

Benevento, Italy August 29 - September 01, 2023

Breaching the Defense: Investigating FGSM and CTGAN Adversarial Attacks on IEC 60870-5-104 AI-enabled Intrusion Detection Systems

D. Asimopoulos, P. Radoglou-Grammatikis, Ioannis Makris, Valeri Mladevov, Konstantinos E. Psannis, Sotirios Goudos and Panagiotis Sarigiannidis MetaMind Innovations P.C, Greece

Authors & Contributors

Dimitrios-Christos Asimopoulos Ioannis Makris

Panagiotis Radoglou Grammatikis Panagiotis Sarigiannidis

Sotirios Goudos

Konstantinos E. Psannis

Valeri Mladenov

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101070450 (AI4CYBER) .

Presentation Structure

ARES Conference2023 // Benevento, Italy August 29 -September 01, 2023

Introduction, Relevant Work & Contributions

ARES Conference2023 // Benevento, Italy August 29 -September 01, 2023

Technology Enablers for Critical Infrastructures: IoT, 5G, and AI empower Critical Infrastructures like the smart grid, fostering sustainability, efficiency, and real-time control.

Cybersecurity Challenges and Consequences: The integration of advanced technologies exposes Critical Infrastructures to multistep attacks, potentially causing extensive outages, financial losses, and safety hazards.

Al's Role in Cybersecurity and Detection: Al-driven detection systems offer adaptive defense mechanisms, enabling the identification of novel threats and anomalies while enhancing response capabilities.

Challenges in AI-Powered Security: AI-powered security solutions face challenges such as false alarms and susceptibility to adversarial attacks, requiring ongoing refinement to maintain accuracy and reliability.

Introduction

Related Work

2019

Adel Alshamrani et al.

•A survey on advanced persistent threats: Techniques, solutions, challenges, and research opportunities. IEEE Communications Surveys & Tutorials

2021

Panagiotis Radoglou-Grammatikis et al.

•Modeling, detecting, and mitigating threats against industrial healthcare systems: a combined software defined networking and reinforcement learning approach. IEEE Transactions on Industrial Informatics

Panagiotis I Radoglou Grammatikis, Panagiotis G Sarigiannidis, and Ioannis D Moscholios

•Securing the Internet of Things: Challenges, threats and solutions. Internet of Things

2019

Ke He, Dan Dongseong Kim, and Muhammad Rizwan Asghar

•Adversarial Machine Learning for Network Intrusion Detection Systems: A Comprehensive Survey. IEEE Communications Surveys & Tutorials

Contributions

Al-Powered Intrusion Detection System (IDS) against IEC 60870-5-104 Attacks:

 An AI-powered IDS is provided in terms of detecting and mitigating various cyberattacks against the IEC 60870-5-104 protocol. For this purpose, four ML/DL models (Decision Tree, XGBOOST, Random Forest and MLP) are used and compared with each other. Investigating FGSM Adversarial Attacks:

 We investigate how FGSM evasion adversarial attacks can affect the detection performance of the previous ML/DL models. Development of CTGAN Adversarial Attack Generator:

 We implement an adversarial attack generator that takes full advantage of FGSM and CTGAN

Proposed Intrusion Detection System (IDS)

ARES Conference2023 // Benevento, Italy August 29 -September 01, 2023

Al Detection Engine

- Decision Tree
- Random Forest
- XGBOOST
- Custom Multilayer
 Perceptron

Training Dataset

IEC 60870-5-104 Intrusion Detection Dataset

IEEE: IEC 60870-5-104 Intrusion Detection Dataset

Zenodo: IEC 60870-5-104 Intrusion Detection Dataset

Includes flow statistics related to the following IEC 60870-5-104 attacks:

MITM	
traffic sniffing	M_SP_NA_1_DOS
C_RD_NA_1	C_CI_NA_1_DOS
C_CI_NA_1	C_SE_NA_1_DOS
C_RP_NA_1	C_RD_NA_1_DOS
C_SE_NA_1	C_RP_NA_1_DOS

Custom Multilayer Perceptron Model

Layer (type)	Output Shape	Param #
dense (Dense)	(None, 128)	3328
layer_1 (Dense)	(None, 256)	33024
layer_2 (Dense)	(None, 256)	65792
layer_3 (Dense)	(None, 256)	65792
layer_4 (Dense)	(None, 256)	65792
layer_5 (Dense)	(None, 128)	32896
layer_6 (Dense)	(None, 128)	16512
layer_7 (Dense)	(None, 128)	16512
layer_8 (Dense)	(None, 64)	8256
layer_9 (Dense)	(None, 64)	4160
layer_10 (Dense)	(None, 64)	4160
layer_11 (Dense)	(None, 12)	780

Evaluation Metrics

- $TP \rightarrow$ True Positives
- $TN \rightarrow$ True Negatives
- $FP \rightarrow$ False Positives
- $FN \rightarrow$ False Negatives

ARES Conference2023 // Benevento, Italy August 29 -September 01, 2023

Model Evaluation Results

The best results are achieved by Random Forest where:

Accuracy = 0.8244, T PR = 0.8244, FPR = 0.0159 and F 1 = 0.8098

FGSM and CTGAN Attack WorkFlow

ARES Conference2023 // Benevento, Italy August 29 -September 01, 2023

WorkFlow Scheme

Fast Gradient Sign Method (FGSM) Attack

ARES Conference2023 // Benevento, Italy August 29 -September 01, 2023

FGSM ADVERSARIAL ATTACKS

ML/DL Method	Accuracy	TPR	FPR	F1
Decision Tree	0.6395	0.6395	0.0327	0.6382
XGBOOST	0.7095	0.7095	0.0264	0.7072
Random Forest	0.7454	0.7454	0.0231	0.7405
MLP	0.7047	0.7047	0.0268	0.6955

The best performance is achieved by Random Forest where:

> Accuracy = 0.7454, TPR = 0.7454, FPR = 0.0231 and F1 = 0.7405

Confusion Matrix of Random Forest with the FGSM Adversarial Dataset (eps = 0.001)

ML/DL Method	Accuracy	TPR	FPR	F1
Decision Tree	0.5370	0.5370	0.0420	0.5273
XGBOOST	0.5797	0.5797	0.0382	0.5762
Random Forest	0.6272	0.6272	0.0338	0.6202
MLP	0.7052	0.7052	0.0267	0.6966

The best performance is achieved by MLP where:

Accuracy = 0.7052, TPR = 0.7052, FPR = 0.0267 and F1 = 0.6966.

ML/DL Method	Accuracy	TPR	FPR	F1
Decision Tree	0.3818	0.3818	0.0561	0.3738
XGBOOST	0.4110	0.4110	0.0535	0.3947
Random Forest	0.4331	0.4331	0.0515	0.4133
MLP	0.6933	0.6933	0.0278	0.6851

The best performance is achieved by MLP where:

Conditional Tabular GAN (CTGAN) Attack

ARES Conference2023 // Benevento, Italy August 29 -September 01, 2023

CTGAN Attacks

Used the FGSM evaded dataset to train the CTGAN model.

CTGAN Generator

The generator model takes an input and applies two Residual blocks with batch normalisation and ReLU activation, and then feeds the output into a final Linear layer.

CTGAN Discriminator

The discriminator architecture consists of linear layers connected by LeakyReLU activations and dropout layers.

ML/DL Method	Accuracy	TPR	FPR	F1
Decision Tree	0.2206	0.2148	0.0702	0.2119
XGBOOST	0.1745	0.1942	0.0735	0.1756
Random Forest	0.2281	0.2337	0.0693	0.2169
MLP	0.2464	0.2505	0.0683	0.2378

MLP achieves the best performance with:

Accuracy = 0.2464, TPR = 0.2361, FPR = 0.0683, and F1 = 0.2378

Confusion Matrix of Random Forest with the CTGAN Dataset (eps = 0.001)

		200		~		-	107	20				-	-	
	0 -	288	13	6	8	3	107	30	14	0	22	5	3	- 300
		105	23	16	4	7	101	16	31	1	16	12	8	
	- 7	0	219	96	6	8	104	7	47	22	103	20	1	- 250
	m -	4	46	13	4	6	87	32	18	5	41	16	0	
	4 -	10	58	16	12	13	174	59	32	12	77	16	2	- 200
ər	- <u>م</u>	0	65	31	7	6	96	27	13	9	63	17	0	
Ę	9 -	5	30	7	12	13	295	111	11	0	34	2	0	- 150
	r -	10	12	20	2	0	35	3	45	3	7	3	6	
	∞ -	19	37	56	10	10	129	9	210	46	42	19	37	- 100
	ი -	5	70	38	4	8	97	15	60	19	59	25	3	
	g -	0	32	14	4	5	66	6	33	7	29	11	1	- 50
	H -	10	0	0	0	0	7	1	7	1	0	0	314	
		0	i	2	3	4	5 Predi	6 icted	7	8	9	10	11	- 0

ML/DL Method	Accuracy	TPR	FPR	F1
Decision Tree	0.2660	0.2285	0.0671	0.2299
XGBOOST	0.2447	0.2127	0.0691	0.2093
Random Forest	0.2918	0.2495	0.0642	0.2425
MLP	0.2545	0.2361	0.0676	0.2275

Random Forest achieves the best performance with:

Accuracy = 0.2918, TPR = 0.2495, FPR = 0.0642, and F1 = 0.2425

ML/DL Method	Accuracy	TPR	FPR	F1
Decision Tree	0.2502	0.2457	0.0676	0.2243
XGBOOST	0.2272	0.2225	0.0699	0.2066
Random Forest	0.2541	0.2422	0.0676	0.2223
MLP	0.2687	0.2490	0.0665	0.2429

MLP achieves the best performance with:

Accuracy = 0.2687, TPR = 0.2490, FPR = 0.0665, and F1 = 0.2429

Conclusions & Future Work

ARES Conference2023 // Benevento, Italy August 29 -September 01, 2023

Conclusion

An Al-powered IDPS was implemented for the IEC 60870-5-104 protocol, utilising four ML/DL methods: Decision Tree, Random Forest, XGBOOST and MLP.

The FGSM method was used in order to evaluate the resilience of the previous methods under the conditions of a typical adversarial attack.

Given the FGSM adversarial datasets, a CTGAN adversarial attack generator was implemented.

Future work

In general, the performance of the tested models (Decision Tree, XGBOOST, Random Forest, and MLP) is better on the FGSM adversarial datasets when compared to the CTGAN datasets. However, the difference in performance is less distinct for the MLP model, particularly at higher epsilon levels. This observation suggests that the MLP method might be more resilient to noise or better equipped to handle the specific characteristics or distribution of the CTGAN datasets.

Future work will investigate more complicated adversarial attacks and evaluate relevant countermeasures in order to strengthen and optimise the resilience of the AI security models.

AI4CYBER – Artificial Intelligence for next generation CYBERsecurity

Thank you for your attention!

