitored infrastructure. The correlation

of security events can result in the generation of security alerts that refer to a group of linked security
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events. Security and Al association rules (such as the Apriori and Eclat ML methods) can be utilised to
accomplish this. As a result, a STEM acts as an umbrella for multiple security tools, commonly referred
to as SIEM sensors, aggregating, normalising, correlating, and visualising their results. Characteristic
examples of SIEM sensors are IDPS, firewalls and honeypots. Popular SIEM systemns are AT&T Cyber-
security AlienVault Unified Security Management, Splunk Enterprise Security [65], IBM QRadar and
McAfee Enterprise Security Manager. On the other side, a SOC [42] consists of a group of security
experts that use various security tools (including STEMs) and appropriately handle the various security

events and alerts.

3.7 Chapter Summary

Given the great [oT threat landscape discussed in the previous chapter, it is evident that the presence of
IDPS is necessary. This chapter provides a detailed overview of IDPS. In particular, first, the objectives
and requirements of IDPS are enumerated and described. Next, according to D. Denning et al. in [41],
the typical architectural model of the IDPS is discussed, explaining the role of each component and
the various categories, such as HIDPS, NIDPS and Hybrid IDPS. Subsequently, the intrusion detection
techniques (i.e, signature/specification-based detection and anomaly-based detection)are summarised,
paying special attention to Al methods for intrusion and anomaly detection. Then the role of honey-
pots is provided, and intrusion prevention techniques are discussed, taking into consideration novel
technologies, such as SDN. Finally, the role of SIEM systems is presented, organising the security and

detection procedures in an aggregative manner.



Chapter 4

Review of Intrusion Detection and

Prevention Systems for Smart Grid

After providing an overview and the requirements of the intrusion detection and prevention tech-
niques, this chapter focuses on investigating and analysing a wide range of IDPS for the SG architec-
tural components. Appendix I summarises this analysis. In particular, the various IDPS studied in
this chapter can focus on the entire SG paradigm or the individual elements, such as AMI, SCADA,
substations and synchrophasor systems. For each IDPS, the architectural design and implementation
details are provided. Based on the detection category (i.e., signature/specification-based detection,
anomaly-based detection), a special emphasis is given to the signature/specification rules and the sta-
tistical analysis/Al models, respectively. Moreover, technical details about the industrial protocols and
the various cyberattacks and anomalies are provided, while the evaluation results for each IDPS are
discussed. Finally, this chapter discusses honeypot-related works and SDN-enabled [DPS. According to
this analysis, the strengths and limitations of the existing works are discussed, thus guiding the design

and implementation of the proposed SDN-enabled SIEM, discussed in the following chapter.

4.1 Signature/Specification-based IDPS

This section focuses on signature & specification-based IDPS for the SG. In particular, 20 IDPS of this
category are discussed, paying special attention to industrial protocols used in SCADA/ICS, substa-
tions and synchrophasor systems, such as Modbus/TCP, DNP3, IEC 60870-5-104, IEC 61850 and IEEE
(C37.118. Each IDPS is described in detail in a separate paragraph.

In [120], T.H. Morris et al. provide a set of signature rules for the Modbus protocol. In particular, Mod-
bus is an industrial protocol following the master-slave paradigm. It was initially designed by Gould

Modicon (now Schneider Electric) in 1979 for the SCADA communications between MTU (master) and

55
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logic controllers (slave). However, Modbus is now widely used in lloT applications. The authors define
50 signature rules for both Modbus/RTU and Modbus/TCF based on their specifications. Snort is used

to test the various rules.

In [106], H. Liet al. pay special attention to the DNP3 protocol, providing a set of Snort signature rules.
DNP3 is another industrial protocel which was initially designed for the SCADA communications.
However, it is now used in multiple lloT applications. It was standardised by IEC TC-57 and deployed
by [EEE Electric Power Engineering Association. Similarly to Modbus, DNP3 is characterised by severe
security issues, thus allowing the cyberattackers to violate the DNP3 communications. In this work,
the authors provide an intrusion detection template. Next, it is used to define the various signature
rules. It is worth mentioning that this template can also be utilised for other industrial protocols, such

as Profinet, Modbus and IEC 60870-5-104.

A specification-based IDS for AMI was also created in [24]. The proposed IDS focuses on American
National Standards Institute (ANSI) C12.22 communications, while its architecture is composed of four
main components. The first component, named dissector, is responsible for capturing the network
traffic data. Next, the parser undertakes to parse and analyse the network traffic patterns. Then, the
third component applies the various specifications defined by the normal characteristics of AMI. Fi-
nally, the last component undertakes to monitor the status of each entity. The security specifications
are defined based on a threat model combining (a) meter reading attacks and {b) service switch attacks.
In particular, the various specifications are categorised into three main classes: (a) device-based, (b)
network-based and (¢) application-based. According to the experimental results, the authors use Table
TstBench and various virtual machines in order to emulate ANSI C12.22 and the AMI components,
respectively. True Positive Rate (TPR) and True Negative Rate {TNR) reach 100% while 0.3% of CPU
and 10MB of Random Access Memory (RAM) are used.

In [112], X. Liu et al. provide a specification-based IDS, which focuses on the smart meter communi-
cations. First, based on a Coloured Petri Net (CPN), the authors introduce an information moedel about
the modules composing a smart meter. On this basis, a threat model is also defined, including two main
attack classes: (a) data attacks and (b) command attacks. Finally, an IDS targetting false data injection
attacks is proposed. The architectural design of the proposed IDS includes three modules: (a) Secret
Information, (b) Event Log and {c) Spying Domain. The first module is a private data structure that
can be accessed through legitimate actions. It is also used to encrypt the Event Log, which is used
to store the activities related to the smart meters. Finally, the spying domain is composed of random
storage areas, comprising the hash code of the Secret Information. A security alert is generated when
a malicious user tries to access the storage units of the Event Log and the Spying Domain, respectively.

The effectiveness of the proposed IDS is demonstrated by evaluation diagrams showing the TPR.

In [119], the authors introduce a specification-based IDS that consists of separate IDS modules for
the AMI architectural components, including smart meters, data collectors and AMI headends. A set

of normal behaviour rules is specified for each of the above components. The IDS unit focusing on
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the AMI headend has the ability to monitor and control the data collectors. In a similar manner, the
IDS unit responsible for monitoring the data collector can also monitor the various smart meters. In
general, the proposed IDS can address two attack kinds: (a) reckless attacks and (b) random attacks.
According to the evaluation results, TPR reaches 100%. On the other hand, False Positive Rate (FPR) is
less than 0.2% and 6%, respectively.

In [77], P. Jokar and V. Leung provide an [DPS for ZigBee-based HANs. In general, the proposed [DPS
relies on security specifications using the characteristics of the physical and data link layers, while its
architecture is composed of several [DPS units and a centralised one that are responsible for monitoring
the security status of the various HAN and further analysing the security events, respectively. The
security specifications are defined based on six main features: {(a) datagram of IEEE 802.15.4 and Smart
Energy Profile 2.0 (SEP 2.0), (b) Received Signal Strength (RSS), (¢) traffic rate, {d) sequence number, (e)
node availability and (f) Packet Error Rate (PER). When a security event is generated, an appropriate
prevention action is also activated through an RL agent, which relies on {)-Learning. According to
the evaluation results, the authors first demonstrate the detection efficiency against six attacks: (a)
radio jamming attacks, (b) stenography attacks, {c) replay attacks, (d) back-off manipulation attacks,
(e) DoS against Guaranteed Time Slot (GTS) requests and (f) DoS against data transmission during the
Contention Free Period (CFP). The Receiver Operating Characteristic (ROC) diagrams show detection

effectiveness.

A specification-based IDS for AMI was created by M. Attia et al. in [18]. In general, the proposed
IDS relies on temporal and spatial detection methods, focusing on blackhole and time delay attacks.
While a blackhole is a DoS attack discussed earlier, the goal of the time delay attack is to introduce an
extra time when the various network packets are transmitted. The security specifications are defined
based on the number of the various packets transmitted and the delay time between them. To this end,
the mean value and the standard deviation of the Gaussian distribution are computed. The authors
demonstrate the efficiency of the proposed method by comparing it with three other methods, namely:
(a) spatial-based method, (b) temporal-based method and {c) SVM classifier. While the SVM classifier
achieves the best TPR, the proposed IDS achieves the best FPR.

In [212], Y. Yang et al. provide a specification-based IDS for IEC 60870-5-104 ICS/SCADA systems.
The functionality of their IDS is based on a Detection State Machine (DSM), which in general relies
on the Finite State Machines (FSM). In particular, the TEC 60870-5-104 commands are specified via the
correlations of FSM. In contrast to the traditional FSM-based systems, the proposed solution applies
a set of alarms that are capable of distinguishing the protocol malfunctions. To evaluate their work,
the authors use the Internet Traffic and Content Analysis (ITACA) software. Based on the evaluation
results, TPR and FPR reach 100% and 0%, respectively.

In [210], Y. Yang et al. provide signature and specification rules for the IEC 60870-5-104 SCADA/ICS
systems, using the syntax of Snort. After investigating the security issues of [EC 60870-5-104, the au-

thors highlight attack signatures and specification rules for the following attacks: (a) unauthorised read
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commands, (b) unauthorised reset commands, (¢) unauthorised remote control and adjustment com-
mands, (d) spontaneous packets storm, e) unauthorised interrogation commands, (f) buffer overflows,
(g) unauthorised broadcast requests and (h) IEC 60870-5-104 port scanning. As expected, according to

the evaluation results, there are no false alarms based on the above signature and specification rules.

In [45], Z.Feng et al. focus their attention on the security of Profinet. Profinet is another industrial
protocol used in SCADA/ICS environments. It was implemented by Frofibus & Profinet International
and standardised by IEC 61158 and IEC 61784. In particular, the authors provide a set of signature and
specification rules, using the syntax of Profinet. Like the other industrial protocols, Profinet suffers
from severe security issues since it does not include authentication and authorisation mechanisms, thus
allowing MITM attacks. In this paper, the authors enhance Snort by decoding the Profinet attributes and
providing appropriate signatures and specification rules for detecting MITM, DoS and reconnaissance
attacks. According to the evaluation analysis, the traffic traces of D. Zhang et al. in [218] were used,
while also DoS scenarios were emulated. The various signature and specification rules can successfully

detect the Profinet-related attacks.

In [79], B. Kang et al. provide an IDS for substation environments using TEC 61850. In particular, the
authors focus on the MMS standard of IEC 61850. The proposed IDS rely on signature rules, paying
special attention to active power limitation attacks. The authors implement a stateful analysis plugin
which can be incorporated into Suricata. This plugin includes three main function units: (a) the appli-
cation layer protocol decoder, (b) the rule match engine and {c) the state manager. The first unit decodes
the application layer packets and extracts their attributes. The second unit adopts content and state
inspection rules in order to identify particular attack patterns. The content inspection rules investigate
particular conditions for each MMS packet, while the state inspection rules check the presence of spe-
cific flags that should characterise the protected entities. Finally, the state manager updates the status
of the protected entities. Based on the evaluation result, the proposed IDS can effectively recognise

active power limitation attacks.

In [99], the authors provide a specification-based IDS for a substation environment in South Korea.
Their IDS focuses on various protocols, such as the GOOSE and MMS protocols defined in [EC 61850,
SNMP, Network Time Protocol (NTP) and ARFP. In particular, the proposed IDS investigates general
network traffic characteristics, such as the number of bits per second (bps), the number of packets per
second (pps) and the number of connections per second (cps). Based on the above features, specification
rules were defined, using statistical analysis techniques. Regarding the evaluation procedure, a real
dataset from their environment was used, including network traces from various attacks, such as DoS
attacks, port scanning attacks, GOOSE-related security violations, MMS-related security violations,
SNMP-related attacks, ARP attacks and NTP attacks. Based on the evaluation results, Precision —
100%, FPR = (0%, FNR = 1.1% and TPR = 98.9%.
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In [213], Y. Yang et al. introduce a specification-based IDS, protecting substation environments using
the TEC 61850 protocols: MMS, GOOSE and Sampled Measure Value (SMV). In particular, the architec-
ture of the proposed IDPS consists of five modules: (a) configuration module, (b) network traffic capture
module, (c) process core module, (d) rule module and (e) result module. The first one is responsible for
investigating the characteristics of the substation, thus defining specific threshold values. The second
module undertakes to capture and isolate the network traffic data of MMS, GOOSE and SMV. Next,
the process core module relies on ITACA in order to decode and process the attributes of the above
protocols. Then, the rule module applies the specification rules. Finally, the results module notifies
the security administrator about potential security violations. In this paper, the specification rules can
be classified into four categories: {(a) access-control detection, (b) protocol whitelisting detection, (¢)
model-based detection and (d) multi-parameter detection. The category defines the legitimate MAC
and Internet Protocol (IP) addresses. It also defines the normal TCP ports, thereby forming a whitelist.
The specification rules of the second category intend to detect malicious packets that are not related
to [EC 61850. Next, specification rules related to GOOSE, MMS and SMV are defined. Finally, the last
category refers to specification rules focusing on the physical characteristics of the substation envi-
ronment. Regarding the evaluation process, a dataset from an actual substation in China was utilised.
According to the authors, the proposed IDS can detect various cyberattacks, including MITM, DoS and

packet injection attacks.

In [78], M. Kabir-Querrec et al. provide a specification-based IDS which focuses on substation environ-
ments using GOOSE (defined in [EC 61850). In particular, the architecture of the proposed IDS relies
on the data object model defined in [EC 61850, introducing a new intrusion detection function. This
data object model is composed of many Logical Nodes (LNs) that define logical functions and can com-
municate with each other through the Piece of Information for COMmunication (PICOM) protocol.
Despite the fact that IEC 61850 incorporates a security function called named Generic Security Appli-
cation (GSAL), the authors provide a new function which defines and checks the specification rules. In
general, to define a new function within IEC 61850, the following steps have to be accomplished: (a)
a formal description of the function is needed, b) the function has to be decomposed into LNs and (¢)
the interaction with the other functions has to be determined. Therefore, the authors created a new
LN called CYSN, which is responsible for capturing the GOOSE messages and sending them to two
LNs that undertake to check the specification rules. In particular, the first LN called CYComChkSingle
undertakes to verify the structure and parameters of each message. On the other hand, the second LN

called CYComChkMany verifies the consistency of the messages based on a specific time slot.

In [132], U. Premaratne et al. provide a hybrid IDS for [EC 61850 substation environments. The pro-
posed IDS combines signature and specification rules focusing on traffic analysis attacks, Do§ attacks
and password cracking. The authors emulated the previous cyberattacks, in order to identify the ap-
propriate patterns and design the corresponding signature and specification rules, using the syntax of

Snort. In particular, to execute these attacks, they used the ping command, THC Hydra and Seringe.
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Nevertheless, although the authors claim that their IDS is devoted to IEC 61850 substation environ-
ments, it is worth mentioning that it cannot counter cyberattacks against the IEC 61850 protocols,

such as GOOSE and MMS.

J. Hong et al. in [63] provide a specification-based IDS which focuses on multicast GOOSE and SMV
messages. In particular, the authors describe in detail two specification rules used to detect GOOSE
and SMV cyberattacks, respectively. Regarding the GOOSE cyberattacks, their IDS can detect relevant
replay attacks, DoS attacks, attacks generating malicious GOOSE data, malicicus activities changing
the GOOSE control data and finally, actions modifying the time information. On the other hand, re-
garding the SMV attacks, the proposed IDS can detect relevant DoS attacks and malicious actions that
modify or generate SMV data. The architecture of the proposed IDS is composed of four modules:
(a) packet filtering module, (b) packet parser module, (¢} specification-based IDS module and {d) HMI
module. The first module is responsible for capturing only GOOSE and SMV packets. Next, the second
module undertakes to extract from the GOOSE and SMV packets the corresponding attributes. Next,
the specification-based DS module defines and checks the specification rules. Finally, HMI informs
the system operator or the security administrator about potential cyberattacks and anomalies. The au-
thors evaluate the detection performance of their IDS under real conditions by implementing a Cyber

Physical System (CPS) testbed. Based on the experimental results, FPR can reach 1.61 x 1074

In [209], Yi. Yang et al. provide a specification-based IDS, which also focuses on smart substations
using IEC 61850. The architecture of the proposed IDS is composed of five modules: (a) configuration
module, (b) network traffic capturing module, (¢) IDS process core, {d) rule module and {e) result mod-
ule. The first module refers to the configuration files used to define the specification rules. The second
module is responsible for capturing the TEC 61850 packets. Next, the TEC 61850 packets are processed,
extracting their attributes. Then, the fourth module undertakes to compare the characteristics of the
IEC 61850 packets with a predefined set of specification rules. Finally, the last module notifies the
security administrator about the presence of potential attacks or anomalies. The specification rules
are categorised into four classes: (a) access control detection rules, (b) protocol-based detection rules,
(c) anomaly behaviour detection rules and (d) multi-parameter detection rules. The first category is
responsible for allowing only the network traffic coming from legitimate MAC and IP addresses. The
following specification rules allow only the packets of the IEC 61850 protocols (GOOSE, MMS, SMV).
Next, based on the attributes of the IEC 61850 protocols, appropriate rules are defined, identifying the
normal behaviour of the substation environment. Finally, the last category refers to specification rules

related to physical attributes.

S. Pan et al. in [128] present a hybrid IDS for the synchrophasor systems, combining signature-based
and specification-based rules. In particular, their work relies on the common-path mining approach and
Snort. They investigate an architecture of three bus two-line transmission system consisting of a real-
time digital simulator, four relays, four PMUs, a PDC, an energy management system using OpenPDC

and a personal computer that executes Snort. The input data from the previous devices are compared



61

with common paths. A common path is a sequence of system states that may be a specification of the
normal behaviour or a signature of a cyberattack. Based on these characteristics, the particular IDS can
classify an activity as (a) system disturbance, (b) normal operation and (c) cyberattack. The training
process of the common-path mining algorithm includes the creation of a dataset which includes 25
scenarios of 10000 simulation instances. These scenarios are classified into three categories, namely (a)
single-line to-ground faults, (b) normal operations and (c) cyberattacks. According to the evaluation

results, the accuracy of the proposed IDPS is calculated at 90.4%.

In [85], R. Khan et al. introduce a hybrid IDS, which is mainly based on specification-based and
signature-based rules for synchrophasor systems using the IEEE C37.118 protocol. The architecture
of the proposed system consists of separate Host Intrusion Detection Systems (HIDS) and Network
Intrusion Detection Systems (NIDS) called agents and sensors, respectively. The agents monitor the
operation of PMUs or PDCs, while the sensors monitor the overall network traffic. Also, there is a man-
agement server, which aggregates and correlates all information coming from the individual agents or
sensors. In addition, a database server is responsible for recording any detection alert or warning. The
agents and sensors consist of six components: (a) Packet Capture (PCAP) filters, (b) IEEE C37.118 de-
coder, (¢) analyzer/detector, (d) state manager, (e) events manager and (f) console. The PCAP filters are
responsible for capturing the TEEE C37.118 packets. The IEEE C37.118 decoder analyses the previous
packets and extracts the appropriate information. The analyser/detector adopts a set of rules in order
to detect abnormal behaviours. This set is composed of four category rules: (a) signature-based rules,
(b) range-based rules, (c) threshold-based rules and {d) stateful behaviour-based rules. According to
the authors, the specific set of rules is able to detect a plethora of cyberattacks, such as ARP poisoning
attacks, replay attacks, port scanning attacks, DoS$ attacks, GPS spoofing attacks, command injection at-
tacks and physical attacks. Subsequently, the analyser/detector communicates with the state manager,
which stores possible alerts or warnings in the database server. Next, the event manager communi-
cates with the management server, whose operation was discussed previously. Finally, the console is a
command line or a GUI environment with which the user can configure the operations of the previous

components, such as the detection rules.

In [211], Y. Yang et al. provide a specification-based IDPS capable of protecting synchrophasor systems
using also the [EEE C37.118 protocol. More specifically, their IDPS consists of three kinds of rules,
including (a) access control rules, (b) protocol-based rules and {c) behaviour-based rules. The access
control rules define a whitelist with the legitimate source and destination MAC and [P addresses as
well as the corresponding ports at the transport layer. Next, the protocol-based rules adopt also a
whitelist which in turn defines the application layer protocols allowed for the interaction between the
synchrophasor components. In this case, this list will enable only the TEEE C37.118 traffic. Finally, the
last category identifies behaviour rules based on the attributes of the [EEE C37.118 packets by utilising
a deep packet inspection process. All the rules are described sufficiently in the paper. Regarding the

evaluation process, the authors tested their IDPS in a real testbed by executing reconnaissance, MITM
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and DoS cyberattacks. According to the experimental results, the FPR of the proposed IDPS is calculated
ato

4.2 Anomaly-based IDPS

This section focuses on anomaly-based IDPS. In particular, 16 IDPS of this category are investigated
and analysed. For each work, technical details about the statistical analysis and Al methods and models
are provided. Moreover, the dataset utilised in each work is discussed. Similarly, each work is detailed

in a separate paragraph.

An DS for the entire SG ecosystem is proposed by A. Patel et al. in [129]. The functionality of this
IDS relies on three main components: (a) an Ontology Knowledge Base (OKB), (b) an SVM classifier
and (c) a fuzzy risk analyser. The detection of the potential attacks relies on SVM trained for more
than 30 hours. For this purpose, the KDD dataset [2] was utilised, including also some cyberattack
traces from the authors. The dataset includes a wide range of attack traces, such as duplicate insertion,
payload mutation, brute force attacks, shellcode mutation, command insertion, packet splitting and
DoS. Through the fuzzy analyser, the risk value of each SG entity can be calculated. Finally, OKB is
used to identify the threat actors. With respect to the evaluation of the proposed IDS, the Area Under
Curve {AUC) reaches 0.99451.

In [222], Y. Zhang et al. present SGDIDS, a decentralised IDS for the entire SG ecosystem. SGDIDS
relies on Artificial Immune System (AIS) methods, including different IDS modules for each HAN,
NAN and WAN. In particular, each IDS module uses the AIS methods [208], taking full advantage
of the hierarchical nature of HAN, NAN and WAN. This means that a NAN-related IDS takes into
consideration the detection outcomes of the relevant HAN IDS. In a similar, the WAN IDS considers
the security events and alerts originating from the NAN IDS. The detection capability of each IDS is
based on the CLONALG and AIRS2Parallel methods. For the training procedure, WEKA [58] and the
NSL KD [155] dataset are used. NSL-KD D) includes various attacks, such as User to Root {U2R) attacks,
Remote to Local (R2L) and [DoS. The detection accuracy of CLONALG and AIRSZParallel reach 99.7%
and 98.7%, respectively.

In [44], M. Faisal et al. introduce a new IDS for AMI, evaluating a wide variety of ML methods through
the Massive Online Analysis (MOA) tool. The proposed IDS is composed of three IDS, each of which
is in charge of monitoring smart meters, data collectors and AMI headends, respectively. In particular,
each IDS consists of the following components: (a) the data acceptor module, (b) the pre-processing
unit, (¢} the stream mining moedule and (d) the decision-making unit. Both KDD CUP 1999 [2] and NSL-
KDD [155] were utilised for the training and evaluation procedures. These datasets include various
attack traces, such as Do§, U2R and R2L. The authors investigate and evaluate with each other several

ML methods in terms of the detection accuracy, the size of the classifier in Kilobytes, the classifier’s
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processing time, FPR, the False Negative Rate (FNR) and the usage rate of the Random Access Memory.
The ML methods under evaluation are: (a) Single Classifier Drift, (b) Bagging using Adaptive-Size
Hoeffding Tree, (¢) Bagging using ADWIN, (d) Limited Attribute Classifier, {e) Leveraging Bagging, (f)
Active Classifier and (g) Accuracy Updated Ensemble. Based on the evaluation results, it seems that the
Active Classifier and Single Classifier Drift are appropriate for the IDS monitoring the smart meters.
On the other hand, Leveraging Bagging can be used to detect attacks against the data collectors. Finally,
the Active Classifier is an efficient solution for detecting attacks against the AMI headend.

In [199] R. Vijayanand et al. describe an anomaly-based intrusion detection system (IDS) that moni-
tors the AMI communications. The proposed IDS is incorporated into the data collector and relies on
a Multi-SVM classifier. Multi-SVM is composed of several SVM that can recognise a wide range of
cyberattacks. For this purpose, the ADFA-LD dataset is used, while the mutual information technique
is used to identify the most useful features. In particular, the following features from the ADFA-LD
dataset are used: (a) Source bytes, (b) Destination time to leave (itl), (c) Source mean, (d) Destination
mean and (e) Ct_state_ttl. According to the authors, the proposed IS can detect the following attacks:
(a) exploits, (b) DoS attacks, (¢} fuzzers, (d) backdoors, () worms and {f) generic attacks. For each
attack, an SVM classifier was generated, utilising a different kernel function. For instance, regarding
the Do§ and backdoors, the polynomial kernel was used. On the other side, the Gaussian kernel was
used for the normal instances and the generic attacks. Matlab was utilised for the training procedure.
According to the experimental results, the accuracy of the proposed IDS reaches 0.9, while TPR and
TNR reach 89.2% and 93.4%, respectively.

The authors in [109] present an IDS for AMI, taking advantage of the Online Sequence Extreme Learn-
ing Machine (OS-ELM), which is a unique feed-forward neural network model based on online se-
quence learning. The authors follow a methodology consisting of three phases: {(a) data pre-processing
phase, (b) initialisation phase and (c) online sequence learning phase. During the first phase, the data
is processed appropriately based on the Gain Ratio Evaluation feature selection method. Next, the
various parametlers for the training phase are initialised. Finally, the training process follows. Re-
garding the training procedure, the dataset of the CER Metering Project [109] was utilised. However,
it is worth mentioning that this dataset does not include network traffic characteristics in order to
recognise network-related attacks properly. According to the evaluation results, the accuracy of the

proposed IDS reaches 97.23% while the FPR and FNR reach 5.897 and 3.614, respectively.

In [34], P-Y. Chen et al. present an anomaly-based IDS against false data injection attacks. In particular,
the proposed IDS relies on the spatiotemporal evaluation, regulating the logical connections between
the AMI state estimations. The functionality of this [DS consists of two main phases. During the first
phase, a set of state estimations is defined based on temporal consistencies and spatial correlations.
Next, a voting process follows, discriminating each state estimation as (a) good, (b) unknown or (c)

anomaly. According to the experimental results, two false data injection attackers were modelled and
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emulated. The goal of the first attack was to increase the transmission cost, while the second attack

aims to result in a power outage. The FPR is calculated at 0.43.

In [12], the authors show a flow-based IDS for AMI, taking full advantage of clustering techniques. In
particular, the proposed IDS consists of several IDS units that monitor the data collectors and the AMI
headends. First, the network flow data between the data collectors and the various smart meters are
monitored, thus detecting relevant intrusions and anomalies. Next, in a similar manner, the network
flow data between the data collectors and the AMI headends are analysed. In general, the detection
process relies on mini-batch k-means with a sliding window. Regarding the training procedure, a
custom dataset was created based on features related to the TCP/IP network flows. Furthermore, PCA
was used in order to identify the most informative points, thus reducing the dimensionality of the
dataset. According to the experimental results, three attack scenarios were performed: {a) TCP SYN
attack, (b) port scanning and {c) a combination of the previous ones. The best detection performance

in terms of FPR and the silhouette score 1s achieved when & = 4.

In [26], N. Boumkheld et al. provide an anomaly-based IDS which can successfully detect blackhole
attacks against AMI NAN. In particular, a blackhole refers to a kind of Do§ attack, corrupting all the
legitimate packets. Based on the NS2, an AMI network was constructed, including two malicious nodes,
one data collector and 100 smart meters. The communication of the various entities relies mainly on
the AODV protocol. The proposed IDS is considered a separate node, which communicates only with
the data collector. The detection procedure relies on the Naive Bayes classifier, which was implemented
with WEKA. Three main features are used: {a) the number of the route requests packets, (b) the number
of the dropped packets and (c) the number of the route reply packets. According to the evaluation
results, the accuracy of the proposed IDS reaches 99%, while TPR, Precision and AUC reach 100%, 66%
and 100%, respectively.

In [196], the authors introduce an anomaly-based DS, which focuses on protecting the AMI The archi-
tecture of the proposed IDS consists of various IDS modules that are distributed in the various HANs,
NANs and WANs. If a cyberattack is detected by an IDS, the corresponding security event is gener-
ated. Moreover, a centralised IDS module undertakes to gather and further analyse the security events
raised by the various IDS modules. The detection process uses the 1SCX2012 dataset, including and
evaluating various ML methods, such as J48, JRip, BayesNet, SVM and MLP. This dataset includes var-
ious cyberattacks, such as Lan-to-Lan (L.2L1) attacks, botnets, DoS and Secure Shell (SSH) bruteforce
attacks. According to the evaluation results, the best detection performance is achieved by j48, where

Precision = 99.70%, while TPE = 09.60%.

In [53], V. Gulisano and M. Almgren provide a two-tier IDS that monitors and controls the network
activities of AML The goal of the proposed IDS is to detect potential malicious activities with respect
to the network traffic data exchanged between the smart meters and the data collectors. In particular,
the data processing and detection procedures rely on a data streaming technique which analyses the

communication traffic through acyclic directed graphs. The architecture of the proposed IDS relies
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on two main components, namely (a) Device Modeller and (b) Pattern Matcher. The first component
is responsible for monitoring the network traffic data and detecting potential intrusions based on a
Bayesian network. To this end, three main features are used: (a) the number of requests, (b) the iden-
tifier of the smart meters and {c) time information. Next, the second component receives the various
security events and aims to correlate and identify potential alert patterns with the help of a cybersecu-
rity analyst. Based on the evaluation results, energy exfiltration attack scenarios were emulated while

TEP = 91%.

In [62], E. Hodo et al. present an anomaly-based IDS for a SCADA system which utilises the [EC 60870-
5-104 protocol. In 1995, IEC released IEC-60870-5-101, which includes essential telecontrol messages
between a logic controller and a controlling server. Six vears later, IEC 60870-5-104 was released,
combining the application messages of IEC-101 with TCF/IP. However, IEC 60870-5-104 is characterised
by several security issues since it does not include any authentication and authorisation mechanisms.
The authors create their own dataset, which includes passive ARP poisoning attacks, Do§ attacks and
replay attacks that replace the legitimate packets with malicious ones. Based on this dataset and WEKA,
they evaluated multiple ML algorithms, such as Naive Bayes, J48, Random Forest, OneR, RandomTree
and DecisionTable. According to the evaluation analysis, J48 and DecisionTable achieved the best

accuracy score.

In[50], N. Goldenberg and A. Wool present an anomaly-based [DS whichis devoted to the Modbus/TCP
communications. The functionality of this IDS relies on a Moore Deterministic Finite Automaton (DFA),
which in turn is based on the high periodicity of the Modbus/TCP packets. In particular, the proposed
DFA monitors the requests and replies between MTU and each logic controller, thus identifying the
normal and anomalous states. In particular, DFA is composed of (a) a set of states, (b) an alphabet
(which is a set of symbols), (c) the transition function and (d) the first state. A state denotes how
normal the Modbus/TCP traffic is. It can take four values: {a) Normal, (b) Retransmission, (c) Miss and
(d) Unknown. The symbols and the transition function define the states for each communication. The
symbols are separated into two main classes: (a) known symbols and (b) unknown symbols. The first
category includes those symbols that were observed during the learning phase, resulting in a known
state (Normal, Retransmission, Miss), while the second category implies those symbols that lead to the
Unknown state. To evaluate their work, the authors generated two real datasets using Wireshark, Pcapy

and Impacket. Based on the experimental results, their solution does not present any false alarms.

In [14], S. D. Anton et al. provide a comparison of four ML methods for detecting anomalies given
a Modbus/TCP intrusion detection dataset. In particular, the dataset of A. Lemay and ]. M. Fernan-
dez [104] was used, including three sub-datasets, namely DS1, DS2 and DS3. DS1 consists of 3319
Modbus/TCF packets, including 75 malicious cases. Next, DS2 includes 11166 198143 packets with
ten malicious cases. Finally, DS3 includes 365906 packets with 2016 malicious cases. From the above
datasets, specific features were used for the training procedure. The various features refer only to the

TCP/IP attributes of the Modbus/TCP packets. Four ML methods are evaluated, namely (a) SVM, (b)
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Random Forest, {c) KNN and (d) k-means. According to the authors, the accuracy of SVM is equal
to 100%, 100% and 99.99% for each of the previous sub-datasets, respectively. Similarly, the detection
accuracy of Ransom forest is 100%, 99.99% and 99.99%. Next, the accuracy of KNN is equal to 99.7%,
99.9% and 99.9%. Finally, the accuracy of k-means is equal to 98.1%, 55.62% and 63.36%.

In [201], P.H. Wang et al. implement an anomaly-based IDS, using a clustering method and honey-
pot data. The proposed IDS focuses on detecting intrusions against Modbus/TCP, using the traces of
Conpot. Conpot is a honeypot that can emulate a wide range of industrial protocols. Each request to
Conpot is considered a cyberattack. Next, the authors combine a similarity evaluation method of the
Modbus/TCF requests with a hierarchical clustering technique to extract Sequential Attack Patterns
(SAPs). After this process, the DS can classify the new Modbus/TCP requests as an existing SAP or
unexpected SAP. Finally, the authors provide a visualisation method, illustrating the various SAPs as
flow graphs. According to the evaluation results, the proposed IDS can successfully detect reconnais-
sance and Do§ attacks. For each of the previous attacks, TPR is equal to 90% and 95.12%, respectively,
while FPR is equal to 0%.

In [108], §.-C. Li et al. implement an anomaly-based IDS for the Modbus/TCP protocol based on clas-
sification ML models. In particular, the authors adopt a J48 decision tree and three neural networks
implemented with WEKA. To train the above models, they created a dataset by constructing a real
testbed consisting of a programmable logic controller, an MTU, a cyberattacker unit, and a cyberde-
fender unit. This dataset includes (a) DoS$ attacks, (b) command injection attacks, (¢ response injec-
tion attacks and (d} reconnaissance attacks. To create their dataset, the authors used Wireshark and
a Programming Hypertext Preprocessor (PHP) script responsible for converting the Packet Descrip-
tion Markup Language (PDML) format of Wireshark into Comma-Separated Values (CSV) format. The
training process relies on 39 features; however, they are not given in the paper. Based on the evaluation
results, the accuracy of j48 is equal to 99.8361%, while the detection accuracy of the neural networks

reaches 97.4185%, 97.4603% and 97.3876%, respectively.

In [215], H. Yoo and T. Shon provide an anomaly-based IDS for substations utilising the TEC 61850
standard. In particular, the proposed IDS focuses on MMS and GOOSE, taking full advantage of an one-
class SVM classification model. The proposed IDS consists of four main functions: (a) data capturing
and preprocessing, (b) outlier processing, ¢) one-class SVM training and (d) anomaly detection. The
first function refers to capturing and preprocessing the MSS and GOOSE packets. Thus, three datasets
are generated. The first dataset includes the attributes of the MMS and GOOSE packets. The second
dataset refers to the network flows formed by the MMS and GOOSE communications. Finally, the third
dataset includes traffic characteristics, such as pps and bps. The second function is responsible for
cleaning the training datasets from outliers. For this process, the Expectation Maximisation (EMj) and
LOF were used. Finally, the next functions refer to the training and testing procedure of the one-class
SVM classification model. To this end, data from a real substation was used. Based on the evaluation

results, FPR ranges between 1% and 6%.
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4.3 SDN-enabled IDPS

This section is devoted to describing SDN-enabled IDPS, i.e., IDPS taking full advantage of the SDN
technology in order to mitigate and prevent potential intrusions and anomalies. In particular, five
relevant works are analysed, investigating how SDN can be used to mitigate the various cyberattacks

in an efficient manner. In a similar manner, each work is analysed in a separate paragraph.

H.Linetal in[110] provide Integer Linear Programming (ILP) models and a greedy heuristic algorithm
in order to increase the observability of a power system operation network. In particular, considering
that a PDC is under attack and taking full advantage of the SDN technology, the authors investigate
how to re-route the measurements originating from the PMUs to a redundant PDC. Thus, they for-
mulate a self-healing process capable of maintaining and preserving the PMUs’ measurements. The
ILP models aim to minimise the self-healing process’s overhead, taking into account the constraints
of the (a) network topology, (b) computing resources and (c) the power system observability. On the
other side, the proposed greedy heuristic algorithm calculates the paths of PMUs one by one instead of
determining a comprehensive optimum path. The evaluation results in [EEE 30 bus and IEEE 118-bus

systems validate the proposed approach.

In [152], M. Rehmani et al. provide a path failure learning method capable of addressing DoS attacks
targeting the network links in a smart electrical grid environment with multiple network paths. Three
attack types are examined: {a) probabilistic attacks, (b) random attacks and {c) intelligent attacks. For
each packet, the proposed method aims to choose a reliable path. In particular, the path selection is
transformed into a Multi-Armed Bandit (MAB) problem, which is solved with the e-Greedy method. If
the packet is transmitted successfully, then the corresponding path is rewarded. The algorithm chooses
the path with the maximum reward mean, while there is a probability e to choose another path, thus
satisfying the exploration phase. To evaluate their method, the authors use the Ryu controller and
Mininet. Based on the evaluation results, it seems that the algorithm selects commonly the optimal

path.

In [130], ]. A. Perez-Diaz et al. present an SDN-based architecture for detecting and mitigating low-rate
DDoS attacks against Hypertext Transfer Protocol (HTTP). The proposed architecture consists of two
main components: {a) IPS and (b) IDS. On the one hand, TIPS is responsible for gathering the network
flows and mitigating them based on the detection outcome of IDS. In particular, IPS is composed of
three modules: (a) Flow Management Module, (b) Suspicious Attackers Management and {¢) Mitigation
Management Module. The Flow Management Module gathers the HT'TF flows from the SDN switches.
These flows will be further processed to detect a potential low-rate DDoS attack. HTTP flow statistics
are generated through Flowtbag and transmitted to IDS. The Suspicious Attackers Management module
handles a blacklist of potential cyberattackers. Finally, the Mitigation Management module follows a

mitigation strategy and generates appropriate rules to mitigate the malicious flows. These rules are
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transmitted to SDN-C. In this work, the Open Network Operating System (ONOS) is utilised as SDN-
C. On the other hand, IDS comprises three modules: (a) Identification AFPI, (b) ML Model Selection
and {¢) ldentification. The Identification APl manages the communication with the Flow Management
Module of TPS. The ML Model Selection Module represents a set of pre-trained ML models. Finally, the
Identification module selects one of the pre-trained ML models to analyse the HTTP flow each time.
To evaluate their work, the authors use Mininet, SlowHTTPTest and the 2017 CIC DoS dataset. The

experimental results confirm the efficiency of the propoesed method.

In [206], T. Xing et al. present an SDN-based [PS called SDNIPS. The SDNIPS architecture consists of
four modules: (a) Snort agent, {b) SDNIPS daemon, (¢} alert interpreter and (d) rules generator. The
Snort agent is responsible for detecting the potential cyberattacks by applying the respective signature
rules. Next, the SDNIPS daemon undertakes to transform the detection results into a (JavaScript Object
Notation) JavaScript Object Notation (JSON) format, which is transmitted to the SDN controller. The
alert interpreter processes the JSON files, thus extracting the appropriate information, such as the
IP addresses. Finally, the rule generator produces the OpenFlow entries introduced into the Open
Virtual Switch (OVS) flow tables. The authors evaluate their IPS with a typical IPS relying on iptables.
The evaluation criterion is whether both IPS can generate alerts under tremendous network traffic
conditions. To this end, two DoS attacks are emulated. The proposed IPS exceeds the performance of

the typical [PS using iptables.

In [116], P. Manso et al. provide an SDN-based IDPS, which combines the Ryu SDN controller and
Snort in order to mitigate DoS attacks. The architectural model consists of three virtual machines
representing (a) the internal network simulated by Mininet, (b) the SDN-based IDPS and (¢) online
services. It is noteworthy that the second virtual machine (i.e., that hosting the SDN-based IDPS)
hosts both Ryu and Snort. First, Snort receives the overall network traffic through a port mirroring
capability provided by OVS of the first virtual machine (i.e., Mininet). If Snort detects a potential
cyberattack, it informs Ryu based on a Uniplexed Information and Computing System (UNIX) domain
socket. Next, Ryu transmits the appropriate OpenFlow commands to OVS of the first virtual machine
(i.e., Mininet), thus isolating the malicious nodes. The authors evaluate their [DPS with three DDoS
scenarios, measuring (a) DDoS mitigation time, (b) average Round Trip Time and (c) packet loss. The

experimental results demonstrate the efficiency of the proposed IDPS.

44 Honeypots and Honeynets

Both academia and industry have implemented several honeypots. In particular, Deception Toolkit
(DTK) [10] was the first honeypot released in 1997, emulating known vulnerabilities of UNIX. Honey-
BOT [74] is a LIH for Windows systems, simulating relevant vulnerabilities. Similarly, KFSensor [93] is
a commercial honeypot for Windows OS. HoneyD [193] is probably the most known honeypot capable
of emulating at the same time multiple hosts. Tiny Honeypot [121] is a server-based honeypot, which
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listens to all TCP ports, logging all interaction activities. Dionaea [169] is written in Python and emu-
lates the M) Telemetry Transport (MQTT) protocol. Jackpot [121] is related to Simple Mail Transfer
Protocol (SMTF) and aims to combat email spam. Cowrie [174] is a LIH emulating SSH. Conpot [49]
is an industrial honeypot emulating multiple relevant protocols like Modbus and IEC 60870-5-104. In
addition, an overview of Wireless Honeypots (WHs) along history is discussed in [175], where they
are defined as nodes that offer wireless access whose value is being probed, attacked, or compromised,
letting the attackers to interact with them. In more detail, the main goal of WHs is to gather infor-
mation about the attacks performed on wireless networks and the associated technologies, focusing
on the attacks that exploit the wireless technologies’ weaknesses, which are mainly due to the use
of unguided transmission medium [6]. The main principles of the WHs can be used in several types
of networks, including cellular, Local Area Networks (LANs), sensor networks and Unmanned Aerial

Vehicles (UAVs)-based networks [52].

Many supporting tools have also been developed in order to analyse the data retrieved from honeypots
or to extend their functionalities [89]. In particular, Bait-n-Switch [189] aims to redirect all malicious
traffic to a honeypot. Next, Honeynet Security Console (HSC) [115] analyses, correlates and visualises
honeypot logs. Honeysnap [167] processes PCAP files that were collected by server-based honeypots.
GSOC-Honeyweb [121] is devoted to the management of client-based honeypots via a user-friendly
environment. Moreover, TraCINg [121] aggregates data from multiple honeypots and correlates this

information in order to discover possible worms.

It is noteworthy that many honeypots projects have been organised in order to exploit at the maxi-
mum level the benefits of honeypots and discover potential zero-day attacks. In particular, the Hon-
eynet Project was started in 1999 to explore and investigate zero-day cyberattacks. Furthermore, the
Leurre.com project [102] deployed multiple LIHs in more than 30 counties, aiming at collecting quan-
titative data related to cyberthreats and vulnerabilities. Accordingly, NoAHProject coordinated by
FORTH deployed an HIH called Argos [137] to enhance the protection of ISPs and investigate poten-
tial zero-day attacks. The mw-collect Alliance project collected information about various malware by
deploying multiple Nepenthes sensors [137]. Moreover, Telekom-Fruhwarnsystem [137] was started in
2013 to collect various datasets related to honeypot activities. Finally, H2020 SPEAR [142] and H2020
SDN-microSENSE [136] implemented various industrial honeypots for the smart electrical grid.

4.5 Summary and Discussion

Undoubtedly the previous works provide valuable methods and systems. In particular, 20 signature/specification-
based IDPS are discussed, while 16 [DPS use anomaly-based techniques. Moreover, five IDPS take full
advantage of the SDN technology in order to mitigate and prevent the various attacks. Moreover, three

IDPS of the above analysis monitor the entire SG ecosystem, while 13 IDPS focus on AMI Next, ten
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IDPS are devoted to the protection of the SCADA systems, while eight and three IDPS focus on substa-
tions and synchrophasors, respectively. As already discussed, each detection category is characterised
by corresponding advantages and disadvantages. The signature-based IDPS usually achieve high detec-
tion performance; however, they cannot recognise unknown attacks and anomalies. On the other side,
anomaly-based [DPS can detect zero-day attacks and unknown anomalies, but they are characterised
by a high number of false alarms. Finally, the specification-based [DPS combine the benefits of the
previous categories; however, they cannot discriminate the attack or anomaly type. Also, the genera-
tion of signature and specification rules is a time-consuming process, taking into account the different
characteristics of each environment. Consequently, it seems that a hybrid approach, combining the

previous methods, is the most appropriate solution.

In addition, it is worth mentioning that the previous works do not present information about the de-
tection time; however, the detection latency is an important measure, taking into account the sensitive
nature of the lloT environments. Furthermore, the various IDPS should consider the limited comput-
ing resources of the loT entities. Moreover, it is noteworthy that most of the IDPS examined in this
chapter are not quite scalable, considering that they do not use data from multiple sources. Most of
them focus on network traffic data without considering heterogeneous operational data and values.
Additionally, despite the fact that many works focus on industrial protocols, like Modbus/TCP, DNP3
and [EC 61850, they do not investigate and analyse their attributes at the application layer. Also, the
current works do not adopt visualisation methods in order to recognise better potential cyberattack-
s/anomalies and reduce the number of false alarms. Apart from the SDN-based [DPS, the other ones
do not also include sufficient mitigation and self-healing mechanisms. Moreover, although SDN can
lead to the automated mitigation of malicious activities, the presence of false alarms can result in more
disastrous consequences, given that the continuous operation of the loT environments is necessary.
Therefore, a wrong decision can lead the SDN controller to stop a normal and legitimate operation with
the corresponding negative effects. Finally, most of the current works do not compute quantitatively

the severity of the various cyberattacks and anomalies against the industrial protocols.

In general, despite the importance of the current IDPS, they do not fully satisfy the requirements de-
fined in the previous chapter. For this purpose, cross-layer mechanisms focusing on situational aware-
ness are necessary. According to Endsley [43], situational awareness consists of three layers. The first
layer focuses on the perception of information, identifying the charcateristics and the elements com-
posing the target system. Next, the second layer refers to the comprehension of information. For this
purpose, storing and interpretation mechanisms are necessary. Finally, the projection level includes
predictive and prescriptive algorithms that intend to interpret relevant events. According to [148],
B. McGuinness and L. Foy introduce an extra layer called Resclution. This layer aims to identify the
appropriate methods and practices that optimise a current situation. Therefore, based on the aforemen-
tioned remarks, it is evident that the current detection mechanisms should follow a hybrid approach,
taking into account both the cyber and physical atiributes of the target system. Secondly, the proper

and continuous interpretation of this information is necessary. For this purpose, the analysis of the
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application-layer protocols used by the loT systems is critical. Finally, although there can be multiple
countermeasures, such as SDN and firewall rules, the identification of the appropriate mitigation and

prevention strategy is necessary, taking into account the special characteristics of each situation.

4.6 Chapter Summary

This chapter provides a comprehensive literature review about IDPS protecting the energy sector. In
particular, based on the detection categories and the IDPS requirements described previously, this chap-
ter describes and analyses relevant works in this research area. For each detection category, various
works are discussed in detail, while Appendix D summarises this analysis. Moreover, a particular
emphasis is given to honeypots and honeynets, describing relevant implementations, complementary
honeypot tools and honeypot-related projects. Next, the important role of SDN and SDN-enabled [DPS
is highlighted, discussing relevant works. Finally, based on this analysis, the strengths and limitations
of the current solutions are identified, thus guiding the implementation of the proposed SDN-enabled
SIEM detailed in the following chapter.



Chapter 5

Detection and Mitigation of
Cyberattacks and Anomalies against

Smart Grid

Based on the previous literature review about the IDPS systems in [IoT/SG environments, this chapter
aims to summarise and present in detail the technical achievements that took place during this PhD
program. In particular, they focus on intrusion detection and prevention mechanisms that are related to
LoT/SG, taking full advantage of novel technologies, such as SDN and AL It is worth mentioning that in
the context of this thesis, the various technical achievements, such as Al-powered IDPS, threat models,
mitigation strategies and honeypot deployment mechanisms, are presented as a unified SDN-enabled
SIEM solution. Therefore, all the achievements implemented and published during this PhD program
are incorporated conceptually into an SDN-enabled SIEM system, where the various architectural ele-
ments collaborate with each other in order to detect and mitigate potential intrusions and anomalies in
a timely manner. The following sections describe in detail the proposed SDN-enabled STEM in terms of
the corresponding architectural components, their mechanisms and how they interact with the [IoT/SG

entities/devices.

5.1 Architecture of the Proposed SDN-enabled SIEM

According to the SDN paradigm, Fig. 5.1 illustrates the architectural design of the proposed SDN-
enabled STEM. The primary goal is to detect, normalise, correlate and mitigate cybersecurity incidents
against HoT/SG environments, taking full advantage of SDN, honeypots and Al In particular, three
Al-powered IDPS were implemented, generating relevant security events, while the Normalisation,
Correlation and Mitigation Engine (NCME) undertakes to normalise and correlate them, thus com-

posing security alerts. In addition, NCME guides appropriately the SDN-C and includes sophisticated
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honeypot deployment mechanisms in order to mitigate the malicious network flows and increase the

resilience of the underlying IloT/SG infrastructure, respectively.

First, the Network Flow-based IDPS {(NF-IDPS) focuses on detecting cyberattacks and anomalies against
application-layer industrial communication protocols, such as Modbus/TCP, DNP3, IEC 60870-5-104,
IEC 61850 (GOOSE), HTTP and SSH. For each of the previous protocols, appropriate ML/DL intrusion
and anomaly detection models were implemented, utilising custom and publicly available datasets.
Next, the H-IDPS is responsible for detecting potential anomalies based on operational electricity data
from IIoT/SG environments. Next, V-IDPS focuses on detecting malicious Modbus/TCP network flows,

taking full advantage of binary visual representations and Al
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Ficugrke 5.1: Architecture of the Proposed SDN-enabled SIEM

Next, NCME undertakes to normalise and correlate the security events from the previous IDPS. For
this process, the AlienVault Open Source SIEM (OSSIM) format was adopted, while security rules are
used to correlate the security events with each other. Moreover, NCME incorporates an RL-based
mechanism in order to guide appropriately the SDN-C about dropping the malicious network flows.
Finally, NCME includes sophisticated honeypot deployment mechanisms that rely on a security game
between two players: the attacker and the defender.

More technical details about the aforementioned components are given in the following sections.



74

5.2 NF-IDPS: Network Flow-based Intrusion Detection and Preven-

tion System

As illustrated in Fig. 5.2, the Network Flow-based Intrusion Detection and Prevention System (NF-IDPS)
is located in the application plane (according to the SDN architectural paradigm} and consists of four
modules: (a) Network Traffic Capturing Module (NTCM), (b) Network Flow Extraction Module (NFEM),
{c) Intrusion Detection Engine (IDE) and (d) Notification Module (NM). First, the NTCM can monitor
and capture the network traffic data (i.e., pcap/pcapng files) of the overall SDN network through a
Switched Port Analyser (SPAN). To this end, tepdump is utilised. Next, the NFEM receives the network
traffic data from the NTCP and generates the corresponding network flow statistics. In particular,
two kinds of flow statistics are produced. The first one refers to bidirectional TCP/IP flow statistics
of the network packets. These statistics are generated through CICFlowMeter. On the other side, the
second kind refers to bidirectional flow statistics related to application-layer industrial protocols, such
as DNP3 and [EC 60870-5-104. For this purpose, custom Python decoders were implemented. Both
cases are characterised by a time limit, which affects (a) the flows number, (b) the flows statistics and,
therefore, {c) the detection performance. This limit can be defined experimentally depending on the
network characteristics of each environment. According to P. Radoglou-Grammatikis et al. in [144]

show that 120 seconds is an appropriate value for detecting anomalies related to IEC 60870-5-104 flows.
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FIGURE 5.3: NF-IDPS Operation Flowchart
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a wide range of intrusion/anomaly detection models. In this thesis, intrusion refers to a particular cy-
berattack type, while anomaly denotes that the behaviour of the target system is not usual without dis-
tinguishing the attack type. In particular, IDE focuses on detecting cyberattacks and anomalies against
the IloT application-layer protocols, such as Modbus/TCP, DNP3, IEC 60870-5-104, IEC 61850 (MMS),
HTTP and SSH. For each protocol, various detection models are utilised according to the operation
flowchart illustrated in Fig. 5.3. These models are classified into three main categories: (a) Application-
Layer Intrusion Detection Models, (b) TCP/IP Intrusion Detection Models and {¢) TCP/[P Anomaly
Detection Models. Tirst, the ML/DL models of the first category are adopted, utilising flow statis-
tics related to the attributes of the application-layer protocols. Consequently, based on the TCP/User
Datagram Protocol {(UDP) source (src) and destination (dst) ports, first, the application-layer protocol is
identified, and the corresponding Application-Layer Intrusion Detection Model is applied, detecting the
presence of potential cyberattacks. For instance, if the source port is equal to 2404, then the TEC 60870-
5-104 Intrusion Detection Model is used. Depending on the detection outcomes, the respective security
event(s) are generated or differently the second category is activated. The ML/DIL models of the second
category use flow statistics from the transport and network layers of the TCP/IP stack. They can also
discriminate a particular cyberattack type, generating the corresponding security event(s). Otherwise,
the last category is activated, trying to identify a potential anomaly and producing the correspond-

ing security event(s). Similarly, in this case, flow statistics from the transport and network layers are



76

used by the ML/DL models. It is worth mentioning that in each category, the various intrusions and
anomalies are always associated with the corresponding application-layer protocols. In particular, IDE
includes multiple intrusion and anomaly detection models for the following application-layer proto-
cols: (a) Modbus/TCP, (b) DNP3, (c) [EC 60870-5-104, (d) [EC 61850 (MMS), (e) HTTP and (f) SSH. More
technical details for the intrusion and anomaly detection models of the above protocols are given in

the following subsections. Finally, the NM undertakes to send the security events(s) to NCME.

5.2.1 Modbus/TCP Intrusion and Anomaly Detection Models

The Modbus/TCP intrusion and anomaly detection models in this thesis rely on a threat model com-
bining (a) Spoofing, Tampering, Repudiation, Information Disclosure, DoS, and Elevation of Privilege
(STRIDE)-per-element, (b) ADT, (¢) CVSS and (d) OWASP Risk Rating (OWASP-RR) methodology. The
main goal is to identify the various Modbus/TCP cyberattacks and prioritise their severity, considering
their probability and impact as isolated and combined cases against the essential cybersecurity princi-
ples: Confidentiality, Integrity and Availability (CLA). First, STRIDE-per-element is adopted in order to
define the primary cyberattack super-classes reflecting the target behind the various Modbus/TCP cy-
berattacks. Next, ADT is used to map and combine those Modbus/TCP cyberattacks with the STRIDE-
per-element super-classes. Subsequently, both CVSS and OWASP-RR are utilised for calculating the
severity of each Modbus/TCP threat. Finally, the logical relationships among the nodes of the ADT are
used to estimate the severity of the STRIDE-per-element classes. Consequently, the proposed Mod-
bus/TCP threat model combines the benefits of each methodology, thus determining the severity of
the individual Modbus/TCP threats and their super-class. The following paragraphs provide a brief de-
scription for each of the aforementioned methodologies, while subsequently, the Modbus/TCP-related
ADT and the respective CVSS and OWASP-RR scores are analysed.

First, STRIDE is an acronym that stands for Spoofing, Tampering, Repudiation, Information Disclosure,
DoS, and Elevation of Privilege. It was developed by L. Kohnfelder and P. Garg and was adopted by
Microsoft in 2008 [173]. In the context of this thesis, the variant called STRIDE-per-element [173] is
used to identify the Modbus/TCP threats supported by existing penetration testing tools. In particular,
five penetration testing tools are investigated: Smod, Metasploit, Nmap, mbtget and ModScan. Hence,
14 cyberattacks (Table 5.1) are identified. These cyberattacks are considered as Data Flow elements.
Thus, from the initial STRIDE attack families, only three families are taken into account: (a) Tampering,

(b) Information Disclosure and (¢) DoS.

Subsequently, ADT is used to structure and visualise the Modbus/TCP threats. In particular, an ADT
consists of two opponent nodes: {a) attacking nodes and (b) defending nodes [90]. The first category
expresses the goal and the malicious activities that a cyberattacker may perform to violate the security
of the target system. On the other side, the defending nodes indicate the countermeasures that the de-

fender can adopt in order to mitigate or even prevent the cyberattacks. Each node can be expanded with
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one or more children of the same type, thus defining refinements that indicate sub-goals and actions.
In addition, each node can have children of the opposite type, denoting threats or countermeasures,
respectively. The refined nodes can be divided into two types {a) conjunctive and (b) disjunctive. In the
first case, a conjunctively refined node carries out its goal if all of its children accomplish necessarily
their goals. In contrast, the goal of a disjunctively refined node is achieved if at least one of its children
carries outits goal. Therefore, the conjunctive and disjunctive refinements are represented by the AND

and OR logical operators, respectively.

Finally, CVSS and the OWASP-RR methodology are used to evaluate the severity of each Modbus/TCP
threat quantitatively and qualitatively. Both of them can be used independently and rely on different
methodologies. In particular, CVSS is an open vulnerability assessment framework, which quantifies
the severity of each vulnerability or attack between 0 and 10. CVSS consists of three metric groups,
namely (a) Base Group, (b) Temporal Group and (c) Environmental Group. The Base Group reflects the
intrinsic features of the vulnerability/attack. These features cannot be affected over time or modified
by compensating factors. The Temporal Group focuses on vulnerabilities/attacks that evolve or change
over time, evaluating their exploitability as well as the availability of the respective security controls.
Finally, the Environmental Group enables an organisation to adjust appropriately the values of the Base
Group, taking into account its own security requirements. In [105], E. Li et al. explain how the CVSS
score is computed, respectively. On the other side, the calculation of the OWASP-RR score is more
straightforward than CVSS. Actually, the OWASP-RR score [158] is calculated by Equation 5.1. Both
Likelihood and Impact depend on additional factors. In particular, Likelihood expresses the possibility
of the occurrence of each identified threat, and it is computed by averaging the values of the Threat
Agent Factor and the Vulnerability Factor. The Threat Factor is calculated by summing the values of
four factors: (a) Skill Level, {b) Motive, (c¢) Opportunity and (d) Size. Similarly, the Vulnerability Factor
is computed by adding four factors: (a) Ease of Discovery, (b) Ease of Exploit, (¢) Awareness and (d)
Intrusion Detection. Accordingly, Impact represents the consequences if that threat eventuates, and it
is determined by averaging the values of the Technical Impact Factor and the Business Impact Factor.
In a similar manner, the Threat Impact Factor is calculated by summing the values of four factors: (a)
Loss of Confidentiality, (b) Loss of Integrity, () Loss of Availability and (d) Loss of Accountability. On
the other hand, the Business Impact Factor is also calculated by summing the values of four factors: (a)
Financial Damage, (b) Reputation Damage, {c¢) Non-compliance and (d) Privacy Violation. The values of
the aforementioned factors range between 0 — 9. E. Rios et al. in [158] provide more insights regarding

how OWASP-RR score is computed.

Fig. 5.4 illustrates the proposed ADT. The STRIDE elements represent the refined nodes, while 14
cyberattacks supported by the aforementioned Modbus/TCP-related penetration testing tools denote

the non-refined nodes. Therefore, Tampering is related to the integrity principle and is composed of
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two disjunctive refinements: (a) modbus/function/writeSingleCoils and (b) modbus/function/writeSin-
gleRegister. Similarly, DoS refers to the availability requirement and consists of six disjunctive re-
finements: (a) modbus/dos/writeSingleCoils, (b} modbus/dos/writeSingleRegister, {c) modbus/func-
tion/readCoils (Do8), (d) modbus/function/readCoils (DoS), (e) modbus/function/readInputRegister (DoS)
and (f) modbus/function/readDiscretelnput (DoS). Finally, Information Disclosure corresponds to the
confidentiality principle and comprises six disjunctive refinements, namely (a) modbus/function/read-
Coils, {(b) modbus/scanner/getfunc, (¢) modbus/scanner/uid, (d) modbus/function/readlnputRegister,
(e) modbus/function/readHoldingRegister and (f) modbus/function/readDiscretelnput. The aforemen-
tioned cyberattacks take full advantage of the fact that Modbus/TCP does not include any authenti-
cation and authorisation mechanism, thus allowing a cyberattacker to use the Modbus/TCP function
codes for malicious purposes. Table 5.1 provides a description for each non-refined node, including
the CVSS and OWASP-RR textual representations. The textual representations reflect the values of the
CVSS and OWASP-RR criteria that lead to the respective quantitative scores. The names of the non-
refined nodes originate from the corresponding modules of the aforementioned penetration testing
tools. For each non-refined node, CVSS and OWASP-RR are applied individually, calculating the corre-
sponding severity scores. Next, these scores are propagated to the upper nodes based on Equation 5.2
and Equation 5.3. In particular, Equation 5.2 is applied when the refined node comprises conjunctive re-
finements since the parent’s goal is achieved whether all children accomplish their goal. Therefore, the
severity score of a conjunctively refined node is equal to the product of the childrens’ severity scores.
The product indicates the probability behind the severity score of each child [105]. In contrast, Equa-
tion 5.3 is utilised when the refined node includes disjunctive refinements since the respective goal is
achieved whether a child will accomplish its goal. Consequently, the severity score of the disjunctively

refined node equates with the maximum severity score of the various children.

Based on these computations, both CVSS and OWASP-RR estimate the severity of each Modbus/TCP
threat as “high”. Fig. 5.4 presents the quantitative scores. Finally, the proposed ADT includes a coun-
termeasure called Intrusion Detection and Mitigation. This countermeasure comprises two conjunctive
refinements: {a) Intrusion Detection and {(b) SDN-based mitigation. The first one is responsible for the
timely detection of the Modbus/TCP threats and includes two disjunctive refinements. On the other
side, SDN-based mitigation refers to the mitigation of the Modbus/TCP threats, taking full advantage
of the SDN technology.

OWASE — RRpi.p = Likelihood x Impact {(5.1)
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TaBLE 5.1: Non-refined Madbus/TCP threats with CVSS and OWASP-RR representations
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Based on the aforementioned remarks, two Modbus/TCP-related intrusion and anomaly detection mod-

els are used: namely (a) Modbus/TCP Intrusion Detection Model and (b) Modbus/TCP Anomaly Detec-

tion Model. The first model uses a decision tree classifier, which is capable of discriminating the above

Modbus/TCP cyberattacks. On the other side, the second model uses a custom autoencoder [138],

which can recognise relevant anomalies based on the operation flowchart depicted in Fig. 5.3. Both

models rely on TCP/IP flow statistics provided in Appendix E. Fig. 5.5 shows the architecture of the

proposed autoencoder. It is composed of six fully connected layers and maps input data = € X = R"

to an output =’ € X. In particular, it consists of an encoder f: X = Z and adecoderg: 7 — X,

which together result in the output 2 = g{f(z)). The low-dimensional latent representation of z is
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obtained from the encoder and is defined as » = f(z) € Z = R™(m << n). As aresult of this dimen-
sionality reduction, the proposed autoencoder avoids becoming an identity function, and the training
process aims to minimise the reconstruction error L{z, '), which is typically the Fuclidean distance in
space X. Since the proposed autoencoder is trained, anomalies are detected by measuring the recon-
struction error L(z, z') and comparing it with a threshold 7', classifying all operational data samples y
with L(y, g(f(y))) > T as anomalies. The selected threshold T is estimated heuristically based on the
reconstruction error L of all normal training data samples. In practice, the threshold 7', in order to be
mote robust, is selected to be a large percentile of the reconstruction error 7' = p0.9(L(z, z')|z € X)
or if a validation dataset is available, it is selected to maximise the performance for the validation data.
It is noteworthy that the training dataset should only consist of normal observations, and therefore it is
expected to be reconstructed well. Regarding the training procedure, a labelled Modbus/TCP intrusion
detection dataset was implemented, using the aforementioned penetration testing tools (i.e., (a) Smod,
(b) Metasploit, {c) Nmap, (d) mbtget and (e) ModScan) and both actual and emulated Modbus/TCP
industrial devices. This dataset will be published soon in IEEE Dataport and Zenodo.
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FIGURE 5.5: Autoencoder for Anomaly Detection

5.2.2 DNP3 Intrusion Detection Models

DNP3 is a reliable protocol applied largely in Cls in the US. In particular, DNP3 is adopted to transfer
messages between master devices and outstations. It supports several topologies, including (a) point-
to-point, where an outstation and one master communicate with each other, (b) multiple-drop, where
several masters and outstations interact with each other and (c) hierarchical interface, where an entity
can operate with both roles. DNP3 includes three layers: (a) link layer, (b) transport layer and (c)
application layer. The link-layer offers addressing services, multiplexing, data fragmentation, error
checking and link control. On the other side, the transport layer is used as in the case of the Open

Systems Interconnection (OSI) model, and it is represented with one byte utilised for fragmenting the
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DNP3 packets. Finally, the application layer defines a set of functional commands used for managing
and controlling the IoT entities. Apart from the DNP3 serial line communication, DNP3 can be used
over TCP/IP, where in this case, the aforementioned DNP3 layers are incorporated into the application

layer of TCP/IP.

Three intrusion and anomaly detection models were implemented for the DNP3 protocol, namely: (a)
DNP3 Intrusion Detection Model, (b) DNP3 TCP/IP Intrusion Detection Model and {c¢) DNP3 TCP/IP
Anomaly Detection Model. The first one uses DNP3 flow statistics of Appendix F, while the other
ones rely on TCP/IP flow statistics in Appendix E. Regarding the detection process, after a comparative
study, a decision tree classifier is adopted for the first two models, while the third model adopts ABOD
for detecting DNP3-related anomalies. For the training procedure, a custom DNP3 intrusion detection
dataset was generated in the context of this thesis. This dataset will be available soon in IEEE Dataport

and Zenodo. Both models of the aforementioned models can detect the following DNP3 attacks.

« DNP3 Enumerate: This reconnaissance attack aims to discover which DNP3 services and func-

tional codes are used by the target system.

« DNP3 Info: This attack constitutes another reconnaissance attempt, collecting various DNP3

diagnostic information.

« DNP3 Disable Unsolicited Messages Attack: This attack targets an outstation device, estab-
lishing a connection with it while acting as a master station. The false master then transmits a
packet with the DNP3 Function Code 21, which requests to disable all the unsolicited messages
on the target.

« DNP3 Cold Restart Message Attack: In a similar manner to the previous attack, the attacker
acts as the master station and sends a DNP3 packet that includes the Cold Restart function code.
When the target receives this message, it initiates a complete restart and sends a reply with the

time window available before the restart.

« DNP3 Warm Restart Message Attack: This attack is quite similar to the Cold Restart Message,

but aims to trigger a partial restart, re-initiating a DNP3 service on the target outstation.

« Stop Application: This attack is related to the Function Code 18 (Stop Application) and requires

from the slave to stop its function so that the slave cannot receive messages from the master.

« Data Initialisation: This cyberattack is related to Function Code 15 (Initialize Dataj. It is an
unauthorised attack, which demands from the slave to re-initialise possible configurations in

their initial values, thus changing potential values defined by legitimate masters.

« Replay Attack: This cyberattack replays DNP3 packets coming from a legitimate DNP3 master

or slave.
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5.2.3 IEC 60870-5-104 Intrusion Detection Models

IEC 60870-5-104 is a communication protocol provided by the [EC 60870-5 standard for monitoring and
controlling automated processes in energy applications by utilising the transport capabilities offered
by TCP/IP. In particular, it utilises, by default, the TCP port 2404, Fig. 5.6 illustrates the payload of
this protocol which is named Application Protocol Data Unit (APDU). APDU consists of two parts,
namely (a) Application Protocol Control Information (APCI) and (b) Application Service Data Unit
(ASDU). APCl includes the start character (68h), the length of APDU and four Control Fields {(CFs). On
the other side, ASDU is an optional part which is determined by the format of APDU. In particular,
APDU can take three formats: (a) I-format, {(b) S-format and (c) U- format. The I-format is used to
execute numbered information transfers and always includes ASDU. The S-format is used to perform
numbered supervisory functions and comprises only APCL Finally, the U-format is responsible for
performing unnumbered control functions, and it also includes only APCL The format of APDU is
determined by CF1 and specifically by its two last bits. If the two last bits of CF1 are equal to 00, then
the I-format is used. Accordingly, if the last bits of CF1 are equal to 01, then the S-format is applied.
Finally, if the aforementioned bits are 11, the U-format is used. Concerning the ASDU, it includes the
following fields: {a) Type Identification, (b} Structure Qualifier (SQ), (c) Number of Objects or Elements,
(d) T, (e) P/N, {f) Cause of Transmission (Col), (g) Originator Address {(ORG), (h) ASDU Address, or
Common Address of ASDU {CoA), (i) Information Object Address (IOA), (j) Information Elements and
(k) Time Tag. The Type ldentification determines the type of information objects. All information
objects of an ASDU must have the same type. SQ specifies how the information objects and elements
are structured. The Number of Objects or Elements field denotes the number of information objects or
elements depending on the value of SQ. Accordingly, T defines those ASDUs which are dedicated for
testing. P/N determines the positive or negative confirmation of an activation command. CoT directs
ASDU to specific tasks and simultaneously interprets the data received by the destination side. ORG is
an optional field and undertakes to explicitly define the identity of the controlling station {i.e., MTU).
CoA defines the address of MTU or RTUs at the application layer. IOA determines the address of an
information object. Information Elements provide and transmit specific information and finally, Time

Tag provides time information.

IEC 60870-5-104 relies on the TCP/IF, which itself includes multiple security issues. Moreover, IEC
60870-5-104 does not include any authentication and authorisation mechanism, thus enabling poten-
tial MITM and unauthorised access attacks. In particular, the intrusion detection models related to
this protocol rely on a threat model combining ADT and CVSS. Fig. 5.7 depicts the ADT of the pro-
posed IEC 60870-5-104 threat analysis. The non-refined nodes of this threat analysis are considered
as [EC 60870-5-104 cyberattacks supported by existing attacking tools, such as the Metasploit frame-
work (i.e., auxiliary/client/iec104/iec104), Qtester104, OpenMUC j60870, IEC-TestServer and custom
Ettercap filters. Therefore, the non-refined nodes are (a) MITM, (b) Traffic Sniffing, (c) C_RD_NA 1, (d)
CCINA 1, () CRPNA 1, (f) CSC NA 1, (g) CSENA 1, (h) M SP NA 1 DOS, (i) C.CTNA 1 DOS,
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F1GuRre 5.6: IEC 60870-5-104 Attributes

(j) CSE.NA_1.DOS, (k) C_RDNA_1 DOS and (1) C_RP_NA_1_DOS. The cyberattacks between (¢} and
(f) refer to unauthorised access cyberattacks related to therespective IEC 60870-5-104 commands. Sim-
ilarly, the cyberattacks between (f) and (1) denote DoS cyberattacks corresponding to the IEC 60870-
5-104 commands. Tig. 5.7 quantifies their severity based on CV55v3.1. It should be noted that the
Confidentiality Requirement (CR), the Inteprity Requirement (IR) and the Awvailability Requirement
(AR) of the Environmental Group are defined to “High” since the proposed threat model is adopted in
a CL so that the IEC 60870-5-104 communications should be secured as much as possible. The other
CVSS values are determined based on the nature of each IEC 60870-5-104 cormmand. Table 5.2 sum-
marises the IEC 60870-5-104 cyberattacks, including their CVSS textual representations. Subsequently,
the CVSS scores of the non-refined nodes are propapated upper by using the equation (5.2) and equa-
tion (5.3). Therefore, the CVSS scores of the refined nodes (i.e., (a) Compromising Confidentiality, (b)
Compromising Integrity and (¢) Compromising Availability) are calculated and illustrated by Fig. 5.7.
Moreover, the proposed threat model considers two countermeasures called “Intrusion Detection” and
“SDN-based Mitigation”. The first node is responsible for the detection process, while the second un-
dertakes to mitigate the intrusion through SDN.
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TABLE 5.2: IEC 60870-5-104 Cyberattacks Description and CVSS Representation

IEC 60870-5-104 Cyberattack

Description

CVSS Representation

Man-In-the-Middle

During this attack, the cyberattacker is inserted between two endpoints,
thus monitoring and controlling the network traffic exchanged.

AVN/ACL/PRH/ULR/S.C/CHIL/
AL/EH/RLO/RC.C/MAYV:-N/MACL
{WPR:H/MULR/MS:.C/MC: H/MIL/
MAL/CRH/ARHARH

Capturing and Dropping
IEC 50870-5-104 Packets

This attack is a refinement of the Man-In-The-Middle attack, where the
cyberattacker can drop the IEC 60870-5-104 packets.

ATNIACL/PRE/ULR/S.C/CHITNY
AN/EHRL O/RC:.C/MAV N/MACL
I MPRH/MULR/MS:C/MC: LML N/
MAN/CRHIRI/ARH

Traffic Sniffing is a passive attack, where through the MITM the

AVN/ACL/PRH/ULR/S.C/CH/AN/
AN/EHERL O/RC.C/MAY N/MACL

Traffic Sniffing cyberattacker can monitor and capture the IEC 60870-5-104 packets. {MPRH/MULR/MS:.C/MC: L/MEN/
MAN/CRHIRH/ARH
The CLCINA_1is a Counter Interrogation command in the control iVNI;%%‘?RIiI?}?RILCU%ﬁfVCIG?ﬁfg,
CCINAL direction, This cyberattack sends unauthorised IEC 60870-5-104 MPRH/MULER/MS:C /MO LML
C_CINA_1 packets to the target system, MAN/CRIARI/ARE ’
AV N/ACL/PRH/ULR/S.C/CL/THY
CoaC NAL The CSCNA_1 command is a single cornmand. This cyberattack A:N/EF/RL T/RCRMAV:NIMACL
- - sends unauthorised C_SC_NA_1 60870-5-104 packets to the target system. {MPRH/MULR/MS:.C/MC:L/MLH/
MAN/CRHIRH/ARH
The CSENA_1 command is a set-point command with normalised A NPACLIPRITULRSS C/C LT
. . AN/EFRL T/RCR/MAV:N/MACL
C_SENA_1 values. This cyberattack sends unauthorised IEC §0870-5-104 C_SE_NA_1 MPRH/MULER/MS:C /MO LML
kets to the target system, . : N ' '
packels £ sy MAN/CRERH/ARTH
The C_RD_NA_1 command is a read command. This cyberattack sends AV N/ACLPREULRS C/CLLH
CERD NA1 unauthorised IEC $0870-5-104¢ C_RD_NA_1 packets to the target AVERRLT/RCR/MAT.N/MAC L
i, FWPREUMULE/MS:C/MCL/MLEY
yetem. MAN/CREARF/ARH
The CRP_NA_1 command is a reset command. This cyberattack A NPACLIPRITULRSS C/C LT
CRP_NA_L sends unauthorised IEC 60870-5-104 C_RP_NA_1 packets to the target AMNEFRLT/RORMATNMAC L
system I MPRH/MULR/MS:C/MC: LML H/
ystem MAN/CRERH/ARH

MSPNA_1DoS

This attack floods the target system with IEC 60870-5-104 M_SP MNA_1
packets.

AV N/ACH/PRE/ULR/S:.C/CN/NL/
AH/EFRLW/RC R/MAVN/MACH
/ NMPRH MULR/ IS C/MC: N/ NMLNS
MAH/CRH/IRH/ARH

This attack floods the target system with IEC 60870-5-104 C_CT NA_1

ANACH/FRI/ULR/G:C/C:N/NLS
AH/EFRLW/RCR/MAY N/MACH

packets.

C-CINA-LDoS packets. /MPR L/ MUTR/MS C/MC: NY ML/
MAH/CRH/IRI/ARH
N/ ACHPRH/UTES.C/CN/AL
€ SF A LToS This attack floods the target systern with IEC 60870-5-104 C_SE NA_L AH/EF/RLW/RC R/MAV N/MACH

{WIPR:H/ MULR/MS: C/MC: N/ ML/
MAH/CRH/IRH/ARH

CSC_NA_1DoS

This attack floods the target system with ITEC 50870-5-104 C_SC_NA_1
packets.

WV N/ACHFPRH/UTR/S.C/C:N/NL,
AH/EFRLW/RC R/MAVN/MACH
/MPRH/MULR WS C/MC: N/ MI:N/
MAH/CRH/IRI/ARH

CRD NA_1Do3

This attack floods the target system with IEC 60870-5-104 C_RD_NA_1
packets.

N/ ACHPRH/UTES.C/CN/AL
AH/EFRLW/RC R/MAVN/MACH
/ NMPRH MULR/ IS C/MC: N/ NMLNS
MAH/CRH/IRH/ARH

CEP NA_1DoS

This attack floods the target system with ITEC 50870-5-104 C_RP_NA_1
packets.

WV N/ACHFPRH/UTR/S.C/C:N/NL,
AH/EFRLW/RC R/MAVN/MACH
/MPRH/MULR WS C/MC: N/ MI:N/
MAH/CRH/IRI/ARH

Based on the aforementioned remarks, three intrusion and anomaly detection models were imple-
mented, namely (a) IEC 60870-5-104 Intrusion Detection Model, (b) TEC 60870-5-104 TCP/IP Intrusion
Detection Model and {c) IEC 60870-5-104 TCF/IP Anomaly Detection Model. According to the compar-

ative study provided in the following chapter, the first one relies on a CART decision tree, using the [EC
60870-5-104 flow statistics of Appendix G. The second model adopts also a CART decision tree based

on the TCP/IP flow statistics in Appendix E. Finally, the last model uses an isolation forest also with
the TCP/IP flow statistics in Appendix E. The first two models can recognise the above IEC 60870-5-104

cyberattacks, while the last model can discriminate the presence of an anomaly. Regarding the training

procedure of the previous ML intrusion and anomaly detection models, the TEC 60870-5-104 Intrusion

Detection Dataset was utilised. This data was published in IEEE Dataport and Zenodo in the context

of this PhDD programme.
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5.2.4 IEC 61850 Intrusion Detection Models

IEC 61850 is an international communication standard for electrical substation environments, defining
a hierarchical, object-oriented data representation model. In particular, each loT asset is characterised
by a data model composed of naming, diagnostic and configuration information. The purpose of this
data model is to facilitate the information exchange among the IloT assets without referring to their
functional and technical details. The IEC 61850 stack consists of four types of messages: {a) MMS, (b)
Generic Substation State Events (GSSE), {¢) GOOSE and (d) SMV. In this thesis, a special emphasis is
given to GOOSE and MMS. In particular, the GOOSE Intrusion Detection Model was implemented,
using Random Forest, the GOOSE flow statistics in Appendix L and the dataset provided P.P. Biswas
et al. in [25]. In particular, the following GOOSE-related cyberattacks can be detected by the GOOSE

Intrusion Detection Model.

« GOOSE DoS8: This refers to a GOOSE-related Do§ attack, which floods the target system with

GOOSE messages, to block legitimate [EDs from accessing resources.

« Data Manipulation: This is an unauthorised access attack, which injects malicious GOOSE

packets, aiming to impact the grid stability or to cover unauthorized changes.

« Message Suppression: This is an unauthorised access attack, which injects malicious GOOSE

packets, aiming to impact the grid stability or to cover unauthorised changes.

« Disturbance: It refers to electricity-related disturbances and faults that might occur.

On the other side, the MMS TCP/IP Anomaly Detection Model was generated, using MCD, the TCP/IP
flow statistics in Appendix E, and a custom MMS anomaly detection dataset, which was generated in

the context of the H2020 SPEAR project [142].

5.2.5 HTTP Intrusion Detection Models

The NF-IDPS includes two models related to HTTP, namely: (a) HTTP TCP/IP Intrusion Detection
Model and (b) HTTP TCP/IP Anomaly Detection Model. The first model uses a decision tree, which
can detect the following HTTP-related cyberattacks.

« Do8: This Do$ attack floods the target system with HTTP packets.

« SQL-Injection: This attack aims to exploit vulnerabilities of web applications in order to access

unauthorised information.

« Bruteforce-Web: This attack attempts to access a password-protected web application by using

multiple password combinations.
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« X88: XSS is a type of injection attack where malicious scripts are injected into web applications.

On the other side, the HTTP Anomaly Detection Model adopts LOF. The training procedure of both
models relies on the TCP/IP flow statistics in Appendix E and the CSE-CIC-IDS 2018 dataset [51].

5.2.6 SSH Intrusion Detection Models

Finally, two SSH-related models are involved in the [DE of NF-IDPS, namely (a) SSH TCP/IP Intru-
sion Detection Model and (b) SSH TCP/IP Anomaly Detection Model. The first one uses Adaboost to
recognise SSH bruteforce attacks, while the second model is based on MCD to detect anomalous SSH
network flows. Both models take as input the TCP/IP network flow statistics in Appendix E, while the
CSE-CIC-IDS 2018 dataset was utilised for the training procedure.

5.3 H-IDPS: Host-based Intrusion Detection Prevention and System

The proposed H-IDPS includes four detection models that rely on operational data related to the energy
sector (i.e., time series electricity measurements). In particular, these data summarised in Appendices
H-K are related to four IIoT/SG use cases from the 12020 SPEAR project [142]: {(a) hydropower plant,
(b) substation, (¢) power plant and {(d) smart home. All the detection models for the previous use cases
use the smArt gRid Intrusion dEtection System (ARIES) GAN [140]. The aim of an adversarial network
concerning the problem of the anomaly detection is to train an unsupervised network, which will be
capable of recognising anomalies, using a dataset, which includes data of a single class. In particular,
this data is used only for the training process and denotes a benign behaviour. Supposing two datasets:
(a) a training dataset 0 = { X1, ..., Xas}, which contains M normal occurrences and (b) a testing
dataset D = {(X1,41), ..., (Xn,yn)} which includes N both normal and abnormal occurrences and
y; € |0, 1] denotes the label of each occurrence. It is worth noting that M 3> N.

The goal is to model appropriately I to understand the manifold representation and then to recog-
nise anomalies in D). In particular, the model f learns the normal data distribution and produces an
anomaly score A(z). A high value of A(x) denotes a potential anomaly for the specific data point.
More precisely, a threshold value T’ determines whether A(z) indicates an anomaly or not if A(zx) > ¢.

T is defined experimentally, utilising a testing dataset.

Fig. 5.8 depicts ARIES GAN architecture, which is composed of two sub-networks: (a) generator and (b)
discriminator. The generator receives the input z = {x(t), [i} representation that includes the real data
z(t) at the current time ¢ and a noise vector E. The output =’ is the reconstruction of the input data for
the current time ¢ and all the previous IV instances. In particular, the generator & first reads the input 2,

where » € ®¥Z, and forwards it to the encoder network E. Based on fully connected layers followed by
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abatch-norm and lealey ReLU7() activation function, & regresses # to . Conssquently, the generator
7 produces the data ' via ' = G{z), where # = {2(#), B}, On the other sids, the discriminator
intends to distinguish the input & and the output @ as real or fake, respectively. It consists of fully
connected layers followsd by batch-norm and leaky Bl activation,

Supposing that abnormal data points are forward-passed into the network &) however, sinceths gener-
ator is modzlled only with normal samples during ths training, it fails to reconstruct the abnormalitizz
in the previous N times instances. In this thesis, abnormal data dozs not occur in singlz-time instances.
An output #° that has not taken into account anomalies can result in the encoder netwaork E corre-
sponding « to avector ¢, which also hag not considersd an anomalous feature representation, thereby
creating a dissimilarity between 2 and #'. In such a case (i.2., when there iz a dissimilarity within the

latent vector space for an input signal (%)), the model categorizes @ as an anomaly,

Ezparding ths training process of this network, the loss function was selacted, considering the featurs

matching loss as illustratad in Equation 5.4,

Ladu = ||#(2) — ${«)l2 (5.4)

In particular, f iz a function, which cutcomess an intzrmadiate layer of the diseriminator D baszd on
a given input & feature matching calculatas the Ly distancs between the featurs representation of the

real and the produced data points.
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5.4 V-IDPS: Visual-based Intrusion Detection and Prevention System

The goal behind the proposed V-IDPS is also to detect and mitigate timely the Modbus/TCP cyberat-
tacks discussed above. However, its functionality can also be utilised in a similar manner with other
industrial protocols and cyberattacks. As illustrated in Fig. 5.9, the architecture of the proposed IDPS
consists of five modules: (a) Network Traffic Monitoring and Capturing Module (NTMCM), (b) Net-
work Flow Extraction and Clustering Module (NFECM), (c) Visual Representation Generation Module
(VRGM), (d) IDE and (e) NM. The first module is responsible for monitoring and capturing the entire
Modbus/TCP network traffic. To this end, SFAN and Tepdump are utilised. NFECM receives the overall
Modbus/TCF network traffic as an overall peap file and discriminates the bidirectional Modbus/TCP
network flows, generating the corresponding pcap files. A network flow is characterised by four ele-
ments: (a) source IP address, (b) destination IP address, (c) source TCP/UDP port and (d) destination
TCP/UDP port. Thus, each peap file generated by NFECM includes the Modbus/TCP packets of a spe-
cific Modbus/TCP network flow. For this purpose, PcapFlusPlus-FPeapSplitter is used. Next, VRGM
uses Binvis in order to convert each pcap file related to the Modbus/TCP network flows into visual
representations. More details about this conversion are provided below. Subsequently, IDE adopts an
Active ResNet50-based CNN, which receives the visual representations and classifies them into the
aforementioned Modbus/TCF cyberattacks. Accordingly, more information about the operation of the
proposed Active ResNet50-based CNN is given below. Finally, NM sends the security logs of V-1IDPS
to NCME.

The IDE combines two detection layers that work in a complementary manner. The first laver consti-
tutes a binary visualisation mechanism that supports the security administrator to distinguish man-
ually the Modbus/TCP threats. On the other side, the second layer applies an Active ResNet50-based
CNN in order to classify the Modbus/TCP network flows automatically. Both layers work together
for the accurate detection of the Modbus/TCP cyberattacks. In particular, the first layer constitutes a
verification method through which the security administrator can oversee the detection results of the
second layer. Moreover, it is worth mentioning that the first layer contributes to the re-training process
of the Active ResNet50-based CNN. The following subsections provide more details for each detection

layer, respectively.

5.4.1 Binary Visualisation

The proposed IDPS adopts Binvis in order to transform the pcap files reflecting the corresponding
Modbus/TCF network flows into understandable visual representations (i.e., images) utilised by the
security administrator to discriminate the aforementioned Modbus/TCP threats. Binvis relies on the
Python library scurve, which transforms binary files into various curve representations. In particular,
each byte of the pcap files is translated into a pixel, utilising the following colour scheme of scurve:

(a) Black: 00, (b) White: FF, (¢) Blue: printable characters and (d) Red: everything else. Thus, each
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FIGURE 5.9: Architecture of V-IDPS

pixel is placed on the two-dimensional visual representation, taking into account the locality of the
binary elements. The binary elements being close in the pcap files should be placed as near as pos-
sible on the two-dimensional representation. To this end, Hilbert Curve is used to arrange the pixels
in the image. The Hilbert Curve belongs to the family of the recursive Space-Filling Curves (SFCs)
that divide a space into several segments, visiting the segments with a particular order. SFCs, also
known as Peano curves, project the data from one-dimensional space into an n-dimensional space by
preserving the properties of the original data. M. Wattenberg in [202] describes the relationship be-
tween the space-filling visualisation and the mathematics behind SFCs. In particular, four properties
are preserved: (a) stability, (b) split neutrality, (¢) order adjacency and (d) locality. The range of SFC
covers the two-dimensional unit square and, in general, an n-dimensional unit hypercube; however, in
this thesis, the two-dimensional space is used since the output of Binvis is a two-dimensional visual
representation. Thus, a two-dimensional unit square refers to a visual representation of n X n pixels,
and the Hilbert curve represents a continuous curve for each unit square (i.e., pixel of the image). Al-
though G. Peano was the first who defined and discovered the first SFC, D. Hilbert was the one who
identified a geometrical process that allows the generation of an entire class of SFCs. D. Hilbert defined

that each ¢ belonging to an interval I = [0, 1] is determined by a sequence of nested closed intervals
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that are generated by a successive partitioning. This sequence corresponds to a sequence of nested
closed squares whose diagonals shrink into a point, determining a unique point in @ = [0, 1]> which is
the image f5,(¢) of t. fr.(I) is called Hilbert Curve [161]. H. Sagan in [161] provides a detailed analysis

about various SFCs, including the Hilbert curve.

Fig 5.10 depicts how the Hilbert curve is utilised for transforming one-dimensional data (i.e., pcap
binary file) into a two-dimensional visual representation. First, each byte of the binary pcap file is
transformed into a particular colour based on the colour scheme of scurve. Then, the Hilbert curve is
applied in order to map the one-dimensional data into a two-dimensional visual representation. Sim-
ilarly, Fig 5.11 shows the Binvis visualisations for each pcap file corresponding to the malicious net-
work flows of the aforementioned Modbus/TCP threats. Although the Binvis visualisations are similar
to each other, a granular inspection can distinguish the differences, thus identifying the Modbus/TCP

threats discussed previously.
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F1GURE 5.10: Transformation of a binary pcap file into a Hilbert curve two-dimensional visual repre-
sentation

5.4.2 Active ResNet50-based CNN Detection

Although the first detection layer provides an adequate manner for discriminating the Modbus/TCP
threats, it constitutes a manual solution, not applicable for a large number of Modbus/TCP network
flows. The binary visualisation can be utilised only as an additional detection mechanism verifying or
correcting the outcomes of automatic means. The second layer of the proposed IDPS adopts a CNN,
which combines Transfer Learning and Active Learning in order to classify the pcap visual represen-
tations of the Modbus/TCP network flows into the Modbus/TCP threats automatically. Both Transfer
Learning and Active Learning are adopted when there are not available datasets or a sufficient amount
of data, as in our case, since IIoT/SG environments like Cls cannot disclose and share their sensitive
data. On the one side, Transfer Learning refers to when an ML/DL model pre-trained for another task is
used to solve a problem from another domain [122]. This approach is applied widely to the CNN mod-

els. In particular, the new CNN uses some weights of a pre-trained CNN, which has been trained on
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Ficure 5.11: Visual representation of the pcap files corresponding to the malicious network flows of
the Modbus/TCP threats

a large-scale dataset like ImageNet [40]. Usually, from the pre-trained CNN, the final fully-connected
layers are removed. Next, a concise training process follows to adjust the remaining parts of the new
CNN corresponding to the fully connected layers. Multiple pre-trained CNNs have already demon-
strated their efficiency, using the ImageNet dataset, which involves 1.2 million images. Characteristic
examples are VGG16, VGG19, ResNet50, Xception, MobileNet, DenseNet121 and EfficientNetB0. Based
on a comparative analysis described in the following chapter, the proposed IDPS uses ResNet50 [61].

More specifically, Fig. 5.12 shows the CNN architecture behind the second detection layer of the pro-
posed IDPS. First, ResNet50 is utilised, and then a sequence of a Flatten layer and 5 Dense layers
follow with 1024, 512, 256, 128 and 15 neurons, respectively. Apart from the last Dense layer, the
remaining ones use the ReLu activation function given by Equation 5.5. The last Dense layer uses
the Softmax function, given by Equation 5.6. ResNet50 is inspired by VGG19, utilising 34-layer plain
network architecture in which shortcut connections are added, thus leading to the residual network
illustrated by Fig. 5.12. The colour scheme denotes the number of the filters with respect to the con-
volutional layers. More information about ResNet50 is given in [61]. The training process uses the

Categorical Cross-Entropy function (Equation 5.7) and the Adam optimiser.
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Although the ResNet50-based CNN constitutes an initial and efficient model for detecting and classi-
fying the Modbus/TCP threats, its performance relies on the available training data (i.e., pcap files re-
flecting malicious Modbus/TCF threats.) However, such data is rarely available. Even if there are some
synthesised datasets, the Modbus/TCP threats and their consequences can differ from one [IoT/SG en-
vironment to another. Therefore, the proposed IDPS adopts an Active Learning approach, which makes
IDE capable of re-training itself. Active Learning composes a functional framework, which allows the
selection of the most informative data samples from an unlabelled dataset, thus creating or enhancing
the training dataset, leading, in our case, to a more accurate multi-class classification model [94]. In
Active Learning, the classifier is called Hypothesis. Unlike Passive Learning, which selects the data
samples randomly, Active Learning follows particular criteria leading to represented and representative
data samples providing more accurate results [153]. Usually, an external factor called Oracle assesses
and annotates the data samples selected by the Active Learning methods [170]. In our case, IDE and
particularly the ResNet50 CNN represents the Hypothesis, while the system administrator plays the
role of the Oracle, utilising the Binvis representations. Fig. 5.13 illustrates the Active Learning pro-
cedure behind the proposed IDPS. In the first step, the pooling-based sampling method is adopted in
order to create a pool with the unlabelled data. Next, a query strategy is used to decide which data
samples from the pool will be labelled by Oracle and added to the new training dataset. With respect
to the query strategy, the Uncertainty Sampling technique is used, based on the uncertainty of the
Hypothesis. In other words, the Uncertainty Sampling selects those binary representations for which
the Active ResNet50-based CNN is less confident. Subsequently, the Hypothesis is fed with the un-
labelled data selected in the previous step. Next, the Hypothesis predicts the labels of this data. The
prediction outcome of the ResNet50-based CNN can be assessed by the security administrator based
on the binary visualisation of the first detection layer. Suppose the security administrator agrees with
the decision of the ResNet50-based CNN. In that case, this data sample (i.e., the visual representation
corresponding to the peap file of the malicious Modbus/TCP network flow) is added to the new training
dataset. Otherwise, Oracle will correct the decision of Hypolhesis, and the data sample is added to
the new training dataset. Finally, the new training dataset is used to re-train the ResNet50-based CNN,
thus converting it into an Active ResNet50-based CNN.
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FI1GURE 5.13: Proposed Active Learning Procedure

Suppose the visual representations corresponding to the Mobuds/TCP network flows from an IIoT/SG
environment are generated continuously. Let = be an unlabelled visual representation from the input
space X and y the respective label related to the Modbus/TCP threats discussed earlier, comprising also
the normal state. Furthermore, U denotes a set of unlabelled visual representations within the pool,
while L indicates the new training dataset, which will be used to re-train IDE. Therefore, on the one
hand, the function f(x) = y is the target function that discriminates and classifies the visual represen-
tations accurately without any functional error. On the other hand, the function h(x) = y' represents
the Active ResNet50-based CNN predicting the label of the visual representation. Consequently, the

goal is to minimise the generalisation error defined by Equation 5.8.
BUR) [ (), S(@) da 69)

where [ is the squared error function defined by Equation 5.9.

[(h(@), f(z)) = (h(z) - f(2))? (5.9)

Therefore, the Active Learning problem lies in labelling correctly and selecting the appropriate visual
representations from U, thus composing and enhancing a new training dataset . that will re-train the
Active ResNet50 CNN (I{ ypot hesis) and will optimise its detection efficiency. The labelling process is
conducted by the Hypothesis itself and is validated by the security administrator through the binary
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visualisation. To identify the suitable visual representations in U, Uncertainty Sampling is used. The
Hypolhesis’ uncertainty can be calculated with various criteria: (a) entropy, (b) least confidence of

prediction and {c) least margin. In this thesis, entropy defined by Equation 5.10 is used.

m

H=—3 polyile)loga(poly|x)) (5.10)
=1

where pg denotes the probability of class ¢ for the visual representation =, while # implies the param-
eters of the Hypothesis. Therefore, the entropy criterion chooses the visual representations z* from

U that fulfil the Equation 5.11. In this paper, § is determined experimentally.

' = argmax(z) + H > § (5.11)

Based on the above remarks, Algorithm 1 illustrates the Active Learning process of the Active ResNe t50-
based CNN. First, the Hypothesis k(X)) is trained with an initial dataset L comprising a few data sam-
ples. To this end, a Modbus/TCPF intrusion detection dataset was constructed by emulating the afore-
mentioned Modbus/TCP threats, Next, U is filled in continuously with new visual representations.
While the size of U is greater than 0, k(x) classifies each visual representation within 7. The security
administrator verifies this process through the visual representations. As depicted in Fig. 5.11, although
the visual representations of the Modbus/TCF threats present common characteristics, they constitute
an adequate manner for discriminating the Modbus/TCP threats manually. Next, the uncertainty of
h(x) is calculated. If the entropy criterion is satisfied, then the corresponding visual representation of

U7 is moved in L. Next, when the size of I reaches a new threshold {, the re-training process is applied.

Algorithm 1: Active ResNet50-based CNN: Pooling-based Sampling and Uncertainty Sampling
Strategy

Data: U, L, h

Result: Re-train h

Train h;

while size(U) > 0 do

if uncertainty(h(U(i))) > & then

h predicts y(i);

The security administrator verifies the prediction of h;
Add U(i) and y{i) in L;

Re-train h

end

f size(l.) == i then
Re-train h;

Clear U;

end

-

end
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5.5 NCME: Normalisation, Correlation and Mitigation Engine

The role of NCME is twofold, first, to receive, normalise and correlate the security events from the previ-
ous IDPS and second, to indicate potential mitigation actions. First, the normalisation process relies on
the AlienVault OSSIM format, which is provided by (Table 5.3). Next, the correlation capacity of NCME
is based on correlation rules that focus on the Modbus/TCP-related security events. However, similar
rules can be used for other industrial communication protocols. This kind of correlation aims to iden-
tify relationships between the Modbus/TCP security events, composing alerts that reflect multi-step
attack scenarios against Modbus/TCP. The correlation rules are constructed by combining the infor-
mation of the security events and additional fields, such as time information (e.g., a sequence of events
appearing in a specific period of time) or the number of continuous security events. Event Processing
Language (EPL) statements are utilised for the syntax of these correlation rules. The following table
summarises these rules. On the other side, the mitigation actions lie in two main categories: (a) SDN-
based mitigation and (b) deployment of a suitable number of honeypots for enhancing the resilience of
the IIoT/SG infrastructure in terms of hiding and protecting the actual IloT/SG entities/devices. More

information for each category is provided in the following subsections.

TABLE 5.3: OSSIM Security Event Format

Security Event Field Name Security Event Field Description
Date Date and time of the security event.
Sensor The sensor, which processed the security event.

The TP address of the sensor, which processed the security
Device IP

event.

Identifier assigned by the component, which generates the
Event Type ID

security event.

' Unique identifier assigned by the component, which
Unique Event ID )
generates the security event.

Protocol Protocol related to the security event.

Category Event taxonomy for the security event.

Subeat Subcategory of the security event taxonomy type listed
ubcatego
gory under Category.

Name of the external application or device that produced
Data Source Name )
the security event.

Identifier related to the external application or device which
Data Source ID )
generated the security event.

Product Type Product type related to the security event.

URL including more details
Additional Info )

about the security event.

It reflects the significance of the security event in the
Priority

range between 0-5.
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[t reflects the detection reliability in the range between

Reliability 0-10.
_ Risk calculation relies on the formula:
Risk Asset Value * Event Reliability * Event Priority / 25
Number of indicators related to an Open Threat Intelligence
OTX Indicators (OTX) IP reputation or

OTX pulse event.

Source/Destination ID

Identifier of the source/destination related to the security

event.

Source/Destination IP

P addresses of source/destination, respectively related to

security event.

Source/Destination Hostname

Hostname of source/destination.

Source/Destination

MAC Address

Media Access Control (MAC) of source/destination.

Source/Destination Port

Port of source/destination.

Source/Destination

Latest Update

The last time when the component, which generated the

security event updated the source/destination properties.

Source/Destination Username

and Domain

Username and domain related to source/destination.

Source/Destination Asset Value

Asset value of source/destination. It reflects the

significance of source/destination.

Source/Destination Location

If the origin of source/destination is known, it reflects the

hast country.

Source/Destination Context

If the asset belongs to a user-defined group of entities,

AlienVault OSSIM shows the relevant contexts.

Source/Destination

Asset Groups

When the source/destination belongs to one ar more asset

groups, this field lists the asset group name or names.

Source/Destination Networks

When the source/destination belongs to one ar more

networks, this field lists the networks.

Source/Destination A list of users and their information related
Logged Users to source/destination.

Source/Destination (Yes or No) Whether or not the OTX [P Reputation
OTX IP Reputation identifies the TP address as suspicious.

Source/Destination Service

List of services ar applications related to the

source/destination ports.

Service Port

Port utilised by the service or application.

Service Protocol

Protocol utilised by the service or application.

Raw Log Raw log details of the security event.
Filename Name of a file related to the security event.
Username Usernames related to the security event.
Password Passwords related to the security event.

Userdata 1-9

User-generated log fields.
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Rule Detection

AlienVault OSSIM NIDS rule used to detect the

security event.

TABLE 5.4: Security Correlation Rules for Modbus/TCP

No

Description

Rule #1

If there are X or more consecutive events denoting a modbus/function/

readInputRegister (DoS) attack, then an alert called ‘modbus/function/
readlnputRegister (DoS)’ is raised. X is defined by the user.

Rule #2

If there are X or more consecutive events denoting a modbus/dos
/writeSingleRegister attack, then an alert called ‘modbus/dos
/writeSingleRegister’ is raised. X is defined by the user.

Rule #3

If there are X or more consecutive events denoting a modbus/function/

readDiscretelnputs (Do8) attack, then an alert called
‘modbus/function/readDiscretelnputs (DoS)’ is raised. X is defined
by the user.

Rule #4

If there are X or more consecutive events denoting a modbus/
function/readHoldingRegister (DoS) attack, then an alert called
‘modbus/function/readHoldingRegister (DoS)’ is raised. X is defined
by the user.

Rule #5

If there are X or more consecutive events denoting a modbus
ffunction/readCoils (DoS) attack, then an alert called
‘modbus/function/readCoils (DoS))" is raised. X is defined by the user.

Rule #6

If there are X or more consecutive events denoting a modbus/dos
/writeSingleCoils attack, then an alert called ‘modbus/dos

/writeSingleCoils’ is raised. X is defined by the user.

Rule #7

If there are X events denoting a modbus/scanner/uid attack and
right after X events denoting a modbus/scanner/getfunc, then an

alert called "Modbus Reconnaissance’. X is defined by the user.

Rule #8

If there are X or more consecutive events denoting a modbus/
scanner/getfunc attack, then an alert called "‘Modbus Reconnaissance’

is raised. X is defined by the user.

Rule #9

If there are X or more consecutive events denoting a modbus/scanner
/uid attack, then an alert called ‘Modbus Reconnaissance’ is raised.

X is defined by the user.




102

Rule #10

If there are X events denoting a modbus/scanner/uid attack and
right after X events denoting a modbus/function/writeSingleCoils,

then an alert called ‘modbus/function/writeSingleCoils’ is raised.

X is defined by the user.

Rule #11

If there are X events denoting a modbus/scanner/getfunc attack and
right after X events denoting a modbus/function/writeSingle Coils,

then an alert called ‘modbus/function/writeSingleCoils’ is raised.

X is defined by the user.

Rule #12

If there are X or more consecutive events denoting a modbus/function
/writeSingleCoils, then an alert called ‘modbus/function/

writeSingleCoils’ is raised. X is defined by the user.

Rule #13

If there are X events denoting a modbus/scanner/uid attack and right
after X events denoting a modbus/function/readInputRegister, then
an alert called ‘modbus/function/readInputRegister’ is raised. X is

defined by the user.

Rule #14

If there are X events denoting a modbus/scanner/getfunc attack and
right after X events denoting a modbus/function/readInputRegister,
then an alert called ‘modbus/function/readInputRegister’ is raised.

X is defined by the user.

Rule #15

If there are X or more consecutive events denoting a modbus/function
/readInputRegister, then an alert called ‘modbus/function/

readlnputRegister’ is raised. X is defined by the user.

Rule #16

If there are X events denoting a modbus/scanner/uid attack and right
after X events denoting a modbus/function/writeSingleRegister, then
an alert called ‘modbus/function/writeSingleRegister’ is raised. X is

defined by the user.

Rule #17

If there are X events denoting a modbus/scanner/getfunc attack and
right after X events denoting a modbus/function/writeSingleRegister,

then an alert called ‘modbus/function/writeSingleRegister’ is raised.

X is defined by the user.

Rule #18

If there are X or more consecutive events denoting a modbus/function
/writeSingleRegister, then an alert called ‘modbus/function

/writeSingleRegister” is raised. X is defined by the user.

Rule #19

If there are X events denoting a modbus/scanner/uid attack and right
after X events denoting a modbus/function/readDiscretelnput, then
an alert called ‘modbus/function/readDiscreteInput’ is raised. X is

defined by the user.




103

If there are X events denoting a modbus/scanner/getfunc attack and
Rule #20 right after X events denoting a modbus/function/readDiscretelnput,
ule #
then an alert called ‘'modbus/function/readDiscretelnput’ is raised.

X is defined by the user.

If there are X or more consecutive events denoting a modbus/function
Rule #21 | /readDiscretelnput, then an alert called ‘modbus/function

/readDiscreteInput’ is raised. X is defined by the user.

If there are X events denoting a modbus/scanner/uid attack and right

after X events denoting a modbus/function/readHoldingRegister, then

Rule #22
an alert called ‘modbus/function/readHoldingRegister” is raised. X
is defined by the user.
If there are X events denoting a modbus/scanner/getfunc attack and
right after X events denoting a modbus/function/readeldingRegister,
Rule #23

then an alert called ‘modbus/function/readHoldingRegister’ is raised.
X is defined by the user.

If there are X or more consecutive events denoting a modbus/function

Rule #24 | /readHoldingRegister, then an alert called ‘modbus/function

/readHoldingRegister’ is raised. X is defined by the user.

5.5.1 SDN-based Mitigation

In this thesis, SDN plays the role of a mitigation mechanism that can drop or re-arrange the malicious
Modbus/TCF network flows. In contrast to typical IPS and traditional firewall systems, SDN represents
a more reliable mitigation mechanism with respect to a massive amount of alerts. In particular, T. Xing
et al. in [206] study and compare the reliability of an SDN-based IDPS against a plethora of malicious
packets related to a DoS attack. They demonstrate that the proposed SDN-based IDPS can handle more
efficiently the malicious packets rather than a typical IPS using iptables. The latter could not handle
and process all the relevant packets of the DoS attack. Finally, in this thesis, instead of corrupting the
malicious network flows directly, it is further examined whether this action (i.e., dropping malicious
Modbus/TCP network flows) could generate more destructive effects, taking into account the sensitive

nature of an IIoT/SG environment.

If NCME takes a decision to drop automatically the malicious network flows, then NCME does not
use OpenfFlow directly, but it takes full advantage of the Ryu REST APl in order to guide Ryu on how
to insert the appropriate rules to the flow tables of OVS. In particular, two rules are added; thus, two
REST requests are sent by NCME to Ryu. Next, the appropriate OpenFlow commands are transmitted
automatically by Ryu in order to insert the new rules into the OVS flow tables. The REST requests
include the following fields: table_id, actions, hard_timeout, idle_timeout, priority, dpid and match. The
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last field includes also seven extra sub-fields: in_port, eth_type, ip_proto, ipvd_src, tep_src, ipvd_dst and
tep_dst. First, table id expresses the identifier of the table where the new rules will be inserted. actions
defines a set of instructions such as, for example, to allow, drop or forward the Modbus/TCP packets
specified by the rule. hard timeout denotes the maximum time before discarding. idle_timeout implies
the idle time prior to discarding. Next, priority defines the priority of this rule, while dpid denotes
the identifier of the corresponding SDN switch (i.e., OVS). Finally, match defines the criteria utilised
for identifying the Modbus/TCF packets that will be managed by this rule. in_port indicates the input
port of OVS. eth_type determines the Ethernet frame type according to Internet Assigned Numbers
Authority (IANA). ip_proto defines the protocol attribute of IPv4 based on TANA. ipv4 _src, ipv4_dst,
tep_src and tep_dst are used to identify the network flows controlled by this rule. In particular, the first
two attributes define the source IP address and the source TCP/UDP port, while the latest cnes specify
the destination IP address and the destination TCP/UDP port, respectively. The first REST request uses
the ipv4_src and the tcp_src, while the second uses the ipv4 dst and the tep_dst. Both ipv4_src and
ipv4_dst refer to the same IP address. Similarly, tep_src and tcp_dst are assigned to 502, which is the
default TCP port for the Modbus/TCP protocol.

After normalising and correlating the security events, the mitigation phase follows, taking full ad-
vantage of the network programmability provided by SDN. In particular, NCME takes a decision on
whether the assets (IloT physical or virtual devices) related to the security alerts will be isolated or not
by SDN-C. The continuous operation of the IToT, such as SG, is critical since possible disturbances can
lead to more devastating consequences, cascading effects or even fatal accidents. Therefore, the NCME
cannot instruct arbitrarily the SDN-C to drop the potential malicious network flows. Such an irrespon-
sible action by SDN-C could lead to a more severe impact than an actual cyberattack. For example,
the impact of a reconnaissance cyberattack is less significant than a legitimate action targeting the
availability of the relevant IIcT/SG assets. Moreover, the presence of a false positive alarm can result
in the wrong decision. Although both CVSS and OWASP-RR can estimate the severity of the various
threats, the decision about isolating the assets affected by the security alerts cannot exclusively rely on
these scores since (a) the sensitive nature of lIo1/SG environments comprises extensive risks that are
hard to estimate, (b) both CVSS and OWASP-RR do not consider the special peculiarities of an HoT/SG

environment and (¢) they cannot calculate the actual cost, which can be different for each organisation.

Based on the aforementioned remarks, NCME utilises an RL methodology to mitigate or even prevent
the various alerts. In particular, for each security alert, the response of NCME relies on three strategies:
s1: NCME will instruct SDN-C to isolate the assets affected by the security alerts, thus corrupting
entirely the malicious network flows, so: NCME will instruct SDN-C to drop some of the malicious
network flows with a probability p., thus trying to thwart the cyberattackers’ plans and s3: NCME will
wait for the security administrator to decide. The probability p. in s3 can be associated with parameters
of the lloT/SG environment or the number of the security alerts. Each strategy is characterised by a
respective cost that can be related to financial damages, monetary claims, reputation damage, privacy

violation or, in general, unit costs. In this thesis, a general case of unit costs is used. Moreover, the
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assumption that the unit costs follow the normal distribution N (g, 7~ 1) is used. The goal is to train
NCME to decide for each security alert the appropriate strategy with the maximum expected reward,
which corresponds to the minimum unit cost. The unit cost for each strategy is called Hefurn and

symbolised by x;.
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The above decision problem can be considered as a MAB problem, where the NCME plays the role
of the gambler and the strategies correspond to the slot machines. The MAB problem refers to a
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Algorithm 2: SDN-based Mitigation - TS with Normal Distribution

Data: S, 7, mo. Ag, e, A, z_Matriz, sum_x_Matriz, AMatriz, m_Matriz
Result: selectedStrategy

security FventCounter = (;

T=1mp=0,=1,m=0;

x Matriz = ||, sum x_Matriz = ||, A Matriz = [|, m Matriz = ||;

while True do

Receive a security alert;

securityAlertCounter = securityAlertCounter +1;

selectedStrategy = 0;

min = oo

for strategy +— O to Sby 1 do

posteriorProbabilitySample = N (0, 1)\/; + m_Matriz[selected Strategy];

if posteriorFrobabilitySample < min then
min = posteriorProbabilitySample;
selectedStrategy = strategy;

end
end
SDN controller executes selectedStrategy;

x_Matriz]selectedStrategy] = N(0, 1)\/2 +

sum_x_Matriz|selectedStrategy] =
sum_x_Matriz|selectedStrategy| + ©_Matriz|selected Strategy|;

A Matrix|selected Strategy| = A_Matrix|selected Strategy] 4+ 7

m_Matriz|selectedStrategy| = 7 X sum_x Matriz =
selectedStrategy|/A-Matriz[selectedStrategy|;

end

gambler who tries to increase the profit, choosing each time that slot machine offering the maxi-
mum payout. Each time, the gambler can choose only one slot machine. Therefore, the gambler
faces an exploration-exploitation dilemma, where exploration denotes the identification of the slot
machine providing the maximum profit while exploitation maximises the gambler’s profit. More de-
tails and a formal definition of the MAB problem is given by V. Kuleshov et al. in [92] and M. Kate-
hakis et al. in [83]. Unlike the typical MAB problem, the goal is to minimise the possible cost re-
lated to the aforementioned mitigation strategies. Therefore, to solve this kind of MAB problem, the
Thompson Sampling (TS) method is used. TS can balance the consecutive actions of an exploration-
exploitation dilemma, where in our case exploration refers to discovering more information about the
cost of the various strategies, while the exploitation focuses on mitigating the security alerts with
the minimum cost. TS is a Bayesian method, which utilises the properties of the conjugate pairs to
calculate the posterior probability p(p|X). In particular, given X = =z, 23, ..., z,, the likelihood
p(X|p, ) = Hi\;1 +/ %e‘%(mi_“)Q, z; ~ N{p, 7~ 1). Given 7 and p ~ N{myp, Ay 1), the prior proba-

5
bility p(p) equals with p(p) = Hf\il 3—26_70(“_7”0)2, while the posterior probability p(p| X ) can be

calculated by p(u]X) o< p{ X |p)p(p) where | X ~ N(m, A~1). The goal is to define the parameters m
and A of the posterior probability p(p|X) as a function of the data X and the prior parameters mg and
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A¢. Thus, based on Equations 5.12-5.14, A = 7N + Ag and m = T{MO(T Zf\;l x; + Agmo ). Suppose
. follows the standard normal distribution, (i.e., mo = 0 and Ap = 1), for each security event, TS takes
a sample from the posterior probability for each strategy: N (m, A™1) — N(0, 1)\/; + m, selecting
the minimum value. Next m and A are updated based on Equation 5.14. Algorithm 2 shows how the
TS method is applied. The matrices: z_M atriz, sum_x_Matriz, \_Matriz, and m_Matriz are used
to store x;, Zf\;l xzi, A and m for each strategy. N denotes the corresponding number of the latest

security alert, while & indicates a set of the three strategies: s1, sz and s5 described earlier.

5.5.2 Honeypot Mitigation and Resilience

In this section, a sophisticated honeypot deployment mechanism is provided as a mitigation action in
order to increase the resilience of the underlying IIoT/SG infrastructure based on the various security
alerts composed by NCME. The proposed mechanism relies on a security game between two entities:
(a) cyberattacker and (b) defender. In general, the security games introduce an analytical framework
in order to formalise the relationship between malicious cyberattackers and defenders like security
officers and security administrators. Their interactions are modelled using the rich mathematical basis
provided by the game theory field. In particular, the main idea behind the security games is based on
the allocation of the limited resources of the previous entities. If both had unlimited resources, then
the solution would be trivial and meaningless. However, in reality, the players are characterised by
particular constraints, and they have to act strategically in order to allocate the appropriate number of

resources.

A security game is defined by four main entities, namely (a) the players (cyberattacker and defender),
(b) the set of strategies for each plaver, {c) the outcome of each interaction and (d) the information
structure. The terms cyberattacker and defender are used for the sake of simplicity, indicating a plethora
of malicicus cyberattackers and people protecting the underlying infrastructure. For each strategy,
there is a specific outcome in terms of costs and benefits for each player. If the player can estimate
these values, they can adapt their strategies suitably. The NE solution lies at the intersection of the
best responses, where no player has any motive to deviate from the NE since it would result in a
worse cutcome. Therefore, practically, if the defender adopts NE, then it does not matter whether the
cyberattacker is reasonable or not since any deviation from the NE will decrease the attacker’s benefit

and the cost to the defender.

In this thesis, a deployment mechanism is provided, calculating how many honeypots should be de-
ploved in an [IoT/SG infrastructure, based on a honeypot security game if NE exists or differently using
(a) a max-min analysis (solved based on the cvxpy Python library) or (b) an RL method, which relies
on epsilon-greedy. The following subsections explain in detail (a) the honeypot security game, (b) the
NE solution, (¢) the max-min analysis when NE does not exist and {¢) the RL method when NE does

not also exist. In particular, the following mathematical analysis aims to prove the existence and the
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valid performance of NE, which is the basis for calculating how many honeypots should be deployed.
Accordingly, if NE does not exist, the following sections describe and prove how the defender’s strat-
egy can be converted into a max-min convex optimisation problem or an RL problem and how they

can be solved, respectively.

TABLE 5.5: Symbols and Notation

Symbol & Notation | Explanation

N The maximum number of the real lIoT/SG assets and
ma honeypots that can be simultaneously connected.
N The number of the real IIcT/SG assets and honeypots that are
connected.
Sq. The strategy of the attacker for the i-th host.
545 The strategy of the defender for the i-th host.
a The benefit of the attacker for each attack against a
real lloT/SG asset.
as The cost of the attacker for each attack against a honeypot.
The cost of the attacker for each attack against any
3 machine (honeypot or not).
dy The benefit of the defender for each attack against a
honeypot.
d The cost of the defender for each attack against a real
§ I6T/SG asset.
d The cost of the defender for each real HoT/SG asset which is
3 replaced by a honeypot.
dy The cost of the defender as N increases.
Ualt] The utility of the Attacker at the time interval ¢.
Uplt] The utility of the Defender at the time interval ¢.
g The ratio of N utilised by honeypots.
Portion of the number of hosts (/V) that are attacked in the t-th
¢ time interval.

5.5.2.1 Honeypot Security Game

Let Npup denote the maximum number of honeypots and real IloT/SG entities/devices that can be
hosted in a network by the defender. Np,qe is determined by the defender and depends on the available
IPs and the available computing resources that can be provided. Also, let N <X Ny, denote the total
number of connected IloT/SG entities/devices that can be either honeypots or real devices. Apart from
the total number of connected IToT/SG entities/devices, the defender can control which of them are used
by real devices and honeypots. The portion of N that consists of honeypots is represented by . The
attacker’s set of strategies is whether or not to attack a host. For the t-th interval, let s4;[] € {1,—1}
be equal to 1 when the i-th host is used by a real device and equal to -1 when it is used by a honeypot.
On the other hand, regarding the set of strategies of the attacker, let s, ;[t] € {1,0} be equal to 1 when
the attacker attacks the j-th host and equal to 0 when the j-th host is not attacked. For the sake of

clarity, the various symbols and notations are provided in Table 5.5.
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According to the aforementioned description, the payoff of the attacker during ¢ is given by Equa-
tion 5.15, which takes into account (a) the number of the actual IloT/SG entities/devices under attack

and (b) the number of honeypots under attack and (c) the total number of attacks.

]_ + Sdg 1 Sdz
Ualt] = flaserr2a), X S, X S, Z (5.15)

a1 , ag and ag in Equation 5.15, refer to non-negative weights about the benefit for each attack against
an actual IloT/SG entity/device, the damage for each attack against a honevpot and the damage for
each attack against any asset (honeypot or actual lIoT/SG entity/device), respectively. Assuming that

the aforementioned terms have a linear impact on the attacker’s payoff, U/ ;) could be written as:

N sag) N1 sy N
t]=ay Z Ty Sai T 02 Z 5 Sai T3 Z Sa,i- (5.16)
=1 =1 =1

On the other side, the payoft of the defender in time ¢ is given in Equation 5.17, taking into account
the number of honevpots under attack, the number of the real lloT/SG entities/devices under attack,
the number of the actual IIcT/SG entities/devices and the total number of lIcT/SG entities/devices,
including honeypots.

N N
1_5d¢ 1+5d¢ 1+5d¢
Up M—g( 1e{1,2,3,4}» Z "”’Z "“’Z )a (5.17)

=1 i=1 i=1

dy, da, ds, dy in Equation 5.18 refer to non-negative weights that correspond to the benefit for each
attack against a honeypot, the cost for each attack against a real [[oT/SG entity/device, the cost for
each real IIoT/SG entity/device replaced by a honeypot, and the cost of the defender as /N increases.
Assuming that the previous terms have a linear impact on the attacker’s payoff, I/p[t] could be written

as:

N N 2
1— 544 1 i 1 i
Uplt] = dlz(;d’)s’a,z’ 7dgzmsaﬂ. —ds (ZHSC‘) Nr) —dyN  (5.18)

Considering that the attacker attacks ¢ N IToT/SG entities/devices, let 0 < @[t < 1 denote the ratio
of the total number of N that are honeypots. It is also assumed that all IToT/SG entities/devices have
the same probability of being a honeypot or attacked. In this case, the pavoft of the attacker can be
expressed by Equation 5.19, as a function of ¢ and 8, ie.,
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UA:f(al,ag,ag,gi), Q,N) {5.19)

The goal of the attacker is to maximise the relevant payoff. Thus, this can be written as a maximisation

problem, as follows.

max Uy
¢ (5.20)
st Cp:0=¢<1
The expected payoff of the defender can also be written as a function of ¢ and 8, i.e.,
Up = g{d1,d2,ds, da, ¢,0,N) (5.21)
Similarly, the goal of the defender is to maximise the relevant payoff based on Equation 5.22
max Up
8N
st. Cp:0<6<1 (5.22)

Cz:0<N < N

5.5.2.2 Nash Equilibrium Solution

Definition: The NE of this security game refers to the situation (8%, ¢*, N*) when both players (i.e., at-
tacker and defender) cannot maximise their utility functions, i.e., (U4[t], Up[¢]) with any other action.

This can be written as follows:

Up(6*, N*,¢*) = Up(8, N, ¢") (5.23)

UA(0*, N*,¢*) = Up(0*, N*, $) (5.24)

Thus, based on Equations 5.16 and 5.18, the payoff of the defender and the attacker can be written as

follows, respectively.

Up = di0éN — dz(1 — 6)¢N — da((1 — )N — N,)* — dyN, (5.25)

U = a1(1 — 0)6N — azfdN — as¢pN (5.26)
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According to the previous equations, the presence and derivation of the NE will be investigated.
Lemma: If the NE exists - ¢* € {0, 1}.

Proof: Supposing that 6%, N*, ¢ is the NE and ¢* € {0, 1} then:

al(l — 9)(}3! — agggi)' — aggi)' = al(l — 9) — aofl — as {(5.27)

i.e., ¢ > 1, which contradicts the assumption.

Theorem: The NE is given by Equation 5.28.

(0, W,o) L iF0 < 2eleds < N and g < ag

o 2ds N —d
(0,0,0), if 28el=% < 0

dl ‘\“ dZ ‘\“ QdBNmam - ZdSNr .
Nmaxr 1 2 f
(9* N* ¢*) ( ZdSNmax ’ ) ! ( )
AV, 0T = dy + dg + 2d3 Ny pe — 2da N, >.28
g M1t dz T s 37« Noww and d1 > dy and

2d3

(al + a?)Nfr = (Cbg + GS)Nmam + (al + GQ)(dl - dZ)

- 2d4
(0, Ny — gt 1) i bt 2 e 2o 0 and 0y > ag
Proof: Suppose that ¢* = 0. This can be valid only if:
a1(1 — 9) —asf —a3 <0 {5.29)

When ¢+ = 0, then Up is a decreasing function with respect to ¢*, i.e., & = 0. Thus, ¢ = 0 can belong

to the equilibrium if @1 < ag. By setting % =0,8 =0and ¢ = 0, then:

2y N, — dy]Vmee
* _
N™ = { 2ds L} (5.30)
where [ ] = min{maz{-, 0}, Niaz }
Suppose that ¢* = 1, by setting % =0, then:
0— d1 + da 4+ 2dsN — 2ds N, (5.31)

23N

Next, suppose that 0 < d1+d2+§§2%72d3‘w’" < 1, % > 0if dy > dy, in this case, N = Ny and

¢ = 1 belongs to the equilibrium if:
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Uag—1= Uago (5.32)

which can be written as:

(a1 + a2)(d1 + da2)

(a1 + az2)Ny = (a2 + a3) Npae + 2d3 o
Tf ditat 2 fpar 30 Ne < (), then based on G
do +d
N* =N, — 221—53 4 o

Obviously, ¢* = 1 belongs to the equilibrium if a1 > a3 since then U4 g—1 = Ua g—0. Finally, 0 = 1

cannot belong to the equilibrium since, in this case, ¢ = 0.

5.5.2.3 MaxMin-based Honeypot Deployment

As observed in the previous subsection, the NE does not always exist. Thus, to meet the requirements
of practical scenarios, a different framework is required when the NE does not exist. In this case, the
strategy of the defender can be chosen by using a max-min analysis, which focuses on maximising the
payoff of the defender in the worst-case scenario. Therefore, the max-min equation for the defender is

defined as follows.

max min Up {5.35)
0=0<10=N<Npzz @

To solve Equation 5.35, it should be observed that Up is either an increasing or a decreasing value of
@, for specific values of # and N. Thus, the attacker can force the defender to receive the lowest value

by either choosing 1 or 0. When ¢ = 1:

Up = di8N — da(1 — )N — ds((1 — )N — N,)? — dyN (5.36)

while when ¢ = 0:

Up = —ds({1 — )N — N,)> — dyN (5.37)
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max y
8N
st. Cp:0<6<1
Cy:0< N < Npu (5.38)

Cz : difn —ds(1 — YN — ds((1 — )N — N.)? —dyN >y
Cy: fdg((l — Q)N — Nrr)z —dyN >y

The previous problem is non-convex and cannot be solved easily. Consequently, by setting N = N,

and (1 — )N = Ny, the above problem can be written as:

max

Ni,Ny

s.t. Cqi N1+ No < Nypoo
Co :diNy — doNg — d3(No — N.)%2 — dg(Ny + No) > (5.39)
Cg 1 —d3(Nz — Ny )? — da(Ny + No) = y
Cqi:Ni,Nao=0

The optimisation problem in Equation 5.39 is a convex one and can be solved by standard convex

optimization methods. In this thesis, this problem is solved through the cvxpy Python library.

5.5.2.4 Al-powered Honeypot Deployment

An alternative solution for deploying the various honeypots in a sophisticated manner is to take ad-
vantage of RL. In particular, based on the security alerts generated by NCME, the goal is to set the
appropriate ratio € in order to maximise U/p[¢] each time. To re-define, the appropriate number of #
for each security alert in the time ¢ can be expressed as a MAB problem, where exploitation intends
to maximise Upl¢] (Equation 5.18) and exploration aims to test different values of & to discover more
information for the Attacker in terms of Equation 5.16. The proposed solution plays the role of the
gambler, and the various values of thefa represent the slot machines. To solve the MAB problem, the
e — Greedy method is adopted, where commonly, the mean of thefa is chosen, providing the maxi-
mum value Up[t] (Equation 5.18). Moreover, there is a small probability e where other values of ¢ are
selected in order to discover how Equation 5.18 ranges. Algorithm 3 reflects how the proposed solution

takes the decision to deploy ¢ honeypots, utilising e — G'reedy.

5.6 Chapter Summary

This chapter summarises the technical achievements during this PhD program in terms of a unified

SDN-enabled SIEM solution. Three independent [DPS undertake to monitor the underlying [IoT/SG
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Algorithm 3: Al-Powered Honeypot Deployment

Data: N,,,... N, UD_Matriz, sum_0_Matriz, mean_0_Matriz, maz_mean,
securityAlertCounter, a1, ag, a3, d1, dg, ds. d4
Result: &,.1oci00
stze 0 Matriz = ||, UD_Matriz = ||, sum 8 Matriz = ||, mean 8 Matriz = [,
securityAlertCounter = 0, max _mean = 0, Ogelecteq = 0, a1, a2, as, d1, da, d3, dg = init();
while True do
Receive a security alert;
securityAlertCounter = securityAlertCounter +1;
max_mean = 0;
p = random number in [0,1];
if p << e then
Ocelected = random integer number in [1, NJ;
UD Matrizlf] = dy S, 00 sy — da N M50, gy N Mgy
sum_0_Matriz]0] = sum_0_Matriz]0] + UD_Matriz[d);
mean 0 Matriz = sum 6 _Matriz|#| [ securityAlertCounter;

end
else
forf +— 1to N by 1 do
UD_Matrialf) = dy S8, 5% s — do N 7500500 - dy 0N MR gy

sum_ 0 _Matriz|f] = sum 6 Matriz|f] + UD_Matriz|8);
mean_ 8 Matriz = sum_0_Matriz|f] / securityAlertCounter;
if mean_0_Matriz|f] > maz_mean then

‘ max_mean = mean__Matriz|0]; Oeiecteqd = 0
end

end

end
end

infrastructure in near real-time, generating relevant security events. For this purpose, multiple col-
laborative ML/DL models were implemented for each IDPS. Next, NCME receives, normalises and
correlates the security events with each other, thus composing security alerts. For the normalisation
process, the AlienVault OSSIM format was used, while the correlation mechanism relies on custom
security rules. Based on the security alerts, NCME also instructs appropriately the SDN-C to isolate
the malicious network flows in a timely manner. For this purpose, TS is used. Finally, NCME includes
sophisticated honeypot deployment mechanisms that also act as a mitigation strategy, enhancing the
resilience of the underlying IIoT/SG infrastructure. These mechanisms rely on a honeypot security
game between the attacker and the defender. First, the NE solution is identified. If NE does not ex-
ist, two alternative options are also provided, taking full advantage of a max-min analysis and the

epsilon-greedy technique, respectively.



Chapter 6

Evaluation Analysis

This chapter focuses on the evaluation of the detection and mitigation mechanisms described in the pre-
vious chapter. In particular, the detection efficiency of (a) NF-1IDPS, {bj H-IDPS and (¢) V-IDPS is evalu-
ated, while also the mitigation mechanisms of NCME (i.e., (a) SDN-based mitigation and (b) Honevpot
Mitigation and Resilience) are assessed. For this purpose, four actual lloT/SG evaluation environments
were considered from the H2020 SPEAR project. It is worth mentioning that the validation activities
took place under testing conditions for each evaluation environment without affecting their normal
operation. Therefore, based on appropriate datasets and simulation experiments, the corresponding
evaluation results are calculated in terms of particular metrics. In addition, a set of appropriate com-
parative methods is defined for each category, thus identifying the most efficient method. Finally, the

evaluation results are provided and discussed for each component of the proposed SDN-enabled SIEM.

6.1 Evaluation Environments

The detection and mitigation mechanisms of the SDN-enabled SIEM presented previously were imple-
mented and validated successfully, using both actual and fictitious data originating from four lIoT/SG
use cases from the SPEAR project [142]: (a) hydropower plant, (b} substation, (¢) power plant and (e)
smart home. The first three cases use logic controllers, such as PLCs and RTUs, that monitor and con-
trol the operation of the entire infrastructure and mainly the functionality of industrial devices, such as
turbines, transformers and generators. These controllers communicate with an MTU. Finally, through
an HMI, the system operator can monitor and handle the operation of PLCs and RTUs, sending the ap-
propriate commands via the corresponding IloT application-layer protocols (e.g., Modbus, DNP3 and
IEC 61850). Finally, the smart home environment includes smart meters that measure energy consump-
tion and relevant statistics. This information is also stored in an MTU, using the corresponding IleT
application-layer protocols. Through SPAN, both NF-IDPS and V-1DPS can monitor the network traffic

data of the previous use cases, thus generating relevant security events. On the other side, H-IDPS
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can retrieve from MTU the operational data (i.e., time series electricity data) of each use case, thus

detecting potential anomalies. For this purpose, an Elastic Stack APT was utilised.

6.2 Datasets

According to the operational characteristics of the evaluation environments discussed in the previous
section, appropriate datasets were created and used to train and test the ML and DL models of NF-
1IDPS, V-IDP and H-IDPS. These datasets were synthesised either by creating them from scratch with
the emulation and execution of the respective cyberattacks and anomalies or by combining existing
intrusion detection datasets (such as CSE-CIC-1DS 2018) with the normal records coming from each
evaluation environment (i.e., hydropower plant, substation, power plant and smart home). In particular,
regarding the ML and DL models of NF-IDFS and V-IDPS, new datasets were created for Modbus/TCP,
DNP3 and IEC 60870-5-104. These datasets will be publicly available in IEEE Dataport and Zenodo.
On the other side, regarding the ML and DL models of H-IDPS, suitable datasets were produced from
scratch based on the guidelines of security and safety experts from each evaluation environment. Due
to the sensitive nature of these datasets, they cannot be published in the context of this thesis. However,

Appendices E-L summarise the features used in each case.

6.3 Evaluation Metrics and Comparative Methods

Before presenting and discussing the evaluation results of the detection and mitigation mechanisms of
the SDN-enabled SIEM, the evaluation metrics should be introduced first. Therefore, True Positives (TT)
denotes the number of cyberattacks or anomalies detected as a malicious/anomalous behaviour. True
Negatives (TN) indicates the number of normal activities recognised correctly as a normal behaviour.
On the other side, FP implies the number of normal activities classified as a malicious behaviour. Finally,
EN indicates the number of of cyberattacks/anomalies recognised as a normal behaviour. Based on the

above terms, the following evaluation metrics are defined.

Accuracy: Accuracy (Equation { 6.1)) indicates the ratio between the correct predictions and the total
number of samples. Accuracy can be used as an unbiased metric if the training dataset includes an
equal number of data samples for all classes. For instance, if the training dataset includes 90% data
samples that present normal behaviour and 10% data samples with anomalies, then the Accuracy can

reach 90% by predicting each instance as normal.

TP+ TN
Accuracy(ACC) = TP+ TN - FP+ FN (6.1)
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True Positive Rate (TPR): TPR (Equation { 6.2)) represents the ratio of cyberattacks or anomalies

classified correctly as a malicious/anomalous behaviour.

rr

TPR:TP+FN

(6.2)
False Positive Rate (FPR): FPR (Equation { 6.3)) refers to the ratio of normal activities recognised as

intrusions or anomalies.

kP
FPR= ——— 6.3
& FP+TN (6.3)

F1-Score: The F1-Score (Equation 6.4 refers to the golden ratio between TPR and precision. Precision

refers to another evaluation metric, expressing the ratio between the malicious/anomalous activities

detected correctly and the overall number of the malicious/anomalous activities.

_ &x freasion x i where Precision = 7+ {6.4)

1 Precision + TPR TP+ FP

For each IDPS of the proposed SDN-enabled SIEM, a set of ML and DL methods was used in a com-
parative analysis in order to identify the most efficient model in each case. In particular, regarding
the intrusion detection models of NF-IDPS, multiple ML/DL methods were used, including Logistic
Regression, LDA, Decision Trees, Naive Bayes, SVM, Random Forest, Adaboost, MLP, QDA and KNN.
On the other side, regarding the anomaly detection models of NF-IDPS, the following outlier detec-
tion methods were used: ABOD, Isolation Forest, PCA, MCD and Autoencoder(s). Similarly to the
anomaly detection models of NF-IDPS, almost the same outlier detection methods are used for the de-
tection moedels of H-IDPS, including also ARIES GAN. The aforementioned ML and DL methods were
discussed in the previous chapters. Finally, regarding V-IDPS, several pre-trained CNNs were used,
including {a) DenseNet121 [67], (b) DenseNet169 [67], (c) DenseNet201 [67], (d) EfficientNetB0 [182],
(e) EfficientNetB7 [182], (f) MobileNet [64], (g} MobileNetV2 [164], (h) NASNetLarge [223], (i) NAS-
NetMobile [223], (j) ResNet50 [61], (k) ResNet50V2 [61], () ResNet101 [61], (m) ResNet101V2 [61], {(n)
ResNet152 [61], (o) ResNet152V2 [61], (p) VGG16 [176], (r) VGG19 [176] and (s) Xception [35]. Finally,
the detection efficiency of V-IDPS was also compared with other typical ML and DL methods, such as
Logistic Regression, LDA, Decision Trees, Naive Bayes, SVM, Random Forest, Adaboost, MLP, QDA
and KNN.

On the other hand, regarding the mitigation mechanisms of NCME, first, the SDN-based mitigation
mechanism is evaluated. In particular, the range of the posterior probability is investigated based on
the various number of security alerts for each mitigation strategy (i.e., s1: NCME will instruct SDN-C to
isolate the assets affected by the security alerts, thus corrupting entirely the malicious network flows,

st NCME will instruct SDN-C to drop some of the malicious network flows with a probability p., thus
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trying to thwart the cyberattackers’ plans and s3: NCME will wait for the security administrator to
decide.). For this purpose, a simulation experiment took place based on the Modbus/TCP Intrusion
Detection Dataset (it will be publicly available in [EEE Dataport and Zenodo). Finally, the accuracy of
the TS method in choosing the optimal mitigation strategy is compared with another relevant method
called Upper Confident Bound (UCB) [59]. Finally, three experiments were carried out to investigate
the strategies of the defender regarding the deployment of honeypots. The first experiment refers to
when the NE is available. The second experiment focuses on when the NE does not exist, and the
MaxMin-based honeypot deployment mechanism is chosen. Finally, the third experiment focuses on

when the Al-powered honeypot deployment mechanism is selected when also NE is not available.

6.4 Evaluation Results

Next, based on the previous evaluation metrics and comparative methods, the evaluation results of (a)

NF-IDPS, (b) H-IDPS, (c) V-IDPS and (d) NCME are provided and discussed.

6.4.1 NF-IDPS Evaluation Results

This subsection summarises the evaluation results of the intrusion and anomaly detection models that
compose the IDE of NF-IDFS. In particular, the comprehensive ML/DL comparative analysis of NF-
IDPS is provided in Appendix M. It is worth mentioning that all ML and DI methods were fine-tuned
after several experiments. Fig. 6.1 and Fig. 6.2 summarise the detection performance of the NF-IDPS
intrusion and anomaly detection models, respectively. In particular, Fig. 6.1 focuses on the intrusion

detection models, while Fig. 6.2 shows the efficiency of the anomaly detection models.

Therefore, according to chapter 5, NF-IDPS includes two Modbus/TCP-related detection models, namely:
(a) Modbus/TCP Intrusion Detection Model and (k) Modbus/TCP Anomaly Detection Model. The first
one adopts a decision tree, where ACC = 0.964, TFR = 0.749, FPR = 0.019 and F1 = 0.7490.
On the other hand, the Modbus/TCP Anomaly Detection Model uses the proposed autoencoder dis-
cussed in Chapter 5. The detection performance of this autoencoder is defined by ACC = 0.950,
TPR=0.0899 FPR =0.089 and F1 = 0.952.

Similarly, NF-IDPS contains three intrusion and anomaly detection models about DNP3: (a) DNFP3
Intrusion Detection Model, (b) DNP3 TCP/IP Intrusion Detection Model and (¢) DNP3 TCP/IP Anomaly
Detection Model. For the first model, a CART decision tree is utilised, where AC'C = 0.959, T PR =
0.950, FPR — 0.0051 and F'1 = 0.9594. The second model also uses a CART decision tree, where
ACC =0797, TPR =0.797, FPR = 00203 and F1 = 0.7821. Finally, the third model relies on
ABOD, where ACC = 0.951, TPR = 0.999, FPR = 0.097 and F'1 = (0.953.
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Ficure 6.1: Evaluation Results of NF-IDPS Intrusion Detection Models
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FIGURE 6.2: Evaluation Results of NF-IDPS Anomaly Detection Models

Next, three intrusion and anomaly detection models were implemented for the IEC 60870-5-104 pro-
tocol, namely: (a) IEC 60870-5-104 Intrusion Detection Model, (b) IEC 60870-5-104 TCP/IP Intrusion
Detection Model and {(¢) IEC 60870-5-104 TCP/IP Anomaly Detection Model. The first two models
adopt a CART decision tree. The ACC, TPR, FPR and the F1-Score of the first model are equal to
ACC = 0831, TPR = 0831, FPR = 0.015 and F'1 = 0.825. On the other hand, for the second
model, AC'C' = 0.953, TPR = 0.815, FPR = 0.026 and F'1 = 0.815. Finally, the third model uses
the Isolation Forest method, where the ACC, TPR, FPR and F1-Score are equal to 0.952, 0.999, 0.0941
and 0.9550, respectively.
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Next, NF-IDPS includes two detection models for the IEC 61850 standard: (a) GOOSE Intrusion Detec-
tion Model and (b) MMS TCP/IP Anomaly Detection Model. The first one focuses on GOOSE attacks,
while the second is responsible for detecting MMS anomalies. Therefore, the first model adopts the
Random Forest method, where ACC = 0831, TPR = 0831, FPR = 0.015 and £'1 = 0.825. On the
other hand, the second model uses MCD, where the ACC, TPR, FPR and F1-Score are equal to 0.977,
0.999, 0.045 and 0.9777, respectively.

Subsequently, two detection models are used for the HTTP protocol, namely: (a) HTTP TCP/IP Intru-
sion Detection Model and (b) HTTP TCP/IP Anomaly Detection Model. The first model uses CART,
while the second model relies on LOF. The ACC, TPR, FPR and the F1 score of the first model are equal
to 0.964, 0.911, 0.022 and 0.9111, respectively. On the other side, the detection performance of the
second model is also efficient where AC'C' = 0.055, TPRE = 0.990, FPE = 0088 and F'1 = 0.957.

Finally, two detection models are also used for the SSH protocol: (a) SSH TCP/IP Intrusion Detection
Model and (b) SSH TCP/IP Anomaly Detection Model. The first model is based on AdaBoost, where
ACC =0.999, TPR = 0999, FPR = 0.001 and F1 = 0.999, In contrast, the second model uses
MCD, where ACC = 0.954, TPR = 0.999, FPE = 0.0916 and F'1 = 0.9561.

6.4.2 H-IDPS Evaluation Results

Fig. 6.3 summarises the detection performance of H-IDPS in terms of the corresponding ML/DL models
for each use case. In particular, the ARIES GAN [140] is applied in three use cases: (a) hydropower plant,
(b) power plant and {(¢) smart home. In the hyvdropower plant use case, ACC, TPR, FPR and F1 are equal
to ACC = 0.746, TPR = 0978, FPR = 0.311 and #1 = 0.607. Similarly, in the power plant
use case, the detection efficiency of ARIES GAN is characterised by ACC = 0.851, TPR = 0.982,
FPR =0.188 and F'1 = 0.755. Finally, in the smart home use case, the ACC of ARIES GAN reaches
0.8509, while TPR, FPR and the F1 are equal to 0.976, 0.167 and 0.725. In contrast, in the substation use
case, the LOF method is used, where ACC = 0.873, TPR = 0.993, PR = 0.157 and F'1 = 0.750.
The comprehensive ML/DL comparative analysis of H-IDPS is provided in Appendix N.

6.4.3 V-IDPS Evaluation Results

Fig. 6.4 shows how the accuracy of the Active ResNet50-based CNN increases based on the updates
of the new training dataset. In particular, the x-axis denotes the time when a new training dataset is
created and used, following Algorithm 1. On the other hand, the y-axis indicates the new classifica-
tion accuracy of the Active ResNet50-based CNN after each re-training process with the new training
dataset. Consequently, each training process of the Active ResNet50-based CNN with a new training
dataset corresponds to an accuracy value. Moreover, Table 6.1 summarises the evaluation metrics re-

lated to the pre-trained CNN models mentioned earlier after the last training process. The pre-trained
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FigURE 6.3: Evaluation Results of H-IDPS Anomaly Detection Models

CNN models of Table 6.1 were re-trained under the same conditions based on the Madbus/TCP in-
trusion detection dataset provided by this work. The best detection performance is accomplished by
ResNet50: Accuracy = 0.984, TPR = 0.885, FPR = 0.008 and Flscore = 0.885. In addition,
Fig. 6.5 illustrates how the loss function related to Active ResNet50-based CNN ranges per epach.
Totally, 200 epachs were used. On the other side, NASNetMobile achieves the worst performance:
Accuracy = 0961, TPR = 0.704, FPR = 0.020 and Flscore = 0.709. In general, it is worth
mentioning that the efficiency of the pre-trained CNNs with the visual representations overcomes

Maodbus/TCP intrusion detection models of NF-IDPS.
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FIGURE 6.4: Accuracy increment of Active ResNet50-based CNN during the re-training phases
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TaBLE 6.1: Evaluation results of the pre-trained CNN models

Pre-trained CNN Model | Aeccuracy TPR FPR  F1

DenseNet121 0.975 0814 0013 0814
DenseNet169 0.975 0818 0.012 0819
DenseNet201 0.979 0837 0010 0.843
EfficientNetB0 0.981 0.858 0.009 0.859
EfficientNetB7 0.962 0.697 0.018 0.713
MobileNet 0.981 0862 0.009 0862
MobileNetV2 0.980 0.850 0.010 0.850
NASNetLarge 0.964 0.714 0.017 0728
NASNetMobile 0.961 0.704  0.020 0.709
ResNet50 0.984 0.885 0.008 0.885
ResNet50V2 0.980 0854 0.010 0854
ResNet101 0.981 0864 0.009 0.804
ResNet101V2 0.980 0.853 0.010 0.853
ResNet152 0.982 0.865 0.009 0.865
ResNet152V2 0.978 0.805 0.009 0.831
VGG16 0.977 0822 0.011 0829
VGG19 0.981 0863 0.009 0.863
Xception 0.975 0806 0.012 0812

6.4.4 NCME Evaluation Results: SDN-based Mitigation

Regarding the mitigation performance, Fig. 6.6-6.14 illustrate how the posterior probability p(|X, 7)
ranges based on the number of 5, 10, 20, 50, 100, 200, 500, 1000, 1500 and 2000 security events.

In particular, we observe that the more security events, the taller and skinnier the Probability Density
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Function (PDF) for each strategy is, thus increasing our belief for the proper action. In our experiments,
s1 seems to be the appropriate strategy, where NCME will instruct SDN-C to corrupt all the malicious
Modbus/TCP network flows. However, the choice differs from one IloT/SG environment to another
IIoT/SG environment since the related costs for each strategy are different. Finally, Fig. 6.16 compares
TS and UCB with respect to selecting the optimal strategy. In general, TS overcomes UCB though the

accuracy values are relatively close to each other.
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FIGURE 6.6: Posterior probability after 5 security alerts
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6.4.5 NCME Evaluation Results: Honeypot Mitigation and Resilience

Three experiments were carried out in order to evaluate the effectiveness of the NCPE honeypot de-
ployment mechanisms. Each experiment refers to the corresponding method (i.e., {(a) NE solution, (b)
maxmin-based honeypot deployment and (¢) Al-powered honeypot deployment). The parameters that
were used for the honeypot security game are provided in Table 6.2. In this experiment, the optimal
strategy for the attacker and the defender is compared with 2000 random solutions in order to verify
that the equilibrium indeed yields the maximum payoff, considering that the opponent always chooses

the best strategy.

TABLE 6.2: Simulation parameters for the one-shot game

Parameter Value

Ny 3

Npaz 10

e 1

ag12,3) 0.76,0.01,0.10]
di1234) [0.03,0.40,0.45,0.01]

Random solutions for # 2000
Random solutions for ¢ 2000

Figs. 6.17 and 6.18 verify that the payoffs of both players are optimal when the game reaches its equi-
librium state. The red bullet in each graph denotes the payoff in the equilibrium state. In more detail,
Fig. 6.17 shows that the payoff achieved in the equilibrium state (red bullet) is higher compared to 2000
random strategies ¢, assuming that N remains at the optimal state. Similarly, the payoff achieved for
the defender in Fig. 6.18 is higher compared to 2000V, random combinations of N8, assuming that
the opponent always chooses the best possible strategy. Moreover, it is notable that the payoffs follow

a specific pattern when /N remains constant and # varies.

The second experiment examines the situation in which the game parameters do not result in equilib-
rium, thus, the defender applies a max-min analysis to maximise the worst-case scenario as described in
Chapter 5. The parameters of this experiment are provided in table 6.3. The convex optimisation prob-
lem was solved by using the CVXPY Python library. Fig. 6.19 depicts the maximum worst-case payoff
that corresponds to the solution received by the convex optimisation problem described in Chapter 5.
This solution is compared to the worst-case payoffs that are received for different values of N&. The
results prove that the defender successfully chooses the best possible strategy that yields the maximum

payoff, assuming that the attacker always chooses the best strategy.
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TABLE 6.3: Simulation parameters for the one-shot game, when equilibrium does not exist

Parameter Value
N, 3
Nagip 10
Pmaz !
0(12,3) 0.81,0.01,0.06]
T [0.31,0.24, 0.81,0.14]
Random solutions for # 2000

Defender Payoff (maxmin)
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FIGURE 6.19: MaxMin Honeypot Deployment - Defender’s worst-case payoff when equilibrium does
not exist

Finally, in the last experiment, the Al-powered honeypot deployment mechanism is tested. For this pur-
pose, a simulation experiment of 260 security alerts was utilised, using the dataset used by P.Radoglou-
Grammatikis et al. in [134] and different values of e: e = 0.1, e = 0.2, = 0.3, e = 0.4 and e = 0.5.

Moreover, considering a constrained [loT/SG environment, only 3 honeypots can be deployed. Thus,

Fig. 6.20 shows the cumulative reward for the various values of e.

6.5 Chapter Summary

In this chapter, the evaluation results of the detection and mitigation solutions of the proposed SDN-

enabled SIEM were discussed. For this purpose, different IIoT/SG evaluation environments and datasets
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were used while also appropriate simulation experiments took place. According to the evaluation re-
sults, the detection efficiency of (a) NF-IDPS, (b) H-IDPS and (c) V-IDPS is demonstrated. Their perfor-
mance relies mainly on the characteristics of the respective data. Furthermore, the mitigation mech-
anisms of NCPE were tested. In particular, first, the effectiveness of NCPE was tested in terms of
choosing the best mitigation strategy that will be executed by SDN-C. Next, the efficacy of the NCPE
honeypot deployment mechanisms (i.e., (a) NE solution, (b) MaxMin-based Honeypot Deployment and
(c) Al-powered Honeypot Deployment) was validated based on three relevant experiments. Conse-
quently, it is evident that the proposed SDN-enabled SIEM is an overall efficient solution in order to

secure and protect HoT/SG environments.



Chapter 7

Conclusions & Future Work

Based on the previous chapters about the analysis of the IoT security issues and the proposed security
solutions, this chapter summarises the concluding remarks of this PhD> thesis, including also potential
directions for future research work. In particular, after the summary of the main points in this PhD
thesis, five research directions are discussed: (a) Intrusion and Anomaly Detection using Federated
Learning (FL), (b) Correlation Mechanisms using Association Learning, {¢) RL-based Mitigation Strate-
gies, (d) SDN-powered recovery mechanisms using Graph Neural Networks (GNN) and (e) Explainable
Al (XAI) Techniques for Al Detection and Mitigation Models.

7.1 Conclusions

It is evident that loT is characterised by a wide range of cyberthreats that require the simultaneous
evolution of the corresponding countermeasures. In particular, although the advent of ToT brings im-
portant advantages like real-time data collection, pervasive control, and improved productivity, itraises
new cybersecurity and privacy issues due to the existence of legacy systems and the new security gaps
of the new technologies. On the one hand, the legacy systems rely on insecure communication pro-
tocols, while zero-day vulnerabilities can characterise the new technologies of the IoT paradigm. In
addition, it is worth mentioning that the IoT entities cannot fully support heavy security mechanisms
in terms of computing resources. Accordingly, conventional security mechanisms are not fully effec-
tive. Moreover, the loT ecosystems reflect an attractive goal of cyberattackers due to their valuable data
and services, as in the case of Cls. Finally, it is noteworthy that the interconnected and independent
nature of the IoT applications can result in security-related cascading effects with disastrous conse-
quences. Therefore, according to the previous remarks, the primary objective of this PhD thesis was
to investigate the security issues of IoT and provide appropriate detection and mitigation solutions,

combining novel technologies. For this purpose, [loT environments and particularly the SG (ie., the
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largest loT application) were utilised as a proof of concept, investigating and improving the security

status of relevant use cases (such as substation, hydropower plant, power plant and smart home).

First, the IoT security requirements were investigated, taking into consideration the special character-
istics of the IoT entities. The main security principles, such as confidentiality, integrity and availability,
are obviously still valid as in any computing system; however, they are now characterised by new
assumptions and constraints generated by the IoT entities, services and applications. Similarly, sec-
ondary security principles, such as authenticity and accountability, are alse important, but they have
to take into account the [oT features. In particular, several challenges should be considered, such as the
interoperability of the security mechanisms, their resilience and scalability, the vast amount of data
(generated by loT entities), the limited computing and storage resources of the loT entities and finally,
the privacy of the invelved users and systems. Furthermore, the automatic and autonomous nature of
the loT entities (in terms of interacting with external factors without any human intervention and con-
trol) can make the development and deployment of the relevant security solutions harder. It is worth
mentioning that the previous challenges can differ and range depending on the functional and non-
functional characteristics of each IoT environment. Therefore, the relevant security solutions should
be selected and adjusted appropriately. In particular, based on the needs and the user requirements of
each IoT environment, the relevant specifications will be produced, thus leading to the implementation

of the appropriate security measures.

Second, based on the previous requirements, the next step was to identify the main IoT security threats.
For this purpose, an [oT architectural model of four layers was studied, including (a) the Perception
Layer, (b) the Communication Layer, (c) the Support Layer and (e) the Business Layer. For each layer,
the corresponding threats were identified and analysed. In particular, the Perception Layer includes
two main threats: (a) Natural Disasters and (b} Environmental Threats and Human-caused Physical
Threats. Next, the Communication Layer comprises multiple threats, such as reconnaissance attacks,
MITM attacks, DoS attacks and various kinds of routing attacks like sybil attacks, sinkhole attacks,
wormhole attacks and hello flood attacks. Subsequently, the Support Layer is characterised by two main
threats: (a) Unauthorised Access and Malicious Insiders and (b) Insecure Services and Unkown Risk
Profile. Finally, the Business Layer also includes several threats, such as buffer overflow, backdoors,
social engineering and web application attacks. It is worth mentioning that there are also defined
cyberthreats that refer to more than one of the previous architectural layers, such as cryptanalytic
attacks and malware. Moreover, for each threat, the corresponding CAPEC codes are provided, thus
identifying particular cyberattacks. Finally, a special attention was given to cyberattacks against IloT
environments, focusing on the SG. In particular, complex cyberattacks and APT campaigns against the

energy sector were investigated, utilising MITRE ATT&CK.

Next, based on the aforementioned loT threats, an analysis of the available countermeasures follows.
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For each layer of the proposed loT architecture, the corresponding security countermeasures are sum-
marised. A particular attention is given to the security mechanisms of the IoT communication proto-
cols, such as [EEE 802.15.4, ZigBee, Z-Wave, BLE, LoRaWan, 6LoWPAN, RPL and DTLS. In more detail,
the encryption, authentication and authorisation are examined. Based on this analysis, it is obvious that
the current security solutions are effective; however, they cannot fully address unauthorised activities
and malicious insiders. Moreover, it is challenging for the current solutions to handle the large amount
of data generated by the ToT ecosystems. Accordingly, the presence of appropriate intrusion detec-
tion and mitigation mechanisms is necessary in terms of detecting, correlating and mitigating security
alerts. Therefore, next, the role and types of the IDPS systems were investigated, taking into account
the impact of novel technologies, such as Al, SDN, honeypots and SIEM. In addition, a comprehensive
review of the IDPS system in the energy sector and the SG paradigm was conducted, identifying the
security gaps of the current IDPS in this research area. More specifically, the current solutions do not
fully consider the operational characteristics of the IIoT/SG environments in terms of their industrial
communications protocols. Instead, they adopt ML and DL models, utilising pre-existing datasets that
are not related to IIoT/SG. It is noteworthy that such datasets are rarely available due to their sensi-
tive nature. Moreover, given the vast amount of security events, appropriate correlation mechanisms
are necessary. However, they are not adequately supported by the existing solutions. Although exist-
ing SIEM systems, such XL-SIEM, AlienVault OSSIM and IBM QRadar, include correlation rules and
directives, they usually refer to security events related to the traditional computing systems. On the
other side, regarding the mitigation of the various attacks and anomalies, first traditional measures like
firewall systems cannot fully address the large number of security events and alerts that can be gener-
ated in IIcT/SG ecosystems. SDN can solve this issue; however, the impact of the mitigation strategies
should be further investigated, especially in the case of lloT/SG environments, since they can result in
more devastating effects than the actual attacks. Finally, after the mitigation procedures, the resilience
of the underlying lloT/SG infrastructures should be further enhanced and guaranteed, considering the
operational characteristics of the [IoT/SG environments. Both production and research honeypots can

be used for this purpose; however, they should be orchestrated appropriately.

Based on the previous analysis, this PhD thesis presents an SDN-enabled SIEM system for [loT/SG en-
vironments, combining Al, SDN and honeypots. In particular, the proposed SDN-enabled SIEM system
includes three IDPS, namely (a) NF-IDPS, (b) H-IDPS and (¢) V-IDPS, that can recognise successfully a
wide range of cyberattacks and anomalies against lloT/SG environments. Next, NCME undertakes to
normalise, correlate and mitigate the various security events, taking advantage of Aland SDN. Finally,
NCME undertakes to further protect the target infrastructure by recalculating how many production
honeypots can be used. For this purpose, a honeypot security game was defined, considering two play-
ers: (a) attacker(s) and (b) defender(s). For the proposed game, NE was identified, while when NE is
not available, two alternative solutions are provided: (a) MaxMin-based Honeypot Deployment and (b)

Al-powered Honeypot Deployment.
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More specifically, first, NF-IDFS is capable of detecting a wide range of cyberattacks and anomalies
against several IoT/SG protocols, such as Modbus/TCP, DNP3, IEC 60870-5-104, IEC 61850, HTTP and
SSH. For each of the previous protocols, the corresponding cyberattacks were identified and analysed
based on the attributes and functionality of each protocol. Next, collaborative ML/DL-based intrusion
and anomaly detection models were implemented. For this purpose, appropriate intrusion detection
datasets were implemented and combined with existing ones. On the other hand, H-IDPS focuses on
detecting anomalies, utilising operational data (i.e., time series electricity measurements). In particular,
H-IDPS focuses on three [loT/SG proof of concept use cases, including (a) substation environments, (b)
hydropower-plant environments, {¢) power-plant environments and (d) smart home environments.
Based on these operational data, appropriate ML/DL-based anomaly detection models were trained
and implemented for each use case. Finally, V-IDPS focuses on Modbus/TCP threats, combining binary
visual representations and pre-trained ResNet50. However, in a similar manner, V-IDPS can be used
with other industrial communication protocols. It is worth mentioning that V-IDPS incorporates a
self-active learning mechanism, which allows the retraining of ResNet50 during the inference mode of
V-IDPS. According to the evaluation analysis of the previous components in Chapter 6, their detection

efficiency is demonstrated.

On the other side, for the normalisation process, NCME adopts the AlienVault OSSIM format, while
custom security rules are used to associate the normalised security events with each other. In particular,
these security rules refer to Modbus/TCP cyberattacks; however, similar rules can be specified and used
with other industrial communication protocols and cyberattacks. Subsequently, the mitigation process
relies on SDN and honeypots. Through TS, NCME chooses first the appropriate mitigation strategy
that will be applied by SDN-C. Next, NCME can use NE (if available), the maxmin analysis or epsilon-
greedy in order to select the appropriate number of honeypots to be deployed in the underlying 1o T/SG
infrastructure, thus increasing its resilience. Chapter 6 describes in detail the proposed mitigation

mechanisms, while the evaluation analysis in Chapter 7 demonstrates their efficiency.

7.2 Future Work

According to the previous detection and mitigation mechanisms, first, future research efforts can focus
on detecting and mitigating cyberattacks against other application-layer lloT communication proto-
cols, such as Profinet, Profibus [168], EtherCAT [4], MQTT [15], Advanced Message Queuing Protocol
(AMQP) [127], Constrained Application Protocol (COAP) [217] and Websocket [100]. For the detec-
tion process, novel Al mechanisms can be used, such as FL [19, 27, 149]. In particular, FL is evolving
as the next big step of Al, ensuring the data privacy of the underlying infrastructures. In particular,
by taking full advantage of encryption methods like homomorphic encryption, secret sharing, secure
multiparty computation and differential privacy, current FL implementations can protect the data re-

quired for the training procedure. Therefore, the knowledge from different infrastructures can be used
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without distributing sensitive data. Both centralised and decentralised FL architectures can be used.
In the first case, there are two main components: (a) Federated Server and (b) Federated Clients. The
Federated Server is responsible for organising the federated training procedure, while the federated

clients undertake to train and generate the local Al models.

Second, future work can focus on sophisticated correlation and mitigation mechanisms. In the first
case, sophisticated mechanisms will associate the normalised security events with each other inan au-
tomated manner. For this purpose, MITRE ATT&CK [7] and association rule learning techniques [125]
can be used, such as the Eclat and Apriori algorithms. Therefore, APT campaigns could be detected
in a timely manner. On the other hand, it is evident that SDN can adequately support the mitigation
services. However, the current works do not consider the security issues of SDN. For instance, a single-
point failure related to the presence of the SDN controller is possible. Inaddition, it is worth mentioning
that some SDN-based mitigation actions can lead to more catastrophic effects. For instance, the ter-
mination of a network flow can further impact the target system rather than a reconnaissance attack.
Consequently, a solution with multiple SDN controllers synchronised and coordinated with each other
is necessary. Moreover, additional RL techniques, such as Deep Q Learning, Deep Deterministic Policy
Gradient (DDPG) and Twin-Delayed DDPG, can be used to optimise the mitigation process. Finally,
new honeypots and digital twins can be implemented in order to hide and protect the actual assets. To

this end, Al generative techniques, such as GAN, can be used.

After detecting and mitigating the various cyberattacks, sophisticated recovery mechanisms can start.
For this purpose, SDN can also be used to recover and reconnect the network connections. However,
despite the benefits of SDN, such as more effective network administration, improved dependability,
cost savings, and faster scalability, a lack of advanced network modelling functions do not allow SDN to
automate this process. In particular, efficient Key Performance Indicators (KPIs), such as latency, jitter
and loss, cannot be accomplished. Many works, such as [101, 160, 190, 205, 216] examine these issues.
Nevertheless, the rapid progression of SDN allows resilient and scalable interconnecting environments
based on application-layer services. Consequently, based on the aforementioned remarks, SDN can be
used to restore and fully reconnect the network topology schema, utilising GNNs that can understand
the complicated relationships between routing, network topology, and input traffic to produce a precise

estimation of per-source/destination per-packet delay distribution and loss.

Finally, despite the fact that Al can support the decisions about the security status, explainability mech-
anisms are required so that the security administrator(s) can trust the decisions of the Al models.
Many studies already investigate such solutions, utilising XAl techniques. Characteristic examples are
[28, 95, 96, 150, 150]. However, various XAl layers are necessary. The first layer can focus on the data
used for the detection, mitigation and recovery solutions. The second layer can utilise feature engi-
neering and selection methods, thus showing the importance of various features. Next, in the third
layer, visualisation techniques can show how the Al models are trained. Subsequently, the fourth layer

can use XAl methods, such as Interpretable Model-Agnostic Explanations (LIME), SHapley Additive
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exPlanation (SHAP), and Explain Like | am Five (ELI5) in order to interpret the decisions of the trained
Al models. Finally, the last layer can focus on the security of the Al models, addressing adversarial

attacks.



Appendix A

IoT Threats: A CAPEC Taxnonomy

The following table provides a summary of the various IoT threats discussed in Chapter 2 and corre-

sponds them to the relevant CAPEC codes.

TaBLE A.1: [oT Threats: A CAPEC Taxonomy

Layer Threat CAPEC Codes

Natural Disasters and

Perception Layer - CAPEC-547: Physical Destruction of Device or Component

Environmental Threats

- CAPEC-74: Manipulating State
- CAPEC-124: Shared Resource Manipulation
- CAPEC-390: Bypassing Physical Security
- CAPEC-401: Physically Hacking Hardware
- CAPEC-402: Bypassing ATA Password Security
- CAPEC-438: Modification During Manufacture
- CAPEC-440: Hardware Integrity Attack
- CAPEC-444: Development Alteration
- CAPEC-452: Infected Hardware
- CAPEC-516: Hardware Component Substitution During
Baselining
- CAPEC-520: Counterfeit Hardware Component Inserted
During Product Assembly
. - CAPEC-521: Hardware Design Specifications Are Altered
) Human-caused Physical o
Perception Layer Threats - CAPEC-522: Malicious Hardware Component Replacement
- CAPEC-534: Malicious Hardware Update
- CAPEC-547: Physical Destruction of Device or Component
- CAPEC-583: Disabling Network Hardware
- CAPEC-603: Blockage
- CAPEC-607: Obstruction
- CAPEC-624: Hardware Fault Injection Improperly
- CAPEC-625: Mobile Device Fault Injection
- CAPEC-638: Altered Component Firmware
- CAPEC-671: Requirements for ASIC Functionality Maliciously
Altered
- CAPEC-672: Malicious Code Implanted During Chip
Programming
- CAPEC-679: Exploitation of Improperly Configured or

Implemented Memory Protections
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Perception Layer

Human-caused Physical
Threats

- CAPEC-37: Retrieve Embedded Sensitive Data

- CAPEC-176:
- CAPEC-391:
- CAPEC-392:
- CAPEC-393:
- CAPEC-399:
- CAPEC-400:
- CAPEC-413:
- CAPEC-457:
- CAPEC-507:
- CAPEC-626:
- CAPEC-627:
- CAPEC-663:
- CAPEC-681:

Configuration/Environment Manipulation
Bypassing Physical Locks

Lock Bumping

Lock Picking

Cloning RFID Cards or Chips

RFID Chip Deactivation or Destruction
Pretexting via Tech Support

USB Memory Attacks

Physical Theft

Smudge Attack

Counterfeit GPS Signals

Exploitation of Transient Instruction Execution

Exploitation of Improperly Controlled Hardware

Security Identifiers

Communication Layer

Reconnaissance Attacks

- CAPEC-85: AJAX Footprinting

- CAPEC-149:
- CAPEC-169:
- CAPEC-287:
- CAPEC-290:
- CAPEC-291:
- CAPEC-292:
- CAPEC-293:
- CAPEC-285:
- CAPEC-294:
- CAPEC-295:
- CAPEC-29¢:
- CAPEC-297:
- CAPEC-298:
- CAPEC-299:
- CAPEC-300:
- CAPEC-301:
- CAPEC-302:
- CAPEC-303:
- CAPEC-304:
- CAPEC-305:
- CAPEC-306:
- CAPEC-307:
- CAPEC-308:
- CAPEC-309:
- CAPEC-497:
- CAPEC-529:
- CAPEC-573:
- CAPEC-574:
- CAPEC-575:
- CAPEC-576:
- CAPEC-577:
- CAPEC-580:
- CAPEC-581:
- CAPEC-612:
- CAPEC-613:
- CAPEC-618:
- CAPEC-619:
- CAPEC-643:

Explore for Predictable Temporary File Names
Footprinting

TCP SYN Scan

Enumerate Mail Exchange (MX) Records
DNS Zone Transfers

Host Discovery

Traceroute Route Enumeration

ICMP Echo Request Ping

ICMP Address Mask Request
Timestamp Request

ICMP Information Request

TCP ACK Ping

UDP Ping

TCP SYN Ping

Port Scanning

TCP Connect Scan

TCP FIN Scan

TCP Xmas Scan

TCP Null Scan

TCP ACK Scan

TCP Window Scan

TCP RPC Scan

UDP Scan

Network Topology Mapping

File Discovery

Malware-Directed Internal Reconnaissance
Process Footprinting

Services Footprinting

Account Footprinting

Group Permission Footprinting

Owner Footprinting

System Footprinting

Security Software Footprinting

Wik MAC Address Tracking

WiFi SSID Tracking

Cellular Broadcast Message Request
Signal Strength Tracking

Identify Shared Files/Directories on System
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Communication Layer

Reconnaissance Attacks

- CAPEC-646:

Peripheral Footprinting

Communication Layer

Denial of Service Attacks

- CAPEC-2: Inducing Account Lockout
- CAPEC-25: Forced Deadlock

- CAPEC-125:
- CAPEC-147:
- CAPEC-197:
- CAPEC-221:
- CAPEC-229:
- CAPEC-230:
- CAPEC-263:
- CAPEC-271:
- CAPEC-469:
- CAPEC-482:
- CAPEC-486:
- CAPEC-487:
- CAPEC-488:
- CAPEC-489:
- CAPEC-490
- CAPEC-491:
- CAPEC-494:
- CAPEC-499:
- CAPEC-528:
- CAPEC-572:
- CAPEC-635:
- CAPEC-666:

Flooding

XML Ping of the Death

Exponential Data Expansion

Data Serialization External Entities Blowup
Serialized Data Parameter Blowup
Serialized Data with Nested Payloads
Force Use of Corrupted Files

Schema Poisoning

HTTP DoS

TCP Flood

UDP Flood

ICMP Flood

HTTP Flood

SSL Flood

: Amplification

Quadratic Data Expansion

TCP Fragmentation

Android Intent Intercept

XML Flood

Artificially Inflate File Sizes

Alternative Execution Due to Deceptive Filenames
BlueSmacking

Communication Layer

Syhil Attacks

- CAPEC-161:
- CAPEC-481:
Schemes

- CAPEC-582:
- CAPEC-584:
- CAPEC-594:
- CAPEC-607:

Infrastructure Manipulation
Contradictory Destinations in Traffic Routing

Route Disabling
BGP Route Disabling
Traffic Injection
Obstruction

Communication Layer

Sinkhole Attacks

- CAPEC-161:
- CAPEC-481:
Schemes

- CAPEC-582:
- CAPEC-584:
- CAPEC-594:
- CAPEC-607:

Infrastructure Manipulation
Contradictory Destinations in Traffic Routing

Route Disabling
BGP Route Disabling
Traffic Injection
Obstruction

Communication Layer

Wormhole Attacks

- CAPEC-161:
- CAPEC-481:
Schemes

- CAPEC-582:
- CAPEC-584:
- CAPEC-594:
- CAPEC-607:

Infrastructure Manipulation
Contradictory Destinations in Traffic Routing

Route Disabling
BGP Route Disabling
Traffic Injection
Obstruction

Communication Layer

HELLO Flood Attacks

- CAPEC-161:
- CAPEC-481:
Schemes

- CAPEC-582:
- CAPEC-584:
- CAPEC-594:
- CAPEC-607:

Infrastructure Manipulation
Contradictory Destinations in Traffic Routing

Route Disabling
BGP Route Disabling
Traffic Injection
Obstruction
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Communication Layer

Passive Network Traffic
Analysis

- CAPEC-65: Sniff Application Code

- CAPEC-117: Interception

- CAPEC-157: Sniffing Attacks

- CAPEC-158: Sniffing Network Traffic

Communication Layer

MITM

- CAPEC-31: Accessing/Intercepting/Modifying HTTP Cookies
- CAPEC-94: Adversary in the Middle (AiTM)

- CAPEC-102: Session Sidejacking

- CAPEC-117: Interception

- CAPEC-192: Protocol Analysis

- CAPEC-217: Exploiting Incorrectly Configured SSL

- CAPEC-384: Application API Message Manipulation

via Man-in-the-Middle

- CAPEC-466: Leveraging Active Adversary in the Middle
Attacks to Bypass Same Origin Policy

- CAPEC-593: Session Hijacking

Support Layer

Unauthorised Access and

Malicious Insiders

- CAPEC-34: HTTP Response Splitting

- CAPEC-60: Reusing Session IDs

- CAPEC-102: Session Sidejacking

- CAPEC-114: Authentication Abuse

- CAPEC-117: Interception

- CAPEC-122: Privilege Abuse

- CAPEC-180: Exploiting Incorrectly Configured Access
Control Security Levels

- CAPEC-212: Functionality Misuse

- CAPEC-234: Hijacking a privileged process

- CAPEC-248: Command Injection

- CAPEC-402: Bypassing ATA Password Security

- CAPEC-555: Remote Services with Stolen Credentials
- CAPEC-594: Traffic Injection

- CAPEC-629: Unauthorized Use of Device Resources

- CAPEC-651: Eavesdropping

- CAPEC-652: Use of Known Kerberos Credentials

- CAPEC-653: Use of Known Windows Credentials

Support Layer

Insecure Services and
Unknown Riks Profile

Business Layer

Bufter Overflow

- CAPEC-8: Buffer Overflow in an API Call

- CAPEC-9: Buffer Overflow in Local Command-Line Utilities
- CAPEC-10: Buffer Overflow via Environment Variables

- CAPEC-14: Client-side Injection-induced Buffer Overtlow
- CAPEC-46: Overflow Variables and Tags

- CAPEC-100: Overflow Buffers

- CAPEC-24: Filter Failure through Buffer Overflow

- CAPEC-42: MIME Conversion

- CAPEC-44: Overflow Binary Resource File

- CAPEC-45: Buffer Overflow via Symbolic Links

- CAPEC-47: Buffer Overflow via Parameter Expansion

- CAPEC-52: Embedding NULL Bytes

- CAPEC-67: String Format Overflow in syslog()

- CAPEC-77: Manipulating User-Controlled Variables

- CAPEC-92: Forced Integer Overflow

- CAPEC-123: Buffer Manipulation

- CAPEC-256: SOAP Array Overtlow
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Business Layer

Backdoor

- CAPEC-206: Signing Malicious Code

- CAPEC-438: Modification During Manufacture

- CAPEC-443: Malicious Logic Inserted Into Product Software by
Authorized Developer

- CAPEC-444: Development Alteration

- CAPEC-445: Malicious Logic Insertion into Product Software
via Configuration Management Manipulation

- CAPEC-446: Malicious Logic Insertion into Product Software
via Inclusion of 3rd Party Component Dependency

- CAPEC-511: Infiltration of Software Development Environment
- CAPEC-523: Malicious Software Implanted

- CAPEC-538: Open-Source Library Manipulation

- CAPEC-539: ASIC With Malicious Functionality

- CAPEC-558: Replace Trusted Executable

- CAPEC-669: Alteration of a Software Update

- CAPEC-670: Software Development Tools Maliciously Altered
- CAPEC-673: Developer Signing Maliciously Altered Software

- CAPEC-678: System Build Data Maliciously Altered

Business Layer

Social Engineering

- CAPEC-21: Exploitation of Trusted Identifiers

- CAPEC-98: Phishing

- CAPEC-103: Clickjacking

- CAPEC-151: Identity Spoofing

- CAPEC-154: Resource Location Spoofing

- CAPEC-163: Spear Phishing

- CAPEC-164: Mobile Phishing

- CAPEC-173: Action Spoofing

- CAPEC-178: Cross-Site Flashing

- CAPEC-194: Fake the Source of Data

- CAPEC-195: Principal Spoof

- CAPEC-383: Harvesting Information via API Event Monitoring
- CAPEC-406: Dumpster Diving

- CAPEC-407: Pretexting

- CAPEC-413: Pretexting via Tech Support

- CAPEC-414: Pretexting via Delivery Person

- CAPEC-415: Pretexting via Phone

- CAPEC-416: Manipulate Human Behavior

- CAPEC-417: Influence Perception

- CAPEC-418: Influence Perception of Reciprocation

- CAPEC-420: Influence Perception of Scarcity

- CAPEC-421: Influence Perception of Authority

- CAPEC-422: Influence Perception of Commitment and
Consistency

- CAPEC-423: Influence Perception of Liking

- CAPEC-424: Influence Perception of Consensus or Social
Proof

- CAPEC-425: Target Influence via Framing

- CAPEC-426: Influence via Incentives

- CAPEC-427: Influence via Psychological Principles

- CAPEC-428: Influence via Modes of Thinking

- CAPEC-429: Target Influence via Eve Cues

- CAPEC-433: Target Influence via The Human Buffer Overflow
- CAPEC-434: Target Influence via Interview and Interrogation
- CAPEC-506: Tapjacking

- CAPEC-656: Voice Phishing
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Business Layer

Social Engineering

- CAPEC-435: Target Influence via Instant Rapport
- CAPEC-467: Cross Site Identification

- CAPEC-543: Counterfeit Websites

- CAPEC-544: Counterfeit Organizations

- CAPEC-585: DNS Domain Seizure

- CAPEC-611: BitSquatting

- CAPEC-616: Establish Rogue Location

- CAPEC-630: TypoSquatting

- CAPEC-631: SoundSquatting

- CAPEC-632: Homograph Attack via Homoglyphs
- CAPEC-652: Use of Known Kerberos Credentials
- CAPEC-667: Bluetooth Impersonation AttackS (BIAS)

Business Layer

Web Application Attacks

- CAPEC-7: Blind SQL Injection

- CAPEC-18: XSS Targeting Non-Script Elements

- CAPEC-32: XS8 Through HTTP Query Strings

- CAPEC-62: Cross Site Request Forgery

- CAPEC-63: Cross-Site Scripting (XS5)

- CAPEC-66: SQL Injection

- CAPEC-84: XQuery Injection

- CAPEC-86: XS5 Through HTTP Headers

- CAPEC-101: Server Side Include (SSI) Injection

- CAPEC-107: Cross Site Tracing

- CAPEC-108: Command Line Execution through SQL Injection
- CAPEC-109: Object Relational Mapping Injection
- CAPEC-110: SQL Injection through SOAP Parameter
Tampering

- CAPEC-193: PHP Remote File Inclusion

- CAPEC-198: X55 Targeting Error Pages

- CAPEC-199: XSS Using Alternate Syntax

- CAPEC-209: XSS Using MIME Type Mismatch

- CAPEC-242: Code Injection

- CAPEC-243: XSS Targeting HTML Attributes

- CAPEC-244: XSS Targeting URI Placeholders

- CAPEC-245: XSS Using Doubled Characters

- CAPEC-247: XSS Using Invalid Characters

- CAPEC-248: Command Injection

- CAPEC-251: Local Code Inclusion

- CAPEC-252: PHP Local File Inclusion

- CAPEC-253: Remote Code Inclusion

- CAPEC-465: Transparent Proxy Abuse

- CAPEC-470: Expanding Control over the Operating System
from the Database - CAPEC-588: DOM-Based XSS
- CAPEC-591: Reflected XSS

- CAPEC-592: Stored XSS

Multiple Layers

Cryptanalytic Attacks

- CAPEC-20: Encryption Brute Forcing

- CAPEC-97: Cryptanalysis

- CAPEC-49: Password Brute Forcing

- CAPEC-112: Brute Force

- CAPEC-192: Protocol Analysis

- CAPEC-463: Padding Oracle Crypto Attack

- CAPEC-475: Signature Spoofing by Improper Validation
- CAPEC-485: Signature Spoofing by Key Recreation

- CAPEC-608: Cryptanalysis of Cellular Encryption
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Multiple Layers

Malware Attacks

- CAPEC-206:
- CAPEC-270:
- CAPEC-387:

Content

- CAPEC-529:
- CAPEC-542:
- CAPEC-549:
- CAPEC-550:
- CAPEC-551:
- CAPEC-552:
- CAPEC-556:
- CAPEC-558:
- CAPEC-564:
- CAPEC-568:
- CAPEC-579:
- CAPEC-642:

Signing Malicious Code
Modification of Registry Run Keys
Navigation Remapping To Propagate Malicious

Malware-Directed Internal Reconnaissance
Targeted Malware

Local Execution of Code

Install New Service

Modify Existing Service

Install Rootkit

Replace File Extension Handlers
Replace Trusted Executable

Run Software at Logon

Capture Credentials via Keylogpger
Replace Winlogon Helper DLL

Replace Binaries




Appendix B

APT Campaigns against the Energy Sector

—_
3 The following table summarises the main APT campaigns against the enerpgy sector based on MITRE ATT&CK. For each APT campaign, a brief description and the relevant techniques and software are given.

TaBLE B.1: Cybersecurity Incidents and APT Campaigns against Energy-related Organisations

APT Campaign Description Techniques Software

- T107.001: Application Layer Protocol: Web Protocols

- T1560.001: Archive Collected Data: Archive via Utility .
- 50363: Empire
- T1547.001: Boot or Logon Autostart Execution: Registry

- $0095: FTP
. . Run Keys / Startup Folder
Suspected Iranian group executing cyberattacks . - 50349: LaZagne
) o - T1110.003: Brute Force: Password Spraying L
APT33 against energy-related organisations from US, L. - 50002: Mimikatz
. . - T1059.001: Command and Scripting Interpreter: PowerShell
Saudi Arabia, and South Korea o ) ] - 50336: NanoCore
- T1059.005: Command and Scripting Interpreter: Visual Basic $0039: Net
- : Ne

- T1555.003: Credentials from Web Browsers
- T1132.001: Data Encoding: Standard Encoding
- T1573.001: Encrypted Channel: Symmetric Cryptography

- 50198: NETWIRE




- T1546.003: Event Triggered Execution: Windows Management Instrumentation

Event Subscription

- T1048.003: Exfiltration Over Alternative Protocol: Exfiltration Over Unencrypted/

Obfuscated Non-C2 Protocol

- T1203: Exploitation for Client Execution

- T1068: Exploitation for Privilege Escalation
- T1105: Ingress Tool Transfer

- T1040: Network Sniffing

- 80129: Autolt backdoor
- T1571: Non-5Standard Port
) ) - 50378: Posh(C2
- T1027: Obfuscated Files or Information .
) ) ) o - 80194: PowerSploit
Suspected Iranian group executing cyberattacks - T1588.002: Obtain Capabilities: Tool
- 80371: POWERTON
APT33 apainst energy-related organisations from US, - T1003.001: OS Credential Dumping: LSASS Memory S019. P
- :Pu
Saudi Arabia, and South Korea - T1003.004: OS Credential Dumping: LSA Secrets S0358 Rulpy
- : Ruler
- T1003.005: OS Credential Dumping: Cached Domain Credentials .
L o - 50380: StoneDrill
- T1566.001: Phishing: Spearphishing Attachment
o o . - 80199: TURNEDUP
- T1566.002: Phishing: Spearphishing Link
- T1053.005: Scheduled Task/Job: Scheduled Task
- T1552.001: Unsecured Credentials: Credentials In Files
- T1552.006: Unsecured Credentials: Group Policy Preferences
- T1204.001: User Execution: Malicious Link
- T1204.002: User Execution: Malicious File
- T1078: Valid Accounts
- T1078.004: Cloud Accounts
- T1087.002: Account Discovery: Domain Account
- T1560.001: Archive Collected Data: Archive via Utility
) - 50521: BloodHound
- T1119: Automated Collection
- 80105: dsquery
) ) - T1115: Clipboard Data
. Chinese APT proup targeting government and L - 50357: Impacket
Operation Wocao . - T1059.001: Command and Scripting Interpreter: PowerShell il
energy related organisations o . - 50002: Mimikatz
- T1059.003: Command and Scripting Interpreter: Windows Command Shell S0104: netstat
- : netstal
- T1059.005: Command and Scripting Interpreter: Visual Basic .
- 50194: PowerSploit

- T1059.006: Command and Scripting Interpreter: Python
- T1555.005: Credentials from Password Stores: Password Managers

LVT



Operation Wocao

Chinese APT proup targeting government and

energy related organisations

- T1005: Data from Local System

- T1001: Data Obfuscation

- T1074.001: Data Staged: Local Data Staging

- T1573.002: Encrypted Channel: Asymmetric Cryptography
- T1041: Exfiltration Over C2 Channel

- T1190: Exploit Public-Facing Application

- T1133: External Remote Services

- T1083: File and Directory Discovery

- T1083: File and Directory Discovery

- T1562.004: Impair Defenses: Disable or Modify System Firewall
- T1070.001: Indicator Removal on Host: Clear Windows Event Logs
- T1070.004: Indicator Removal on Host: File Deletion

- T1105: Ingress Tool Transfer

- T1056.001: Input Capture: Keylogging

- T1570: Lateral Tool Transfer

- T1112: Modify Registry

- T1106: Native API

- T1046: Network Service Scanning

- T1135: Network Share Discovery

- T1095: Non-Application Layer Protocol

- T1027: Obfuscated Files or Information

- T1027.005: Indicator Removal from Tools

- T1003.001: OS Credential Dumping: LSASS Memory

- T1003.006: OS Credential Dumping: DCSyne

- T1120: Peripheral Device Discovery

- T1069.001: Permission Groups Discovery: Local Groups

- T1057: Process Discovery

- T1055: Process Injection

- T1090: Proxy

- T1090.001: Internal Proxy

- T1090.003: Multi-hop Proxy

- T1012: Query Registry

- T1021.002: Remote Services: SMB/Windows Admin Shares

SFT



Operation Wocao

Chinese APT proup targeting government and

energy related organisations

- T1018: Remote System Discovery

- T1053.005: Scheduled Task/Job: Scheduled Task

- T1505.003: Server Software Component: Web Shell
- T1518: Software Discovery

- T1518.003: Steal or Forge Kerberos Tickets: Kerberoasting
- T1082: System Information Discovery

- T1016: System Network Configuration Discovery

- T1049: System Network Connections

- T1033: System Owner/User Discovery

- T1007: System Service Discovery

- T1569.002: System Services: Service Execution

- T1124: System Time Discovery

- T1111: Two-Factor Authentication Interception

- T1552.004: Unsecured Credentials: Private Keys

- T1078: Valid Accounts

- T1078.002: Domain Accounts

- T1078.003: Local Accounts

- T1078.003: Windows Management Instrumentation

Dragonfly

Espionage APT campaign discovered in 2011,

targeting energy-related companies.

- T1189: Drive-by Compromise

- T1588.002: Obtain Capabilities: Tool

- T1566: Phishing

- T1195.002: Supply Chain Compromise: Compromise Software Supply Chain

- 50093:
- 50488:
- 50002:
- 50029:
- 50094:

Backdoor.Oldrea
CrackMapExec
Mimikatz
PsExec

Trojan. Karagany

Tonto Team

Espionage APT campaign discovered in 2011,
targeting energy-related companies from South
Korea, Japan, Taiwan, US and other Asian and

eastern European countries

- T1059.001: Command and Scripting Interpreter: PowerShell

- T1059.006: Command and Scripting Interpreter: Python

- T1203: Exploitation for Client Execution

- T1068: Exploitation for Privilege Escalation

- T1210: Exploitation of Remote Services

- T1574.001: Hijack Execution Flow: DLL Search Order Hijacking
- T1105: Ingress Tool Transfer

- T1056.001: Input Capture: Keylogping

- T1135: Network Share Discovery

- 50268:
- S0008:
- 50349:
- 50002:
- 50590:
- 5059¢:

Bisonal
gsecdump
LaZagne
Mimikatz
NETscan
ShadowPad

6F1



Tonto Team

Espionage APT campaign discovered in 2011,
targeting energy-related companies from South
Korea, Japan, Taiwan, US and other Asian and

eastern European countries

- T1003: OS Credential Dumping

- T1069.001: Permission Groups Discovery: Local Groups

- T1566.001: Phishing: Spearphishing Attachment

- T1090.002: Proxy: External Proxy

- T1505.003: Server Software Component: Web Shell

- T1204.002: User Execution: Malicious File

- T1059.001: Command and Scripting Interpreter: PowerShell
- T1059.006: Command and Scripting Interpreter: Python

- T1203: Exploitation for Client Execution

- T1068: Exploitation for Privilege Escalation

- T1210: Exploitation of Remote Services

- T1574.001: Hijack Execution Flow: DLL Search Order Hijacking
- T1105: Ingress Tool Transfer

- T1056.001: Input Capture: Keylogging

- T1135: Network Share Discovery

- T1059.001: Command and Scripting Interpreter: PowerShell
- T1059.006: Command and Scripting Interpreter: Python

- T1203: Exploitation for Client Execution

- T1068: Exploitation for Privilege Escalation

- T1210: Exploitation of Remote Services

- T1574.001: Hijack Execution Flow: DLL Search Order Hijacking
- T1105: Ingress Tool Transfer

- T1056.001: Input Capture: Keylogging

- T1135: Network Share Discovery

OilRig

OilRig is a potential Iranian threat group targeting
a wide range of critical domains, such as energy,

telecommunications and finance.

- T1087.001: Account Discovery: Local Account

- T1087.002: Account Discovery: Domain Account

- T1071.001: Application Layer Protocol: Web Protocols
- T1071.004: Application Layer Protocol: DNS

- T1119: Automated Collection

- T1110: Brute Force

- T1059: Command and Seripting Interpreter

- T1059.001: PowerShell

- 80360: BONDUPDATER
- 80160: certutil

- 50095: FTP

- 50170: Helminth

- 50100: ipconfig

- 50189: ISMInjector

- 50349: LaZagne

0ST



OilRig

OilRig is a potential Iranjan threat group targeting
a wide range of critical organisations, related to energy,

telecommunications and finance.

- T1059.003: Windows Command Shell

- T1059.005: Visual Basic

- T1555: Credentials from Password Stores

- T1555.003: Credentials from Web Browsers

- T1555.004: Windows Credential Manager

- T1140: Deobfuscate/Decode Files or Infarmation

- T1573.002: Encrypted Channel: Asymmetric Cryptography

- T1048.003: Exfiltration Over Alternative Protocol: Exfiltration Over

Unencrypted/Obfuscated Non-C2 Protocol - T1133: External Remote Services

- T1008: Fallback Channels

- T1070.004: Indicator Removal on Host: File Deletion

- T1105: Ingress Tool Transfer

- T1056.001: Input Capture: Keylogging

- T1036: Masquerading

- T1046: Network Service Scanning

- T1027: Obfuscated Files or Information

- T1027.005: Indicator Removal from Tools

- T1137.004: Office Application Startup: Outlook Home Page
- T1003.001: OS Credential Dumping: LSASS Memory

- T1003.004: OS Credential Dumping: L5A Secrets

- T1003.005: OS Credential Dumping: Cached Domain Credentials
- T1201: Password Policy Discovery

- T1120: Peripheral Device Discovery

- T1069.001: Permission Groups Discovery: Local Groups

- T1069.002: Permission Groups Discovery: Domain Groups
- T1566.001: Phishing: Spearphishing Attachment

- T1566.002: Phishing: Spearphishing Link

- T1566.003: Phishing: Spearphishing via Service

- T1053.005: Scheduled Task/Job: Scheduled Task

- T1113: Screen Capture

- T1505.003: Server Software Component: Web Shell

- T1218.001: Signed Binary Proxy Execution: Compiled HTML File
- T1082: System Information Discovery

- 50002:
- 50039:
- 50104:
- 50264:
- 50184:
- 50029:
- 50269:
- 50495:
- S0075:
- 50258:
- 50185:
- 50610:
- 50096:
- 50057:

Mimikatz

Net

netstat
OopslE
POWRUNER
PsExec
QUADAGENT
RDAT

Reg

RGDoor
SEASHARPEE
SideTwist
Systeminfo
Tasklist

16T



OilRig

OilRig is a potential Iranian threat group targeting
a wide range of critical organisations, related to energy,

telecommunications and finance.

- T1016: System Network Configuration Discovery

- T1049: System Network Connections Discovery

- T1033: System Owner/User Discovery

- T1007: System Service Discovery

- T1552.001: Unsecured Credentials: Credentials In Files

- T1204.001: User Execution: Malicious Link

- T1204.002: User Execution: Malicious File

- T1078: Valid Accounts

- T1497.001: Virtualization/Sandbox Evasion: System Checks
- T1047: Windows Management Instrumentation

Sharpshooter

Sharpshooter is a cyher espionage APT discovered
2018, giving emphasis to nuclear, energy and

financial-related organisations.

- T1547.001: Boot or Logon Autostart Execution: Registry Run Keys / Startup
Folder

- T1059.005: Command and Scripting Interpreter: Visual Basic

- T1105: Ingress Tool Transfer

- T1559.002: Inter-Process Communication: Dynamic Data Exchange

- T1106: Native API

- T1566.001: Phishing: Spearphishing Attachment

- T1055: Process Injection

- T1204.002: User Execution: Malicious File

- 50448: Rising Sun

APT19

APT19 is a Chinese group targetting a plethora of
orpanisations related to energy, telecommunications,
healthcare and finance.

- T1071.001: Application Layer Protocol: Web Protocols

- T1547.001: Boot or Logon Autostart Execution: Registry Run Keys / Startup Folder
- T1059: Command and Seripting Interpreter

- T1059.001: PowerShell

- T1543.003: Create or Modify System Process: Windows Service
- T1132.001: Data Encoding: Standard Encoding

- T1140: Deobfuscate/Decode Files or Information

- T1189: Drive-by Compromise

- T1564.003: Hide Artifacts: Hidden Window

- T1574.002: Hijack Execution Flow: DLL Side-Loading

- T1112: Modify Registry

- T1027: Obfuscated Files or Information

- 50154: Cobalt Strike
- 50363: Empire

(498



APT19 is a Chinese group targetting a plethora of

- T1588.002: Obtain Capabilities: Tool

- T1566.001: Phishing: Spearphishing Attachment

- T1218.010: Signed Binary Proxy Execution: Regsvr32
- T1218.011: Signed Binary Proxy Execution: Rundll32

APT19 orpanisations related to energy, telecommunications, ; .
- T1082: System Information Discovery
healthcare and finance. ) )
- T1016: System Network Configuration Discovery
- T1033: System Owner/User Discovery
- T1204.002: User Execution: Malicious File
- T1087.002: Account Discovery: Domain Account
- T1583.001: Acquire Infrastructure: Domains
- T1560: Archive Collected Data )
T - $0552: AdFind
- T1560.001: Archive via Utility .
] - 50160: certutil
- T1119: Automated Collection
L - 50144: ChChes
- T1059.001: Command and Scripting Interpreter: PowerShell 50106: emd
- : cm
- T1059.003: Command and Scripting Interpreter: Windows Command Shell .
- 80154: Cobalt Strike
- T1005: Data from Local System .
. - 50624: Ecipekac
- T1039: Data from Network Shared Drive
) - 50404: esentutl
- T1074.001: Data Staged: Local Data Staging .
- - 50152: EvilGrab
) ) ) - T1074.002: Data Staged: Remote Data Staging )
menuPass is a threat group discovered in 2006, ) . - 50628: FYAnti
) ] - T1140: Deobfuscate/Decode Files or Infarmation
menuPass targeting a wide range of sectors, such as energy, - 50357: Impacket

finance, aerospace, maritime and healthcare.

- T1568.001: Dynamic Resolution: Fast Flux DNS

- T1190: Exploit Public-Facing Application

- T1210: Exploitation of Remote Services

- T1083: File and Directory Discovery

- T1574.001: Hijack Execution Flow: DLL Search Order Hijacking
- T1574.002: Hijack Execution Flow: DLL Side-Loading

- T1070.003: Indicator Removal on Host: Clear Command History
- T1070.004: Indicator Removal on Host: File Deletion

- T1105: Ingress Tool Transfer

- T1056.001: Input Capture: Keylogging

- T1036: Masquerading

- T1036.003: Rename System Utilities

- 80002: Mimikatz

- 50039: Net

- 80626: PERAT

- 80097: Ping

- 0013: PlugX

- 50012: Poisonlvy

- 50194: PowerSploit
- 50029: PsExec

- 50006: pwdump

- 50262: QuasarRAT
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- T1036.005: Match Legitimate Name or Location

- T1106: Native API

- T1046: Network Service Scanning

- T1027: Obfuscated Files or Information

- T1588.002: Obtain Capabilities: Tool

- T1003.002: OS Credential Dumping: Security Account Manager
- T1003.003: OS Credential Dumping: NTDS

- T1003.004: OS Credential Dumping: L5A Secrets

- T1566.001: Phishing: Spearphishing Attachment

- T1055.012: Process Injection: Process Hollowing

menuPass is a threat group discovered in 2006, - T1090.002: Proxy: External Proxy - 50153: RedLeaves
menuPass targeting a wide range of sectors, such as energy, - T1021.001: Remote Services: Remote Desktop Protocol - 80159: SNUGRIDE

finance, aerospace, maritime and healthcare. - T1021.004: Remote Services: SSH - 80627: SodaMaster

- T1018: Remote System Discovery - 50275: UPPERCUT

- T1053.005: Scheduled Task/Job: Scheduled Task

- T1218.004: Signed Binary Proxy Execution: InstallUtil

- T1553.002: Subvert Trust Controls: Code Signing

- T1016: System Network Configuration Discovery

- T1049: System Network Connections Discovery

- T1199: Trusted Relationship

- T1204.002: User Execution: Malicious File

- T1078: Valid Accounts

- T1047: Windows Management Instrumentation

- T1548.002: Abuse Elevation Control Mechanism: Bypass User Account Control - 50073: ASPXSpy

- T1087.001: Account Discovery: Local Account - 50020: China Chopper

- T1071.001: Application Layer Protocol: Web Protocols - 50032: ghOst RAT
Threat Group-3390 is a Chinese APT group - T1560.002: Archive Collected Data: Archive via Library - 80008: gsecdump

Threat Group-3390 | targeting in a similar manner various sectors, - T1119: Automated Collection - 80070: HTTPBrowser

such as energy, aerospace and defence. - T1547.001: Boot or Logon Autostart Execution: Registry Run Keys / Startup Folder | - 80398: HyperBro

- T1059.001: Command and Scripting Interpreter: PowerShell - 80357: Impacket

- T1059.003: Command and Scripting Interpreter: Windows Command Shell - 80100: ipconfig

- T1543.003: Create or Modify System Process: Windows Service - 50002: Mimikatz
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Threat Group-3390

Threat Group-3390 is a Chinese APT group
targeting in a similar manner various sectors,

such as energy, aerospace and defence.

- T1543.003: Create or Modify System Process: Windows Service
- T1005: Data from Local System

- T1074.001: Data Staged: Local Data Staging

- T1074.002: Data Staged: Remote Data Staging

- T1030: Data Transfer Size Limits

- T1140: Deobfuscate/Decode Files or Information

- T1189: Drive-by Compromise

- T1203: Exploitation for Client Execution

- T1068: Exploitation for Privilege Escalation

- T1210: Exploitation of Remote Services

- T1133: External Remote Services

- T1574.001: Hijack Execution Flow: DLL Search Order Hijacking
- T1574.002: Hijack Execution Flow: DLL Side-Loading

- T1562.002: Impair Defenses: Disable Windows Event Logging

- T1070.004: Indicator Removal on Host: File Deletion

- T1070.005: Indicator Removal on Host: Network Share Connection Removal
- T1105: Ingress Tool Transfer

- T1056.001: Input Capture: Keylogping

- T1112: Modify Registry

- T1046: Network Service Scanning

- T1027: Obfuscated Files or Information

- T1588.002: Obtain Capabilities: Tool

- T1003.001: OS Credential Dumping: LSASS Memory

- T1003.002: OS Credential Dumping: Security Account Manager
- T1003.004: OS Credential Dumping: LSA Secrets

- T1055.012: Process Injection: Process Hollowing

- T1012: Query Registry

- T1021.006: Remote Services: Windows Remote Management

- T1018: Remote System Discovery

- T1053.002: Scheduled Task/Job: At (Windows)

- T1505.003: Server Software Component: Web Shell

- T1608.002: Stage Capabilities: Upload Tool

- T1608.004: Stage Capabilities: Drive-by Target

- 50590: NBTscan

- 50039: Net

- 50072: OwaAuth

- 0013: PlugX

- 80006: pwdump

- 50005: Windows Credential Editor
- 50412: ZxShell
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Threat Group-3390

Threat Group-3390 is a Chinese APT group
targeting in a similar manner various sectors,

such as energy, aerospace and defence.

- T1608.004: Stage Capabilities: Drive-by Target

- T1016: System Network Configuration Discovery
- T1049: System Network Connections Discovery

- T1078: Valid Accounts

- T1047: Windows Management Instrumentation
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Appendix C

Well-known Malware against ICS

The following table summarises well-known malware and attacks against Industrial Control Systems (ICS) based on MITRE ATT&CK. For

each malware, the respective techniques are also given.

Tapre C.1: Well-known Malware against Energy-related Organisations

Malware Description Techniques

- T1134.001: Access Token Manipulation: Token
Impersonation/Theft

- T1087.001: Account Discovery: Local Account

- T1087.002: Account Discovery: Domain Account

- T1071.001: Application Layer Protocol: Web Protocols

- T1560.003: Archive Collected Data: Archive via Custom
Method

- T1547.00%: Boot or Logon Autostart Execution: Shortcut
Modification

- T1543.003: Create or Modify System Process: Windows
Service

-T1132.001: Data Encoding: Standard Encoding

- T1140: Deobfuscate/Decode Files or Information

Stuxnet was the first ICS-related malware )
. - T1573.001: Encrypted Channel: Symmetric Cryptography
targeting the nuclear programme of Iran, . .
Stuxnet - T1480: Execution Guardrails

by taking full advantage of multiple zero- .

day vulnerabilities - T1041: Exﬁltltatn.)n Ower C.2 .Cha.nnel .
- T1068: Exploitation for Privilege Escalation

- T1210: Exploitation of Remote Services

- T1008: Fallback Channels

- T1083: File and Directory Discovery

- T1562: Impair Defenses

- T1070: Indicator Removal on Host

- T1070.004: File Deletion

- T1070.004: Timestomp

- T1570: Lateral Tool Transfer

- T1112: Modify Registry

- T1106: Native API

- T1135: Network Share Discovery

- T1027: Obfuscated Files or Information
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Stuxnet

Stuxnet was the first ICS-related malware
targeting the nuclear programme of Iran,
by taking full advantage of multiple zero-
day vulnerabilities.

- T1120 Peripheral Device Discovery

- T1055.001: Process Injection: Dynamic-link Library
Injection

- T1090.001: Proxy: Internal Proxy

- T1012: Query Registry

- T1021: Remote Services

- T1021.002: SMB/Windows Admin Shares

- T1091: Replication Through Removable Media

- T1014: Rootkit

- T1053.005: Scheduled Task/Job: Scheduled Task

- T1505.001: Server Software Component: SQL Stored
Procedures

- T1129: Shared Modules

- T1518.001: Software Discovery: Security Software
Discovery

- T1553.002: Subvert Trust Controls: Code Signing
- T1082: System Information Discovery

- T1016: System Network Configuration Discovery
- T1124: System Time Discovery

- T1080: Taint Shared Content

- T1078.001: Valid Accounts: Default Accounts

- T1078.002: Valid Accounts: Domain Accounts

- T1047: Windows Management Instrumentation

Duqu

Duqu is a similar to Stuxnet. It adopts
a modular approach to expand its
functionality.

- T1134: Access Token Manipulation

- T1087.001: Account Discovery: Local Account

- T1071: Application Layer Protocol

- T1010: Application Window Discovery

- T1560.003: Archive Collected Data: Archive via Custom
Method

- T1543.003: Create or Modify System Process: Windows
Service

- T1001.002: Data Obfuscation: Steganography

- T1074.001: Data Staged: Local Data Staging

- T1573.001: Encrypted Channel: Symmetric Cryptography
- T1056.001: Input Capture: Keylogging

- T1057: Process Discovery

- T1055.001: Process Injection: Dynamic-link Library
Injection

- T1055.002: Process Hollowing

- T1572: Protocol Tunneling

- T1090.001: Proxy: Internal Proxy

- T1021.002: Remote Services: SMB/Windows Admin Shares
- T1053.005: Scheduled Task/Job: Scheduled Task

- T1218.007: Signed Binary Proxy Execution: Msiexec

- T1016: System Network Configuration Discovery

- T1049: System Network Connections Discovery

- T1078: Valid Accounts
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Flame

An espionage malware used to collect
information, targeting mainly Middle

East countries

- T1123: Audio Capture

- T1547.002: Boot or Logon Autostart Execution:
Authentication Package

- T1136.001: Create Account: Local Account

- T1011.001: Exfiltration Over Other Network Medium:
Exfiltration Over Bluetooth - T1210: Exploitation of Remote
Services

- T1091: Replication Through Removable Media

- T1113: Screen Capture

- T1218.011: Signed Binary Proxy Execution: Rundll32

BlackEnergy

BlackEnergy is a malware toolkit designed
to form botnets executing DDoS attacks. It

was used to target Ukrainian organisations.

- T1548.002:Abuse Elevation Control Mechanism: Bypass
User Account Control

- T1071.001: Application Layer Protocol: Web Protocols

- T1547.001: Boot or Logon Autostart Execution: Registry
Run Keys / Startup Folder

- T1547.009: Boot or Logon Autostart Execution: Shorteut
Modification

- T1543.003: Create or Modify System Process: Windows
Service

- T1555.003: Credentials from Password Stores:
Credentials from Web Browsers

- T1485: Data Destruction

- T1008: Fallback Channels

- T1083: File and Directory Discovery

- T1574.010: Hijack Execution Flow: Services File
Permissions Weakness

- T1070: Indicator Removal on Host

- T1070.001: Clear Windows Event Logs

- T1056.001: Input Capture: Keylogging

- T1046: Network Service Scanning

- T1120: Peripheral Device Discovery

- T1057: Process Discovery

- T1055.001: Process Injection: Dynamic-link Library
Injection

- T1021.002: Remote Services: SMB/Windows Admin Shares
- T1113: Screen Capture

- T1553.006: Subvert Trust Controls: Code Signing Policy
Modification

- T1082: System Information Discovery

- T1016: System Network Configuration Discovery

- T1049: System Network Connections Discovery

- T1552.001: Unsecured Credentials: Credentials In Files
- T1047: Windows Management Instrumentation

Industroyer

Industroyer or otherwise Crashoverride
is a sophisticated malware targeting ICS
and especially electrical substations.
Industroyer was used to attack the
Ukrainian power grid in December 2016,
causing a power outage for more than
225000 households

- T1071.001: Application Layer Protocol: Web Protocols
- T1554: Compromise Client Software Binary

- T1543.003: Create or Modify System Process: Windows
Service

- T1485: Data Destruction

- T1140: Deobfuscate/Decode Files or Information

- T1499.004: Endpoint Denial of Service: Application

or System Exploitation

- T1041: Exfiltration Over C2 Channel

- T1083: File and Directory Discovery

- T1105: Ingress Tool Transfer
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Industroyer

Industroyer or otherwise Crashoverride
is a sophisticated malware targeting ICS
and especially electrical substations.
Industroyer was used to attack the
Ukrainian power grid in December 2016,
causing a power outage for more than
225000 households

- T1046: Network Service Scanning

- T1027: Obfuscated Files or Information
- T1572: Protocol Tunneling

- T1090.003: Proxy: Multi-hop Proxy

- T1012: Query Registry

- T1018: Remote System Discovery

- T1489: Service Stop

- T1082: System Information Discovery

- T1016: System Network Configuration Discovery

- T1078: Valid Accounts
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Appendix D

Summary of IDPS for the Smart Electrical Grid

The following table summarises the IDPS systems discussed in Chapter 4.

TapLE D.1: Summary of IDPS for the smart electrical grid

Detection
Literature Target System . Protocols Attacks Performance Dataset Software
Technique
1. Dos Attacks
2. Packet splitting
) 3. Command insertion
Etire 5G ) ) 1. KDD CUP 1999
A, Patel etal. [129] Anomaly-based Not provided 4. Shellcode mutation AUC = 0.99451 ] Protege
ecosystem 2. Simulated data
5. Brute force attacks
6. Payload mutation
7. Duplicate Insertion
1. Do$ attacks 1. CLONALG ACC
Entire 5G 2. U2R attacks = [80.1%, 99.7%] 1. Matlab
Y. Zhang etal. [222] Anomaly-based Not provided NSL-KDD
ecosystem 3. R2L attacks 2. AIRSZParallel ACC 2. WEKA
4. Probing attacks = [82.1%, 98.7%)




1. ACC, FPR, FNR, Size,
Running time, RAM-Hours
of Active Classifier

= 94.67%, 3.31%, 9.13%,
134.55 KB, 3.46 secs., 1.236-7.

2. ACC, FPR, FNNR, Size,

1. DoS attacks o
) Running time, RAM-Hours of
M A. Faisal et al. ) 2. R2L attacks i ) 1. KD CUP 1999
AMI Anomaly-based Not provided Leveraging Bagging = 98.33%, MOA
[44] 3. U2R attacks 2. NSL-KDD
. 0.78%, 5.15%, 401.01 KB,
4. Probing attacks
20.92 secs., 2.22E-6.
3. ACC, FPR, FNR, Size
Running time, RAM-Hours of
Single Classifier Drift =
97.74%, 1.07%, 6.79%,
187.30KB, 6.74 secs., 3.34E-7.
1. Exploits
2. DoS attacks
s F 1. ACC > 90%
. Fuzzers
R. Vijayanand [199] AMI Anomaly-based Not provided 2. TPR. = 89.2% ADFA-LD Matlab
4. Backdoor attacks
3. TNR = 93.4%
5. Worms
6. Generic attacks
1. ACC = 97.239%
. . . CER Smart .
Y. Lietal [109] AMI Anomaly-based Not provided Not provided 2.FPR = 5.807% . . Not provided
Metering Project
3. FNR = 3.614%
1. FPR of the first attack
) False data injection =0% . .
PY. Chen [34] AMI Anomaly-based Not provided Not required Not provided
attacks 2. FPR of the second attack
=0.43%
1. TPR = 100%
N. Boumkheld et al. 2. ACC = 99% . 1. NS2
AMI Anomaly-based AODV Blackhole attacks . Simulated data
[26] 3. Precision = 66% 2. WEKA
4 AUC=1
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1. DoS attacks

I Ullah and ) 2. L2L attacks 1. Precision = 99.70%
AMI Anomaly-based Not provided ISCX2012 WEKA
H. Mahmoud [19¢] 3. Secure shell attacks 2. TPR = 99.60%
4. Botnet
F.A A Alseiari and ) 1. DoS attacks Figures present the values of ) )
AMI Anomaly-based Not provided Simulated data Not provided
Z. Aung [12] 2. Port scanning TPR and FPR.
V. Gulisano et al. ) Enerpy exfiltration ) )
AMI Anomaly-based Not provided TPR = 91% Not provided Not provided
[53] attacks
_ 1. TPR = 100%
) ) ) 1. Meter reading attacks 1. Table TstBench
R. Berthier and Specification- ] ] 2. TNR= 99.57% . .
AMI ANSI C12.22 2. Service switch . Not required 2. VirtualBox
W.H. Sanders [24] based 3. CPU Consumption = 0.3%
attacks . 3. Python
4. RAM Consumption = 10MB
. Specification- . False data injection Figures present the values of . .
X Liunetal [112] AMI Not provided Not required Not provided
based attacks TPR
1. TPR = 100%
R. Mitchell and Specification- ) 1. Reckless attacks 2. FPR of reckless attacks< 0.2% ) )
AMI Not provided Not required Not provided
E. Chen [119] based 2. Random attacks 3. FPR of random attacks< 0.6%
4. ROC curves are presented
1. Spoofing attacks
2. Radio Jamming
) ) 3. Replay attacks ) )
P Jokar and Specification- 1. Theoretical analysis
AMI 1. ZigBee 4. Stenography attacks Not required Matlab
V.Leung [77] based ) ) 2. ROC curves are presented
5. Back-off manipulation
6. DoS against CFP
7. DoS against GTS
) Specification- . 1. Blackhole attacks 1. TPR = 90% .
M. Attia et al. [18] AMI Not provided Not required Matlab
based 2. Time delay attacks 2.FPR= 6%
TH. Morris et al. ) ) ) )
[120] SCADA Signature-based Modbus Not provided Not provided Not required Snort
1. Protocol anomalies
. . 2. Reconnaissance . .
H. Lietal [106] SCADA Signature-hased DNP3 Not provided Not required Snort

3. DoS
4, Mixed attacks
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E. Hodo et al. [62]

SCADA

Anomaly-based

IEC-104

1. ARP attacks
2. DoS§ attacks
3. Replay attacks

1. TFR, FPR, Precision, AUC
of Naive Bayes = 0.846, 0.055,
0.907, 0.905

2. TPR, FPR, Precision, AUC
of IBk = 0.847, 0.300, 0.850,
0.766

3. TPR, FPR, Precision, AUC
of J48 = 0.917, 0.090, 0928,
0.929

4. TPR, FPR, Precision, AUC
of RandomForest = 0.914,
0.136, 0.919, 0.965

5. TPR, FPR, Precision, AUC
of RandomTree = 0.594,
0.210, 0.895, 0.543

6. TPR, FPR, Precision, AUC
of DecisionTable = 0.917,
0.062,0.933, 0.963

7. TPR, FPR, Precision, AUC
of OneR = 0.846, 0.328, 0.845,
0.759

IEC-104 dataset
generated by the

authors

WEKA

N. Goldenberg and
A. Wool [50]

SCADA

Anomaly-based

Modbus

Not Provided

1. ACC = 100%

2. Precision = 100%;
3TPR = 100%

4. TNR = 100%

5. FPR = 0%

6. FNR = 0%

Real datasets from
the authors

1. Wireshark
2. Pcapy
3. Impacket
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1. ACC of SVYM with DS1,
DS2 and D83 is 100%, 100%
and 99.99% respectively

2. ACC of Random Forest
with D81, DS2 and D83 is
100%, 99.99% and 99.99%

S.D. Anton et al. ) Lemay and )
SCADA Anomaly-based Modbus Not provided Not provided
[14] ) Fernandez [104]
3. ACC of KNN with DS1,
DS2 and D83 is 99.7%, 99.9%
and 99.9%.
4. ACC of k-means with D81,
DS2 and D83 is 98.1%, 55.62%
and 63.36%
) 1. TPR of reconnaissance
1. Reconnaissance 1. Conpot,
P.H. Wang etal attacks = 90% Data from a
SCADA Anomaly-based Modbus attacks 2. Python 2.7
[201] 2. TPR of DoS attacks = honeypot
2. DoS attacks 3. MongoDB
95.12%
1. ACC = 100%
1. Packet injection 2. Precision = 100%
Specification- attacks 3. TPR = 100% )
Y. Yang etal [212] SCADA IEC 60870-5-104 Not required ITACA
based 2. Replay attacks 4. TNR = 100%
3. Data manipulation 5.FPR = 0%
6. FNR = 0%
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1. Unauthorized read
commands
2. Unauthorized reset
commands

3. Unauthorized remote

control and adjustment 1. ACC = 100%
commands 2. Precision = 100%
. 4. Spontaneous packets 3. TPR = 100% .
Y. Yang et al [210] SCADA Hybrid IEC 69870-5-104 Not required Snort
storm 4 TNR = 100%
5. Unauthorized 5. FPR = 0%
interrogation commands 6. FNR = 0%
6. Buffer overflows
7. Unauthorized
broadcast requests
8. IEC-104 port
communication
1. Reconnaissance
attacks )
) Numerical results are not )
Z.Feng et al. [45] SCADA Hybrid Profinet 2. DoS attacks . Not required Snort
. provided
3. MiTM attacks
4. Protocol anomalies
1. ACC of j48 = 99.8361%
) 2. ACC of 1st neural network
1. Reconnaissance
L. = 97.4185% )
. Anomaly- 2. Response injection . 1. Wireshark
S.C. Lietal [108] SCADA Modbus o 3. ACC of 2nd neural network Simulated dataset
based 3. Command injection 2. WEKA
= 97.4603%
4. DoS
4. ACC of 3rd neural network
= 07.3876%
) ) Active power limitation Two examples that were ) )
B.Kang etal [79] Substation Signature-hased [EC 61850 MMS Not required Suricata

attacks

detected.
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1. DoS attacks
2. Port scanning 1. FPR = 0%
) ) Real data from a
) Specification- IEC 61850 GOOSE 3. Portable executable 2.FNR=1.1% L .
Y. Kwon et al. [99] Substation substation in South Wireshark
based IEC 61850 MMS 4. GOOSE attacks 3. TPR = 98.9% N
orea
5. MMS attacks 4. Precision = 100%
6. SNMP attacks
- IEC 61850 GOOSE 1. DoS
) Specification- ) Real data from a 1. ITACA
Y. Yang et al [213] Substation IEC 61850 MMS 2. MITM attacks Not provided o ) )
based L substation in China 2. Wireshark
IEC 61850 SMV 3. Packet injection
M Kabir-Querrec et ) Specification- ) ) ) )
Substation IEC 61850 GOOSE Not Provided Not provided Not required Not Provided
al. [78] based
H. Yoo and T. Shon ) IEC 61850 GOOSE ) Real data from a
Substation Anomaly-based Not Provided FPR = [1%, 6% ) WEKA
[215] IEC 61850 MMS substation
1. DoS attacks 1. Snort
U. Premaratne et al. ) ) ) ) Real data from a
Substation Hybrid IEC 61850 2. Traffic analysis Not provided . 2. THC Hydra
[132] ) substation )
3. Password cracking 3. Seringe
1. Wireshark
. Specification- IEC 61850 GOOSE 1. DoS attacks s . 2. Colasoft Packet
J. Hong et al. [63] Substation FPR= 1.61 x 10 Not required )
based [EC 61850 SMV 2. Replay attacks Builder
3. Nmap
- IEC 61850 GOOSE 1. DoS
) Specification- ) Real data from a 1. ITACA
Y. Yang et al [209] Substation IEC 61850 MMS 2. MITM attacks Not provided o ) )
based L substation in China 2. Wireshark
IEC 61850 SMV 3. Packet injection
1. Single line-to-ground
faults
) ) 2. Replay attacks ) 1. Snort
S.Pan etal [128] Synchrophasor Hyhrid Not provided L ACC = 00.4% Simulated data
3. Command injection 2. OpenPDC

attacks

4. Disable relay attacks
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1. ARP spoofing
2. Port scanning
3. GPS spoofing 1. NRL core
R.Khan et al. [85] Synchrophasor Hybrid IEEE C37.118 4. Packet drop attacks Not provided Not required 2. OpenPMU
5. Replay attacks 3. C/C++
6. Command injection
7. Physical attacks
1. Reconnaissance 1. ITACA
Specification- attacks . 2. Nmap
Y. Yang etal [211] Synchrophasor IEEE C37.118 . FPR= 0% Not required .
based 2. MiTM attacks 3. Metasploit
3. DoS attacks 4. hping
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Appendix E

TCP/IP Flow Statistics

The following table enumerates and describes the TCP/IP statistics used by the TCP/IP-based Intrusion Detection Models of Chapter 5.

TaBLE E.1: TCP/IP Flow Statistics

Feature Description

Flow ID ID of the flow

SrcIP Source IP address

Src Port Source TCP/UDP port

DstIP Destination IP address

Protocol The protocol related to the corresponding flow
Timestamp Flow timestamp

Flow Duration

Duration of the flow in Microsecond

Tot Fwd Pkts Total packets in the forward direction

Tot Bwd Pkts Total packets in the backward direction

TotLen Fwd Pkts Total size of packets in forward direction

TotLen Bwd Pkts Total size of packets in backward direction

Fwd Pkt Len Max Maximum size of packet in forward direction

Fwd Pkt Len Min Minimum size of packet in forward direction

Fwd PktLen Mean | Mean size of packet in forward direction

Fwd Pkt Len Std Standard deviation size of packet in forward direction
Fwd Pkt Len Std Standard deviation size of packet in forward direction
Bwd Pkt Len Max Maximum size of packet in backward direction

Bwd Pkt Len Min Minimum size of packet in backward direction

Bwd Pkt Len Mean

Mean size of packet in backward direction

Bwd Pkt Len Std

Standard deviation size of packet in backward direction

Flow Byts/s Number of flow bytes per second

Flow Pkts/s Number of flow packets per second

Flow IAT Mean Mean time between two packets sent in the flow

Flow IAT Std Mean time between two packets sent in the flow

Flow IAT Max Maximum time between two packets sent in the flow

Flow IAT Min Minimum time between two packets sent in the flow

Fwd IAT Tot Total time between two packets sent in the forward direction

Fwd IAT Mean Mean time between two packets sent in the forward direction

Fwd IAT Std Standard deviation time between two packets sent in the forward direction
Fwd IAT Max Maximum time between two packets sent in the forward direction
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Fwd IAT Min Minimum time between two packets sent in the forward direction

BwdIAT Tot Total time between two packets sent in the backward direction

BwdIAT Mean Mean time between two packets sent in the backward direction

Bwd IAT Std Standard deviation time between two packets sent in the backward direction

Bwd IAT Max Maximum time between two packets sent in the backward direction

BwdIAT Min Minimum time between two packets sent in the backward direction

Fwd PSH Flags Number of times the PSH flag was set in packets travelling in the forward direction (0 for UDP)
Bwd PSH Flags Number of times the PSH flag was set in packets travelling in the backward direction (0 for UDP)
Fwd URG Flags Number of times the URG flag was set in packets travelling in the forward direction {0 for UDP})
Bwd URG Flags Number of times the URG flag was set in packets travelling in the backward direction (0 for UDP)
Fwd Header Len Total bytes used for headers in the forward direction

Bwd Header Len Total bytes used for headers in the backward direction

Fwd Pkts/s Number of forward packets per second

Bwd Pkts/s Number of backward packets per second

Pkt Len Min Minimum length of a packet

Pkt Len Max Maximum length of a packet

Pkt Len Mean Mean length of a packet

Pkt Len Mean Standard deviation length of a packet

PktLen Var Variance length of a packet

FIN Flag Cnt Number of packets with FIN

SYN Flag Cnt Number of packets with SYN

RST Flag Cnt Number of packets with RST

PSH Flag Cnt Number of packets with PUSH

ACK Flag Cnt Number of packets with ACK

URG Flag Cnt Number of packets with URG

CWE Flag Count Number of packets with CWE

ECE Flag Cnt Number of packets with ECE

Down/Up Ratio Download and upload ratio

Pkt Size Avg Average size of packet

Fwd Seg Size Avg Average size observed in the forward direction

Bwd Seg Size Avg

Average size observed in the backward direction

Fwd Byts/b Avg Average number of bytes bulk rate in the forward direction

Fwd Pkts/b Avg Average number of packets bulk rate in the forward direction

Fwd Blk Rate Avg Average number of bulk rates in the forward direction

Bwd Byts/b Avg Average number of bytes bulk rate in the backward direction

Bwd Pkts/b Avg Average number of packets bulk rate in the backward direction

BwdBlk Rate Avp Average number of bulk rates in the backward direction

Subflow Fwd Pkts The average number of packets in a sub flow in the forward direction
Subflow Fwd Byts The average number of bytes in a sub flow in the forward direction
Subflow Bwd Pkts The average number of packets in a sub flow in the backward direction
Subflow Bwd Byts The average number of bytes in a sub flow in the backward direction

Init Fwd Win Byts | The total number of bytes sent in initial window in the forward direction
Init Bwd Win Byts | The total number of bytes sent in initial window in the backward direction
Fwd ActData Pkts | Count of packets with at least 1 byte of TCP data payload in the forward direction
Fwd Seg Size Min Minimum segment size observed in the forward direction

Active Mean Mean time a flow was active before becoming idle

Active Std Standard deviation time a flow was active before becoming idle

Active Max Maximum time a flow was active before becoming idle

Active Min Minimum time a flow was active before becoming idle

Idle Mean Mean time a flow was idle before becoming active
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Idle Std Standard deviation time a flow was idle before becoming active
Idle Max Maximum time a flow was idle before becoming active
Idle Min Minimum time a flow was idle before becoming active

Label

The attack name




Appendix F

DNP3 Flow Statistics

The following table enumerates and describes the DNP3 statistics used by the DNP3 intrusion detection model described in Chapter 5.

TapLE F.1: DNP3 Flow Statistics

Feature Description
flow ID ID of the flow
source IP Source IP address
destination IP Destination IP address
source port Source TCP/UDP Port
destination port Destination TCP/UDP port
protocol The protocol related to the corresponding flow
date Flow timestamp
TotalFwdPkts The total number of the DNP3 packets in the forward direction
TotalBwdPkts The total number of the DNP3 packets in the backyard direction
TotLenfwdDL The total size of the DNP3 payload at the link layer in the forward direction
TotLenfwdTR The total size of the DNP3 payload at the transport layer in the forward direction
TotLenfwdAPP The total size of the DNP3 payload at the application layer in the forward direction
TotLenbwdDL The total size of the DNP3 payload at the link layer in the backyard direction
TotLenbwdTR The total size of the DNP3 payload at the transport layer in the backyard direction
TotLenbwdAPP The total size of the DNP3 payload at the application layer in the backyard direction
DLfwdPktLenMAX The maximum size of the DNP3 payload at the link layer in the forward direction
DLfwdPktLenMIN The minimum size of the DNP3 payload at the link layer in the forward direction
DLfwdPktLenMEAN The mean of the DNP3 payload at the link layer in the forward direction
DLfwdPktLenSTD The standard deviation of the DNP3 payload at the link layer in the forward direction
TRfwdPktLenMAX The maximum size of the DNP3 payload at the transport layer in the forward direction
TRfwdPktLenMIN The minimum size of the DNP3 payload at the transport layer in the forward direction
TRfwdPktLenMEAN The mean of the DNP3 payload at the transport layer in the forward direction
TREwdPliLenSTD 'l?je st.anda.rd deviation of the DNP3 payload at the transport layer in the forward
direction
The maximum size of the DNP3 payload at the application layer in the backyard
APPfwdPktLenMAX o
direction
The minimum size of the DNP3 payload at the application layer in the backyard
APPfwdPktLenMIN o
direction
APPfwdPktLenMEAN The mean of the DNP3 payload at the application layer in the backyard direction
The standard deviation of the DNP3 payload at the application layer in the backyard
APPfwdPktLenSTD direction
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DLbwdPktLenMAX The maximum size of the DNP3 payload at the link layer in the backyard direction
DLbwdPktLenMIN The minimum size of the DNP3 payload at the link layer in the backyard direction
DLbwdPktLenMEAN The mean of the DNP3 payload at the link layer in the backyard direction

The standard deviation of the DNP3 payload at the link layer in the backyard
DLbwdPktLenSTD o

direction

The maximum size of the DNP3 payload at the transport layer in the backyard
TRbwdPktLenMAX o

direction

The minimum size of the DNP3 payload at the transport layer in the backyard
TRbwdPktLenMIN

direction
TRbwdPktLenMEAN The mean of the DNP3 payload at the transport layer in the backyard direction

The standard deviation of the DNP3 payload at the transport layer in the backyard
TRbwdPktLenSTD o

direction

The maximum size of the DNP3 payload at the application layer in the hackyard
APPbwdPktLenMAX o

direction

The minimum size of the DNP3 payload at the application layer in the backyard
APPbwdPktLenMIN o

direction

The mean of the DNP3 payload at the application layer in the backyard
APPbwdPktLenMEAN o

direction

The standard deviation of the DNP3 payload at the application layer in the backyard
APPbwdPktLenSTD o

direction
DLflowBytes/sec How many bytes of the DNP3 link-layer were transmitted per second
TRflowBytes/sec How many bytes of the DNP3 transport layer were transmitted per second
APPflowBytes/sec How many bytes of the DNP3 application layer were transmitted per second
FlowPkts/sec How many DNP3 packets were transmitted per second
FlowIAT MEAN The mean of the DNP3 packets interarrival time
FlowIAT STD The standard deviation of the DNP3 packets interarrival time
FlowIAT MAX The maximum value of the DNP3 packets interarrival time
FlowlAT MIN The minimum value of the DNP3 packets interarrival time
TotalFwdlAT The sum of the DNP3 packets interarrival time in the forward direction
fwdlAT' MEAN The mean of the DNP3 packets interarrival time in the forward direction
fwdIAT STD The standard deviation of the DNP3 packets interarrival time in the forward direction
fwdlAT MAX The maximum value of the DNP3 packets interarrival time in the forward direction
fwdlAT MIN The minimum value of the DNP3 packets interarrival time in the forward direction
TotalBwdlAT The sum of the DNP3 packets interarrival time in the backyard direction
bwdIAT MEAN The mean of the DNP3 packets interarrival time in the backyard direction

. The standard deviation of the DNP3 packets interarrival time in the backyard

bwdIAT STD .

direction
bwdlAT MAX The maximum value of the DNP3 packets interarrival time in the backyard direction
bwdIAT MIN The minimum value of the DNP3 packets interarrival time in the backyard direction
DLfwdHdrLen The sum of the DNP3 headers at the link layer in the forward direction
TRfwdHdrLen The sum of the DNP3 headers at the transport layer in the forward direction
APPfwdHdrLen The sum of the DNP3 headers at the application layer in the forward direction
DLbwdHdrLen The sum of the DNP3 headers at the link layer in the hackyard direction
TRbwdHdrLen The sum of the DNP3 headers at the transport layer in the backyard direction
APPbwdHdrLen The sum of the DNP3 headers at the application layer in the backyard direction
fwdPkts/sec How many DNP3 packets per second in the forward direction
bwdPkts/sec How many DNP3 packets per second in the backyard direction
DLpktLenMEAN The mean of the bytes at the DNP3 link layer
DLpktLenMIN The minimum value of the bytes at the DNP3 link layer
DLpktLenMAX The maximum value of the bytes at the DNP3 link laver

DLpktLenSTD

The standard deviation of the bytes at the DNP3 link layer
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DLpktLenVAR The variance of the bytes at the DNP3 link layer

TRpktLenMEAN The mean of the bytes at the DNP3 transport layer

TRpktLenMIN The minimum value of the bytes at the DNP3 transport layer

TRpktLenMAX The maximum value of the bytes at the DNP3 transport layer

TRpktLenSTD The standard deviation of the bytes at the DNP3 transport layer

TRpktLenVAR The variance of the bytes at the DNP3 transport layer

APPpktLenMEAN The mean of the bytes at the DNP3 application layer

APPpktLenMIN The minimum value of the bytes at the DNP3 application layer
APPpktLenMAX The maximum value of the bytes at the DNP3 application layer

APPpktLenSTD The standard deviation of the bytes at the DNP3 application layer
APPpktLenVAR The variance of the bytes at the DNP3 application layer

ActiveMEAN The time-mean where the flow was active

ActiveSTD The time standard deviation where the flow was active

ActiveMAX The maximum value of the time where the flow is active

ActiveMIN The maximum value of the time where the flow is active.

IdleMEAN The time-mean where the flow was idle before becoming active

IdleSTD The standard deviation of the time where the flow was idle before becoming active
IdleMAX The maximum value of the time where the flow was idle before becoming active
IdleMIN The minimum value of the time where the flow was idle before becoming active
frameSrc The source MAC address

frameDst The destination MAC address

TotPktsInFlow The total number of the DNP3 packets

firstPacketDIR Whether the flow was initiated by a DNP3 master device or DNP3 slave device

mostCommonREQ FUNC CODE

The DNP3 function code which was used mostly in the DNP3 request packets

mostCommonRESP FUNC CODE

The DNP3 function code which was used mostly in the DNP3 response packets

corruptConfigFragments

How many responses were sent by the slave, setting the corruptConfig bit in the
IIN value

deviceTroubleFragments

How many responses were sent by the slave, setting the deviceTrouble bit in the
IIN value

deviceRestartFragments

How many responses were sent by the slave, setting the deviceRestart bit in the
IIN value

pktsFromMASTER

How many packets that transmitted by a DNP3 master device

pktsFromSLAVE

How many packets that transmitted by a DNP3 slave device

Label

Attack label




Appendix G

IEC 60870-5-104 Flow Statistics

The following table enumerates and describes the IEC 60870-5-104 statistics used by the IEC 60870-5-104 intrusion detection model described

in Chapter 5.
TaBLE G.1: [EC 60870-5-104 Flow Statistics
Feature Description
flow id ID of the flow
The relevant protocol of the flow.
protocol It equals IEC 60870-5-104
) The source IP address of the flow. It is defined with the first relevant
e packet.
dst ip The destination IP address of the flow.
sre port The source TCP/UDP port.
dst port The destination TCP/UDP port.
flow idle time max The maximum time where the flow was idle
flow idle time min The minimum time where the flow was idle
flow idle time mean The time mean where the flow was idle
flow idle time std The time standard deviation where the flow was idle
flow idle time variance The time variance where the flow was idle
flow active time max The maximum time where the flow was active
flow active time min The minimum time where the flow was active
flow active time mean The time mean where the flow was active
flow active time std The time standard deviation where the flow was active
flow active time variance The time variance where the flow was active
flow IAT max The maximum interarrival time
fw IAT max The maximum interarrival time in the forward direction
bw IAT max The maximum interarrival time in the backyard direction
flow TAT min The minimum interarrival time
fw IAT min The minimum interarrival time in the forward direction
bw IAT min The minimum interarrival time in the backyard direction
fw IAT mean The mean of the interarrival time in the forward direction
bw IAT mean The mean of the interarrival time in the backyard direction
flow IAT std The standard deviation of the inter arrival time
for AT std Tl.je st.a.nda.rd deviation of the inter arrival time in the forward
direction
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The standard deviation of the inter arrival time in the backyard

bw IAT std o
direction
flow IAT tot The total number of the interarrival times
fw iAT tot The total number of the interarrival times in the forward direction
bw [AT tot The total number of the interarrival times in the backyard direction
flow iec104 packts/s The number of IEC 60870-51-04 packets per second
. The number of IEC 60870-51-04 packets per second in the forward
fw iec104 packts/s o
direction
. The number of IEC 60870-51-04 packets per second in the backyard
bw iec104 packts/s .
direction
flow iec104 bytes/s The sum of APDU lengths per second

fw iec104 bytes/s

The sum of APDU lengths per second in the forward direction

bw iec104 bytes/s

The sum of APDU lengths per second in the backyard direction

flow packet APDU length max

The maximum value of the APDU lengths

flow packet APDU length min

The minimum value of the APDU lengths

flow packet APDU length mean

Mean of the APDU lengths

flow packet APDU length std

The standard deviation of the APDU lengths

flow packet APDU length var

Variance of the APDU lengths

fw packet APDU length max

The maximum value of the APDU lengths in the forward direction

fw packet APDU length min

The minimum value of the APDU lengths in the forward direction

fw packet APDU length mean

Mean of the APDU lengths in the forward direction

fw packet APDU length std

The standard deviation of the APDU lengths in the forward direction

fw packet APDU length var

The variance of the APDU lengths in the forward direction

bw packet APDU length max

The maximum value of the APDU lengths in the backyard direction

bw packet APDU length min

The minimum value of the APDU lengths in the backyard direction

bw packet APDU length mean

Mean of the APDU lengths in the backyard direction

bw packet APDU length std

The standard deviation of the APDU lengths in the backyard direction

bw packet APDU length var The variance of the APDU lengths in the backyard direction
total flow packets Total flow packets

total fw packets Total flow packets in the forward direction

total bw packets Total flow packets in the backyard direction

flow packets APDU total length The sum of all APDU lengths

fw packets APDU total length The sum of all APDU lengths in the forward direction

bw packets APDU total length

The sum of all APDU lengths in the backyard direction

flow duration

Flow duration in seconds

flow down/up ratio

The fraction between the IEC 60870-5-104 packets in the backyard
direction and the IEC 60870-5-104 packets in the forward direction

flow total IEC104'T Message'S eqlOA packets

The total number of the I-format APCI packets that have more

than one information objects

fw total IEC104'T Message'S eqIlOA packets

The total number of the I-format APCI packets that have more

than one information objects in the forward direction

bw total IEC104'T Message'S eqlOA packets

The total number of the I-format APCI packets that have more

than one information objects in the backyard direction

flow total IEC104'T Message Si ngleIOA packets

The total number of the I-format APCI packets that have

one information object in ASDU

fw total IEC104'T Message'Si ngleIOA packets

The total number of the I-format APCI packets that have

one information object in ASDU in the forward direction

bw total IEC104'T Message Si ngleIOA packets

The total number of the I-format APCI packets that have
one information ohject in ASDU in the backyard direction

flow total IEC104'S’ Message packets

The total number of the S-format APCI packets

fw total IEC104'S’ Message packets

The total number of the S-format APCI packets in the forward
direction
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bw total IEC104°S Message packets

The total number of the S-format APCI packets in the backyard
direction

flow total IEC104 U Message packets

The total number of the U-format APCI packets

fw total IEC104 U Message packets

The total number of the U-format APCI packets in the forward
direction

bw total IEC104"U Message packets

The total number of the U-format APCI packets in the backyard
direction

fw URG flag amount The number of the URG flags in the forward direction
fw PSH flag amount The number of the PSH flags in the forward direction
bw URG flag amount The number of the URG flags in the backyard direction
bw PSH flag amount The number of the PSH flags in the backyard direction

flow SYN flag count

The number of the TCP SYN packets

flow RST flag count

The number of the TCP RST packets

flow PSH flag count

The number of the TCP PSH packets

flow ACK flag count

The number of the TCP ACK packets

flow URG flag count

The number of the TCP URG packets

flow CWE flag count

The number of the TCP CWE packets

flow ECE flag count

The number of the TCP ECE packets

fw subflow packets

The average number of packets in a sub flow in the forward
direction

bw subflow’ packets

The average number of packets in a sub flow in the backward
direction

fw subflow bytes

The average number of bytes in a sub flow in the forward direction

bw subflow bytes

The average number of bytes in a sub flow in the backward direction

flow start timestamp

The timestamp of the flow. It is defined with the first relevant packet.

fw avg bytes/bulk

Average number of bytes bulk rate in the forward direction

bw avg bytes/bulk

Average number of bytes bulk rate in the hackyard direction

fw avg bulk rate

Average number of bulk rate in the forward direction

bw avg bulk rate

Average number of bulk rate in the backyard direction

fw avg packets/bulk

Average number of packets bulk rate in the forward direction

bw avg packets/bulk

Average number of packets bulk rate in the backyard direction

init fw window bytes

The window size of the first packet in the forward direction

init bw window bytes

The window size of the first packet in the backyard direction

fw TCP total header length

The length of the TCP headers in the forward direction

bw TCP total header length

The length of the TCP headers in the backyard direction

The total number of the IEC 60870-5-104 packets where COT = 1

cot=1
(periodic,cyclic)

colen The total number of the IEC 60870-5-104 packets where COT = 2
(background interrogation)

col=3 The total number of the IEC 60870-5-104 packets where COT =3
(spontaneous)

coted The total number of the IEC 60870-5-104 packets where COT = 4
(initialized)

cot=5 The total number of the IEC 60870-5-104 packets where COT =5
(interrogation)

col=6 The total number of the IEC 60870-5-104 packets where COT =6
(activation)
The total number of the IEC 60870-5-104 packets where COT =7

ot (confirmation activation)

cot=3 The total number of the IEC 60870-5-104 packets where COT =8

(deactivation)
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The total number of the IEC 60870-5-104 packets where COT =9

cot=9
(confirmation deactivation)

coto10 The total number of the IEC 60870-5-104 packets where COT = 10
(termination activation)

- The total number of the IEC 60870-5-104 packets where COT = 11
(feedback, caused by distant command})

coteld The total number of the IEC 60870-5-104 packets where COT = 12
(feedback, caused by local command})

I The total number of the IEC 60870-5-104 packets where COT = 13
(COT data transmission)

cot=20 The total number of the IEC 60870-5-104 packets where COT = 20

(interrogated by general interrogation)

type_id_process_information_in_monitor_direction

The total number of the IEC 60870-5-104 packets where TypelD is
in the range 1-40

type_id process_information_in_control direction

The total number of the IEC 60870-5-104 packets where TypelD is
in the range 45- 51

type-id_system-information_in_monitor_direction

The total number of the IEC 60870-5-104 packets where TypelD is
in the range 70

type_id system_information_in_control direction

The total number of the IEC 60870-5-104 packets where TypelD is
in the range 100- 106

type_id parameter_in_control direction

The total number of the IEC 60870-5-104 packets where TypelD is
in the range 110- 113

type_id file transfer

The total number of the IEC 60870-5-104 packets where TypelD is
in the range 120- 126

Label

Attack label




Appendix H

Operational Data/Features of the

Hydropower Plant Scenario

The following table enumerates and describes the operational data/features of the hydropower plant scenario.

TaBLE H.1: Operational Data/Features of the Hydropower Plant Scenario

Feature Description
DE Temperature of DE bearing of the generator
Power Power (active energy) of the plant

Waterlevel | Water level in the upper basin
NDE Temperature of NDE bearing of the generator

nozzles Position of turbine guide vanes in %
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Appendix I

Operational Data/Features of the

Substation Scenario

The following table enumerates and describes the operational data/features of the substation scenario.

TaBLE L.1: Operational Data/Features of the Substation Scenario

Feature Description

FRECUENCY_SOE Frequency (Typical value: 50 Hz)
TEMPERATURE SOE Temperature (Typical value: 25 C)
VOLTAGE SOE Voltage: (Typical value: 230 V)
CURRENT_SOE Current: (Typical value: 100 A)
APPARENT POWER SOE | VOLTAGE_SCOE » CURRENT_SOE
ACTIVE_POWER _SOE Active Power
REACTIVEPOWER_SOE Reactive Power

TRAFOS POSITION_SOE Trafos position
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Appendix ]

Operational Data/Features of the Power

Plant Scenario

The following table enumerates and describes the operational data/features of the power plant scenario.

TaBLE J.1: Operational Data/Features of the Power Plant Scenario

Feature Description

24V Batteries 24 V Batteries voltage
60V Batteries 60 V Batteries voltage
Generator Speed Generator motor speed
Gen Motor Voltage Generator motor voltage
Gen Motor Current Generator motor current
Exc Motor Voltage Exciter motor voltage
Exc Motor Current Exciter motor current

Incom Cooling Water | Temperature of incoming cooling water

Gen Status Winding? | Temperature of generator winding at point 2

Gen Outlet Air Temperature of outlet air

Exc Set Bearing?2 Temperature of exciter winding at point 2

Grid Phase R Indicates that voltage exists on the L1 phase

Grid Phase § Indicates that voltage exists on the L2 phase

Grid Phase T Indicates that voltage exists on the L3 phase

Main MG Nn The generator has acquired rated rounds per minutes (rpms)
Exc MG Nn The exciter has acquired rated rpms

Overvolt Main Gen Indicates that overvoltage on the main generator exists
Overcur Main Gen Indicates that overcurrent on the main generator exists
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Appendix K

Operational Data/Features of the Smart

Home Scenario

The following table enumerates and describes the operational data/features of the smart home scenario.

TaBLE K.1: Operational Data/Features of the Smart Home Scenario

Feature Description

PinPhL1 Frequency (Input Apparent Power Line 1{VA)
PinPhL2 Input Apparent Power Line 2 (VA)
PinPhL3 Input Apparent Power Line 3 (VA)
PoutPhL1 Output Apparent Power Line 1 (VA)
PoutPhL2 Output Apparent Power Line 2 (VA)
PoutPhL3 Output Apparent Power Line 2 (VA)
VoutPhL1 Voltage Line 1 (V)

VoutPhL2 Voltage Line 2 (V)

VoutPhL3 Voltage Line 3 (V)

PsetPhL1 ESS power setpoint phase 1 (W)
PsetPhL2 ESS power setpoint phase 2 (W)
PsetPhL3 ESS power setpoint phase 3 (W)
Ein3Ph MG 3 Phase Energy Flow (kWh)
ESS DC_Quarter kWh | ESS DC Energy Flow (kWh)
ChargeFlag ESS disable charge flag phase (-)
FeedbackFlag ESS disable feedback flag phase (-)
Vde Battery Voltage (V)

BattVolt Battery Voltage (MasterVolt) (V)
AoutPhL1 Amperage Line 1 (A)

AoutPhL2 Amperage Line 2 (A)

AoutPhL3 Amperage Line 3 (A)

AinLimit Input Amperage Limit (A)

Ade Battery Amperage (A)

BattAmp Battery Amperage (MasterVolt) (A)
SoC State Of Charge (%))

BattSoC State Of Charge (MasterVolt) (%)
Fout Frequency (Hz)
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State VE Bus State

SwitchPos Switch Position

CapacityCons Capacity Consumed {Mastervolt) (Ah)
BattTemp Battery Temperature (Mastervolt)(oC)
TempAlarm High Temperature Alarm
LowBatAlarm Low Battery Alarm

OverLoAlarm Overload Alarm

VEBusError VE Bus Error




Appendix L

IEC 61850 (GOOSE) Flow Statistics

The following table enumerates and describes the GOOSE statistics used by the GOOSE Intrusion Detection Model described in Chapter 5.

TaBLE L.1: GOOSE Flow Statistics

Feature Description
flow ID ID of the flow
source MAC The source MAC address of the flow, according to the first packet
destination MAC The destination MAC address of the flow, according to the first packet
date Timestamp of the first relevant packet
duration Duration of the flow
TotalFwdPkts Total GOOSE packets sent in the forward direction
TotalBwdPkts Total GOOSE packets sent in the hackyard direction
TotLenfwd The total length of the GOOSE packets sent in the forward direction
TotLenbwd The total length of the GOOSE packets sent in the backyard direction

The maximum value of the GOOSE payload size observed in the GOOSE
fwdPktLenMAX

packets in the forward direction

The minimum value of the GOOSE payload size observed in the GOOSE
fwdPktLenMIN ) .

packets in the forward direction

The mean of the GOOSE payload size observed in the GOOSE packets in
fwdPktLenMEAN .

the forward direction

The standard deviation of the GOOSE payload size observed in the GOOSE
fwdPktLenSTD . -

packets in the forward direction

The maximum value of the GOOSE payload size observed in the GOOSE
bwdPktLenMAX ) o

packets in the backyard direction

The minimum value of the GOOSE payload size observed in the GOOSE
bwdPktLenMIN ) o

packets in the backyard direction

The mean of the GOOSE payload size observed in the GOOSE
bwdPktLenMEAN ] T

packets in the backyard direction

The standard deviation of the GOOSE payload size observed in the GOOSE
bwdPktLenSTD . N

packets in the backyard direction
flowBytes/sec GOOSE payload bytes per second transmitted in a flow
FlowPkts/sec GOOSE payload packets per second transmitted in a flow
FlowIAT MEAN Mean of the GOOSE packets interarrival time
FlowlAT'STD Standard deviation of the GOOSE packets interarrival time
FlowIAT' MAX The maximum value of the GOOSE packets interarrival time
FlowIAT MIN The minimum value of the GOOSE packets interarrival time
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TotalFwdlAT Total number of the GOOSE packets interarrival time in the forward direction
fwdlAT"MEAN Mean of the GOOSE packets interarrival time in the forward direction
. Standard deviation of the GOOSE packets interarrival time in the forward
fwdlAT STD N
direction
. The maximum value of the GOOSE packets interarrival time in the forward
fwdlAT MAX
direction
. The minimum value of the GOOSE packets interarrival time in the forward
FwdI AT MIN -
direction
TotalBwdlAT Total number of the GOOSE packets interarrival time in the backyard direction
bwdIAT MEAN Mean of the GOOSE packets interarrival time in the backyard direction
_ Standard deviation of the GOOSE packets interarrival time in the backyard
bwdIAT'STD o
direction
. The maximum value of the GOOSE packets interarrival time in the backyard
bwdIAT MAX -
direction
. The minimum value of the GOOSE packets interarrival time in the backyard
bwdIAT MIN o
direction
fwdHdrLen Sum of the GOOSE header in the forward direction
bwdHdrLen Sum of the GOOSE header in the backyard direction
fwdPkts/sec Number of packets transmitted per second in the forward direction
bwdPkts/sec Number of packets transmitted per second in the backyard direction
pktLenMEAN Mean of the GOOSE payload
pktLenMIN The minimum value of the GOOSE payload
pktLenMAX The maximum value of the GOOSE payload
pktLenSTD The standard deviation of the GOOSE payload
pktLenVAR The variance of the GOOSE payload
ActiveMEAN Time-mean where the flow was active before becoming idle
ActiveSTD The standard deviation where the flow was active before becoming idle
ActiveMAX The maximum time where the flow was active before becoming idle
ActiveMIN The minimum time where the flow was active before becoming idle
IdleMEAN Time-mean where the flow was idle
IdleSTD The standard deviation where the flow was idle
IdleMAX The maximum time where the flow was idle
IdleMIN The minimum time where the flow was idle

Data_Change Cnt

The minimum time where the flow was idle

Data_Change TAT mean

The mean interarrival time where the GOOSE dataset’s values were changed

Data_Change TAT std

The interarrival time standard deviation where the GOOSE dataset’s values

were changed

Data_Change IAT max

The maximum interarrival time where the GOOSE dataset’s values where

changed

Data_Change TAT min

The minimum interarrival time where the GOOSE dataset’s values where

changed

DataSet_Conf Change Cnt

How many times the GOOSE dataset configuration was changed

DataSet_Conf Change TAT mean

The mean interarrival time where the GOOSE dataset configuration was

changed

DataSet Conf Change TAT std

The interarrival time standard deviation where the GOOSE dataset

configuration was changed

DataSet_Conf Change TAT max

The maximum interarrival time where the GOOSE dataset configuration

was changed

DataSet_Conf Change TAT min

The minimum interarrival time where the GOOSE dataset configuration was

changed

GOOSE_msg_Cnt

How many GOOSE messages were transmitted

GOOSE_msg TAT mean

Mean interarrival time of the GOOSE messages
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GOOSE_msg IAT std

The interarrival time standard deviation of the GOOSE messages

GOOSE _msg TAT max

The maximum interarrival time of the GOOSE messages

GOOSE_msg TAT _min

The minimum interarrival time of the GOOSE messages

DataSet_Entries_mean Mean of dataset entries
DataSet_Entries_max The maximum number of the dataset entries
DataSet_Entries_min The minimum number of the dataset entries

numGooMSGS_b4_datset_change_mean

Mean of GOOSE messages before the change of the GOOSE dataset

numGooMSGS_b4_datset_change max

The maximum number of GOOSE messages before the change of the GOOSE
dataset

numGooMSGS_b4_datset_change_min

The minimum number of GOOSE messages before the change of the GOOSE
dataset

numGooMSGS_b4_datset_change_std

The standard deviation of the GOOSE messages before the change of the
GOOSE dataset

invalid APPID_count

The number of packets with the invalid APP ID

GBlock needs_configuration_count

Count of ndsComm changes

Label

Attack label




Appendix M

NF-IDPS Evaluation Results

The following tables present the ML/DL comparative analysis related to the intrusion and anomaly detection models of NF-IDPS.

TaBLE M.1: Comparative Evaluation Results of Modbus/TCP Intrusion Detection Model

Classification Problem Multi-Class Classification
Dataset I\.flo dl.)us/TCP Ifltrusif)n Detection Dataset
(it will be published in IEEE Dataport and Zenodo)
Features Appendix E
Training Dataset Size 70%
Testing Dataset Size 30%
ML/DL Method ACC TPR FPR F1
Logistic Regression 0.943 0.603 0.030 0.603
LDA 0.943 0.604 0.030 0.604
Decision Tree Classifier 0.964 0.749 0.019 0.749
Naive Bayes 0.928 0.497 0.038 0.497
SVM RBF 0.918 0.426 0.044 0.426
SVM Linear 0.921 0.433 0.042 0.433
Random Forest 0.947 0.633 0.028 0.633
MLP 0.938 0.570 0.033 0.570
Adaboost 0.887 0.214 0.060 0.214
Quadratic Discriminant Analysis | 0.941 0.593 0.031 0.593
Dense DNN Relu 0.945 0.619 0.029 0.619
Dense DNN Tanh 0.945 0.619 0.029 0.619

TaBLE M.2: Comparative Evaluation Results of Modbus/TCP Anomaly Detection Model

Classification Problem | Outlier/Novelty Detection
Modbus/TCP Intrusion Detection Dataset

Dataset
(it will be published in IEEE Dataport and Zenodo)
Features Appendix E
Training Dataset Size 70%
Testing Dataset Size 30%
ML/DL Method ACC TPR FPR F1
ABOD 0.949 0.999 0.100 0.951
Isolation Forest 0.950 0.999 0.099 0.952
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PCA 0.540 0.846 0.567 0.488
MCD 0.948 0.999 0.102 0.950
LOF 0.947 0.999 0.104 0.950
Autoencoder 0.930 0.999 0.099 0.932

TaBLE M.3: Comparative Evaluation Results of DNP3 Intrusion Detection Model

Classification Problem Multi-Class Classification
Dataset DNP3 Intrusion Detection Dataset

(it will be published in IEEE Dataport and Zenodo)
Features Appendix F
Training Dataset Size 70%
Testing Dataset Size 30%
ML/DL Method ACC TPR FPR F1
Logistic Regression 0.756 7567 0.030 0.750
LDA 0.702 0.702 0.037 0.687
Decision Tree Classifier 0.959 0.959 0.005 0.959
Naive Bayes 0.683 0.683 0.039 0.649
SVM RBF 0.690 0.690 0.038 0.651
SVM Linear 0.651 0.651 0.043 0.580
Random Forest 0.708 0.708 0.036 0.692
MLP 0.706 0.706 0.036 0.663
Adaboost 0.222 0.222 0.097 0.111
Quadratic Discriminant Analysis | 0.716 0.716 0.035 0.660
Dense DNN Relu 0.735 0.733 0.030 0.737
Dense DNN Tanh 0.755 0.755 0.030 0.734

TaBLE M.4: Comparative Evaluation Results of DNP3 TCP/IP Intrusion Detection Maodel

Classification Problem Multi-Class Classification
Dataset DNP3 Intrusion Detection Dataset

(it will be published in IEEE Dataport and Zenodo)
Features Appendix E
Training Dataset Size 70%
Testing Dataset Size 30%
ML/DL Method ACC TPR FPR F1
Logistic Regression 0.490 0.490 0.050 0.444
LDA 0.627 0.627 0.037 0.612
Decision Tree Classifier 0.797 0.797 0.020 0.782
Naive Bayes 0.690 0.683 0.030 0.655
SVM RBF 0.554 0.554 0.044 0.500
SVM Linear 0.593 0.593 0.040 0.523
Random Forest 0.726 0.726 0.027 0.672
MLP 0.475 0.475 0.052 0.423
Adaboost 0.272 0.272 0.072 0.168
Quadratic Discriminant Analysis | 0.090 0.090 0.090 0.015
Dense DNN Relu 0.584 0.584 0.041 0.539
Dense DNN Tanh 0.552 0.552 0.044 0.505
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TaBLE M.5: Evaluation Results of DNP3 TCP/IP Anaomaly Detection Model

Classification Problem | Outlier/Novelty Detection
Dataset DNP3 Intrusion Detection Dataset

(it will be published in IEEE Dataport and Zenodo)
Features Appendix E
Training Dataset Size 70%
Testing Dataset Size 30%
ML/DL Method ACC TPR FPR F1
ABOD 0.951 0.999 0.097 0.933
Isolation Forest 0.950 0.999 0.098 0.953
PCA 0.300 0.000 0.000 0.000
LOF 0.942 0.999 0.114 0.945
MCD 0.946 0.999 0.107 0.949
Autoencoder 0.948 0.999 0.104 0.950

TaBLE M.6: Comparative Evaluation Results of TEC 60870-5-104 Intrusion Detection Maodel

Classification Problem Multi-Class Classification
Dataset IEC 60870-5-104 Intrusion Detection Dataset
({Available in IEEE Dataport and Zenodo)
Features Appendix G
Training Dataset Size 70%
Testing Dataset Size 30%
ML/DL Method ACC TPR FPR F1
Logistic Regression 0.622 0.622 0.034 0.605
LDA 0.618 0.618 0.034 0.605
Decision Tree Classifier 0.831 0.831 0.015 0.825
Naive Bayes 0.558 0.338 0.040 0.474
SVM RBF 0.553 0.553 0.040 0.450
SVM Linear 0.508 0.308 0.044 0.4144
Random Forest 0.664 0.664 0.030 0.647
MLP 0.590 0.390 0.037 0.370
Adaboost 0.250 0.250 0.068 0.181
Quadratic Discriminant Analysis | 0.608 0.608 0.035 0.534
Dense DNN Relu 0.642 0.642 0.032 0.398
Dense DNN Tanh 0.576 0.576 0.038 0.517

TasLE M.7: Comparative Evaluation Results of IEC 60870-5-104 TCP/IP Intrusion Detection Maodel

Classification Problem Multi-Class Classification

Dataset IEC 60870-5-104 Intrusion Detection Dataset
({Available in IEEE Dataport and Zenodo)

Features Appendix E

Training Dataset Size 70%

Testing Dataset Size 30%

ML/DL Method ACC TPR FPR F1

Logistic Regression 0.900 0.602 0.056 0.602

LDA 0.904 0.619 0.054 0.619

Decision Tree Classifier 0.953 0.815 0.026 0.815

Naive Bayes 0.833 0.421 0.082 0.421
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SVM RBF 0.553 0.413 0.083 0.413
SVM Linear 0.543 0.373 0.089 0.375
Random Forest 0.918 0.672 0.046 0.672
MLP 0.904 0.619 0.054 0.619
Adaboost 0.543 0.375 0.089 0.375
Quadratic Discriminant Analysis | 0.899 0.598 0.057 0.598
Dense DNN Relu 0.909 0.636 0.051 0.636
Dense DNN Tanh 0.916 0.664 0.047 0.664

TaBLE M.&: Comparative Evaluation Results of [EC 60870-5-104 TCP/IP Anomaly Detection Model

Classification Problem | Outlier/Novelty Detection
IEC 60870-5-104 Intrusion Detection Dataset

Dataset (Available in IEEE Dataport and Zenodo)
Features Appendix E

Training Dataset Size 70%

Testing Dataset Size 30%

ML/DL Method ACC TPR FPR F1
ABOD 0.947 0.999 0.105 0.949
Isolation Forest 0.950 0.999 0.094 0.955
PCA 0.500 0.000 0.000 0.000
LOF 0.949 0.999 0.101 0.951
MCD 0.880 0.857 0.097 0.877
Autoencoder 0.881 0.852 0.089 0.877

TaBLE M.9: Comparative Evaluation Results of GOOSE Intrusion Detection Model

Classification Problem Multi-Class Classification

Dataset Synthesized Dataset: P.P. Biswas et al. in [25]
Features Appendix L

Training Dataset Size 70%

Testing Dataset Size 30%

ML/DL Method ACC TPR FPR F1
Logistic Regression 0.351 0.351 0.162 0.272
LDA 0.433 0.433 0.141 0.368
Decision Tree Classifier 0.406 0.406 0.148 0.389
Naive Bayes 0.228 0.228 0.192 0.108
SVM REBF 0.371 0.371 0.157 0.279
SVM Linear 0.843 0.375 0.089 0.375
Random Forest 0.359 0.359 0.160 0.275
MLP 0.355 0.355 0.161 0.279
Adaboost 0.387 0.387 0.153 0.286
Quadratic Discriminant Analysis | 0.203 0.203 0.199 0.187
Dense DNN Relu 0.375 0.375 0.156 0.301
Drense DNN Tanh 0.368 0.368 0.157 0.311

TaBLE M.10: Comparative Evaluation Results of MMS TCP/IP Anomaly Detection Model

Classification Problem | Outlier/Novelty Detection
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Dataset Synthetic data from the SPEAR project
Features Appendix E

Training Dataset Size 70%

Testing Dataset Size 30%

ML/DL Method ACC TPR FPR F1
ABOD 0.968 0.999 0.064 0.963
Isolation Forest 0.971 0.999 0.058 0.971
PCA 0.500 0.000 0.000 0.000
LOF 0.955 0.999 0.090 0.936
MCD 0.977 0.999 0.045 0.977
Autoencoder 0.972 0.999 0.056 0.9727

TaBLE M.11: Comparative Evaluation Results of HTTP TCP/IP Intrusion Detection Model

Classification Problem Multi-Class Classification
Dataset CSE-CIC-IDS2018
Features Appendix E

Training Dataset Size 70%

Testing Dataset Size 30%

ML/DL Method ACC TPR FPR F1
Logistic Regression 0.937 0.844 0.038 0.844
LDA 0.946 0.866 0.033 0.866
Decision Tree Classifier 0.964 0.911 0.026 0.911
Naive Bayes 0.878 0.696 0.073 0.696
5VM RBF 0.908 0.770 0.057 0.770
5VM Linear 0.928 0.822 0.044 0.822
Random Forest 0.922 0.807 0.048 0.807
MLP 0.940) 0.851 0.037 0.851
Adaboost 0.760 0.400 0.150 0.400
Quadratic Discriminant Analysis | 0.911 0.777 0.055 0.777
Dense DNN Relu 0.940) 0.851 0.037 0.851
Dense DNN Tanh 0.940 0.851 0.0370 0.851

TaBLE M.12: Comparative Evaluation Results of HTTP TCP/TP Anomaly Detection Maodel

Classification Problem | Outlier/Anomaly Detection

Dataset CSE-CIC-ID52018
Features Appendix E

Training Dataset Size 70%

Testing Dataset Size 30%

ML/DL Method ACC TPR FPR F1
ABOD 0.577 0.571 0.416 0.558
Isolation Forest 0.833 0.948 0.281 0.850
PCA 0.596 0.592 0.400 0.581
MCD 0.719 0.545 0.106 0.660
LOF 0.946 0.954 0.058 0.938

DIDEROT Autoencoder 0.934 0927 0.061 0.902
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TaBLE M.13: Comparative Evaluation Results of SSH TCP/IP Intrusion Detection Maodel

Classification Problem Multi-Class Classification
Dataset CSE-CIC-IDS2018
Features Appendix E

Training Dataset Size 70%

Testing Dataset Size 30%

ML/DL Method

ACC TPR FPR F1

Logistic Regression

0.859 0.750 0.058 0.821

LDA

0.945 0.920 0.038 0.928

Decision Tree Classifier

0.960 0.958 0.038 0.955

Naive Bayes

0.823 0.741 0.154 0.640

SVM RBF

0.837 0.660 0.339 0.788

SVM Linear

0.799 0.843 0.307 0.307

Random Forest

0.955 0.903 0.009 0.942

MLP

0.903 0.841 0.010 0.910

Adaboost

0.950 0.890 0.010 0.934

Quadratic Discriminant Analysis

0.300 0.500 0.250 0.666

Dense DNN Relu

0.916 0.985 0.014 0.906

Dense DNN Tanh

0.916 0.836 0.011 0.904

TaBLE M.14: Comparative Evaluation Results of SSH TCP/IP Anomaly Detection Model

Classification Problem | Outlier/Anoamly Detection

Dataset CSE-CIC-ID52018
Features Appendix E

Training Dataset Size 70%

Testing Dataset Size 30%

Classification Problem | Outlier/Novelty Detection
ML/DL Method ACC TPR FPR F1
ABOD 0.935 0.870 0.013 0922
Isolation Forest 0.943 0.901 0.013 0.941
PCA 0.701 0.596 0.247 0564
MCD 0.937 0.970 0.050 0.944
LOF 0.925 0.913 0.066 0.909

DIDEROT Autoencoder 0.946 0.954 0.058 0.938




Appendix N

H-IDPS Evaluation Results

The following tables present the ML/DL comparative analysis related to the anomaly detection models of H-IDPS.

TaBLE N.1: Operational Data Based Anomaly Detection Model — Hydropower Plant Use Case.

Classification Problem | Outlier/Novelty Detection

Data Type Oprational Data - Hydropower Plant Use Case
Features Appendix H

Training Dataset Size 70%

Tesing Dataset Size 30%

ML/DL Method ACC TPR FPR F1
ABOD 0.581 0.993 0.522 0.487
Isolation Forest 0.716 0.948 0.341 0.572
PCA 0.745 0.978 0.312 0.606
MCD 0.733 0.210 0.135 0.240
LOF 0.379 0.996 0.325 0.486
ARIES GAN 0.746 0.978 0.311 0.607

TaBLE N.2: Operational Data Based Anomaly Detection Model — Substation Use Case.

Classification Problem | Outlier/Novelty Detection

Data Type Operational Data - Substation Use Case
Features Appendix I

Training Dataset Size 70%

Tesing Dataset Size 30%

ML/DL Method ACC TPR FPR F1
ABOD 0.839 0.995 0.200 0.713
Isolation Forest 0.850 0.951 0.175 0.718
PCA 0.847 0.961 0.181 0.716
MCD 0.822 0.991 0.220 0.691
LOF 0.873 0.993 0.157 0.759
ARIES GAN 0.840 0.961 0.189 0.708
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TaBLE N.3: Operational Data Based Anomaly Detection Maodel — Power Plant Use Case.

Classification Problem | Outlier/Novelty Detection

Data Type Operational Data - Power Plant Use Case
Features Appendix J

Training Dataset Size 70%

Tesing Dataset Size 30%

ML/DL Method ACC TPR FPR F1
ABOD 0.692 0.989 0.397 0.600
Isolation Forest 0.813 0.960 0.231 0.705
PCA 0.851 0.982 0.187 0.735
MCD 0.715 0.299 0.158 0.329
LOF 0.529 0.992 0.220 0.730
ARIES GAN 0.851 0.982 0.188 0.735

TaBLE N.4: Operational Data Based Anomaly Detection Model — Smart Home Use Case.

Classification Problem | Outlier/Novelty Detection

Data Type Operational Data - Smart Home Use Case
Features Appendix K

Training Dataset Size 70%

Tesing Dataset Size 30%

ML/DL Method ACC TPR FPR F1
ABOD 0.649 0.668 0.362 0.597
Isolation Forest 0.769 0.976 0.279 0.615
PCA 0.859 0.976 0.167 0.724
MCD 0.729 0.992 0.332 0.581
LOF 0.690 0.735 0.344 0.676

ARIES GAN 0.859 0.976 0.167 0.725
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