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Abstract—The evolution of fifth-generation (5G) networks
represents a significant technological leap towards a seamless
and advanced user experience, allowing hyperconnected use cases
with faster data transfer, lower latency and better connectivity
for a wide range of mobile devices. In particular, a key element
of 5G is the 5G Core (5GC) which follows a service-based
architecture, enabling network slicing and improved Quality of
Service (QoS). However, despite the benefits of 5GC, it also
creates important security and privacy concerns. First, 5GC
can combine heterogeneous technologies that can increase the
growing attack surface. On the other hand, 5G handles a vast
amount of sensitive data that may reflect an attractive goal for
potential cyberattackers. Based on the previous remarks, in this
paper, we introduce 5G-Fuzz. 5G-Fuzz is a smart fuzzer which
takes full advantage of historical data in order to fuzz and target
the Packet Forwarding Control Protocol (PFCP) communications
between the Session Management Function (SMF) and User
Plane Function (UPF). For this purpose, two PFCP attacks are
used. In contrast to conventional fuzzers, 5G-Fuzz adopts two
Generative Adversarial Networks (GANs) in order to identify and
generate the appropriate values of Session Endpoint Identifier
(SEID) and sequence number (seq) utilised in the PFCP sessions,
thus accelerating the PFCP attacks. Finally, 5G-Fuzz composes
and replays the malicious PFCP packets against UPF.

Index Terms—5G, Fuzzing, Generative Adversarial Networks,
PFCP

I. INTRODUCTION

Beginning in the early 2010s when the International
Telecommunication Union (ITU) announced the need for next-
generation wireless networks, the evolution of fifth-generation
(5G) networks has provided several benefits, such as faster
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speeds, increased capacity and improved reliability [1]. A key
architectural element of 5G is the 5G Core (5GC), which
adopts an efficient service-based architecture, allowing the har-
monic collaboration, modularisation and decoupling of several
Network Functions (NFs), such as the Session Management
Function (SMF), User Plane Function (UPF) and the Access
and Mobility Management Function (AMF). In particular, the
next-generation base station (also known as gNodeB or gNB)
communicates first with 5GC in order to establish the neces-
sary connections for the User Equipment (UE), including vari-
ous functions, such as authentication, session management and
policy enforcement. On the other hand, 5GC communicates
with gNB in order to provide the necessary information and
instructions regarding radio resource allocation, handovers,
network coverage and, in general, the effective use of the
network resources. The service-based architecture of 5GC
provides several beneficial services, such as network slicing
and improved Quality of Service (QoS). For this purpose,
5GC combines a variety of technologies, such as Network
Function Virtualization (NFV), Software-Defined Networking
(SDN) and cloud/edge computing. However, this heterogeneity
raises crucial security and privacy concerns.

More specifically, despite the advantages of 5GC, its dis-
tributed and complicated architecture creates an increased
attack surface, where cyberattackers may exploit potential se-
curity weaknesses and take control of NFs, thus compromising
the essential security principles (i.e., confidentiality, integrity
and availability) [2]. Moreover, the involvement of efficient
technologies, such as NFV and SDN, creates new cybersecu-
rity risks. Furthermore, 5GC handles a huge amount of data
that may include sensitive information, thus raising privacy
concerns about data collection, retention and profiling. Both
academia and industry investigate the 5GC security issues. For
instance, based on MITRE Adversarial Tactics, Techniques,
and Common Knowledge (ATT&CK), FiGHT is a common
knowledge base of tactics, techniques and sub-techniques for
5G environments. The techniques can be categorised into three
main classes: (a) observed, (b) Proof of Concept (PoC) and (c)
theoretical. Therefore, in light of the aforementioned remarks,
it is evident that the development of appropriate security
services is necessary. In this context, a fuzzer is a security
mechanism which can send random or malformed input data
to a target system in order to cause unexpected behaviour
and discover potential security flaws. Conventional fuzzing
techniques generate random or brute-force data in order to
test the target system. On the other hand, with the advent
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of Artificial Intelligence (AI), a smart fuzzer can follow a
more targeted and intelligent approach in order to generate
and execute more meaningful and effective actions.

With reference to the aforementioned remarks, this parer
presents a smart fuzzer called 5G-FUZZ, which targets the
Packet Forwarding Control Protocol (PFCP) communications
between SMF and UPF in 5GC. In particular, the proposed
fuzzer takes full advantage of existing PFCP-related cyber-
attacks and adopts three Generative Adversarial Networks
(GANs) in order to compose a combination of malicious PFCP
traffic data that will next be redirected to UPF. Therefore,
on the one hand, 5G-FUZZ can be used to uncover potential
PFCP vulnerabilities against particular 5GC instances, and on
the other hand, 5G-FUZZ can create malicious data that next
can be used by AI-powered Intrusion Detection and Prevention
Systems (IDPS) that rely on Machine Learning (ML) and
Deep Learning (DL) techniques. Based on the aforementioned
remarks, the paper contributions are summarised as follows.

• Implementation of a Smart Fuzzer for 5GC: A smart
fuzzer is provided, targeting the PFCP communications
in 5GC. Therefore, PFCP-related vulnerabilities can be
discovered and remediated in the context of particular
5GC instances.

• Generating Malicious Network Traffic Data: The pro-
posed fuzzer can synthesise and generate malicious PFCP
traffic data (i.e., pcap files) that next can be further
processed and used to train ML and DL models for
intrusion detection.

The rest of this paper is organised as follows. Section II
describes similar works in this research area. Next, section III
discusses the PFCP-related attacks that are taken into account
by 5G-FUZZ. In section IV, the architecture of 5G-FUZZ is
presented. Finally, section V presents the evaluation results,
while Section VI concludes this paper.

II. RELATED WORK

Taking into account various papers that investigate the
security issues of 5G, in this paper, we focus our attention
on existing works that introduce attack generators for 5G
environments. A brief overview of them is provided below.

In [3], G. Amponis et al. focus on PFCP Denial of Service
(DoS) attacks against 5GC. Five attacks are studied: PFCP
Session Deletion Request, Modification Request, Establish-
ment, Misconfiguration, and Eavesdropping User Traffic. The
first attack affects 5GC’s N4 and N3 interfaces. A violated
SMF sends to UPF a flood of PFCP Session Deletion Control
Messages. The second attack enforces UPF to lose packet-
handling parameters. A violated SMF again sends to UPF
multiple PFCP Session Modification Requests with a DROP
fag. The third attack depletes UPF’s supplies. A malicious
entity playing the role of SMF floods UPF with Session Estab-
lishment Requests. Next, Unauthorised UPF Forwarding Rules
Misconfiguration can breach the /proc/sys/net/ipv4
directory if the attacker has compromised UPF. The last attack,
an extension of the Unauthorised PFCP Session Modification

Request, redirects the UE traffic from the UPF to a compro-
mised entity. Finally, it is noteworthy that using the first three
attacks, the authors published the 5GC PFCP Intrusion
Detection Dataset in IEEE Dataport and Zenodo.

Z. Salazar et al. introduce 5G-Replay in [4]. This fuzzer
is specifically designed for testing 5G protocols and allows the
evaluation of various components in a 5G network, including
both 5GC and radio-layer elements like cellular transceivers.
The authors conducted experiments to assess the effective-
ness of 5G-Replay using open-source 5G packages like
Open5GS and Free5GC. It is worth noting that even when
modifying protocol-specific attributes, the replayed 5G traffic
is successfully parsed by the corresponding elements, and the
expected responses are received.

In [5], Z. Lin et al. introduce IDSGAN. IDSGAN relies
on Wasserstein Generative Adversarial Network (WGAN) in
order to generate appropriate data that next can feed AI-
powered Intrusion Detection Systems (IDS). The architecture
of WGAN consists of two complementary networks, namely,
generator and discriminator. The generator is composed of five
linear layers, which are responsible for generating malicious
data. On the other hand, the discriminator’s role is to classify
the data generated by the generator as real or fictitious.
The implementation of IDSGAN is built upon the PyTorch
framework. The performance of the proposed tool is evaluated
in terms of its detection rate and evasion increase rate. The
evaluation results show that IDSGAN achieves an average
adversarial detection rate of 0.495% and an average evasion
increase rate of 98.93%.

In [6], the authors introduce DoS-WGAN. DoS-WGAN
adopts also WGAN to autonomously generate features of
Denial of Service (DoS) traffic by leveraging the probability
distribution of normal network packets. The architectural de-
sign of DoS-WGAN includes two complement neural networks:
(a) the generator and (b) the discriminator. The objective of
the generator is to generate malicious data related to DoS
attacks, while the discriminator’s purpose is to classify this
data as genuine or counterfeit. Moreover, there is a converter
which is used to convert the data into a suitable format. The
evaluation process involves a Convolutional Neural Network
(CNN)-based Network Intrusion Detection System (NIDS).
DoS-WGAN decreases the True Positive Rate (TPR) of the
previous NIDS from 97.3461% to 47.627%.

Undoubtedly, the previous works introduce interesting
methodologies and solutions in order to generate malicious
data, taking full advantage of GAN. However, it is worth men-
tioning that none of them focuses on actual 5GC environments.
5GReplay can only generate malicious data within a 5GC
network; nevertheless, it does not include any AI mechanism.
Finally, none of the previous works focuses on PFCP. Based
on the previous remarks. to the best of our knowledge, this is
the first work which introduces a smart fuzzer for the PFCP
protocol, which is in the context of the N4 interface in the
context of 5GC.



Fig. 1. Visual Representation of 5GC

III. ATTACK MODELLING

As illustrated in Fig. 1, 5G-Fuzz targets the N4 interface
of 5GC between UPF and SMF. For this interface, PFCP
is used. Based on our previous work in [3], we focus our
attention on the following PFCP-related attacks.

PFCP Session Deletion DoS Attack: The goal of this
cyberattack is to drop the connection between a User
Equipment (UE) and the Data Network (DN). More
specifically, the Python script behind this cyberattack disrupts
the sessions between the UE and DN’s Protocol Data
Units (PDUs) without disconnecting the UE from the 5G
Radio Access Network (RAN) or 5GC. Consequently, this
cyberattack affects the N4 (between SMF and UPF) and N6
(between UPF and DN) interfaces. It is worth mentioning
that in order to accomplish this cyberattack in a successful
manner, the cyberattacker has to identify first a valid Session
Endpoint Identifier (SEID) used between SMF and UPF

PFCP Session Modification DoS Attack (DROP): The goal
of this attack is to remove the packet-handling rules of a
specific session between SMF and UPF. In particular, the
cyberattacker, in this case, intends to remove the entries of the
Forwarding Action Rules (FAR) that are associated with the
Tunnel Endpoint Identifier (TEID) and the gNB IP address.
Therefore, in the context of the N6 interface (between UPF
and DN), the General Packet Radio Service (GPRS) Tunneling
Protocol (GTP) tunnel used for transmitting downlink data
to the UE is compromised, without allowing access to the
DN. Similarly to the previous cyberattack, in this case, also,
the N4 and N6 interfaces of 5GC are affected. However, the
cyberattacker has to identify also the appropriate SEID in
order to execute the attack successfully.

Although the previous cyberattacks are efficient by them-
selves, an attacker without prior knowledge about the target

5GC may require a lot of time for the identification of the
appropriate SEID. Therefore, the goal of 5G-Fuzz is to fully
leverage historical data in order to generate similar, malicious
data related to the parameters of the previous PFCP attacks.
More specifically, 5G-Fuzz focuses on the seid and seq
fields of the PFCP Session Deletion Request and PFCP Session
Modification Request packets, as illustrated in Fig. 2 and
Fig. 3, respectively. seid is an identifier utilised in all PFCP
packets in order to identify the PFCP session of a specific UE
with the DN. On the other side, seq is a 16-bit identifier which
denotes the number of the PFCP packets that are transmitted
between SMF and UPF. Changing seid could lead the SMF
and UPF to send packets to the wrong PFCP sessions. In
particular, in the context of the PFCP Session Deletion DoS
Attack, fuzzing seid in a smart manner, taking into account
historical data, can drop established PFCP sessions between
UPF and SMF. In contrast, without any intelligence, a PFCP
Session Deletion DoS Attack will increment the value of
seid one by one. It is evident that this would require more
time in order to identify and target the seid of interests.
The intelligence of 5G-Fuzz accelerates the attack process
by identifying and targeting faster the seid of interest and
thus disabling a larger proportion of the affected network
slice’s user plane. In the context of PFCP Session Modification
DoS Attack, fuzzing seid could drop the packet-handling
rules of established PFCP sessions. Similarly, in this case, the
intelligence of 5G-Fuzz allows the cyberattacker to target
faster the seid of interest, accelerating the overall process.
On the other hand, changing seq can result in receiving PFCP
messages out of order. Similarly to the previous cases, a smart
fuzzer like 5G-Fuzz can identify faster the seq of interest
compared to conventional PFCP Session Deletion DoS and
PFCP Session Modification DoS attacks.

Fig. 2. Structure of PFCP Session Deletion Request

IV. 5G-FUZZ ARCHITECTURE

The architecture of 5G-Fuzz consists of two main applica-
tion building blocks, namely (a) Training and (b) Inference. In
the first application building block, there are three components,
namely (a) Data Receiving Module, (b) PcapToCSVConverter
and (c) Training Module. The first module is responsible for
receiving and reading the PFCP network traffic data (i.e.,
PFCP pcap files). For this purpose, Scapy is used. Next,



Fig. 3. Structure of PFCP Session Modification Request

PcapToCSVConverter undertakes to parse the PFCP packets
and extract the PFCP attributes from the PFCP Session Modi-
fication Request and PFCP Session Deletion Request packets.
Then, a Comma-Separated Values (CSV) file is created for
each category of packets (i.e., PFCP Session Modification
Request and PFCP Session Deletion Request). Finally, the
Training Module uses the previous CSV files in order to train
two Conditional Tabular GANs (CTGANs), namely DEL-GAN
and MOD-GAN. According to the structure of the PFCP Session
Deletion Requests and PFCP Session Modification Requests
packets as illustrated in Fig. 2 and Fig. 3, DEL-GAN is
responsible for generating only the attributes of PFCP Session
Deletion Requests, while the MOD-GAN generates only PFCP
Session Modification Requests. On the other hand, in the
context of Inference, the previous GANs generate the attributes

of PFCP Session Deletion Requests and PFCP Session Mod-
ification Requests, respectively. The output of both GANs is
received by the CSVToPCAPConverter, which undertakes to
transform the previous PFCP attributes into PFCP Session
Deletion Requests and PFCP Session Modification Requests
packets, thus composing a single pcap file with PFPC pack-
ets that refer to both cyberattacks described previously. To
this end, Scapy is used. Finally, the Replay Module uses
tcpreplay in order to replay previous PFCP packets to the
target UPF.

For the implementation of the DEL-GAN and the MOD-GAN,
CTGAN is utilised. In this type of GAN architecture, condi-
tional information is incorporated into the training process in
order to guide the generation process and generate samples
conditioned on specific characteristics, such as discrete values.
The architecture of both GANs is illustrated in Fig. 5. In
particular, the architecture of both GANs consists of two
complementary neural networks: (a) the conditional generator
and (b) the discriminator. The conditional generator takes
as input samples from latent space Z and the conditional
information and produces synthetic samples. The discriminator
receives both samples from the real dataset and the synthetic
samples, including the corresponding conditional information.
Next, the aim of the discriminator is to distinguish between
real and artificially generated samples while also considering
the conditional information.

During the training process, the generator tries to generate
samples that the discriminator identifies as real, while the
discriminator aims to correctly identify both real samples and
generated samples according to their conditional information.
This adversarial training process aims to lead the generator to
improve its ability to generate realistic synthetic samples.

The generator consists of two fully-connected hidden layers
of 256 neurons, each with batch-normalization and the ReLU
activation function (Equation 1). The discriminator also con-
sists of two fully-connected hidden layers of 256 neurons each,
with dropout and the LeakyReLU activation (Equation 2). The
WGAN loss with gradient penalty (Equation 3) is used for the
models training, as this loss results in more stable training of
GANs. The models are trained for 300 epochs, utilising the
Adam optimiser.

ReLU =

{
x , x > 0
0 , x ≤ 0

(1)

LeakyReLU =

{
x , x > 0

0.01x , x ≤ 0
(2)

L = Ex̂∼Pg
[D (x̃)]− Ex∼Pr

[D (x)] +

λEx̂∼Px̂

[
(||∇x̃D (x̃) ||2−1)

2
] (3)

where D is the Discriminator, Pg is the generator distribution,
Pr is the data distribution, and λ is the penalty coefficient.

V. EVALUATION ANALYSIS

For the evaluation of 5G-FUZZ, the 5GC Intrusion
Detection Dataset [7] is used, while also a set of
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metrics has been defined, that evaluates the synthetic data
compared to the real one. The metrics are calculated for both
the outputs of the DEL-GAN and MOD-GAN. In particular,
the following metrics are used to evaluate the features with
discrete values:

The Total Variation Distance (TVD) metric (Equation 4)
computes the similarity of a real data and a synthetic data
column in terms of the column shapes.

TV D = 1− 1

2

∑
ω∈Ω

|Rω − Sω| (4)

where ω describes all the possible categories in column Ω,
and R, S describe the real and synthetic frequencies for those
categories respectively.

The p−value of the Chi-Squared Test (Equation 5) is used
to quantify the similarity of real and synthetic columns by
considering the column shapes.

X2
c =

∑
i (Oi − Ei)

2

Ei
(5)

where O is the observed value and E is the expected value.
The Category Coverage (CatCov) metric (Equation 6) mea-

sures if a discrete features column from the synthetic data
covers all the possible categories that are present in the same
column from the real data.

CategoryCoverage =
cr
cs

(6)

where cr, cs are the unique categories in synthetic and real
columns, r and s respectively.



The Discrete Kullback–Leibler divergence (D-KLD) metric
(Equation 7), measures how one discrete probability distri-
bution P is different from another discrete probability distri-
bution Q. The final value for this metric is normilized by:
1/(1 +DDKL).

DDKL(P (x)||Q(x)) =
∑
x∈X

P (x)log
P (x)

Q(x)
(7)

where P , Q, are discrete probability distributions.
On the other hand, the following metrics are used to evaluate

the features with continuous values:
The Inverted Kolmogorov–Smirnov (IKS) metric (Equation

8) can be used to assess whether two one-dimensional proba-
bility distributions differ.

IKS = 1− sup |F1,n(x)− F2,m(x)| (8)

where F1,n and F2,m are the empirical distribution functions
of the first and the second sample respectively, sup is the
supremum function, and n, m are the sizes of first and second
samples respectively.

The Pearson’s correlation coefficient (PCC) metric com-
putes a correlation coefficient on the real and synthetic data.

PCC =
cov(X,Y )

σxσy
(9)

The Statistic Similarity (StatS) metric (Equation 10) com-
putes the mean value for real data and synthetic columns, r
and s, normalizes the score and takes its complement.

StatS = 1− |mean(r)−mean(s)|
max(r)−min(s)

(10)

The Continuous Kullback–Leibler divergence (C-KLD)
metric (Equation 11) measures the relative entropy between
distributions p, q of continuous variables. The final value for
this metric is normalized by: 1/(1 + CDKL).

CDKL(p(x)||q(x)) =
∫ ∞

−∞
p(x)log

p(x)

q(x)
dx (11)

Based on the previous evaluation metrics, Table I and
Table II summarise similarity evaluation metrics for DEL-GAN
and MOD-GAN, respectively.

TABLE I
SUMMARY OF DEL-GAN SIMILARITY EVALUATION METRICS

Discrete Features
Metric Value Min Max Goal
TVD 1 0 1 Maximize

Chi-Squared 1 0 1 Maximize
CatCov 1 0 1 Maximize
D-KLD 1 0 1 Maximize

Continuous Features
Metric Value Min Max Goal

IKS 0.98 0 1 Maximize
PCC 0.99 -1 1 Maximize
StatS 0.97 0 1 Maximize

C-KLD 0.98 0 1 Maximize

TABLE II
SUMMARY OF MOD-GAN SIMILARITY EVALUATION METRICS

Discrete Features
Metric Value Min Max Goal
TVD 1 0 1 Maximize

Chi-Squared 1 0 1 Maximize
CatCov 1 0 1 Maximize
D-KLD 1 0 1 Maximize

Continuous Features
Metric Value Min Max Goal

IKS 0.99 0 1 Maximize
PCC 1 -1 1 Maximize
StatS 0.91 0 1 Maximize

C-KLD 0.99 0 1 Maximize

VI. CONCLUSIONS

Despite the advantages of 5G, it also comes with significant
security and privacy concerns. In this paper, we present
5G-Fuzz, a smart fuzzer that leverages historical data to fuzz
and target the PFCP communications between SMF and UPF
of 5GC. Unlike conventional fuzzers, 5G-Fuzz employs two
GANs to identify and generate appropriate values for the SEID
and seq used in the PFCP sessions, thereby accelerating the
various PFCP attacks. Then, 5G-Fuzz creates and replays
malicious PFCP packets against UPF.
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