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Abstract 
Federated learning (FL) is a novel methodology aiming at training machine 
learning (ML) and deep learning (DL) models in a decentralized manner in 
order to solve three main problems seen in the artificial intelligence (AI) 
sector, namely, (a) model optimization, (b) data security and privacy, and (c) 
resource optimization. FL has been established as the “status quo” in today’s 
AI applications especially in the industrial and critical infrastructure (CI) 
domain, as the three aforementioned pillars are invaluable in assuring their 
integrity. CIs include important facilities such as industrial infrastructures 
(smart grids, manufacturing, powerlines, etc.), medical facilities, agriculture, 
supply chains, and more. Deploying AI applications in these infrastructures 
is an arduous task that can compromise the CI’s security and production 
procedures, requiring meticulous integration and testing. Even a slight mis-
take leading to the disruption of operations in these infrastructures can have 
dire consequences, economical, functional, and even loss of life. FL offers 
the needed functionalities to galvanize the integration and optimization of 
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artificial intelligence in critical infrastructures. In this chapter, we will outline 
the application of federated learning in decentralized critical infrastructures, 
its advantages and disadvantages, as well as the different state-of-the-art 
techniques used in the CI domain. We will showcase how the centralized 
ML approach transitions into the federated domain while we will show 
practical examples and practices of deploying the federated learning example 
in representative CIs, like, power production facilities, agricultural sensor 
networks, smart homes, and more. 

Keywords: Federated learning, artificial intelligence, data security, critical 
infrastructures, model optimization, resource optimization. 

5.1 Introduction 
5.1.1 Definition and motivation 
Federated learning (FL) is a distributed machine learning technique that 
allows multiple devices or entities to collaboratively train a model while 
keeping their data on-device. In federated learning, the data is distributed 
across a large corpus of devices or entities. This approach trains an AI model 
on the remote device using the local data and then sends only the model to 
a specified aggregation unit. There, a new and optimized global model is 
created by aggregating the model updates from all the devices. This approach 
allows for the training of models on large amounts of data without the need 
to transmit or centralize it, thus addressing the challenges of data privacy, 
security, and resource allocation. 

The methodology was first introduced by the Google Research team in 
a 2016 paper titled “Communication-Efficient Learning of Deep Networks 
from Decentralized Data” [1]. It represents an advancement from traditional 
distributed machine learning and is designed to address the challenges of 
training AI models without the need to transfer data, for reasons related to 
computation, allocation, and privacy. 

The motivation behind FL is to enable machine learning in scenarios 
where data is distributed across devices or is sensitive and cannot be cen-
tralized. For example, in the case of personalized healthcare, data may be 
collected from multiple devices such as wearables, smartphones, and hos-
pitals. In these scenarios, it is not practical or secure to centralize the data 
and allows for the training of models without compromising the privacy and 
security of the data. Additionally, this approach can be applied in mobile 
computing, where data is distributed across millions of mobile devices [2], 
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Figure 5.1 Federated learning concept. 

and it allows training models on this data without the need to transmit large 
amounts of data over the network. 

Federated learning also has the potential to democratize machine learning 
by enabling the participation of a large number of devices and entities in the 
training process. This can lead to more diverse and representative datasets, 
and also allows for training models in remote or underserved areas where 
data may not be easily accessible. 

Federated learning can also be used to improve the performance of models 
in edge computing applications. By allowing devices to train models locally, 
federated learning can reduce the need for transmitting large amounts of 
data over the network, which can be beneficial in low-bandwidth or high-
latency environments. Additionally, federated learning can enable the training 
of models that can be deployed on resource-constrained devices, such as IoT 
sensors or mobile phones. 

5.1.2 Federated learning domains 
Federated learning is an approach that aims to leverage the benefits of 
distributed AI model training. This approach is centered around three main 
pillars: 
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• Model optimization: Improves the model optimization process [3], 
[4] for the local node by providing an aggregated (global) model that 
contains knowledge accumulated by the aggregated models from all the 
devices. 

• Data privacy: Preserves the integrity, security, and privacy of the data 
by keeping it at the edge nodes, rather than transferring it to a central 
infrastructure. 

• Resource optimization: Designed to optimize [3], [5] the use of 
resources by communicating only the model parameters and some meta-
data between the federated server and the federated clients, instead of 
transferring the entire dataset. This conserves network resources and 
avoids possible bottlenecks, leads to lower latency, and allows for the 
distribution of the computing power needed for the AI model train-
ing among various nodes. Additionally, it enables to use the remote 
machines for the training process only when they are not used for other 
purposes, are connected to a steady power supply, and/or when there is 
a stable internet connection, which reduces the energy consumption of 
the federated process. 

5.1.3 Use cases and applications 
Federated learning has a wide range of use cases and applications, including 
but not limited to the following: 

• Personalized healthcare can be used to train models that can predict a 
patient’s health status or risk of developing a certain condition. This can 
be done by aggregating data from multiple devices such as wearables, 
smartphones, and hospitals. FL allows for the training of models without 
compromising the privacy and security of the patient’s data, which is 
particularly important in the healthcare industry. 

• Mobile computing can be used to train models on the large amounts of 
data generated by mobile devices such as smartphones and tablets. This 
can be used to improve the performance of mobile applications, such as 
natural language processing, image recognition, and more. For example, 
federated learning can be used to train models that can predict the battery 
life of a mobile device based on usage patterns. 

• Internet of Things can be used to train models on data collected from 
IoT devices such as sensors and cameras. This can be used to improve 
the performance of edge computing applications, such as image and 
video processing, anomaly detection, and more. 
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• Banking and finance can be used to train models that can predict fraud-
ulent transactions, by leveraging data from multiple banking institutions 
to train AI model, without actually transferring any data. 

• Natural language processing can also be used to train language models 
by aggregating data from multiple sources without compromising the 
privacy of the data. 

These are some examples of the utilization of the federated learning 
methodology in a variety of different popular domains. However, FL is 
continuously being adapted and tested to new applications as it is slowly 
becoming the baseline for machine learning in modern distributed infrastruc-
tures. 

Figure 5.2 Simple federated learning architecture. 
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5.2 How Federated Learning Works

5.2.1 Overview of the architecture and process

Federated learning is a distributed machine learning methodology that allows
for the training of deep learning models on a large corpus of edge devices.
In this approach, models are trained locally on the edge devices, and their
weights are sent to a central server where they are combined to form a global
model using an algorithm such as federated averaging. The global model is
then sent back to the remote devices for use. The central server distributes
an initial global model to a population of federated devices, each of which
holds a set of local data and a local model. These models are trained on
the local data and the model weights are then retrieved by the central server
to be combined using a predefined fusion algorithm, to create a new global
model containing the new knowledge accumulated from the local models.
This process is repeated for a number of iterations until the global model
converges. Figure 5.3 shows a common process (strategy) followed to realize
an FL training between a server and a corpus of devices. Figure 5.3 showcases
a simple FL strategy for realizing a training session.

To get an idea about the modeling of the methodology process, we can
depict a mathematical formula. Of course, since the process is directly con-
nected to the fusion algorithm used, the FL process can be defined in a number
of ways. For simplicity, we shall use the federated averaging algorithm to
explain the process. Eqn (5.1) shows the process of fusing the local models
from the remote devices in one global model [6].

N
1

wk
G =

Σ
DΣ iw

k

i∈N D i . (5.1)
i i=1

Equation (5.1) Federated aggregation algorithm (FedAvg).
Here, the global model on the kth iteration is represented by wk

G and the
remote ith model at that iteration is represented by wk

i . Each node holds a set
of local data Di N and local models wi.∈

5.2.2 Key components

For the implementation of the described architecture, the system defines three
main components [7] in order to realize the operation of the training, namely,
a) the orchestrator, b) the aggregator, and c) the worker/client. Figure 5.2
shows how these components fit into the federated architecture.
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Figure 5.3 Simple federated learning pipeline. 

5.2.2.1 Orchestrator 
The orchestrator is responsible for managing the federated learning process, 
including initiating the FL session, selecting the population of devices, 
organizing the data, algorithm, and pipeline, setting the training context, 
managing communication and security, evaluating the performance, and, 
finally, synchronizing the FL procedure. 

5.2.2.2 Aggregator 
The aggregator is responsible for incorporating the updates from the local 
models into the global model. In some cases, the orchestrator also acts as the 
aggregator, particularly for smaller networks or certain security or operational 
requirements. The aggregator also implements security and privacy measures 
to protect the FL server and workers from any malicious actors. 

5.2.2.3 Worker 
The worker, also known as the party, is responsible for the local training that 
takes place during the FL training session. The worker is the owner of the 
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data and updates its model based on the newly received version of the global 
model after the local training and global model generation by the aggregator. 
The worker has the option of participating in the FL session or not, depending 
on resource allocation or criticality. 

The abovementioned components established the foundation of the 
methodology. Depending on the type and nature of the deployment, these 
components can have additional responsibilities and placement or some extra 
components might be added. The different types of FL are described in the 
next section. 

5.2.3 Types of federated learning 
There is a variety of different federated learning application types that depend 
on a multitude of characteristics. A main characteristic that defines the type of 
the methodology applied is the way that data and their features are distributed 
and used by the different nodes. In particular, based on the data, we have the 
following: 

• Horizontal federated learning: This type of approach trains models 
on data that is horizontally partitioned across different devices or enti-
ties. For example, training a model on data from different hospitals or 
different companies (Figure 5.4). 

• Vertical federated learning: This type of federated learning trains 
models on data that is vertically partitioned across different devices or 

Figure 5.4 Horizontal federated learning. 
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Figure 5.5 Vertical federated learning. 

entities. For example, training a model on data from different features of 
the same patient (Figure 5.5). 

• Federated transfer learning: This type of federated learning is focused 
on adapting a model pre-trained on one dataset to another related dataset 
(Figure 5.6). 

However, the type of the federated learning approach used is not limited 
to the distribution of the data for the specific use case but depends on other 
characteristics such as the deployment constraints, the criticality of the data 

Figure 5.6 Federated transfer learning. 
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and infrastructure, and the nature of the task tackled. These preconditions 
orient the methodology and technique to adapt to the problem at hand and 
include the following approaches: 

• Multi-party federated learning: This type of FL is similar to horizontal 
FL, but the data is under multiple parties’ control. This type of federated 
learning is useful for the scenarios where data is not centralized but 
spread across multiple parties and each party wants to keep their data 
private. 

• Federated meta-learning: This type of FL is focused on training a 
model that can adapt to new tasks or domains quickly by leveraging 
knowledge from previous tasks or domains. 

• Federated domain adaptation: This type of FL is focused on adapting 
a model trained on one domain to work on another domain. 

• Federated few-shot learning: This type of FL is focused on training a 
model that can learn to classify new classes with only a few examples. 

• Federated reinforcement learning: This type of FL is focused on 
training a model using the reinforcement learning approach on the edge 
devices. 

5.2.4 Model fusion algorithms 
As mentioned before, the underlying core of the training procedure is the 
aggregation algorithm that undertakes the fusion of the distributed models 
into one optimized global model. Thus, the aggregation algorithm is a crucial 
component of FL as it determines the final performance of the global model. 
The most commonly used aggregation algorithm is federated averaging, 
which takes the average of the local models’ weights to form the global 
model. However, there are other aggregation algorithms that can be used 
depending on the specific use case. For example, some algorithms weigh 
the contributions of the local models based on the quality of their data or 
the computational resources available on the device. These algorithms can 
help to mitigate the impact of data availability and device heterogeneity. 
Additionally, some algorithms use techniques such as differential privacy to 
protect the privacy of the data on the edge devices during the aggregation 
process. Overall, the choice of aggregation algorithm can have a significant 
impact on the performance and privacy of the final global model and should 
be carefully considered when implementing FL. Table 5.1 presents some of 
the common and state-of-the-art fusion algorithms that are widely used in 
different settings. 
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Table 5.1 Common fusion algorithms used in FL. 
Algorithm Year Description Benefits 
FedAvg [1] 2017 An iterative model aver-

aging FL framework 
Reduces communication 
cost by locally computed 
updated aggregation 

Zoo [8] 2018 Composable services to 
deploy ML models locally 
on edge 

Reduces latency in data pro-
cessing, and minimizes the 
raw data revealed 

FedPer [9] 2019 Federated learning with 
personalization layers 

Improves results with data 
heterogeneity, and commu-
nication cost 

FedAsync 
[10] 

2019 Asynchronous federated 
optimization framework 

Improves flexibility and 
scalability and tolerates 
staleness 

FedCS [11] 2019 Client selection for FL 
with heterogeneous 
resources 

Improves performance and 
reduces training time 

BlockFL [12] 2019 Blockchained federated 
architecture 

Optimizes communication, 
computation, and latency 

FedMa [13] 2020 Federated matched aver-
aging algorithm for FL 

Improves accuracy and com-
munication cost 

FedAT [14] 2020 Synchronous intra-tier 
training and asynchronous 
cross-tier training 

Improves accuracy and 
reduces communication cost 

5.3 Federated Learning vs. Traditional Centralized 
Learning 

Federated learning is different from traditional centralized learning [15] in 
several ways. The most significant difference is that in traditional centralized 
learning, the data is collected and stored in a central location, where it is used 
to train the model. In contrast, federated learning keeps the data on the edge 
devices and trains the model locally on each device. This allows for the train-
ing of models on large amounts of data without the need to transfer it and also 
the ability to handle non-independent and identically distributed (IID) data. 
Additionally, federated learning preserves data privacy and security as the 
data never leaves the edge devices. This makes federated learning particularly 
well-suited for scenarios where data is sensitive or distributed across multiple 
devices. However, it is important to keep in mind that federated learning has 
its own set of challenges such as communication overhead, data availability, 
and model divergence. 
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Table 5.2 Comparison between federated and centralized learning. 
Federated learning Traditional centralized learning 
Data remains on edge devices Data is collected and stored in a central loca-

tion 
Model trained locally on each device Model trained on centralized data 
Suitable for non-IID data Assumes data is IID 
Preserves data privacy and security Data privacy and security may be at risk 
Requires communication between 
devices 

No communication required between devices 

Scales horizontally and vertically Scales vertically 
Suitable for sensitive or distributed 
data 

Not suitable for sensitive or distributed data 

Can handle many edge devices Limited by the amount of data that can be 
centralized 

Can have challenges such as commu­
nication overhead and model diver­
gence 

Fewer challenges than federated learning 

5.3.1 Advantages and disadvantages of federated learning 
By itself and as it is probably apparent, the federated learning approach is vast 
and, in its range, it encapsulates major advantages but also some drawbacks. 
As in all fields, the optimal deployment of federated learning is the fine line 
between the tradeoff of these advantages and drawback and strictly depends 
on the application of the methodology. For example, there might be some 
applications that require better model generalization but in expense of the 
communication efficiency of the network. Table 5.3 enumerates some of these 
advantages and disadvantages of federated learning in order to provide a 
better view of its utility. 

5.3.2 Real-world examples of federated learning 
5.3.2.1 Smart farming 
In smart farming, federated learning can provide several benefits [16] by 
allowing for the training of models on data that is decentralized and spread 
across multiple devices or entities. The use case integrates IoT data from 
crops and animal care infrastructures, AR smart glasses, and other heteroge-
neous IoT devices, which can be difficult to source and gather in a central 
place to train a single AI model. By utilizing federated learning, it allows 
to train models on data that is distributed across great distances, making it 
possible to: 
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Table 5.3 Advantages and disadvantages of federated learning. 
Advantages Disadvantages 
Collaborative learning: Data availability: 
Allows multiple devices or entities to collabo- Data availability can be an issue in 
ratively train a model while keeping their data federated learning, as not all devices 
on-device. This allows for the training of models or entities may have access to the same 
on large amounts of data without the need to data or may have data of different 
transmit or centralize it. quality. 
Data privacy and security: Communication overhead: 
Allows for the training of models without com- Requires communication between the 
promising the privacy and security of the data. devices or entities, which can be a 
This is particularly important in scenarios where bottleneck, especially if the devices 
data is sensitive or distributed across multiple are located in different geographical 
devices. locations. 
Edge computing: Model divergence: 
Allows devices to train models locally, which Can suffer from model divergence, 
can reduce the need for transmitting large where the local models may not con-
amounts of data over the network. Additionally, verge to a common global model due 
it enables the training of models that can be to the non-IID data distribution on the 
deployed on resource-constrained devices, such devices. 
as IoT sensors or mobile phones. 
Handling non-IID data: Latency: 
It is particularly well-suited for training models Can suffer from latency issues, as it 
on non-IID data that is commonly found in the requires communication between the 
real-world scenarios. devices or entities to exchange model 

updates. 
Scalability: Complexity: 
It is highly scalable and can handle a large Can be complex to implement and 
number of devices or entities. requires a lot of communication and 

coordination between the devices or 
entities. 

• Formulate best practices for farming and livestock production in expand-
ing the specific market by discovering weaknesses in the agricultural 
systems and providing insightful predictions to help end-users make 
informed decisions about their infrastructure’s operations. 

• Formulate rules and quantified metrics for optimum conditions in terms 
of (animal) behavior, psychiatry, food quality, nutrition, and agricul-
ture environment by training models on the diverse data sources from 
different scenarios. 

• Increase farm and livestock production by using AI-supported strategies 
that improve agricultural systems’ sustainability, productivity, and risk. 
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• Provide feedback on how to ensure proper decision support by using 
the knowledge accumulated from the local models to improve the global 
model. 

5.3.2.2 Smart, sustainable, and efficient buildings 
In the use case of smart, sustainable, and efficient buildings, FL can provide 
several benefits [17]. By using IoT data in smart buildings to optimize the 
energy footprint and automate building management using AI-based solu-
tions, FL can be used to train models on large amounts of data from multiple 
devices or entities, while keeping the data on-device. This allows for the 
training of models on large amounts of data without the need to transmit 
or centralize it, which can help to preserve the privacy and security of the 
data. 

5.3.2.3 Industrial supply chains 
In the context of the industrial supply chain use case, FL can provide sig-
nificant benefits by improving the forecasting accuracy [18] for fulfilling the 
demand from retailers and agencies, who are attempting to satisfy the demand 
from their consumers. This is achieved by utilizing the abundance of product 
codes, complexity of certain manufacturing processes, and short lifetime of 
most products in the supply chain, which make production scheduling and 
market-oriented forecasting challenging. In this frame, FL allows for the 
collaborative training of models across different supply chains of the end-
user, without the need to transfer or centralize the data. This can improve 
the forecasting accuracy by leveraging the knowledge and data from different 
product codes produced by the end-user. Additionally, the use of FL can pro-
tect the data privacy and resources of the end-user’s infrastructure, by keeping 
the data on-device, and avoiding the need for centralizing and transferring it. 
Furthermore, by applying this technique to optimize the forecasting accu-
racy and using the heterogeneous data from different product codes, it can 
lead to the end-user’s better decision making and better supplier−customer 
relationship. 

5.3.2.4 Industrial infrastructures 
In the use case of mixed reality and ML-supported maintenance and fault 
prediction of IoT-based critical infrastructure, the benefit of FL is its ability to 
predict the behavior of industrial devices, such as controllers, in order to iden-
tify potential defects and malfunctions. This enables the end-user to monitor 
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and prevent problems in the operation of each industrial infrastructure. The 
technique is applied to a large number of industrial devices that are divided 
and installed in decentralized optical switches. The use case makes use of the 
ability of federated learning to handle many edge devices, both horizontally 
by scaling to more devices such as small form-factor pluggable (SFP) mod-
ules or switches and vertically by applying a hierarchical model optimization. 
This allows for more efficient and accurate predictions and maintenance 
operations for the critical infrastructure. 

5.3.2.5 Medical sector 
Federated learning can bring several benefits to the medical sector [19], [20], 
particularly in a use case of a collection of hospitals across a large distance. 
Some of the benefits include: 

• Data privacy and security: Allows for the training of models without 
compromising the privacy and security of the patients’ data. This is 
particularly important in the medical sector where data is sensitive and 
regulated. 

• Handling non-IID data: It is particularly well-suited for training mod-
els on non-IID data, which is commonly found in the medical sector. By 
training models on the local data from different hospitals, the models can 
learn from diverse patient populations, resulting in more robust models. 

• Edge computing: Allows hospitals to train models locally, which can 
reduce the need for transmitting large amounts of data over the network. 
Additionally, it enables the training of models that can be deployed on 
resource-constrained devices, such as mobile devices used by clinicians 
and nurses. 

• Collaborative learning: Allows multiple hospitals to collaboratively 
train a model while keeping their data on-device. This allows for the 
training of models on large amounts of data without the need to transmit 
or centralize it. 

• Scalability: It is highly scalable and can handle a large number of 
hospitals across a large distance. This makes it suitable for large-scale 
healthcare studies and research. 

• By using, hospitals can train models on their local data without sharing 
any sensitive information across the network, while still being able 
to build models that generalize well to different patient populations. 
This can lead to better diagnosis, treatment, and ultimately patient 
outcomes. 
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5.4 Implementing Federated Learning 
Implementing federated learning requires a few key components. First, a 
centralized server is needed to aggregate the models trained on the local 
devices and distribute the updated global model back to the devices. Second, 
there should be a mechanism for the local devices to communicate with the 
central server and securely exchange model updates. Third, a mechanism for 
data partitioning is needed to ensure that the devices are training models on 
non-overlapping data. Fourth, a method for combining the local models into a 
global model, such as federated averaging, is necessary. Lastly, it is important 
to have a way to evaluate the performance of the model and monitor the FL 
process. Additionally, it is important to have a good understanding of the 
underlying deep learning model and the data that are being used. It is also 
important to consider the security and privacy aspects of the FL process, as 
well as the network infrastructure to ensure that the devices can communicate 
effectively with the central server. 

5.4.1 Tools and frameworks available 
Since its introduction, federated learning has continuously been explored and 
integrated into a variety of commercial and industrial applications. To support 
the migration from conventional deep learning, a lot of diverse frameworks 
have been proposed and used to both deploy or experiment with the FL 
methodology. Table 5.4 enumerates some of the most used frameworks that 
exist today. 

5.4.2 Challenges 
Despite the many potential benefits of federated learning, there are still some 
challenges that need to be addressed before it can be widely adopted. These 

Table 5.4 Available federated learning frameworks and tools. 
Framework Type 
Tensorflow federated [21] Research 
FATE [22] Production 
Flower [23] Production/research 
PySyft [24] Production/research 
IBM federated [25] Production/research 
Leaf [26] Research 
OpenFL [27] Production/research 
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include issues related to data privacy and security, as well as the need for 
robust methods for aggregating updates from multiple devices. Additionally, 
it requires the design of efficient algorithms to handle the high-dimensional 
and non-IID data across the devices, and more. Therefore, it is an active area 
of research and development, with many ongoing efforts aimed at addressing 
these challenges and making the approach more practical and widely applica-
ble. Common challenges in the federated learning domain include problems 
that derive by its innate nature, such as: 

• Untrusted sources: O ne of the challenges is the presence of untrusted 
sources, which can be devices or entities that may not have the same 
level of security or data privacy as the other participants. This can lead 
to potential breaches of security or privacy and can compromise the 
integrity of the model. 

• Adversarial attacks: FL is also vulnerable to adversarial attacks, where 
an attacker may attempt to manipulate the local models or the global 
model, leading to a decrease in the accuracy of the model. 

• IID and non-IID data processing: FL requires the data distributed 
across the devices or entities to be identically independently distributed 
(IID), which is not always the case. In scenarios where data is non-IID, 
the local models may not converge to a common global model, leading 
to a decrease in the accuracy of the model. 

• Synchronization problems: FL requires coordination and communica-
tion between the devices or entities, and synchronization problems can 
occur if the devices or entities are not able to communicate or coordinate 
effectively. 

• Small number of participants: FL requires a large number of devices 
or entities to participate in order to effectively train a model. If the 
number of participants is small, the model may not be able to effectively 
learn from the data. 

• System infiltration: In FL, since the data is distributed across multiple 
devices or entities, it can be vulnerable to infiltration by malicious actors 
who can attempt to access the data or manipulate the models. 

5.5 Conclusion 
Federated learning is a novel methodology created on the basis of distributed 
training of AI models, heavily oriented at keeping the distributed data private 
while also optimizing the models and the resources used. It is particularly 
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useful in the industrial and critical infrastructure domain, as it allows for 
the integration and optimization of AI in these systems without compro-
mising their integrity. FL offers several advantages in terms of deployment, 
scalability, and security; however, it also poses some challenges in terms of 
implementation, communication, and model optimization, especially when 
considering the distribution of the distributed resources. It is a status quo 
in today’s AI applications. The chapter focuses on introducing the basics 
of the federated learning methodology, the application of FL in decen-
tralized critical infrastructures, outlining the advantages and disadvantages 
and different techniques used in the field. It provides practical examples 
of FL’s deployment in various infrastructures such as power production 
facilities, agricultural sensor networks, and smart homes and more while also 
summarizing the currently available sources. 
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