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Abstract—The rapid progression of the Internet of Things
allows the seamless integration of cyber and physical environ-
ments, thus creating an overall hyper-connected ecosystem. It
is evident that this new reality provides several capabilities
and benefits, such as real-time decision-making and increased
efficiency and productivity. However, it also raises crucial cy-
bersecurity issues that can lead to disastrous consequences due
to the vulnerable nature of the Internet model and the new
cyber risks originating from the multiple and heterogeneous
technologies involved in the IoT. Therefore, intrusion detection
and prevention are valuable and necessary mechanisms in the
arsenal of the IoT security. In light of the aforementioned
remarks, in this paper, we introduce an Artificial Intelligence
(AI)-powered Intrusion Detection and Prevention System (IDPS)
that can detect and mitigate potential IoT cyberattacks. For
the detection process, Deep Neural Networks (DNNs) are used,
while Software Defined Networking (SDN) and Q-Learning are
combined for the mitigation procedure. The evaluation analysis
demonstrates the detection efficiency of the proposed IDPS,
while Q-Learning converges successfully in terms of selecting
the appropriate mitigation action.

I. INTRODUCTION

Although the Internet of Things (IoT) started as a conceptual
viewpoint regarding remote monitoring and pervasive control,
it has revolutionised the interconnection between the cyber
and physical environments, thus forming a hyper-connected
ecosystem with several benefits, such as enhanced efficiency,
cost savings and environmental sustainability [1]. In particular,
nowadays, IoT is composed of several and heterogeneous
technology enablers that are seamlessly integrated into various
industrial sectors, such as energy, healthcare and transporta-
tion. However, this evolution raises critical security risks that
can lead to devastating effects, especially in critical domains,
as those mentioned before. In particular, first, IoT relies on the
conventional Internet model, which is characterised by severe
cybersecurity issues [2]. On the other hand, IoT includes
various technologies that introduce their own vulnerabilities.
Finally, it is worth mentioning that IoT applications can gather
and collect sensitive data, which is an attractive goal for po-
tential cybercriminals and Advanced Persistent Threat (APT)

campaigns [3]. Characteristic examples of APT campaigns that
target IoT ecosystems are Indstroyer, Dragonfly and
APT28.

Therefore, it is evident that the presence of intrusion de-
tection and prevention mechanisms plays a pivotal role in
safeguarding IoT environments. Their goal is to detect and
mitigate potential malicious activities in real-time, thus allow-
ing the organisations to maintain the normal operation of their
environments in terms of the principal security requirements,
such as (a) confidentiality, (b) integrity and (c) availability. The
first intrusion detection model was defined by D. Denning in
1987 [4]. In particular, there are two main intrusion detection
techniques: (a) signature/specification-based detection and (b)
anomaly-based detection [5]. The first technique adopts pre-
defined rules that can be used to detect malicious patterns. On
the other hand, anomaly-based detection relies on statistical
analysis and Artificial Intelligence (AI) that can identify poten-
tial anomalies. On the one hand, signature/specification-based
detection is more accurate but cannot discriminate zero-day
attacks and unknown anomalies. Finally, such mechanisms can
activate mitigation measures, such as firewall rules, in order
to mitigate a potential cyberattack after its detection [6].

In light of the aforementioned remarks, in this paper, we
introduce an AI-powered Intrusion Detection and Prevention
System (IDPS) that can detect and mitigate potential cy-
berattacks against IoT environments. For this purpose, Deep
Neural Networks (DNNs) are utilised for the detection process,
while Software-Defined Networking (SDN) and Q-Learning
are combined to mitigate the potential attacks. In particular, for
the detection process, Multi-Layer Perceptron (MLP) models
are trained with the CIC IoT Dataset 2022 [7], select-
ing the model with the best detection efficiency. A particular
emphasis is given to two cyberattacks: Flood attacks and
Real Time Streaming Protocol (RTSP) bruteforce attacks. On
the other hand, given an SDN environment, a Q-Learning
agent is used to indicate to the SDN Controller (SDN-C) the
appropriate mitigation action.

The rest of this paper is organised as follows. Section II



discusses similar works in this field. Section III introduces
the architecture of the proposed IDPS. Next, section IV
emphasises on the detection process, while section V focuses
on the mitigation mechanisms. In section VI, the evaluation
results are presented. Finally, section VII concludes this paper.

II. RELATED WORK

Several works have already investigated the security issues
of IoT. First, some indicative and comprehensive survey papers
in this field are summarised, while next, we focus on IDPS for
IoT applications. In particular, in [2], the authors analyse the
security and privacy issues of IoT, following a four-layered
IoT architecture. Similarly, in [8], I. Makhdoom provide an
anatomy of IoT threats. In [9], B. R. Zarpelao et al. provide
a survey paper about intrusion detection in IoT. In [10],
the authors focus on Machine Learning (ML)-based intrusion
detection for IoT. In [11], E. F. Jesus et al. introduce a detailed
analysis about how blockchain can be used to secure IoT. In
[12], I. Farris et al. investigate SDN and Network Function
Virtualisation (NFV)-enabled security mechanisms for the IoT.
Finally, in [13] J. Franco et al. introduce a survey of honeypots
and honeynets for IoT and industrial IoT. Therefore, based on
the aforementioned remarks, it is evident that security is one
of the most critical aspects of the IoT lifecycle.

In [14], X. Liu et al. present a specification-based Intru-
sion Detection System (IDS) that focuses on securing smart
meter communications. The authors begin by introducing an
information model for smart meter modules using Coloured
Petri Net (CPN). They also define a threat model, which
encompasses two main classes of attacks: (a) data attacks
and (b) command attacks. Subsequently, they propose an
IDS specifically targeting false data injection attacks. The
architectural design of this IDS consists of three modules: (a)
Secret Information, (b) Event Log, and (c) Spying Domain.
The Secret Information module is a private data structure
accessible through legitimate actions and is used to encrypt
the Event Log, which stores activities related to the smart
meters. The Spying Domain comprises random storage areas
containing hash codes of the Secret Information. Whenever
a malicious user attempts to access the storage units of the
Event Log or the Spying Domain, a security alert is generated.
The effectiveness of the proposed IDS is demonstrated through
evaluation diagrams showcasing the True Positive Rate (TPR).

M. Attia et al. developed a specification-based IDS for
Advanced Metering Infrastructure (AMI) in their work [15].
The IDS incorporates temporal and spatial detection methods
and specifically focuses on detecting blackhole and time delay
attacks. A blackhole attack is a type of Denial-of-Service
(DoS) attack, while a time delay attack aims to introduce
additional time during the transmission of network packets.
The security specifications of the IDS are defined based on
the number of transmitted packets and the delay time between
them. This involves calculating the mean value and standard
deviation of a Gaussian distribution. The authors showcase the
efficiency of their proposed method by comparing it with three
other methods: (a) spatial-based method, (b) temporal-based

method, and (c) SVM classifier. While the SVM classifier
achieves the best True Positive Rate (TPR), the proposed IDS
performs the best in terms of False Positive Rate (FPR).

In [16], the authors provide an AI-based IDPS with a
self-learning mechanism. The proposed IDPS is composed of
three modules: (a) Network Flow Monitoring and Collection
Module, (b) Intrusion Detection Engine and (c) Notification
and Response Module. The first module is responsible for col-
lecting the network traffic data and generating flow statistics.
The second module uses pre-trained AI models in order to
detect potential attacks against Hypertext Transfer Protocol
(HTTP) and Modbus/Transmission Control Protocol (TCP).
Moreover, this module includes an active learner that allows
the re-training process in a dynamic manner. Finally, the
Notification and Response Module generates the correspond-
ing security events based on the detection outcomes of the
Intrusion Detection Engine.

In [17], T. Xing et al. introduce a Software-Defined Net-
working (SDN) based Intrusion Prevention System (IPS),
SDNIPS, which is comprised of four key components: a Snort
module, an SDNIPS daemon, an alert interpreter, and a rule
generator. This system identifies potential cyber threats and
transforms this information into JSON format for the SDN
controller. The alert interpreter then parses this data for rele-
vant information, while the rule generator creates OpenFlow
entries for integration into Open vSwitch flow tables. The
researchers establish the effectiveness of SDNIPS by simu-
lating two Denial of Service (DoS) attacks and comparing it
against a traditional IPS that relies on iptables, demonstrating
that SDNIPS outperforms the conventional system under high
network traffic conditions.

H. Lin [18] proposes an SDN-based in-network honeypot
that mitigates cyberattacks using two methods. First, it isolates
attackers by disrupting their communication with legitimate
nodes. Second, it employs network communication spoofing
via phantom nodes to deceive attackers and gather information.
Initially, the SDN controller identifies and isolates malicious
nodes by disrupting their communication. Then, it establishes
communication with the attacker using spoofed IP addresses.
Network packet content is modified at the network and appli-
cation layers using statistical and physical models.

Undoubtedly, the previous works provide useful solutions
and methodologies. In particular, it is obvious that many
researchers try to take full advantage of AI in terms of
ML and Deep Learning (DL) methods in order to detect
potential attacks. It is worth mentioning that despite the fact
that both ML and DL-based intrusion detection mechanisms
can be characterised by potential alarms, the authors continue
investigating and actively working on such solutions with the
goal to minimise the generalisation error by optimising the
training procedure. On the other hand, there are not a lot of
papers that investigate how AI can be used to identify the
optimal mitigation strategy in a cyberdefence game. In this
work, we aim to cover this gap by combining SDN and Q-
Learning based on the detection outcomes of a pre-trained
DNN.



Fig. 1. Architecture of the Proposed IDPS

III. ARCHITECTURE OF THE PROPOSED INTRUSION
DETECTION AND PREVENTION SYSTEM

As illustrated in Fig. III, the architecture of the proposed
IDPS consists of four main modules, namely: (a) Network
Traffic Monitoring Module, (b) Flow Statistics Module, (c)
Detection Engine and (d) Mitigation and Response Mod-
ule. The first module uses Tshark in order to capture
the network traffic data. To this end, this module receives
the overall network traffic through a Switched Port Anal-
yser (SPAN) (i.e., port mirroring). SPAN is a feature in
network switches that allows monitoring and analysis of
network traffic. It duplicates specific switch ports or Vir-
tual Local Area Network (VLAN) traffic to a monitoring
device for troubleshooting, security monitoring, and perfor-
mance analysis without affecting normal network flow. Next,
the Flow Statistics Module receive the network traffic data
(i.e., pcap files) and generates TCP/Internet Protocol (IP)
bidirectional flow statistics, utilising both CICFlowMeter
and NFStream. CICFlowMeter, previously referred to as
ISCXFlowMeter, is a tool used for generating and analysing
Ethernet traffic bidirectional flows to detect abnormalities. It
has been widely utilised in various cybersecurity datasets. On
the other hand, NFStream is a Python package that offers
efficient and adaptable data structures for seamless handling
of online or offline network flow analysis. Next, based on
the flow statistics from CICFlowMeter and NFStream,
the Detection Engine uses pre-trained MLPs in order to
detect potential attacks. In particular, MLP is a type of a
neural network with multiple interconnected layers of nodes.
It uses weights and activation functions to process input data

and make predictions. Finally, the Mitigation and Response
Module receives the detection outcomes and guides the SDN-
C to execute the appropriate network-related mitigation action.
In our case, Ryu is used as SDN-C. The decisions of the
Mitigation and Response Module rely on a Q-Learning agent
trained offline. More details about the detection and mitigation
processes are provided in the following actions.

IV. DETECTION OF IOT CYBERATTACKS

As mentioned, for the detection process, MLP networks
are used. MLP is a feedforward neural network, meaning
that information flows in one direction, from the input layer
through the hidden layers to the output layer. Each neuron in
an MLP receives inputs, which are multiplied by correspond-
ing weights and passed through an activation function. The
activation function introduces non-linearity into the network
and helps the MLP model complex relationships in the data.
The weighted inputs are summed at each neuron, and the
result is passed through the activation function to produce
the output. MLPs are typically organised into an input layer,
one or more hidden layers, and an output layer. The hidden
layers contain one or more layers of neurons between the input
and output layers. Each neuron in the hidden layers receives
inputs from the previous layer and produces outputs for the
next layer. The training process of an MLP involves adjusting
the weights of the connections between neurons to minimise
the error between the predicted output and the desired output.
This is typically done using backpropagation, an iterative
optimisation algorithm that updates the weights based on the
calculated error. As illustrated in Fig. 2-Fig. 4, three MLPs are
investigated in our case with two, three and four hidden layers.



In the first case, with two hidden layers, each hidden layer has
30 neurons. In the second case, with three hidden layers, each
hidden layer has 60 neurons. Finally, in the last case, with
four hidden layers, each hidden layer has 80 neurons. Based
on several experiments, ReLu (Equation 1) is used between
the hidden layers, while Softmax (Equation 2) is used in each
output layer. Finally, all MLPs are trained with the CIC IoT
Dataset 2022 in terms of discriminating three classes: (a)
Normal, (b) Flood and (c) RSTP bruteforce. For each of them,
the Mean Squared Error (MSE) (Equation 3) is used as a loss
function for the training procedure.

ReLU(x) = max(0, x) (1)

Softmax(xi) =
exi∑n
j=1 e

xj
(2)

where: Softmax(xi) represents the softmax value for the
i-th element of the vector. xi is the input value for the i-th
element of the vector. n is the total number of elements in the
vector.

MSE =
1

n

n∑
i=1

(yi − ȳ)2 (3)

where: n is the total number of data points. yi denotes the
actual value of the i-th data point. ȳ represents the predicted
value of the i-th data point.

Fig. 2. MLP with Two Hidden Layers

Fig. 3. MLP with Three Hidden Layers

Fig. 4. MLP with Four Hidden Layers

V. MITIGATION OF IOT CYBERATTACKS

The Mitigation and Response Module relies on Q-Learning,
which is a Reinforcement Learning (RL) algorithm that en-
ables an agent to learn an optimal policy in a Markov
Decision Process (MDP) by iteratively updating its action-
value function, known as the Q-function. In Q-Learning, the
agent aims to maximise its long-term cumulative reward by
iteratively updating the Q-values associated with state-action
pairs. The Q-value represents the discounted expected future
reward the agent will receive by taking a particular action
in a specific state. The Q-function is typically represented as
a lookup table (Q-table), where each entry corresponds to a
state-action pair and its associated Q-value. In our case, based
on the detection outcomes, the state space consists of three
states: (a) Normal State, (b) Flood State and (c) Bruteforce
State, while the action space is composed of four actions: (a)
Rerouting, (b) Rate Limiting, (c) Network Isolation and (d)
Notification. Initially, the Q-table (Tabel I) is initialised (in our
case with zeros) arbitrarily, and the agent takes actions in the
environment based on an exploration-exploitation strategy (in
our case, epsilon-greedy is used) to balance between exploring
new actions and exploiting the current knowledge. As the agent
interacts with the environment, it updates the Q-values in the
Q-table based on the observed rewards and the maximum Q-
value achievable in the next state. The Q-values are updated
with Equation 4.

TABLE I
INITIAL VISUAL REPRESENTATION OF Q-TABLE

State/Action Rerouting Rate Limiting Isolation Notification
Normal 0 0 0 0
Flood 0 0 0 0

Bruteforce 0 0 0 0

Q(s, a)← Q(s, a)+α
[
R(s, a) + γmax

a′
Q(s′, a′)−Q(s, a)

]
(4)

where Q(s, a) is the Q-value for state s and action a. R(s, a)
is the immediate reward obtained from taking action a in state
s. γ is the discount factor. Finally, the term maxa′Q(s′, a′)
represents the maximum Q-value over all possible actions a′ in
the next state s′. In the previous equation, the reward R(s, a)
is calculated by Equation 5 in a non-linear manner.



reward = w1 · (L)2 − w2 · eCA − w3 · log(1 + N) (5)

where L is the network latency, CA denotes the cost of
each action and N indicates the number of security events that
are related to this state. Finally, w1, w2 and w3 denote the
hyperparameters that can affect each of the previous factors.
Based on the aforementioned remarks, Algorithm 1 provides
the overall Q-Learning for the mitigation process in our case.

Algorithm 1 Q-Learning Algorithm
1: Initialize Q-table with arbitrary or zero values for all state-

action pairs
2: Set learning rate α, discount factor γ, and exploration rate

ϵ
3: while not converged do
4: Observe current state s
5: Choose action a based on an ϵ-greedy policy
6: Execute action a, observe reward r and next state s′

7: Calculate dynamic reward using the reward formula
8: Update Q-value for current state-action pair:
9: Q(s, a) ← Q(s, a) +

α [r + γmax(Q(s′, a′))−Q(s, a)]
10: Update current state: s← s′

11: end while

Finally, it is worth mentioning that, in our case, an offline
dataset based on domain knowledge is utilised for the training
procedure (offline Q-Learning). In particular, this dataset in-
cludes tuples consisting of a state, an action, a reward, and the
next state. A visual representation of this dataset is provided
in Table II.

TABLE II
VISUAL REPRESENTATION OF Q-LEARNING DATASET

State Action Reward Next State
Normal State Rerouting -1 Normal State
Normal State Blacklisting -5 Normal State

Flood Rate Limiting 10 Normal State
Flood Rerouting 0 Flood

Bruteforce Isolation 10 Normal State
...

...
...

...

VI. EVALUATION ANALYSIS

Before delving into the evaluation results pertaining to
detection, it’s vital to understand the key terminologies. True
Positives (TP) are the instances where the cyberattacks are
correctly identified as intrusions. Conversely, True Negatives
(TN) are cases where normal network packets are accurately
identified as such. In contrast, False Negatives (FN) represent
incorrect classifications where cyberattacks are misidentified
as normal, and False Positives (FP) are instances where
standard network behaviours are erroneously labelled as intru-
sions. Considering these terms, several evaluation metrics are
applied. It should be noted that the comparative study utilises

a range of Machine Learning (ML) techniques including
Decision Tree, K-Nearest Neighbour (KNN), Random Forest,
Naive Bayes, Support Vector Machine (SVM) with different
kernels, AdaBoost, Linear Discriminant Analysis (LDA), and
Stochastic Gradient Descent (SGD) classifier.

Accuracy =
TP + TN

TP + TN + FP + FN
(6)

TPR =
TP

TP + FN
(7)

FPR =
FP

FP + TN
(8)

F1 =
2× TP

2× TP + FP + FN
(9)

Table III summarises the evaluation results, utilising the
CICFlowMeter flow statistics. Based on them, the MLP
with the four hidden layers (described) above achieves the
best detection efficiency, in terms of Accuracy = 0.998,
TPR = 0.997, FPR = 0.001 and F1 = 0.997. Fig 5 shows
the confusion matrix of this model.

Fig. 5. Confusion Matrix of MLP with 4 Hidden Layers trained on
CICFlowMeter Flow Statistics

TABLE III
DETECTION EVALUATION RESULTS OF THE PROPOSED IDPS WITH THE

CICFLOWMETER FLOW STATISTICS

AI Models Accuracy TPR FPR F1-Score
MLP-2 hidden layer 0.92 0.916 0.041 0.919
MLP-3 hidden layers 0.98 0.987 0.006 0.98
MLP-4 hidden layers 0.998 0.997 0.001 0.997
Decicion Tree 0.997 0.997 0.001 0.997
k-NN 0.969 0.968 0.015 0.969
Random Forest 0.994 0.994 0.002 0.994
Naı̈ve Bayes 0.812 0.811 0.094 0.812
SVM-Linear 0.964 0.964 0.017 0.964
SVM-RBF 0.966 0.966 0.016 0.966
SVM-Sigmoid 0.82 0.819 0.09 0.82
Logistic Regression 0.937 0.929 0.035 0.938
AdaBoost 0.911 0.91 0.04 0.911
LDA 0.874 0.89 0.05 0.875
SGD 0.938 0.938 0.03 0.938



Similarly, Table IV summarises the evaluation results, util-
ising the NFStream flow statistics. Based on them, the MLP
with the four hidden layers (described) above achieves the
best detection efficiency, in terms of Accuracy = 0.999,
TPR = 0.999, FPR = 0.001 and F1 = 0.999. Fig 6 shows
the confusion matrix of this model.

Fig. 6. Confusion Matrix of MLP with 4 Hidden Layers trained on NFStream
Flow Statistics

TABLE IV
DETECTION EVALUATION RESULTS OF THE PROPOSED IDPS WITH THE

NFSTREAM FLOW STATISTICS

AI Models Accuracy TPR FPR F1-Score
MLP-2 hidden layer 0.998 0.998 0.008 0.998
MLP-3 hidden layers 0.997 0.997 0.001 0.997
MLP-4 hidden layers 0.999 0.999 0.001 0.999
Decicion Tree 0.972 0.972 0.013 0.972
k-NN 0.997 0.997 0.012 0.997
Random Forest 0.98 0.98 0.01 0.98
Naı̈ve Bayes 0.935 0.934 0.032 0.935
SVM-Linear 0.932 0.931 0.034 0.932
SVM-RBF 0.983 0.983 0.008 0.983
SVM-Sigmoid 0.8 0.798 0.01 0.8
Logistic Regression 0.897 0.897 0.05 0.897
AdaBoost 0.891 0.889 0.05 0.897
LDA 0.867 0.866 0.06 0.867
SGD 0.872 0.871 0.064 0.872

VII. CONCLUSIONS

The rapid growth of the IoT brings numerous benefits, like
real-time decision-making and increased efficiency. However,
it also increases the attack surface due to the insecure Internet
model and weaknesses of the new technologies involved in
the IoT. In this paper, we present an AI-powered IDPS for
IoT environments. The proposed IDPS focuses on flood and
bruteforce attacks, utilising an MLP with four hidden layers
for the detection process, while SDN and Q-Learning are
used for the mitigation. The evaluation results demonstrate the
effectiveness of the proposed IDPS in detecting cyberattacks,
while Q-Learning successfully determines the appropriate mit-
igation action.
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