

Explainable AI-based Intrusion Detection in the Internet of Things

M. Siganos et al. K3Y LTD msiganos@k3y.bg

Authors: Marios Siganos, Panagiotis Radoglou-Grammatikis, Igor Kotsiuba, Evangelos Markakis, Ioannis Moscholios, Sotirios Goudos, Panagiotis Sarigiannidis

Acknowledgments

This project has received funding from the European Union's Horizon Europe research and innovation programme under grant agreement No 101070214 (TRUSTEE).

Disclaimer: Funded by the European Union.

Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or European Commission.

2

Neither the European Union nor the European Commission can be held responsible for them.

Introduction

- cyberthreats have grown in sophistication and scope
- Intrusion Detection Systems (IDS) are important for the detection of potential cyberattacks and anomalies in a timely manner

- IDS can be classified into two main categories:
 - signature/specification-based detection pre-defined patterns
 - anomaly-based detection statistical analysis and Artificial Intelligence (AI)
- Al-powered IDS have already demonstrated their efficiency
 - but they suffer from false alarms and explainability issues
- development of an AI-powered IDS for the IoT, including explainable AI (XAI) functions

Related Work Cybersecurity mechanisms with XAI

Zebin et al.	Patil et al.	Barnard et al.	Mane and Rao	Wang et al.
(2022)	(2022)	(2022)	(2021)	(2020)
 XAI solution for the detection of DNS over HTTPS (DoH) attacks balanced and stacked Random Forest classifier CIRA-CIC- DoHBrw-2020 dataset SHAP 	 XAI for intrusion detection voting classifier that utilises an ensemble of several models CICIDS2017 dataset LIME 	 A framework for network intrusion detection using XAI Gradient Boosting (XGboost) NSL-KDD dataset SHAP 	 XAI for the creation of a network intrusion detection system fully connected network with three hidden layers NSL-KDD dataset SHAP, LIME, CEM 	 A framework that uses ML and XAI for IDS a one-vs-all and a multiclass classifier based on fully connected networks NSL-KDD dataset SHAP

4

ARES

Related Work Cybersecurity mechanisms with XAI

provide useful solutions and methodologies

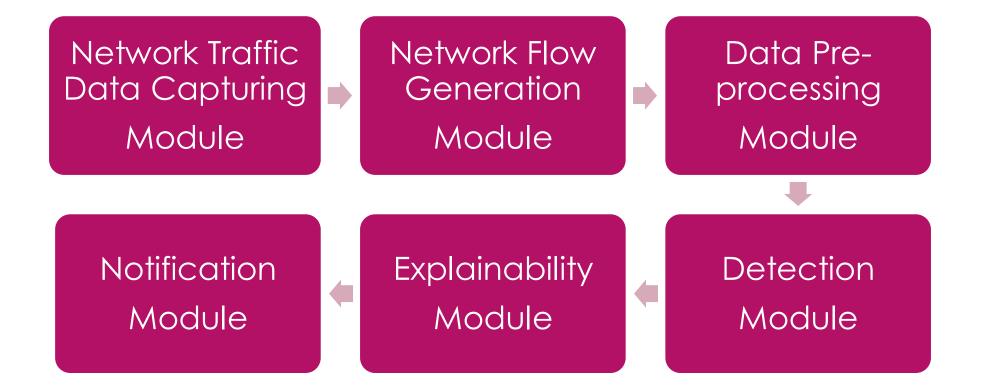
none of them considers the unique characteristics of Internet of Things and Industrial Internet of Things network environments of Critical Infrastructures, such as the smart electrical grid

Contributions

Implementation of an AI-powered IDS for the IoT

• utilized CIC-IoT-Dataset-2022 and IEC 69870-5-104 Intrusion Detection datasets

6


applied various Machine Learning (ML) / Deep Learning (DL)

Investigating and development of explainability functions

provided an explainability mechanism (SHAP)

Proposed Intrusion Detection System

8

Network Traffic Data Capturing Module

- captures the network traffic data (i.e., pcap files)
- utilizes a Switch Port Analyzer (SPAN) (i.e., port mirroring) and tcpdump

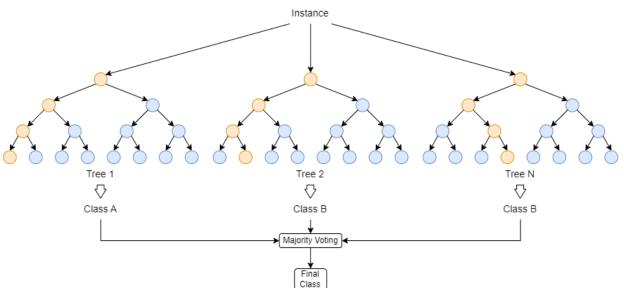
Network Flow Generation Module

- generates flow statistics
 - TCP/IP network flow statistics
 - IEC 60870-5- 104 payload flow statistics
- reduces the volume of data
- provides a more meaningful representation of the network traffic data

Data Preprocessing Module

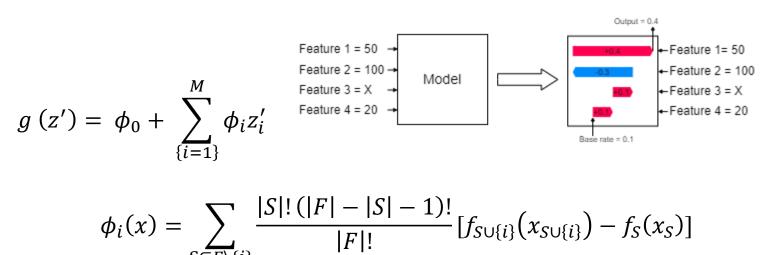
- cleans the data and removes noise
 - handles missing values rows with missing values are removed
 - handles label categorical values are encoded with numerical ones
- performs feature scaling
 - ▶ scales data to the range [0, 1] or standardises features
- reduces feature dimensionality and performs feature selection and feature extraction
 - removes features with only one unique value, low variance (0.1) or Pearson correlation (0.9)
 - performs recursive feature elimination and sequential feature selection (forward and backward)

Detection Module

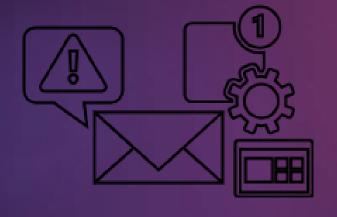


- 11
- discriminate potential attacks using pre-trained ML/DL models

IoT


- IEC 60870-5-104 IIoT
- Random Forests is the best-performing model
 - Tree-based model
 - Ensemble method bootstrap aggregating / bagging

Explainability Module



- consistent and reliable explanations
- model-agnostic post-hoc XAI techniques
- SHAP method (feature importances)
- Iocal explanations individual predictions
- global explanations overview of the entire dataset
- visualizations through a dashboard

Notification Module

alerts the security administrator

▶ e-mail

- Short Message/Messaging Service (SMS)
- push notifications
- dashboard that displays the intrusion details and explanation

Performance Evaluation

AI Models

- Naive Bayes
- SVM Linear
- SVM RBF
- Decision Trees
- Random Forest
- XGBoost
- Adaboost
- Logistic Regression
- Quadradic Discriminant Analysis
- DNN

Evaluation Metrics

Accuracy	=	$\frac{TP + TN}{TP + TN + FP + FN}$
True Positive Rate (TPR)	=	$\frac{\text{TP}}{\text{TP} + \text{FN}}$
False Positive Rate (FPR)	=	$\frac{FP}{FP + FN}$
F1 Score	=	$\frac{2 \times \text{TP}}{2 \times \text{TP} + \text{FP} + \text{FN}}$

Datasets

IEC 60870-5-104

Parser: CICFlowMeter Timeframes: 15, 30, 60, 90, 120, 180 Columns: 84

IEC 60870-5-104

Parser: Custom Timeframes: 15, 30, 60, 90, 120, 180 Columns: 112

CIC-IoT-Dataset-2022

15

Parser: CICFlowMeter Timeframes: NA Columns: 84

CIC-IoT-Dataset-2022

Parser: NFStream Timeframes: NA Columns: 40

Evaluation results IEC 60 870-5-104 - CICFlow

Al Models	Accuracy	TPR	FPR	F1-Score
Naïve Bayes	0.4196	0.4196	0.512	03554
SVM Linear	0.4944	0.4944	0.0453	0.4727
SVM RBF	0.4940	0.4940	0.0448	0.4538
Decision Trees	0.6007	0.6009	0.0363	0.5994
Random Forest	0.6632	0.6634	0.0306	0.6601
XGBoost	0.6358	0.6360	0.0330	0.6324
Adaboost	0.3532	0.3532	0.0574	0.3014
Logistic Regression	0.4841	0.4841	0.0463	0.4628
Quadratic Discriminant Analysis	0.5572	0.5572	0.0395	0.5236
DNN	0.5811	0.5811	0.0381	0.5586

16

conference

ГС

ΔR

Evaluation results IEC 60 870-5-104 - Custom

conference

AI Models Accuracy F1-Score TPR FPR 0.5582 Naïve Bayes 0.5582 0.4749 0.0402 SVM Linear 0.6514 0.6514 0.0317 0.6384 0.5942 0.5942 0.0369 0.5588 SVM RBF 0.8333 0.0152 **Decision Trees** 0.8333 0.8281 **Random Forest** 0.8521 0.8521 0.0134 0.8473 0.8280 0.8348 0.8348 0.0150 XGBoost Adaboost 0.2826 0.2826 0.0652 0.2121 Logistic Regression 0.6223 0.0343 0.6053 0.6223 Quadratic Discriminant Analysis 0.6233 0.6233 0.5594 0.0342 DNN 0.6958 0.6958 0.6851 0.0277

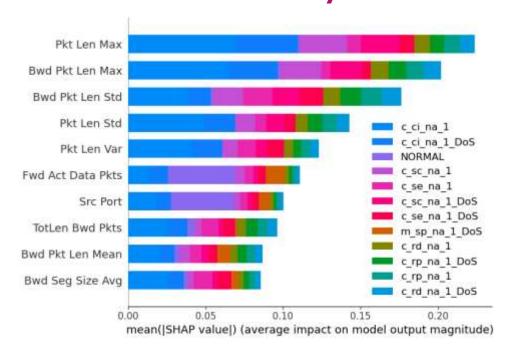
Evaluation results CIC IoT dataset 2022 - CICFlow

Al Models	Accuracy	TPR	FPR	F1-Score
Naïve Bayes	0.7428	0.7427	0.1287	0.7409
SVM Linear	0.9312	0.9311	0.0344	0.9314
SVM RBF	0.9583	0.9583	0.0209	0.9585
Decision Trees	0.9985	0.9985	0.0007	0.9985
Random Forest	0.9983	0.9983	8000.0	0.9983
XGBoost	0.9992	0.9992	0.0004	0.9992
Adaboost	0.9583	0.9583	0.0208	0.9582
Logistic Regression	0.9308	0.9308	0.0346	0.9311
Quadratic Discriminant Analysis	0.9363	0.9363	0.0319	0.9364
DNN	0.9888	0.9888	0.0056	0.9888

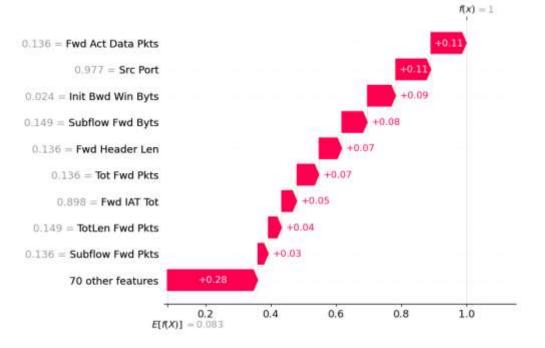
18

conference

Evaluation results CIC IoT dataset 2022 - NFStream


Al Models	Accuracy	TPR	FPR	F1-Score
Naïve Bayes	0.9700	0.9700	0.0150	0.9701
SVM Linear	0.9581	0.9581	0.0209	0.9583
SVM RBF	0.9879	0.9879	0.0060	0.9879
Decision Trees	0.9988	0.9988	0.0006	0.9988
Random Forest	0.9999	0.9999	0.0000	0.9999
XGBoost	0.9998	0.9998	0.0001	0.9998
Adaboost	0.9106	0.9106	0.0447	0.9112
Logistic Regression	0.9620	0.9620	0.0190	0.9621
Quadratic Discriminant Analysis	0.5530	0.5530	0.2235	0.5051
DNN	0.9985	0.9985	0.0007	0.9985

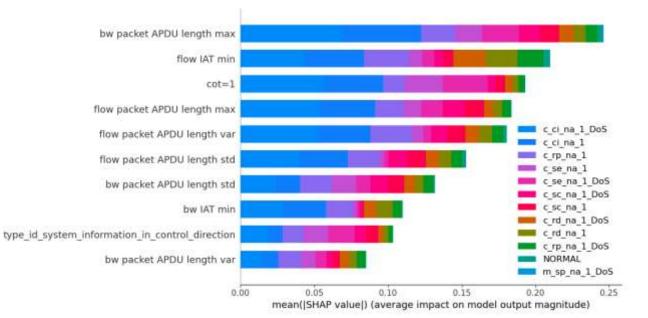
19


conference

Explainability results IEC 60 870-5-104 - CICFlow

SHAP Summary Plot

SHAP Waterfall Plot



Explainability results IEC 60 870-5-104 - Custom

21

SHAP Summary Plot

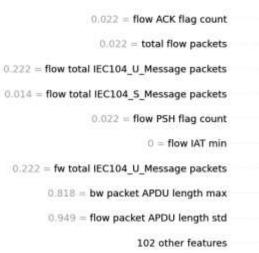
SHAP Waterfall Plot

f(x) = 0

0.040.0

-0.01

0.02

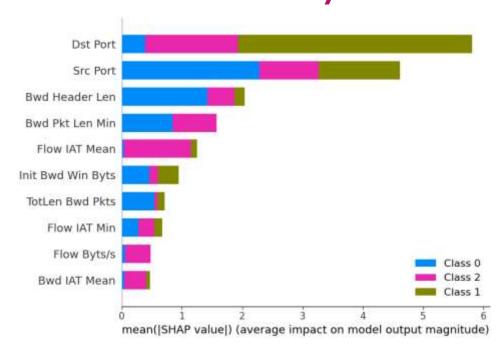

-0.0

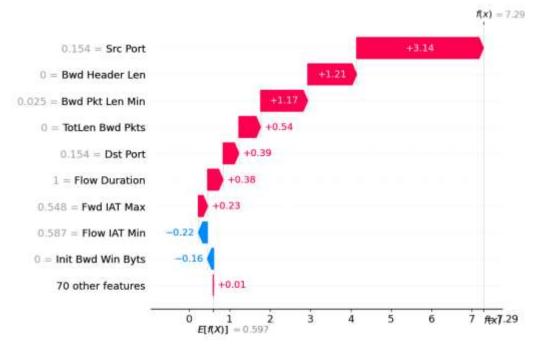
0.04

0.06

0.08

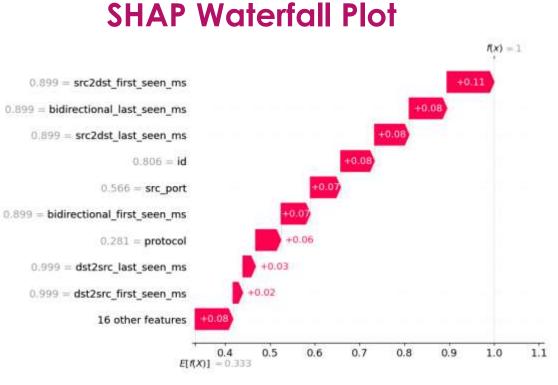
E[f(X)] = 0.083


0.222 = fw total IEC104 U Message packets

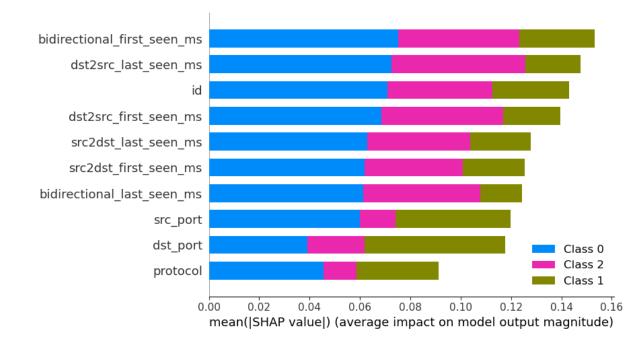

Explainability results CIC IoT dataset 2022 - CICFlow

22

SHAP Summary Plot



SHAP Waterfall Plot



Explainability results CIC IoT dataset 2022 - NFStream

23

SHAP Summary Plot

Conclusions

- ▶ The role of IDS is crucial in detecting potential cyber-attacks and unknown anomalies.
- Al-powered IDS has shown promise in detecting threats; however, they still face challenges like false alarms and explainability issues

- Introduced an Al-powered IDS designed for IoT, including XAI functions.
- ▶ The proposed IDPS is effective in detecting malicious activities in IoT and IEC 60870-5-104 IIoT environments.
- The SHAP-based XAI functions provide feature importance for each decision, enhancing understanding and trust for security administrators and cybersecurity analysts.

Thank You!

M. Siganos et al. K3Y LTD msiganos@k3y.bg

Explainable AI-based Intrusion Detection in the Internet of Things

