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Abstract—The digitisation of the smart electrical grid provides
several advantages and valuable services, such as self-monitoring,
pervasive control and smart healing. However, despite the benefits
of this progression, critical cybersecurity and privacy issues are
raised due to the vulnerabilities of legacy Electrical Power and
Energy Systems (EPES) and the evolution of stealthy cyberthreats
and malware. In this paper, we give emphasis to False Data
Injection Attacks (FDIAs) that can affect the EPES State Esti-
mation (SE). In particular, we investigate two FDIA categories,
namely: (a) Global Positioning System (GPS) Spoofing Attacks
and (b) IEEE C37.118 FDIAs against an actual testbed emulating
a high-voltage IEEE 9-Bus transmission grid. Finally, we provide
a relevant Intrusion Detection System (IDS) capable of detecting
the aforementioned FDIAs. The evaluation analysis demonstrates
the impact of the above FDIAs and the efficiency of the proposed
IDS.

Index Terms—False Data Injection Attacks, GPS Spoofing,
High Voltage Transmission Grid, IEEE C37.118, Intrusion De-
tection

I. INTRODUCTION

The smart technologies play a significant role in the digital
era of the Electrical Power and Energy Systems (EPES) [1].
Despite the fact that they offer valuable services and benefits,
such as (a) the two-way communication between the energy
utilities and consumers, (b) self-monitoring and (c) pervasive
control, they also raise severe cybersecurity and privacy issues
due to the rapid evolution of stealthy cyberthreats and malware
and the presence of legacy systems. In particular, both legacy
and smart systems use insecure industrial protocols that do not
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incorporate essential authentication and authorisation mecha-
nisms, thus allowing the execution of various cyberattacks. A
special category of them against the EPES monitoring systems
is the False Data Injection Attacks (FDIAs) that can access
and manipulate the State Estimation (SE), compromising the
relevant communications and systems. SE refers to an es-
sential process of estimating unknown state variables based
on electricity measurements and the grid topology. FDIAs
can bypass the SE mechanisms, such as Bad Data Detection
(BDD) methods, resulting in devastating effects.

In this paper, we focus our attention on FDIAs against a
high voltage IEEE 9-Bus transmission system. In particular,
we investigate the impact of two FDIA categories: (a) Global
Positioning System (GPS) Spoofing Attacks and (b) IEEE
C37.118 FDIAs. Both attacks aim to access and manipulate
the measurements of Phasor Measurement Unit (PMUs). The
first category uses GPS spoofing techniques in order to affect
the time synchronisation of the PMUs and modify the voltage
and current phasor measurements. On the other hand, the IEEE
C37.188 FDIAs rely on Man in the Middle (MiTM) activities,
targeting the communication between PMUs and the Phasor
Data Concentrator (PDC). Finally, we introduce an Artificial
Intelligence (AI)-based Intrusion Detection System (IDS) ca-
pable of detecting the aforementioned cyberattacks. Therefore,
based on the aforementioned remarks, the contribution of this
paper is twofold:

• Modeling and Execution of FDIAs against a High-
Voltage Transmission Testbed: The impact of two
FDIAs are investigated: (a) GPS spoofing attacks and
IEEE C37.118 attacks against a testbed emulating a high-
voltage IEEE 9-Bus transmission grid.

• Detection of FDIAs: We provide an efficient IDS capable
of detecting the above cyberattacks.

The rest of this paper is organised as follows. Section II
discusses other similar works in this area, highlighting the
contribution of this paper. Next, section III introduces the IEEE
9-Bus transmission grid testbed used for the execution of the
FDIAs. Section IV provides an overview of the GPS spoofing
attacks and the IEEE C37.118 FDIAs. Section V presents the
proposed IDS. Finally, section VI is devoted to the evaluation
results, showing the impact of the FDIAs and the detection
efficiency of the proposed IDS.

II. RELATED WORK

Several papers have already investigated the security issues
of the EPES and the impact of the FDIAs on them. Some
of them are listed in [2]–[4]. In particular, in [3], G. Lian
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et al. present a detailed review of the FDIAs against modern
power systems. In [2], M. Ahmed and A. K. Pathan provide
an overview of the FDIAs and a set of evaluation metrics with
respect to relevant countermeasures. In [5], A. S. Musleh et al.
focus on detecting FDIAs against EPES. Finally, in [4], S. Ali
et al. present a survey of Machine Learning (ML) methods for
detecting FDIAs. Next, we investigate further some particular
works related to FDIAs and discuss the contribution of our
work.

In [6], G. Chaojung et al. present a novel detection method
to detect FDIAs by tracking the dynamics of measurement
variations, calculating distance indices between the adjacent
steps. The new detection-based method addresses the limita-
tions of existing methods and is based on the Kullback-Leibler
distance (KLD), which calculates the distance between two
distributions, p and q. The authors utilise the measurement
variation from the historical data to derive the q. For every
time step, p is derived from the measurement variation between
the current time step and the previous time step. Based on
the evaluation analysis, when there are no false data injection
attacks, the KLD is quite small. When false data is injected,
the KLD. The proposed method was tested, using different
attack scenarios, showing that most of the attack scenarios can
be detected successfully. Finally, it is worth mentioning that
the proposed method does not work very well for continuous
small-scale cyberattacks and continuous replay attacks.

In [7], J. Zhang et al. focus on the presence of FDIAs in the
local and communicated estimated voltage within distributed
dc microgrids. Based on the authors, this is a new form of
intelligent attack, and it is referred to as a concurrent attack.
A concurrent attack is designed to mask itself as a com-
munication link attack, misleading the operators from taking
appropriate actions. Such an attack can pose challenges that
are promptly resolved by model-based detection. Therefore,
the authors propose a novel nonparametric detection based on
an Ensemble Empirical Mode Decomposition (EEMD). The
presence of FDIAs is identified from the energy relationship
of neighbouring agents, which operates on the decomposed
Intrinsic Mode Functions (IMFs) of the EEMD method. A
differentiation criterion is further used to classify the type
of attack after detection, i.e., whether the attack is a con-
current attack or a communication link attack, based on the
voltage correction terms generated by the voltage observer in
the secondary controllers. Finally, an event-driven mitigation
approach is proposed, reconstructing a trustworthy signal using
the authenticated inputs from the proposed detection strategy.
According to the classification of the attacked quantity, the
reconstructed trustworthy signal replaces the attacked signal
and eliminates all the risks associated with the attack. The
performance of the proposed resilient control scheme has been
validated under load changes, faults, converter outages and
communication failures.

In [8], C. Chen et al. propose a data-driven FDIA-resilient
Automatic Generation Control (AGC) scheme. The main ad-
vantages of this design include the reduced complexity of
learning models and the preservation of existing control struc-

tures. The proposed FDIA-resilient AGC scheme is model-
free and appealing to real-life complex power systems. The
regression models studied can be characterised by two types
of FDIA signals, where the sequence to-one regression model
is adopted for the estimation and non-constant ones where
the Long Short-Term Memory (LSTM) network powered
sequence-to-sequence regression model is used to predict
future non-constant FDIA signals. The authors also propose
a compensation-based reconfigured mechanism using quanti-
tative information of FDIA signals, to attenuate the impact
of the FDIAs on the system frequency control performance.
The effectiveness of the proposed method is validated via a
benchmark power system. Based on the experimental results,
the main advantage of the proposed scheme is the engineering
feasibility. This is because it does not change the basic
structure of the controller and outperforms the model-based
controllers for large-scale power systems.

Undoubtedly, the previous works provide useful methods
and results. However, it is worth mentioning that none of
them focuses on the actual impact of the FDIAs against a
high voltage transmission system through experimental results.
Consequently, in this paper, we study two FDIA categories,
namely (a) GPS Spoofing Attacks and (b) IEEE C37.118
FDI Attacks against a high-voltage transmission testbed. The
impact of each category is discussed based on the false
measurements injected in each case. Next, we provide a
relevant IDS, which can recognise timely the aforementioned
FDIAs. The evaluation results demonstrate the efficiency of
the proposed IDS.

Fig. 1: Testbed

III. TESTBED

As illustrated in Fig. 1, the proposed testbed consists of
three generators and nine buses based on the IEEE 9-bus trans-
mission grid model. Two Phasor Measurement Units (PMUs)
(i.e, PMU1 and PMU2) have been deployed at two buses (i.e.,



bus 7 and bus4), respectively. The PMUs are integrated into
the Power-Hardware In the Loop (HIL) setup, which provides
measurements received from the Real-Time Simulator (OPAL-
RT OP5700) to the Phasor Data Concentrator (PDC). The
measurements are used to monitor the high voltage IEEE 9-
bus transmission grid emulated by the Real-Time Simulator.
Current phasor measurements from six transmission lines and
voltage phasor measurements from two buses (substations)
are recorded by the PMUs and sent to the PDC through
IEEE C37.118. The first PMU (i.e., PMU1) is responsible for
monitoring the voltage and current phasors of bus 7, while the
second PMU (i.e., PMU2) monitors the voltage and current
phasors of bus 4. The PDC undertakes to align the PMU
measurements according to their GPS timestamps and stores
them in a database at the control center. In particular, the PMU
measurements include: (a) the PMU identifier, (b) timestamp,
(c) the positive sequence voltage phasor measurements, (d)
the positive sequence current phasor measurements and (e)
the frequency measurements. The PMU measurements can
be used by a Wide Area Measurement System (WAM) in
order to monitor the dynamic behaviour of the grid. The PMU
measurements and the analysis of WAM can be used for damp-
ing inter and local oscillations after disturbances. Moreover,
apart from the PMU measurements, a set of conventional
measurements (real/reactive power injection and flow) are
provided by the Real-Time Simulator asynchronously within
5-30 seconds. The conventional measurements include: (a) the
voltage magnitude of each bus, real and reactive power flow
of each line and real and reactive power injection of each load.
The conventional measurements are provided by the Real-
Time Simulator in a slower sate than the PMU measurements
in an asynchronous manner within 5-30 seconds.

IV. FALSE DATA INJECTION ATTACKS

As mentioned earlier, two FDIA categories are investigated
in this paper, namely (a) GPS Spoofing Attacks and (b) IEEE
C37.18 FDIAs. Both attacks target the PMU measurements.
Each of them is further analysed in the following subsections,
respectively.

A. GPS Spoofing Attacks

The GPS spoofing attacks rely on GPS spoofing techniques
in order to modify the time synchronisation of the PMUs.
Next, a relevant error is added to the voltage and current
measurements. In particular, the attacker aims to violate the
GPS signal received by the PMUs that are connected to the
Real-time Simulator. The GPS spoofing attacks can modify
the measurements of the voltage angle, which significantly
impacts the grid monitoring and the control capacity of the
control centre. Consequently, inaccurate monitoring might
trigger unnecessary remedial control actions. In general, a
higher difference with respect to the voltage angle between
two buses can present a larger power flow between them. It
is also worth mentioning that such a difference can result in
inaccurate loading conditions of the lines.

B. IEEE C37.118 False Data Injection Attacks

Regarding the IEEE C37.18 FDIAs, the IEEE C37.118
communication between the PMUs and PDC is targeted. The
PMU measurements are transmitted to the PDC through IEEE
C37.118 data frames. In particular, an IEEE C37.118 data
frame can include: (a) the magnitude and angle of phasors
in a rectangular or polar format, (b) frequency and (c) the
Rate of Change of Frequency (ROCOF). Thus, the goal of
the cyberattacker is to intercept the IEEE C37.118 messages
and inject false measurements. For this purpose, a Man In
the Middle (MITM) attacks is executed between the PMU
and PDC, taking full advantage of the Address Resolution
Protocol (ARP) weaknesses. The ARP cache of the PMUs
and PDCs is poisoned in order to forward their network traffic
data to the cyberattacker before the packets reach their original
destination. NetfilterQueue is used to process the IEEE
C37.118 packets, while Scapy is used to alter their content.
False PMU measurements stored in a PDC can lead the system
operator to perform mistaken actions with devastating effects.
The IEEE C37.118 protocol is prone to FDIAs and integrity
attacks since the relevant Cyclic Redundancy Check (CRC)
can be easily violated. In particular, the cyberattacker can in-
ject false measurements when the 16-bit CRC is re-calculated.
Next, since CRC is valid, the false PMU measurements are
accepted normally by PDC.

V. PROPOSED INTRUSION DETECTION SYSTEM

The proposed IDS is composed of four modules: (a) Data
Collection Module (DCM), (b) Network Flow Extraction Mod-
ule (NFEM), (c) Analysis Engine and (d) Response Module
(RM). The DCM receives the various PMU measurements,
such as the positive sequence voltage magnitude and angle.
Moreover, DCM can monitor continuously the network traffic
data of PMUs, through a Switched Port Analyser (SAPN)
and Tcpdump. Next, the NFEM receives the aforementioned
data from DCM and generates bidirectional network flow
statistics. Next, the Analysis Engine receives both kinds of data
(i.e., (a) PMU measurements and (b) network flow statistics),
preprocesses them and detects potential FDIAs. The PMU
measurements are used to detect the GPS spoofing attacks,
while the network flow statistics are utilised for the detection
of the IEEE C37.118 FDIAs. With respect to the detection
process, the Analysis Engine relies on an autoencoder. Finally,
the RM receives the detection outcomes and generates security
events based on the AlienVault OSSIM format [9].

VI. EVALUATION ANALYSIS

A. Experimental Results - GPS Spoofing Attack

Based on the Positioning, Navigation and Timing (PNT)
services of GPS, the PMUs use GPS signals in order to
provide timestamped measurements like voltage and current
phasors, frequency and ROCOF. In a GPS spoofing attack,
the PMUs synchronisation is compromised, thus affecting
the measurements transmitted. A GPS spoofing attack is
performed through a particular device called GPS spoofer,
which transmits satellite signals manipulating the actual GPS



Fig. 2: Phasor Measurement at Bus 4 from PMU1 and PMU2
before the GPS Spoofing Attack

signal, thus leading the GPS receiver of a PMU to perceive
an erroneous clock offset. Based on an f-Hz signal, the phase
measurement error e is calculated by Equation 1.

e = [f × (t̃δ − tδ)× 360o] mod 360p (1)

where t̃δ indicates the receiver clock offset (post-attack), tδ is
the pre-attack value and finally f denotes the frequency.

The GPS spoofing attack was executed against the PMU2
located at bus 4. In order to verify that the GPS spoofing attack
is successful, PMU1 is also placed on bus 4, receiving the
actual GPS signal (not the manipulated one). Fig. 2 shows the
voltage phasor measurements of PMU1 and PMU2 before the
attack, while Fig. 3 shows the voltage phasor measurements
after the attack. During the GPS spoofing attack, a receiver
clock offset error of 7.05 ms is injected into the actual GPS
signal. This time offset between the real and the manipulated
GPS signal generates an error with respect to the voltage angle
by 126.9o. Such a variance is adequate to impact significantly
the grid monitoring and control mechanisms. Moreover, as
illustrated in Table I, other clock offset errors were tested,
resulting in the corresponding voltage phasor angles.

TABLE I: Results of the GPS receiver clock offset error and the voltage phase
angle shift

No GPS Receiver Clock
Offset Error (ms) Phase Angle Shift (degree)

1 6.77 121.86
2 6.86 123.48
3 6.90 124.20
4 7.05 126.90
5 7.19 129.42

B. Experimental Results - IEEE C37.18 FDI Attacks

Regarding the IEEE C371.118 FDIAs, several malicious
activities are performed during five attack phases. For the
PMU1-Bus 7, the following attack phases are executed, as
illustrated in Fig. 4.

Fig. 3: Phasor Measurement at Bus 4 from PMU1 and PMU2
after the GPS Spoofing Attack

• A1 (465s-525s) - Lines 7-2: Current magnitude and angle
attack

• A2 (1100s-1160s) - Lines 7-2: Voltage magnitude attack
and current magnitude attack

• A3 (2085s-2145s) - Lines 7-5: Current magnitude attack
• A4 (2905s-2965s) - Lines 7-5: Current angle attack
• A5 (3710s-3770s): Voltage magnitude and angle attack

at Bus 7

Fig. 4: Summary of IEEE C371.118 FDI attacks against PMU1 - Bus 7

In a similar manner, as depicted in Fig. 5, the following
attack phases are executed against PMU2 - Bus 4.

• A1 (915s-975s): Voltage magnitude attack at Bus 4
• A2 (1370s-1430s) - Lines 4-1: Current magnitude attack
• A3 (2625s-2685s): Voltage angle attack at Bus 4
• A4 (3175s-3235s) Lines 4-1: Current angle attack
• A5 (3710s-3770s): Frequency attack
During the angle-related attacks, the phase angle is set

to 90o. On the other hand, with respect to the magnitude-
related attacks, the phasor’s magnitude is increased by 50%. In
addition, a ramp attack is executed when the frequency mea-
surement is modified. More specifically, the attacker slowly
decays the value of frequency to 49 Hz and then increases it
back to 50 Hz. Figs. 6-10 show how the various measurements
are affected during the various IEEE C37.118 FDIAs. In
particular, Fig. 6 shows that the magnitude of the positive



Fig. 5: Summary of IEEE C371.118 FDI attacks against PMU1 - Bus 4

sequence voltage is increased by 50% of its nominal value
in the 915th second. Fig. 7 illustrates an angle-related FDIA,
where the phase angle is set to 90o. Next, Fig. 8 and Fig. 9
show the FDIAs related to (a) the positive sequence current
magnitude and (b) the angle. The magnitude is increased
by 50% of its nominal value, and the angle is set to 90o.
Finally, Fig. 10 depicts the frequency-related FDIA where the
frequency is reduced to 49 Hz and then it is increased to 49.8
Hz.

Fig. 6: IEEE C37.118 FDI Attack against PMU2 - Bus 4 // Positive
Sequence Voltage Magnitude

C. FDIA Detection

Before discussing the detection performance of the proposed
IDS, we have to introduce first the necessary terms. Thus, True
Positives (TP) denotes the number of the correct classification
with respect to the presence of FDIAs. Similarly, True Neg-
atives (TN) implies the number of the correct classification
regarding the normal instances. On the other side, False
Negatives (FN) and False Positives (FP) implies the mistaken
classification related to the FDI attacks. Thus, based on the
aforementioned terms, the following evaluation metrics are
used.

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

Fig. 7: IEEE C37.118 FDI Attack against PMU2 - Bus 4 // Positive
Sequence Voltage Angle

Fig. 8: IEEE C37.118 FDI Attack against PMU2 - Bus 4 // Positive
Sequence Currrent Magnitude - Line 4-1

Fig. 9: IEEE C37.118 FDI Attack against PMU2 - Bus 4 // Positive
Sequence Current Angle - Line 4-1

TPR =
TP

TP + FN
(3)



Fig. 10: IEEE C37.118 FDI Attack against PMU2 - Bus 4 // Frequency

FPR =
FP

FP + TN
(4)

F1 =
2× TP

2× TP + FP + FN
(5)

Table II shows evaluation results regarding the detection
efficiency of GPS spoofing attacks. In particular, five out-
lier/novelty detection methods are utilised and evaluated with
each other: (a) Local Outiler Factor (LOF), (b) Isolation
Forest, (c) OneClassSVM, (d) Principal Component Analysis
(PCA) and (d) Angle Based Outlier Detection (ABOD). The
best performance is accomplished by Isolation Forest where
Accuracy = 0.839, TPR = 0.821, FPR = 0.244 and
F1 = 0.823. Table III summarises the evaluation results with
respect to detecting IEEE C37.118 FDIAs. In particular, five
AI model were used and evaluated with each other: (a) K-
Nearest Neighbour (KNN), (b) Random Forest, (c) Support
Vector Machine (SVM), (d) Naive Bayes and (e) Adaboost.
Based on the evaluation results, Random Forest achieves the
best performance where Accuracy = 0.887, TPR = 0.887,
FPR = 0.225 and F1 = 0.853.

TABLE II: Evaluation Results: Detection of GPS Spoofing Attacks
AI Model Accuracy TPR FPR F1
KNN 0.625 0.625 0.250 0.625
Random Forest 0.887 0.887 0.225 0.853
SVM 0.437 0.443 0.375 0.413
Naive Bayes 0.500 0.500 0.233 0.435
Adaboost 0.562 0.588 0.375 0.492

TABLE III: Evaluation Results: Detection of IEEE C371.118 FDIAs
AI Model Accuracy TPR FPR F1
LOF 0.402 0.306 0.328 0.401
Isolation Forest 0.839 0.821 0.244 0.823
OneClassSVM 0.433 0.390 0.242 0.421
PCA 0.537 0.512 0.223 0.522
ABOD 0.534 0.395 0.133 0.529

VII. CONCLUSIONS

It is evident that the digitisation of the EPES raises severe
cybersecurity and privacy risks with disastrous effects. For
instance, Indostroyer was a characteristic Advanced Persis-
tent Threat (APT), leading to a large-scale power outage
in 2015 for more than 220,000 people in Ukraine. In this
paper, we focus our attention on FDIAs against high-voltage
transmission grid systems. In particular, we investigate two
FDIA categories: (a) GPS Spoofing Attacks and (b) IEEE
C37.118 FDIAs based on a real testbed emulating a high-
voltage IEEE 9-Bus transmission grid. Both categories intend
to violate the PMU measurements determining the SE of the
grid. The impact of each attack is investigated with respect
to the various PMU measurements. Finally, we provide an
IDS capable of recognising the above FDIAs. The evaluation
results demonstrate the impact of the FDIAs and the detection
performance of the proposed IDS.
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