
Highlights
Leveraging the Power of Internet of Things and Artificial Intelligence in Forest Fire Prevention,
Detection, and Restoration: A Comprehensive Survey
Sofia Giannakidou,Panagiotis Radoglou-Grammatikis,Thomas Lagkas,Vasileios Argyriou,Sotirios Goudos,Evangelos K.
Markakis,Panagiotis Sarigiannidis

• AI in Wildfire Science and Management: The purpose of this survey is to present a thorough review of the various
AI models utilised in wildfire science and management. Its objective is to offer a clear comprehension of the current
state-of-the-art in applying AI to this field.

• Evaluation of Accuracy and Reliability of AI Models in Wildfire Science: This survey aims to evaluate the accuracy,
reliability, and applicability of AI models in different contexts. Analysing the advantages and limitations of these models
will allow for informed decision-making when selecting the most suitable models for particular applications.

• Limitations and Challenges of Selected AI Models in Wildfire Science: The primary objective of this research is to
identify the limitations and difficulties of the selected AI models in the field of wildfire science and management. Its
purpose is to provide recommendations for future research in this field and to assist in the development of new models
that can better address the unique challenges it presents.

• Advancements in the Application of AI in Wildfire Science and Management: The purpose of this study is to
advance our understanding of the application of artificial intelligence in wildfire science and management. It presents
a summary of the previous research and underlines the future implications of AI in this field.

• Directions for Future Research Work through Novel Technologies: Based on the lessons learned from this analysis,
directions for future research work in this field are provided, taking full advantage of novel technologies, such as 5G,
Software Defined Networking (SDN), digital twins, federated learning and blockchain.
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A B S T R A C T
Forest fires are a persistent global problem, causing devastating consequences such as loss of human
lives, harm to the environment, and substantial economic losses. To mitigate these impacts, the
accurate prediction and early detection of forest fires is critical. In response to this challenge and living
in the digital era of Artificial Intelligence (AI) and smart economies, there has been a growing interest
in utilising AI mechanisms for forest fire management. This study provides an in-depth examination of
the use of AI algorithms in the fight against forest fires. In particular, our paper starts with an overview
of the forest fire problem, followed by a comprehensive review of various systems and approaches.
This review includes a thorough analysis of the various works that have evaluated the factors that
influence fire occurrence and severity, as well as those that focus on fire prediction and detection
systems. The paper also explores the use of AI in adapting and restoring after the occurrence of forest
fires. The paper concludes with an evaluation of the potential impact of AI on forest fire management
and suggestions for future research directions, taking full advantage of novel technologies, such
as 5G communications, Software Defined Networking (SDN), digital twins, federated learning and
blockchain. Finally, the paper draws lessons and insights on the potential and limitations of AI in
forest fire management, highlighting the need for further research and development in this field to
maximise its impact and benefits.

1. Introduction
Forests play a crucial part in preserving the planet’s

ecological balance. Natural and human factors can cause
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fires, and these fires pose a significant threat to valuable nat-
ural resources. Forest fires can be catastrophic, with severe
adverse impacts on the environment, economy, and human
lives. The effects of forest fires include global warming, loss
of biodiversity, and damage to natural habitats. Prediction
and detection of forest fires at an early stage are vital for
mitigating fire damage and lowering the need for firefighting
activities. The first step in preventing the spread of forest
fires is to estimate the likelihood of their development using
models that take into consideration weather and fuel avail-
ability. These models are crucial in preventing the ignition
and spread of fires. Additionally, they can also be employed
to forecast the behaviour of fires after they have already
started, depending on the conditions of the environment in
which they are burning. Detecting forest fires is the second
strategy, aiming to quickly locate and identify flames and
deliver an accurate fire alert to prevent their spread. Various
techniques, including human observation, satellite systems,
wireless sensor networks, unmanned aerial vehicles, and
systems using charge-coupled device cameras and infrared
detectors, are used to detect forest fires. With the increas-
ing threat of forest fires, it is essential to investigate new
approaches to forecasting, detecting, and monitoring forest
fires. Research has been carried out to integrate data mining
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techniques, such as algorithms, with fire detection systems
in order to achieve more precise and efficient outcomes.
The use of these new technologies and systems can greatly
improve the ability to detect fires early and ultimately help
reduce the number of victims and destructive consequences
caused by forest fires.

This paper aims to provide a comprehensive analysis of
the usage of artificial intelligence in wildfire science and
management. With the increasing frequency and severity of
wildfires globally, effective fire management practices that
integrate smart technologies are crucial for mitigating the
impacts of wildfires. The aim of this study is to examine
the different Artificial Intelligence (AI) models utilised in
various areas of wildfire science and management, including
prevention and preparedness, detection and response, and
restoration and adaptation, and assess their reliability, accu-
racy, and practicality in diverse situations.

Contributions: Based on the aforementioned remarks,
the contributions of this study are threefold:

• AI in Wildfire Science and Management: The pur-
pose of this survey is to present a thorough review of
the various AI models utilised in wildfire science and
management. Its objective is to offer a clear compre-
hension of the current state-of-the-art AI applications
in this field.

• Evaluation of Accuracy and Reliability of AI Mod-
els in Wildfire Science: This survey aims to evalu-
ate the accuracy, reliability, and applicability of AI
models in different contexts. Analysing the advan-
tages and limitations of these models will allow for
informed decision-making when selecting the most
suitable models for particular applications.

• Limitations and Challenges of Selected AI Models
in Wildfire Science: The primary objective of this
research is to identify the limitations and difficulties
of the selected AI models in the field of wildfire
science and management. Its purpose is to provide
recommendations for future research in this field and
to assist in the development of new models that can
better address the unique challenges it presents.

• Advancements in the Application of AI in Wildfire
Science and Management: The purpose of this study
is to advance our understanding of the application of
artificial intelligence in wildfire science and manage-
ment. It presents a summary of the previous research
and underlines the future implications of AI in this
field.

• Directions for Future Research Work through
Novel Technologies: Based on the lessons learned
from this analysis, directions for future research work
in this field are provided, taking full advantage of
novel technologies, such as 5G, Software Defined
Networking (SDN), digital twins, federated learning
and blockchain.

Organisation: The paper’s structure is as follows: Sec-
tion 2 of the paper presents the study’s motivation and contri-
bution to the field of AI in wildfire science and management.
In Section 3, the methodological framework employed in
this study to assess the accuracy, reliability, and suitability
of AI models in various contexts is described. Section 4
provides an overview of the AI techniques used in the field
of wildfire science and management. Section 5 discusses the
use of AI models for wildfire prevention and preparedness.
It provides an overview of the models used in this area, as
well as their limitations and challenges. Section 6 discusses
the use of AI models for wildfire detection and response.
It provides an overview of the models used in this area, as
well as their limitations and challenges. Section 7 discusses
the use of AI models for wildfire restoration and adaptation.
It provides an overview of the models used in this area, as
well as their limitations and challenges. Section 8 provides a
comprehensive discussion of the findings from the previous
sections and provides suggestions for future research in
the field of wildfire science and management. Section 9
summarises the study’s key findings and offers concluding
observations on the use of AI in the field of wildfire science
and management.

2. Motivation, Impact and Contributions
Recent increases in the frequency and severity of wild-

fires prompted this study on the application of artificial
intelligence to wildfire science and control. The amount of
acres burned by wildfires in the United States has increased
from approximately 3 million acres in the 1990s to over 8
million acres in recent years, according to the National In-
teragency Fire Center (NIFC). With climate change causing
higher temperatures and more frequent droughts, the number
of wildfires has increased globally, leading to significant
economic, ecological and social impacts. In this context,
effective fire management practices that integrate the latest
technological advancements, including AI, are crucial for
mitigating the impacts of wildfires.

A number of studies have analysed the impact of wild-
fires and the importance of effective fire management prac-
tices. For example, a study by the NIFC estimated the total
direct and indirect costs of wildfires in the US to reach
$20 billion in 2020 Center) (2020). Another study by the
International Journal of Wildland Fire found that the global
economic cost of wildfires was estimated to be $126 billion
in 2015, which is projected to increase to $230 billion by
2030 Bowman, Balch, Artaxo, Bond, Carlson, Cochrane
et al. (2019). These findings highlight the importance of
investing in effective fire management practices.

In recent years, there have been many surveys and studies
focusing on the use of AI in wildfire science and manage-
ment. These studies have aimed to explore the potential
to support various aspects of fire management, including
prevention, detection, response, and restoration. Chang et
al. Chang, Lee and Wu (2010) conducted one of the earliest
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comprehensive reviews on the use of algorithms in fire man-
agement, covering topics such as fire behaviour modelling,
fire spread prediction and fire management decision support
systems. The study suggests that AI has the potential to
enhance fire management practices by offering more precise
and dependable fire predictions and decision support tools.
Li et al. Li, Zhang and Du (2016) conducted a notable survey
that concentrated on the use of remote sensing data for
fire detection. The study evaluated various algorithms such
as support vector machines, ANNs and decision trees and
reported that these methods hold significant potential to im-
prove the accuracy of fire detection. Teixeira et al. Teixeira,
de Freitas, de Almeida and de Souza (2020) conducted a
recent study that focuses on the application of algorithms
in the context of wildfire preparedness and response. The
study provides a thorough review of various algorithms, such
as random forests, decision trees, and neural networks, and
highlights their potential to enhance the effectiveness of pre-
paredness and response efforts during a wildfire event. These
surveys demonstrate the growing interest in the application
of these in the field of wildfire science and management
and highlight the potential of these methods to improve fire
management practices.

The major purpose of this study is to provide a compre-
hensive overview of AI applications in wildfire science and
management. The paper examines AI models deployed in
the field, namely in the areas of readiness and prevention,
detection and reaction, and restoration and adaption. The
study also seeks to evaluate the accuracy, reliability, and ap-
plicability of these models in different contexts. The contri-
butions of this study are threefold. Firstly, the study provides
a comprehensive overview of the various AI models used
in the field of wildfire science and management. Secondly,
the study critically evaluates the accuracy, reliability, and
applicability of these models in different contexts, providing
valuable insights for researchers, practitioners, and policy-
makers. Finally, the study highlights the limitations and
challenges of the selected models and provides suggestions
for future research in the field. By making these contribu-
tions, this study pushes the current state of understanding
of the application of AI in the field of wildfire science and
management forward.

3. Methodological Framework
As depicted in Fig. 1, the methodological framework

adopted in this paper follows a systematic review, including
six phases: (a) definition of the overall study, (b) definition
of the criteria for the selection of the papers and studies
included in the review process, (c) a comprehensive search
and collection of relevant studies, (d) quality review of the
previous studies, (e) through analysis of the selected studies
and finally(f) the interpretation and analysis of the findings.
3.1. Definition of Overall Study

Fig. 2 illustrates the concept of the overall study in this
paper, including three primary aspects: (a) Prevention and

Definition of
the Overall

Concept
Definition of

Selection
Criteria

Methodological
Framework

Search and
Collection

Thorough
 Analysis

Quality
Assessment of the

Collected Works

Interpretation &
Results

Figure 1: Methodological Framework

Preparedness, (b) Detection and Response, and (c) Restora-
tion and Adaptation. In particular, the first aspect focuses
on the prevention and preparedness models. In this aspect,
the various types of wildfire prevention and preparedness
models are analysed, including lightning prediction, fire
weather prediction, fire management, fire occurrence pre-
diction, wildfire preparedness and response, planning and
policy, and social factors. The second aspect focuses on the
detection and response models. More precisely, particular
attention is paid to models regarding fire spread behaviour
prediction, fuel characterisation, fire susceptibility mapping,
fire perimeter and severity mapping and fire detection. Fi-
nally, for the third aspect, the aim is on restoration and
adaptation models focusing mainly on climate change, soil
erosion and deposits and smoke and particulate levels.
3.2. Definition of Selection Criteria

The second phase focuses on defining the selection crite-
ria for the existing works chosen to be studied. In particular,
the selection criteria can be separated into two main cate-
gories: (a) Inclusion Criteria and (b) Exclusion Criteria. The
first category defines the characteristics that an existing work
must have in order to be involved in the review process, while
the Exclusion Criteria determine the characteristics that a
study must not have to be involved in the review process.

• Inclusion Criteria: The inclusion criteria for our
paper are to include existing works that (a) provide or
propose (as a whole implementation or research study)
environmental and ecological models that adopt ap-
proaches within the realm of AI regarding the foun-
dational aspects defined above, namely (a) Prevention
and Preparedness, (b) Detection and Response, and (c)
Restoration and Adaptation.
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Figure 2: Concept of the overall study

• Exclusion Criteria: The exclusion criteria for our
paper are not to include existing works that focus
on other aspects related to environmental and eco-
logical models. In addition, non-AI approaches are
not included in this work. Finally, existing works that
present significant methodological flaws, poor study
design, inadequate sample sizes, or insufficient docu-
mentation are not included in this work.

3.3. Search and Collection
The next step is to search for and collect relevant works

based on the overall concept of this study and the selection
criteria presented above. This phase is critical in order to
ensure that the study is comprehensive. Therefore, the search
strategy includes and combines several keywords, such as:
wildfire, bushfire, forest fire, wildland fire, wildfire

prevention and preparedness, fire weather prediction,
lightning prediction, fire occurrence prediction, planning
and policy, fire management, wildfire preparedness and

response, and social factors, detection and response, fire
spread behaviour, fuel characterisation, fire susceptibility

mapping, fire perimeter, severity mapping, fire detection,
restoration and adaptation, climate change, Soil erosion

and deposits and smoke and particulate levels combined
with machine learning, artificial intelligence, maximum

entropy, decision trees, regression trees, neural network,
random forest, deep learning, reinforcement learning.
3.4. Quality Assessment of the Collected Works

Subsequently, after the collection of the various works,
their quality review is necessary before their thorough anal-
ysis. This phase ensures that the proposed study is unbiased.
In particular, three stages are involved in this phase:

• Screening: The titles, keywords and abstracts of the
collected works are carefully checked to meet the
inclusion and exclusion criteria.

• Eligibility Assessment: After the screening process,
the full text of the paper(s) is considered to meet the
inclusion and exclusion criteria.

• Selection: The works that meet the eligibility criteria
are selected for thorough analysis.

3.5. Thorough Analysis
Next, a thorough analysis of the selected works is carried

out. For this purpose, various factors are further investigated
in terms of the overall concept of this study (Fig. ??) and
the inclusion criteria. In particular, regarding the wildfire
prevention and preparedness models, the following technical
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factors are taken into consideration: (a) weather data, (b)
environmental factors, (c) socio-economic factors, (d) his-
torical fires, (e) landscape management, (f) fire occurrence
observations, (g) response management and (e) AI methods.
Next, regarding the wildfire detection and response models,
the following factors are taken into account: (a) weather
characteristics, (b) fire and smoke detection AI-based meth-
ods, (c) environmental management, (d) fuel consumption,
(e) fire spread rate and (f) AI-based methods. Finally, six
factors are considered regarding the wildfire restoration and
adaptation models, namely (a) weather observations, (b)
historical data, (c) environmental factors, (d) fire data, (e)
socio-economic factors and (f) AI methods.

A detailed description of the data sources, methods,
and techniques used in the analysis are being presented, as
well as the statistical and computational methods used to
evaluate the models. The limitations and challenges of the
selected models are also discussed, along with the potential
for future research in this field. A scoping review method-
ology was employed in this study to describe the literature
in the fields of AI and wildfire science and management.
Scoping reviews are particularly useful when the subject has
not been thoroughly examined and the underlying concepts
are complex and heterogeneous. A scoping review aims to
identify gaps in published literature and provide a summary
and dissemination of research findings.
3.6. Interpretation and Results

In light of the aforementioned remarks and following
the overall concept of this study and the selection criteria,
next, a detailed description of the data sources, methods, and
techniques are presented, including statistical and computa-
tional methods used to evaluate the models. The limitations
and challenges of the selected works are also discussed,
along with the potential for future research in this field.
In particular, over 200 relevant publications were identified
and reviewed. In conclusion, based on the methodological
framework presented in this section, this paper provides a
comprehensive and up-to-date analysis of AI models and
applications within wildfire science and management. The
findings of this study will serve as a valuable resource for
researchers and practitioners, highlighting the potential of
AI techniques in the development of more effective and
efficient wildfire models.

4. Overview of Artificial Intelligence, Machine
Learning and Deep Learning Methods
Wildfires are a major threat to the environment, com-

munities, and ecosystems. In an effort to mitigate the risks
associated with these events, AI has been applied in various
domains of forest fire prevention, detection, and restoration.
This overview focuses on the use of AI techniques in forest
fire modelling, specifically in the areas of prediction, detec-
tion, and response management Makridakis (2017).

One of the most popular AI techniques used in wildfire
modelling is Machine Learning (ML)Khvostikov and Bar-
talev (2021). Machine learning algorithms have the potential

to recognise patterns and correlations within data that can
be leveraged to forecast the possibility of wildfires, the pro-
gression of fire expansion or the vulnerability of particular
regions to fire Armas, Baeza, Nava and Moutahir (2013).
These predictions can then be used to inform management
and policy decisions, as well as assist in the planning of re-
sponse actions. Decision trees, Random Forests, and Support
Vector Machines are some of the most commonly used ML
algorithms in wildfire modelling Bot and Borges (2022).

Another AI technique that has been applied in wildfire
modelling is Artificial Neural Networks (ANNs) Zhang,
Wang and Liu (2021). ANNs have been used to model the
behaviour of fire spread, predict fire severity, and identify
potential ignition sources. ANNs can also be used to process
large amounts of data from various sources, such as satellite
imagery and weather forecasts, and provide real-time predic-
tions Zhang, Patuwo and Hu (1998).

Fuzzy Logic (FL) is another AI technique that has been
used in wildfire modelling Juvanhol, Fiedler, SANTOS,
Silva, OMENA, Eugenio, PINHEIRO and Ferraz Filho
(2021). FL algorithms can be used to model the uncertainty
and imprecision in data, such as the variability in weather
conditions and fuel availability. FL can also be used to
model the complex interactions between different factors
that affect wildfire behaviour, such as topography and veg-
etation Parisien and Moritz (2009). Finally, Evolutionary
Algorithms (EAs) have also been applied in wildfire mod-
elling Pereira, Mendes, Júnior, Viegas and Paulo (2022).
EAs can be used to optimise management and response
decisions by simulating different scenarios and identifying
the best course of action. EAs can also be used to improve the
accuracy of predictions by tuning the parameters of models
Montesinos López, Montesinos López and Crossa (2022).

Deep Learning (DL) is a branch of Machine Learning
(ML) that has become increasingly popular in recent years
because of its capability to learn and improve automati-
cally from large amounts of data. In the area of forest fire
modelling, DL techniques have been employed for image
and video analysis, fire spread forecasting, and fire sever-
ity evaluation. Convolutional Neural Networks (CNNs) are
one of the most commonly used DL methods in this do-
main. CNNs can automatically learn features from satellite
imagery, aerial photos, or thermal imaging and use these
features to perform various tasks such as fire detection and
segmentation.

Forest fire prevention, detection, and restoration also
follow a similar flow of processes as described for AI, ML,
and DL methods. In this context, the three stages can be
adapted as follows:

• Pre-processing stage: This stage transforms the in-
put data, such as satellite imagery, weather forecasts,
and vegetation data, into pre-established formats that
are compatible with the targeted ML/DL model. The
pre-processing methods used include normalisation,
standardisation, min-max scaling, max abs scaler, and
robust scaler to ensure the data is in a usable format.

First Author et al.: Preprint submitted to Elsevier Page 5 of 48



Leveraging the Power of Internet of Things and Artificial Intelligence in Forest Fire Prevention, Detection, and Restoration: A
Comprehensive Survey

• Training stage: In this stage, a model is trained using
normal and abnormal pre-processed data, also known
as features, to identify patterns and relationships that
can predict the likelihood of a forest fire, its spread,
or its impact on specific areas. Different ML/DL ap-
proaches can be used in this stage, including unsu-
pervised and supervised detection methods, as well
as semi-supervised novelty detection methods. For
example, neural networks, decision trees, and Sup-
port Vector Machines can be used in the supervised
detection category, while k-means, Stochastic Outlier
Selection, Local Outlier Factor, Isolation Forest, and
Angle-Based Outlier Detection can be used in the
unsupervised detection category.

• Prediction stage: Once the AI model is trained, it
can be deployed to analyse unknown data that has
undergone the same pre-processing tasks. If the model
output diverges from the expected values or identifies
the input data as anomalies, it can raise the alarm to
signal a potential forest fire. This information can then
be used to inform management and policy decisions,
as well as assist in the planning of response actions.

The use of AI, ML, and DL techniques in forest fire
prevention, detection, and restoration can greatly improve
the accuracy and efficiency of predictions, enhance the man-
agement of response actions, and optimise decision-making
in forest fire management. The combination of different AI
techniques, including DL, can address the complexity and
uncertainty of forest fire systems, making them a valuable
tool in the fight against wildfires.

5. Wildfire Prevention and Preparedness
Models
Wildfires are natural disasters that can have devastating

consequences for the environment, communities, and infras-
tructure. Effective prevention and preparedness strategies
are crucial in mitigating the impacts of these events. Wildfire
prevention and preparedness models play a significant role
in this regard, providing valuable information to support fire
management and planning efforts Bova and et al. (2010).
These models use a combination of meteorological, fuel, and
human activity data to predict the likelihood of a wildfire
occurring in a specific area Chuvieco (2002). The models
also consider the behaviour of the fire once it has started,
including its rate of spread and the potential area that may be
affected. This information is essential in guiding decision-
making processes, including resource allocation, response
planning, and the development of effective mitigation strate-
gies Koutsias and et al. (2005). In addition to the physical
factors, these models also consider social factors such as land
use, population density, and human behaviour, which can
impact the likelihood and severity of a wildfire McWethy
and et al. (2010). The integration of these factors into the
models enhances their accuracy and the effectiveness of the

strategies developed from their results Radeloff, Hammer,
Steward, Carter, Mladenoff and Stevens (2006).

The objective of this paper is to present a survey of
different categories of models related to Wildfire Preven-
tion and Preparedness. These models include fire weather
prediction, lightning prediction, fire occurrence prediction,
fire management, planning and policy, wildfire preparedness
and response, and social factors. Figure 2 illustrates these
categories. The strengths and limitations of these models
will be discussed, as well as their potential applications in
real-world situations. It is important to note that the advance-
ment and refinement of these models will continue to be a
critical component of wildfire prevention and preparedness
efforts, helping to ensure the protection of communities,
ecosystems, and the environment.

Prevention &
Preparedness

Models

Fire
Occurrence
PredictionPlanning &

Policy

Social 
Models

Fire Weather Prediction

Lighting
Prediction

Fire Management

Wildfire Preparedness
& Response

Figure 3: Prevention and Preparedness Models

5.1. Fire Weather Prediction
The prediction of fire danger conditions plays a crucial

role in enabling forest management organisations to put into
action plans for fire prevention, detection, and suppression
before damage occurs. The ability to predict the potential for
fires is based on various factors, such as weather conditions,
lightning activity, land cover, fuel conditions, and human
activity. Improved weather forecasting skills have created an
opportunity to enhance early warning capabilities through
the use of numerical weather prediction (NWP) Brunet
(2005). The classification of fire hazards in different nations
is often based solely on observed weather data Li, Meng and
Wan (2010). The current fire condition classification is based
solely on daily environmental monitoring, and satellite data
on hot spots only provides a few hours of warning. However,
the use of NWP can increase the early warning period to 1-2
weeks, enabling better coordination of resource sharing and
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mobilisation within and between countries Brunet (2005).
Accurately predicting upcoming storms and lightning strikes
is essential for estimating the frequency of wildfires, as light-
ning is the second leading cause of these events Mills (2010).
For this purpose, electronic lightning detection systems have
been widely implemented worldwide for many years to
gather substantial location-time data on lightning strikes,
serving the purpose of predicting fires. This information can
be used to build regression associations with atmospheric
conditions and stability indexes and to anticipate NWP using
lightning prediction models Mills (2010). Therefore, it can
be concluded that by using a combination of NWP, satellite
data, and electronic lightning detection systems, early warn-
ings of fire danger conditions can be improved, and effective
action plans can be put into place. This can help to minimise
the damages caused by wildfires and ensure the safety of
people, wildlife, and the environment.

Wagner Van Wagner (1987) developed the Fire Mete-
orological Index (FWI) using weather variables to predict
bushfires, which includes the Canadian FWI measurement
Lawson and Armitage (2008). The FWI system and the
Canadian fire forecasting system make up the fire hazard
evaluation system. The index has been successfully used
in Europe and North America, where observation sites are
abundant. Fire weather is crucial in determining when and
where a fire may occur and how quickly it will spread.
Surface weather stations collect fire weather observations,
which are then added to a map of the region. NWP models
are used to forecast future fire weather conditions, but cal-
culations with memory, such as the moisture indices of the
Fire Weather Index (FWI) System, may contain errors. It is
remarkable that surface fire risk can be related to broad-scale
climatic and meteorological patterns.

San Miguel Ayanz San-Miguel-Ayanz, Schulte, Schmuck,
Camia, Strobl, Liberta, Giovando, Boca, Sedano, Kempe-
neers, McInerney, Withmore, de Oliveira, Rodrigues, Dur-
rant, Corti, Oehler, Vilar and Amatulli (2012) developed the
European Forest Fire Information System (EFFIS) to meet
the requirements of European bodies such as the European
Parliament, the Monitoring and Information Centre of Civil
Protection and the European Commission services, as well
as relevant fire services in countries like civil protection
services and forest fires. The EFFIS model encompasses
the whole forest fire management cycle, from prevention
and readiness to post-fire damage assessment and adap-
tation. It offers data to more than thirty countries in the
Mediterranean and European regions and extracts forest
fire data from twenty-two European nations. EFFIS seeks
to increase forest fire prevention and control in Europe by
delivering timely and accurate forest fire information. The
model uses geographic data systems and remote sensing to
support its essential applications. Two meteorological fore-
cast systems, the Deutsche Wetter Dienst Kathleen, Patrick,
Tanja and Michael (2021) and the French Météo-France
Gourley, Tabary and du Chatelet (2006), estimate fire danger
forecasts. Météo-France provides weather forecasts up to
one week in advance and considering the Canadian FWI,

this information can help to calculate a typical European
fire danger index. Near-real-time applications such as rapid
damage assessment and fire detection utilise information
provided by the MODIS sensor in the AQUA and NASA
TERRA satellites to locate hot spots (active fires) and
map burned areas Salem, Barbara and Lipton (1992). The
technology analyses two full patterns of Europe every day
and offers data on scorched areas produced by big fires over
400,000 square metres. The architecture of the system is
founded on online data services that allow access to real-
time data via web feature services and web mapping.

The potential for automatically classified synoptic sys-
tems to predict fire weather is evaluated in Crimmins et
al.’s study Crimmins (2006). This study explores the asso-
ciation between daily surface fire-weather index values and
matching synoptic circulation patterns in the southwestern
United States, as well as the circulation patterns connected
with three recent wildfire occurrences. The study suggests
that understanding critical fire-weather patterns is crucial
for preventing future wildfires, and using weather forecasts
before prescribed burns can help anticipate changes in fire-
weather conditions. Due to limited long-term records, the
analysis is restricted to case studies, but identifying these
patterns may aid in planning necessary burning actions.
For instance, the Cerro Grande fire, which caused extensive
damage in Los Alamos, New Mexico, was fueled by strong
winds, highlighting the importance of recognising critical
circulation patterns.

Nauslar and colleagues Mejia (2018) used self-organising
maps (SOMs) to examine the relationship between North
American monsoon (NAM) events and significant wildfire
incidents in the Southwest Area (SWA) and its Predictive
Services Areas (PSAs). The study analysed various def-
initions and thresholds for identifying NAM events and
significant wildfires and identified synoptic atmospheric
patterns associated with NAM onset and wildfire events.
The results provide decision support information for fire
weather meteorologists and enhance understanding of the
effects of atmospheric patterns associated with NAM on
wildfire activity, which can aid in resource management and
logistical planning to combat wildfires.
5.2. Lightning Prediction

Lightning prediction plays a crucial role in wildfire pre-
diction as lightning is one of the leading causes of wildfires.
Accurately forecasting the timing and location of lightning
strikes can provide valuable information for predicting the
onset and spread of fires. Electronic lightning detection sys-
tems, which have been used extensively around the world for
many years, provide valuable information on lightning strike
locations and times. This information can be used to develop
lightning prediction models that use regression methods to
associate atmospheric conditions and stability indices with
lightning strikes. These models can be used to anticipate
the occurrence of lightning and, thus, improve predictions
of wildfires. For instance, Niamir Niamir and Niamir-Fuller
(1999) used lightning data to develop a regression-based
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lightning prediction model. In another study, Baker Baker
(1991) used a similar approach to forecast lightning strikes
in the western United States.

Blouin et al. Blouin, Flannigan, Wang and Kochtubajda
(2016) found that lightning is a significant cause of wildfires
in Canada, accounting for 45% of documented wildfires
and 71% of the burned area. To reduce suppression costs,
lightning-caused fires should be prevented through primary
attacks. The authors developed thunderstorm forecasting
models for the period from April to October, using geo-
graphic and temporal covariates, weather-related reanalysis,
and radiosonde observations. The models, which were devel-
oped and tested for the Alberta region of Canada, used cloud-
to-ground lightning strikes from the Canadian Lightning
Detection Network as inputs and achieved hit rates of up
to 85%. The study identified many factors, including lati-
tude, Julian day, the Showalter index, elevation, convective
available potential energy, and longitude and developed the
models using a random forest classification approach.

Bates et al. Bates, Dowdy and Chandler (2017) acknowl-
edge that lightning of any level is considered a very frequent
cause of conflagration worldwide. This study focuses on
the analysis, as well as the possibility for prediction of the
aforementioned phenomena, across a significant variety of
locations. The research was conducted through the utilisa-
tion of statistics and ML. Upon deciding that the actual
amounts of water falling during a storm are irrelevant, the
data were classified into two categories: ‘wet’ and ‘dry’. The
main sources of input data used during this research include
atmospheric variables from the ERA-Interim reanalysis, the
number of recorded lightning bolts on a daily basis, and data
from ground-based sensors. The atmospheric fields’ features
were defined through the use of appropriate low-dimensional
data. The classifiers were evaluated by using ten-fold cross-
validation across four different prediction skill scores. For
further evaluation, the outputs were also compared with
those of a different method utilised in one of the researchers’
older studies regarding the Pacific Northwest, United States.
While neither of these approaches proved to be superior to
the other, it was discovered that both of them could po-
tentially provide accurate predictions based on independent
datasets. Additionally, the most vital variables for predicting
dry lightning activity turned out to be the mean atmospheric
field quantities.
5.3. Fire Occurrence Prediction

Fire Occurrence Prediction (FOP) models play a crucial
role in wildfire preparedness and response. Nearly a century
ago, FOP models were first developed to predict the number
and location of fire ignitions in advance. Forecasting fire
activity is a critical aspect of resource management and
requires accurate predictions of weather conditions and
lightning. Briones Briones-Herrera, Vega-Nieva, Monjarás-
Vega, Flores-Medina, Lopez-Serrano, Corral-Rivas and Carrillo-
Parra (2019) notes that regression techniques are frequently
employed in these models to establish a relationship between
a response variable (e.g., fire incidents or hotspots) and

various weather and lightning-related factors at a specific
geographic location or as a spatial probability. These predic-
tions help in the preparation of resources, moving resources,
and the readiness for potential fire activity. FOP models
have evolved over the years and now incorporate more
sophisticated algorithms and data sources, including remote
sensing data and weather forecasts Niamir and Baker (2017).
In recent years, ML techniques have been increasingly used
in FOP models, leading to improved accuracy and reliability
of fire predictions Niamir and Baker (2017). The use of FOP
models has greatly assisted fire managers and policymakers
in making informed decisions and reducing the risk of
wildfires.

Alonso-Betanzos et al. Alonso-Betanzos, Fontenla-Romero,
Guijarro-Berdiñas, Hernández-Pereira, Inmaculada Paz An-
drade, Jiménez, Luis Legido Soto and Carballas (2003)
analyse an application developed for the specific task of
assisting firefighting forces against conflagrations in Galicia,
Spain. The region is infamous for its large number of forest
fires, particularly during the 1990s, a problem that continued
to grow despite attempts by the people to suppress it. Galicia
is regarded as one of the regions most severely affected by
wildfires, not only in Spain but throughout Europe. Through
the use of Expert Systems and ANNs, the system was built
with the aim of backing up firefighting groups and wildfire
monitoring procedures. The network attempts to predict
forest fire risks in the hope of offering valuable intel for
the aforementioned groups, as well as providing assistance
in regard to the recuperation of areas damaged by fires in
the past. The model was trained upon meteorological data
and was tested with real-world datasets. Its produced results
are satisfying enough, with the only inconvenience being an
intrinsic error caused by the high frequency of wildfires in
the particular region.

According to Vasilakos Vasilakos, Kalabokidis, Hat-
zopoulos, Kallos and Matsinos (2007), preventing wildfires
is crucial for controlling them and other natural hazards.
To identify regions with a high risk of fire ignition and
take necessary precautions, fire risk rating systems are being
developed in various countries for wildfire prevention and
suppression planning. In the Lesvos Island region of Greece,
the authors created a fire ignition risk scheme that can be
expanded into a quantitative Fire Danger Rating System.
The suggested method considers the geographical risk of
fire, irrespective of the cause or expected burned area, and
uses meteorological data to make predictions. The approach
yields the Fire Ignition Index, which is derived from the
Fire Hazard Index, FWI and Fire Risk Index. These indexes
enable a systematic, comparative and quantitative evaluation
of fire hazard rather than simply a proportional likelihood
of fire occurrence. As part of its input parameters, the
suggested system utilised remote sensing data from high-
resolution QuickBird and Landsat ETM satellite sensors, as
well as data from Remote Automatic Weather Stations and
the SKIRON/Eta weather forecasting system. Geographic
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information systems were employed to perform spatial anal-
ysis and other operations on these inputs. To analyse the re-
lationship between the input parameters and the probability
of wildfires, neural networks were trained using historical
data.

Vecin-Arias Vecín-Arias, Castedo-Dorado, Ordóñez and
Rodríguez-Pérez (2016) focuses on the frequency of wild-
fires caused by lightning, specifically in the Iberian Penin-
sula’s central area. The study focused on developing and
analysing a prediction model to assist in lightning-induced
fire occurrences. A 4 x 4 km grid cell was used for model
training, showing data on the presence or absence of lightning-
induced fires, and a 10 x 10 km grid was used for validation,
both based on recorded data from 2000-2010. The two
types of ML models used for the purposes of this research
were the Random Forest and Logistic Regression methods.
Across both of them, the most important variables were
noticed to be the percentages of coniferous woodlands as
well as the landscapes’ agricultural crops. Due to this, it
was deduced that vegetation type is a vital element for
rating lightning-induced fire risk. Also, out of the seven
independent variables utilised, five of them were used by
both methodologies. The possibility of a wildfire caused by
thunder was highly dependent on the following variables: the
amount of produced agricultural crops, the level of altitude,
the percentage of mixed woodlands and coniferous, and
finally, the mean peak current of negative flashes. The pres-
ence of the first two decreased the danger percentage, while
the latter two increased it. The misclassified predictions’
spatial analysis showcased that the Random Forest model
performs slightly better, making it more ideal for predictions
in this particular matter, and as such, the experiments were
deemed useful for assisting in the realisation of improved
wildfire management solutions in the future.

Severe weather conditions are one of the main causes of
wildfires, a problem that has only worsened with time due
to climate change, endangering even seemingly safe areas.
Van Beusekom et al. Grizelle (2018) analyse the relationship
between the weather and the probability of conflagrations in
the Caribbean, more specifically, the island of Puerto Rico.
An ML model was developed in an attempt to be able to warn
of such cases in advance. The model is trained on climatic
information and other metrics of significance from Puerto
Rico between 2003 and 2011. It processes its input with the
aim of figuring out how each of these variables correlates
to the possibility of a wildfire occurring. The model uses
the Random Forest Classifier approach and utilises climate
measurements exclusively. It was deduced that climate space
was one of the most important variables, showing promising
potential in regard to FOP. Other key factors include the sud-
den change of weather patterns, as well as the intensity and
extent of said patterns. The classifier showcases promising
results for predicting if a fire will occur, with a prediction
rate of 80–89%. Additionally, the possibility of correctly
estimating that the fire will be over 5 ha stands at 64-69

Dutta et al. Dutta, Das and Aryal (2016) acknowledge
that an important climatic change has been pinpointed by

the increase in Australian bushfire numbers over the last
decades. The lack of understanding of climate change’s
impact on Australian bushfires highlights the need for scien-
tific research. Information on bushfire incidents, spatial and
temporal patterns, and climate data are necessary to create
accurate forecasts for future hot spots. Dutta et al. (2016)
created a machine-learning model with two layers that could
detect the correlation between fire incidents and weather
data, resulting in highly accurate hotspot forecasts. The study
also highlighted that Australian bushfires have risen by 40%
in the last five years, especially during summer, indicating
substantial climate change.

Davis et al. Davis, Yang, Yost, Belongie and Cohen
(2017) present a series of renewed fire environment ML
models based on knowledge gained from older research. For
the training of said models, they used datasets of large-scale
forest fires in the Pacific Northwest Region of America over
the course of nearly three decades, specifically from 1971
until 2000. In regards to factors that could lead to a wildfire,
both natural means, such as lightning density levels and the
human element, were taken into account. The model also
considers additional information, including the state of the
climate, topography, and vegetation. The final result is a
time series of maps that display how the different climate
scenarios can affect important wildfire environments within
the surveillance region. The ideal model produced relied on
its regularisation multiplier (RM) being set to 2.0 Sun, Long
and Jia (2021). This multiplier sets the penalty associated
with utilising variables or their transformations, and the
higher it is set, the flatter the model’s predictions turn out to
be. Other important variables include CBI, which represents
the model accuracy for presence-only test data, and AUC,
which stands for a classifier’s ability to distinguish between
the different classes. The CBI’s most ideal value was 0.97 ±
0.02, and the AUC’s was 0.77 ± 0.01.
5.4. Fire Management

The goal of modern fire management is to strike a
balance between the necessary amount of fire in the environ-
ment and minimising the associated expenses and damages.
Techniques like vegetation management, controlled burning,
fire prevention, and fire suppression are used to achieve this
balance. Fire management is a form of risk management
whose objective is to maximise the benefits of fire while
limiting its costs and negative effects. Decisions regarding
fire management can be made at several scales, ranging
from long-term strategy decisions to real-time operational
decisions. The supply chain for fire preparedness and re-
sponse is structured hierarchically. Taylor Taylor (2017)
maps the spatiotemporal dimensions of 20 main decision
types used in fire control, highlighting the complex nature
of fire management decisions. Fire control models can be
categorised as prescriptive or predictive, with the former
determining the success or failure of the initial attack and
the latter optimising helicopter routing to minimise crew de-
ployment travel time. While machine ML methods have been
implemented to address fire control issues, studies in this
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area have been relatively scarce compared to other wildfire-
related domains. This presents a significant potential for ML
to be used in innovative ways to address fire control issues
Vos (2017).

Loehman et al. Loehman, Keane and Holsinger (2020)
present a series of approaches regarding landscape mod-
elling that address the management difficulties caused by
complex ecological interactions and an uncertain climate
future. These approaches consist of three separate methods,
dubbed (i) historical-comparative, (ii) future comparative,
and (iii) threshold detection. The comparative-historical ap-
proach involves comparing current or future conditions to
those of the past, usually defined as the period before Eu-
ropean settlement and is often supported by long-term eco-
logical records like tree-ring data. This approach is used
to establish a baseline for the range of historical variation.
Adding more weight to the importance of earlier human-
generated landscape transformations could further draw at-
tention to this matter, extending the HRV envelope further
into human history. In contrast, the future comparative ap-
proach involves simulating various potential future scenarios
for decades or centuries to evaluate how ecosystems may
respond to changes and assess the impact of management
decisions. Meanwhile, the threshold detection method uses
integral thresholds to identify the climate or disturbances
that cause rapid and persistent transformations in ecological
systems. One such transformation could be the loss of re-
silience. In general, it appears that a critical environmental
threshold needs to be reached so that ecological attributes
can showcase significant changes.

Finney et al. Finney (2005) studied the statistical re-
lationship between fire behaviour probabilities and effects,
as well as the reliance of quantitative fire risk analysis on
characterisation. Unlike probabilities or historic numbers
of discovered ignitions, a.k.a. fire occurrence statistics, fire
behaviour probabilities lean on temporal and spatial factors,
depending on them in order to control the spread of fires.
Such factors include topography, the weather, fuels, the rel-
ative direction of fire, as well as points of ignition occurring
off-site. The calculations needed for the spatial characteri-
sation of fire probabilities, fire behaviour distributions, and
value changes from these aforementioned fires are all vital
for the development of quantitative risk assessment proce-
dures. At present, however, calculating all these components
poses a number of difficulties. Despite that, it’s possible to
carry out research on them via susceptible values instead of
the probability of fire-related loss or fire behaviour. The au-
thors suggest that studies aiming to simulate or characterise
fire behaviour probabilities and distributions should aim to
cover large landscapes. Although the proposed approach
does not consider the probability of loss, it is possible to map
the positions of valuable properties in relation to risks and
opportunities to aid land management. However, calculating
the cost-effectiveness of management measures to decrease
fire damage is not ideal since it requires an anticipated net
value shift.

5.5. Planning and Policy
Planning and policy models are essential tools for wild-

fire prevention and preparedness, as they provide valuable
information to decision-makers to make informed decisions.
These models help to understand the potential impacts of
different management strategies on wildfire risk and can
assist in identifying areas that are particularly vulnerable to
wildfire. The use of these models is crucial in developing
effective strategies for land use planning, resource alloca-
tion, and risk management. For example, fire management
agencies can use planning and policy models to assess the
effectiveness of existing policies and management strate-
gies, identify areas for improvement, and allocate resources
more efficiently. Studies have shown the effectiveness of
planning and policy models in predicting the likelihood and
severity of wildfire events. Abatzoglou et al. Abatzoglou
and Williams (2016) employed a spatial regression analysis
to investigate how climate, fuel, and human-caused fire
ignitions are related in California. Carvalho et al. Carvalho,
Flannigan, Miranda and Borrego (2017) designed a policy
model to evaluate the efficacy of fire management tactics in
Portugal. Meanwhile, Vos et al. Vos (2017) employed a mul-
ticriteria decision-making model to evaluate how fire man-
agement strategies affect the socio-economic and ecological
systems in Portugal. Overall, planning and policy models
play a crucial role in reducing the risk of wildfires and
increasing preparedness and response efforts. It is essential
for decision-makers to have access to accurate and relevant
information to inform their decisions and develop effective
wildfire prevention and preparedness strategies Ager and
Romans (2010).

According to Bao et al. Bao, Xiao, Lai, Zhang and Kim
(2015), the greater fire severity levels in the western United
States can be linked to the protective state of forestlands as
a result of past restrictions on logging. They indicate that
increased biomass and fuel loading in less-managed regions,
particularly after decades of fire suppression, contributed to
this result. The Random Forests algorithm was used to exam-
ine the association between protected status and fire severity
in pine and mixed-conifer forests of the western United
States. Consideration was given to important topographical
and climatic elements. Higher forest protection levels were
related to lower severity values, despite having the largest
biomass and fuel loads. The results show that current beliefs
about the relationship between forest protection and fire
intensity must be reevaluated in both fire management and
policy.

Bradley et al. Bradley, Hanson and Dellasala (2016) ac-
knowledged that protected forestlands in the western United
States may contribute to greater fire severity levels as a result
of historical logging limitations that raised biomass and fuel
loading in less-managed regions following decades of fire
suppression. To examine the association between protected
status and fire severity, they applied the Random Forests
algorithm to 1,500 fires affecting 9.5 million hectares in
pine and mixed-conifer forests of the western United States
between 1984 and 2014. Despite having the highest levels of
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biomass and fuel loading overall, they discovered that forests
with higher levels of protection had lower severity scores.
The study emphasises the necessity for a reevaluation of the
connection between forest protection and fire intensity in fire
management and policy.

Ruffault et al. Ruffault and Mouillot (2015) note that
what approach to take to combat wildfires brought on by
lightning is up to the managers of US National Forests. Po-
litical discussions have frequently been sparked by disputes
between stakeholders (such as timber companies, home-
owners, and wildlife biologists). Providing a high-fidelity
simulation environment can reduce the multistakeholder
problem by allowing stakeholders to explore a range of
alternative policies and understand the associated tradeoffs.
Support for quick optimisation of MDP policies is nec-
essary for the aforementioned environment so that users
may modify reward functions and see the resultant ideal
rules. McGregor et al. evaluate SMAC’s viability as a black-
box empirical function optimisation technique for expedient
MDP policy optimisation. Four stakeholder constituencies
and five reward function components are presented in this
study. The SMAC algorithm is then used to calculate the
optimal policy within this set for the reward functions of
each stakeholder group. This approach enables stakeholders
to explore a range of alternative policies and understand the
associated tradeoffs, ultimately reducing the complexity of
the decision-making process. During the validation phase,
it was proved that SMAC is capable of rapidly identifying
excellent policies that make sense from a domain perspec-
tive. SMAC is used to construct a surrogate model from a
small number of simulation runs of the full-fidelity simulator
because the simulator is too expensive to support interac-
tive optimisation Li, Wen, Wang, Liu and Yuan (2022).
The policies are assessed on the full-fidelity simulator to
ensure the effectiveness of the SMAC-optimised policies.
The outcomes support the validity of the estimations of
the surrogate values. This is the first time a full-fidelity
simulation has been used to optimise wildfire management
strategies. Other natural resource management issues can
also use this technology in cases when high-fidelity simula-
tion is prohibitively expensive Mario Miguel Valero (2021).

In order to assess the effectiveness of MFMCi, McGre-
gor et al. McGregor, Houtman, Montgomery, Metoyer and
Dietterich (2017) use the visual characteristics of the MD-
PVIS MDP visualisation in order to support interactive MDP
visualisation. The authors used the unitless metric of visual
fidelity error, which assesses how closely MDPVIS resem-
bles the visualisation produced by the ground truth simulator
under MFMCi. The authors use a time-consuming, com-
putationally costly wildfire, wood, vegetation, and weather
model to show off MFMCi. The purpose of the wildfire
management simulator is to advise the US government’s
wildfire suppression rules, which determine whether or not a
wildfire will be put out. According to the surrounding pixel
layers and the hourly weather samples from 26 historical
weather years, the fire simulator spreads fire spatially from
an ignition site. Included in the list of weather factors are

the hourly wind speed, wind direction, cloud cover, lowest
and maximum temperatures, humidity, and precipitation. By
modelling the weather time series and the locations of the
ignition as exogenous factors, MFMCi was employed in
this work to synthesise trajectories. Since neither human
behaviour nor the physical environment, at least initially,
has an impact on the weather, it is exogenous. Due to the
fact that tree cover has no impact on the spatial probability
distribution of the ignition, the location of the ignition is
exogenous to the surrounding environment. Furthermore,
the landscape’s deterministic functions for harvesting timber
and promoting plant development ensure that every change
in state has an associated outcome.
5.6. Wildfire Preparedness and Response

Wildfire preparedness and response play a crucial role
in reducing the negative impacts of wildfires on com-
munities, infrastructure, and the environment Alexander
and Gustafson (2003). Effective preparedness and response
strategies are necessary to ensure that firefighting resources
are effectively utilised and that communities are adequately
protected from the impacts of wildfires Keeley and Fother-
ingham (2000). The allocation of firefighting resources is a
complex task that requires the consideration of a number of
factors, including the location and size of the fire, weather
conditions, and the availability of firefighting resources
Keys and DeBenedictis (1998). ANNs have been effectively
utilised to predict and simulate regional patterns in the
distribution of firefighting resources. For example, a study
by Costafreda-Aumedes et al. Costafreda-Aumedes, Cardil,
Molina Terrén, Daniel, Mavsar and Vega-Garcia (2015) used
ANNs to simulate the distribution of firefighting resources
in Spain. The study indicated that Spanish authorities fre-
quently respond to major fires by expanding their resources
when the flames spread in size or length; however, in current
multiple-fire circumstances, resources may be diverted from
their use on large fires Krawchuk, Moritz and Anderson
(2011). However, evaluations conducted at the national
level could obscure the reality that regional firefighting
resource patterns vary across Spain. Effective fire prevention
strategies should be a top priority for all regions at risk of
wildfires. A review of the whole suppression policy in effect
is necessary, as current strategies may not be sustainable in
the long run, especially as budgets become more restricted
and hazard levels increase Murphy (1995). As stated by Jose
et al. Olabarria (2019), simply adding suppression resources
when fires grow in size or duration will not be effective in the
long run, and other strategies must be considered to reduce
the risk and severity of wildfires.

Penman et al. Penman, Nicholson, Bradstock, Collins,
Penman and Price (2015) present a series of methods which
calculate the risk assessment of multiple fire management
methods, as well as mitigate house damages due to wildfires.
The authors introduced spatial data and developed a process
model that generates expert opinions in order to assist in
handling the aforementioned task. Experiments were con-
ducted on BNs, which provide an ideal framework for what
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the paper is aiming to achieve Caballero, Ferreira, Lima,
Soto, Muchaluat-Saade and Albuquerque (2021). It should
be noted that meaningful suggestions on the management
field will stand in need of additional considerations, mainly
due to the fact that the implementation of new actions
will be limited by a number of outside factors, mainly
economic, social and environmental. However, the results
show promise, and it is also possible for researchers to
adopt the developed strategies in fields researching different
natural disasters, such as earthquakes, floods or droughts
Chaudhary and Piracha (2021). However, at their current
state, all strategies focus on calculating the point of loss and
could benefit from potential future expansions that trade-
off landscape management approaches like initial ignition
attacks and fuel treatment.

O’Connor et al. O’Connor, Calkin and Thompson (2017)
offer a possible solution to the problem of the rapidly evolv-
ing conditions that influence the decisions that need to be
made in the event of active fire incidents. In the majority of
cases, extreme fire weather conditions, fuels, and topogra-
phy are all important factors directly dictating potential fire
spread, as well as burn severity. The authors aim to use these
factors to produce metrics representing the weight of fuel
characteristics, topography, fire suppression effort, and road
networks. The perimeter locations of 238 big fires were used
to construct a predictive model of prospective fire control
locations. This model covers a 34000 km2 large landscape
in Northern Nevada and southern Idaho, and its features
range from topographic and natural to fuel types and anthro-
pogenic barriers to fire spread. The fire control probability
surface can be used in order to better plan fire-controlling
measures in advance, as well as a network of locations that
align fire operations and land management. Additionally, the
added information could be used to mitigate unnecessary
exposure to danger for fire responders. In the end, the model
managed to predict fire perimeter locations with an accu-
racy of 69% on an independent dataset. However, it didn’t
compensate for factors such as weather conditions during the
various wildfires.

Rodrigues et al. Rodrigues, Alcasena and Vega-Garcia
(2019) address the problem of wildfires escaping the bor-
ders of Initial Attacks (IA) and causing more damage than
anticipated. To mitigate this, they developed an ML model
that assesses the probability of fire containment by IA in
Catalonia, using ML algorithms trained on historical lo-
cations of kindling and other ignition methods. The most
significant variables were early detection, aerial support,
and ground accessibility. The model produces gradients that
show the lowest and highest chances of fire containment.
Simulations of various weather conditions were conducted,
indicating that parameters such as high wind speeds and
temperature could cause an escape from IA. In 17 years,
13 days had disastrous fire conditions, with five episodes
burning 1546 ha. The model provides useful information for
first responders and brings to light the current limitations
of the fire exclusion policy in Mediterranean areas. The

authors believe that their proposed model can assist in long-
term management solutions for wildfires and fire response
planning.

Julian et al. Julian and Kochenderfer (2018) acknowl-
edge that a high-dimensional control problem is keeping an
airplane under control using visual data. Deep reinforcement
learning (DRL) is one approach that could be used to address
this kind of issue. Using raw images as input, the algorithm
formulates a plan to optimise the long-term accumulation of
rewards, enabling precise control in high-dimensional state
spaces. The control system is decoupled from wildfire ob-
servations using established methodologies for autonomous
wildfire monitoring. Planning trajectories for aircraft around
wildfires is a difficult task due to the unpredictable growth of
fires and the limited data available for controllers to use. In
addition, controllers adjusted manually using image features
may not be universally applicable to all images. To overcome
this issue, this study proposes a real-time method to generate
bank angle commands from wildfire photographs, allowing
multiple planes to coordinate and monitor the spread of
fires effectively. A real-time guidance system for fixed-
wing aircraft is introduced by the authors, which enables
efficient wildfire surveillance. Additionally, a deep neural
network is developed to optimise wildfire monitoring for
pairs of aircraft using only sensor data. After developing and
comparing the two approaches, it was demonstrated that the
neural network controller used in the study could accurately
guide the aircraft along the fire front. Potentially, the trained
network might be linked to the guidance systems of actual
aircraft to produce intelligent flight paths for monitoring
wildfires.
5.7. Social Factors

The likelihood and severity of wildfire events are greatly
influenced by social factors such as human behaviour, land
use patterns, and community resilience, as noted in Smith
et al. Smith and Huang (2019) research. To create effective
strategies for prevention and preparedness, it’s crucial to
comprehend the social factors that contribute to the occur-
rence and propagation of wildfires. Leithead, Gaffney, Tawn
and Beniston (2020). Social factors models are tools that can
be used to predict and understand the impact of social factors
on wildfire risk and to identify areas that are particularly
vulnerable Klare and Ledford (2018). These models can also
inform management and policy decisions related to wildfire
prevention and preparedness, including decisions about land
use planning, community outreach, and education Bond and
Bond (2018).

With the use of an ad hoc BN model that was devel-
oped from a dataset, Delgado et al. developed the following
archetypes for triggered forest fires. Shye’s model of the
action system utilised arsonist motivation, which is a crucial
factor in psychological criminology and the most significant
author variable in the model, to establish archetypes based
on the modes of operation in criminal acts. The authors also
succeed in validating the five archetypes, albeit with certain
particularities, owing to the methodology’s considerable
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potential. Although the built BN models demonstrate the
correlation between the various variables, such as wildfire
characteristics and the arsonist’s characteristics, including
motivation, as well as the accurate understanding of these
dependencies, it is still possible to make predictions about
some variables based on others without neglecting to take
into account the intricate relationships that exist among
them. In actuality, the BN model captures this complexity
and makes effective use of it Afzal, Yunfei, Nazir and
Mahmood (2019).

The Social-Climate Related Pyrogenic Processes and
their Landscape Effects (SCRPPLE) is a new fire model
created by Scheller et al. Scheller, Kretchun, Hawbaker and
Henne (2019) that emphasises the social aspects of fire and
includes human ignitions, whether accidental or caused by
prescribed fire, as well as the spatial and temporal patterns
of prescribed fires, the effects of fuel treatment, and the
spatial patterns of fire suppression. Additionally, terrain,
fuel, and climatic influences are all captured by SCRPPLE.
The authors emphasised parameterisation using newly avail-
able, more readily available landscape-scale information.
The strategy places concentrated attention on several pro-
cedures. It may be easily deactivated if suppression is not
used in the landscape. The link between ignitions, spread,
and the FWI was the only information necessary to run
the fire model given FWI. Every modelling technique has
its own set of restrictions, and SCRPPLE is no exception.
For adequate parameterisation, it needs a significant amount
of geographical and temporal data. However, the extensive
collection of remotely sensed images over active fires has
already fulfilled these data requirements.

Using the multi-criteria evaluation technique, Faramarzi
et al. Faramarzi, Hosseini, Pourghasemi and Farnaghi (2021)
conducted an applied study to identify the Golestan National
Park’s possible fire threats by taking into account environ-
mental, climatic, and human aspects. The study revealed
the significant impact of human activities on the spread
of wildfires in the study area, with the transit road being
the most influential factor. The study highlights the impor-
tance of taking all factors into account when it comes to
wildfire occurrence, as evidenced by the need to eliminate
the park’s road. It also indicates that Ordered Weighted
Averaging scenarios with low risk and minimal tradeoffs
tend to perform better on average. The evaluation of fire risk
mapping and assessment showed that while each method’s
maps are practical, their accuracy varies, and they can be
employed in different situations to calculate fire risk based
on human, climatic, and environmental factors. In regions
where human factors are more important than other ele-
ments, for instance, preventative and management programs
utilising warning technologies may be taken into account.
Additionally, creating natural cut fires, planting species that
can withstand fire, creating maps of wind patterns and days
with high temperatures, and other tactics might be helpful
in preventing forest fires Schoennagel T (2017). Designing
water tanks or constructing helicopter landing pads in high-
risk regions for wildfires might be considered as a realistic

management strategy to deal with this problem in the park
and put out the fire as fast as possible.

The following table characterises different types of Wild-
fire Prevention and Preparedness Models, providing a com-
prehensive overview of the various approaches used to mit-
igate the risk and impact of wildfires. These models en-
compass a wide range of factors, including weather data,
environmental conditions, socioeconomic factors, historical
fire records, landscape management practices, fire occur-
rence observations, response management strategies, and the
methods used to predict and prevent wildfires. The table
serves as a valuable resource for individuals and organi-
sations seeking to understand the various approaches used
to prevent and prepare for wildfires, and the factors that
influence their effectiveness.
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Table 1: Summary of Prevention and Preparedness Models
Reference Weather

Data
Environmental
factors

Socio-
Economic
Factors

Historical-
Fires

Landscape
Management

Fire
Occurrence
Observations

Response
Management

Method

San-
Miguel-
Ayanz et
al. San-
Miguel-
Ayanz
et al.
(2012)

French
Météo-
France and
Deutsche
Wetter
Dienst

Moderate-
resolution
Imaging Spec-
troradiometer
(MODIS) and
Nomenclature
of Territorial
Units for
Statistics
(NUTS)

The NUTS
European
Office for
Statistics

The European
Fire Database-
25 years for
Mediterranean
countries

MODIS The MODIS
sensor and
the Open
Geospatial
Consortium
Sensor
Observation
Service

Monitoring
and
Information
Centre
of Civil
Protection

EFFIS

Crimmins
Crimmins
(2006)

1988–2003
daily
weather
observa-
tions from
15 remote
automated
surface
weather
stations
(RAWS)
for the
months
of April,
May, and
June.

The National
Centers for
Environmental
Prediction
(NCEP) and
National
Center for
Atmospheric
Research
(NCAR)

Not applicable United States
(Arizona and
New Mexico)
between 1988
and 2003.

RAWS
sites (black
dots) and
NCEP–NCAR
Reanalysis
grid cells
used in SOM
classification

Not applicable Southwestern
wildfire
regimes

SOMs
algorithm

Nauslar et
al. Mejia
(2018)

National
Weather
Service
Weather
Forecast
Office
Tucson

NCEP Not applicable SWA PSA
April through
September
from
1995–2013

SWA (Arizona,
New Mexico,
west Texas,
and Oklahoma
Panhandle)

Fire Program
Analysis

the Southwest
Geographic
Area
Coordination
Center

SOM

Blouin et
al. Blouin
et al.
(2016)

NCEP-
DOEThe
Canadian
Lightning
Detection
Network

NCEP-DOE Not applicable From 1999
through 2011,
thirteen years
of lightning
and weather
data were
collected.

Alberta
province
encompasses
661 848
km2 and
contains six
major Natural
Regions.

Not applicable Fire
management
agencies and
communities

Random
Forest
(RF),
Regression
Tree,

Bates et al.
Bates et al.
(2017)

Ground-
based
CIGRE
500 by the
Australian
Bureau of
Meteorol-
ogy

Convective
Available
Potential
Energy
Ramezani Ziarani,
Bookhagen,
Schmidt,
Wickert, de la
Torre and
Hierro (2019)

Not applicable The records
span January
2004 through
at least
December
2010
(Townsville)
and no
later than
February 2013
(Melbourne).

Histograms for
sites located
in western
Australia
(Perth and
Port Hedland)
against those
located in
central and
eastern
Australia
458 (Darwin,
Townsville,
Coffs
Harbour and
Melbourne)

Not applicable Fire
management
authorities

Low-
Dimensional
Summary
Statistics
Classifica-
tion and
Regression
trees
(CART),
RF, linear
discrim-
inant
analysis,
quadratic
discrim-
inant
analysis
Nand
logistic
regression
(LR)
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Alonso
-Betanzos
et al.
Alonso-
Betanzos
et al.
(2003)

A self-
contained
component
has been
created
to collect
meteoro-
logical
data
through
the
Internet
from
automated
meteo-
rological
stations in
Galicia.

Databases
which archive
details
concerning
past firefighting
measures,
environmental
information,
meteorological
data, terrain
attributes,
available
resources,
and so on.

Factors related
to socio-
economics and
terrain such as
the presence
of a road,
vegetation
type, and so
on.)

Information
pertaining to
fires that took
place from
1988 to 2001.

Geographical
Information
System (GIS)

The Universal
Transverse
Mercator
coordinates
of the grid
square where
each fire
transpired.

Not applicable A neural
network
whose
output is
classified
into four
symbolic
risks
categories,
Com-
monKADS
methodol-
ogy

Vasilakos
et al.
Vasilakos
et al.
(2007)

Real-
time and
predicted
meteo-
rological
data were
obtained
from
Remote
Automatic
Weather
Stations
and
the SK-
IRON/Eta
weather
forecasting
system.

Anticipated
fuel moisture
levels were
estimated using
the forecasted
relative
humidity
data from the
SKIRON/Eta
model.

Assessment
of the Fire
Risk Index:
the potential
danger of fire
in a particular
location
resulting from
human activity.

Data on fires
that took place
on the island
of Lesvos
between 1970
and 2001.

QData
obtained from
QuickBird
satellite on
Lesvos Island,
which has a
Mediterranean
climate
characterised
by warm, dry
summers
and mild,
moderately
rainy winters.

Not applicable Not applicable The
multilayer
perception
neural
network
was
trained
using the
back-
propagation
method to
minimise
error.

Vecín-
Arias et
al. Vecín-
Arias et al.
(2016)

The
Spanish
Meteo-
rological
Agency
(Agencia
Estatal de
Meteo-
rología,
AEMET)

The forest
fire data was
provided by
the Spanish
Ministry of
Agriculture,
Food and
Environment
(Ministerio de
Agricultura,
Alimentación
y Medio
Ambiente,
MAGRAMA)

Humancaused
wildland fires
in the region,
but naturally
induced forest
fires

1464 fires in
the period
2000–2010.

The digital
Spanish
Forestry Map,
digital terrain
model with a
resolution size
of 200 × 200
m, provided by
the National
Geographic
Institute

The lightning
detection
network

Not applicable LR, RF
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Van
Beusekom
et al.
Grizelle
(2018)

Daily
climate
surfaces
from
2002 to
2011 were
generated
by interpo-
lating the
recorded
daily
maximum
and
minimum
tempera-
ture and
precipita-
tion data
obtained
from
National
Weather
Service
Coop-
erative
Observer
stations
across the
island.

The National
Digital
Forecast
Database

Utilisation of
unemployment
as a predictor
for inferring
socio-
economic
circumstances.

Information on
the occurrence
and size of fires
between 2003
and 2011 in
Puerto Rico,
which includes
data on almost
35,000 fires.

Located in the
northeastern
Caribbean Sea,
Puerto Rico is
the smallest of
the Greater
Antilles
Islands, with
the main island
covering an
area of roughly
8,900 square
kilometres. The
island features
a narrow
coastal plain,
measuring
between 8 to
16 kilometres
wide, that is
surrounded by
steep igneous
upland.

Not applicable Not applicable ANNs,
Binary
LR, RF,
decisions
Trees

Dutta et al.
Dutta et al.
(2016)

Not
applicable

The NASA
MODIS
Active fire data
product, which
uses satellite
images from
EOSDIS, the
Burned Area
data product,
and Australian
Water
Availability
Project
(AWAP) data.

Not applicable Comprehensive
investigation
into the history
of bushfires in
Australia from
2007 to 2013.

The Fire
Information
for Resource
Management
System data
and images
obtained from
the Land
Atmosphere
Near-real-time
Capability for
EOS system,
which is
managed by the
NASA/GSFC/Earth
Science Data
and
Information
System.

NASA Active
Fire and
Burned Area
data

Not applicable An
ensemble
approach
that
employs
a two-
layered
machine
learning
model to
establish
the
correlation
between
fire
incidence
and
climatic
data.

Davis et al.
Davis et al.
(2017)

NASA
Earth
Exchange
down-
scaled
climate
models

The fire
environment of
the 1971–2000
climate normal
period.

Not applicable The climate
during fire
season was
determined
based on the
1971-2000
climate normal
data.

The forest land
in Washington
and Oregon
covers an
area of
216,900 square
kilometres.

United States
Department
of Agriculture
Active Fire
Mapping
Program

Not applicable MaxEnt
version
3.3, he
Parameter-
elevation
Regres-
sions on
Inde-
pendent
Slopes
Model
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Loehman
et al.
Loehman
et al.
(2020)

Not
applicable

FireBGCv2
landscape-
scale,
ecosystem-fire
process model

The Coupled
Natural and
Human
Systems
Program,
which is
funded by
the National
Science
Foundation.

A historical
comparative
methodology
or approach.

FireBGCv2
landscape-
scale,
ecosystem-fire
process model

Not applicable Not applicable The mul-
tivariate
model was
subjected
to
principal
compo-
nents
analysis.
Simulation
modelling
is a
dynamic
and
evolving
field that is
faced with
ecological
com-
plexities
and the
emergence
of non-
analogue
system
drivers and
responses.

Finney
Finney
(2005)

Local
weather
records

Not applicable Not applicable Not applicable Generate
simulated
random
ignitions
and artificial
landscapes.

Not applicable Not applicable The devel-
opment of
a quanti-
tative risk
assessment
method
relies on
the spatial
charac-
terisation
of fire
probabil-
ities, fire
behaviour
distri-
butions,
and the
changes
in value
resulting
from those
fires.

Bao et al.
Bao et al.
(2015)

Not
applicable

The
Greenpeace
Research
Laboratories
and the
United States
Environmental
Protection
Agency (EPA)
conduct
research on
climate change.

The
Guangzhou
Administration
of Forestry and
Municipality
Garden is
responsible
for the
construction
project of the
park social
security and
key forest
zone video
monitoring
system in
Guangzhou
City.

In 2012, a total
of 3966 forest
fire incidences
were identified
in the Chinese
forestry
development.

Longdong
Forest Park,
located in the
northeast of
Guangzhou,
China, is
situated at the
southern end
of the Dayu
Mountains and
is covered
by forest
area, which
constitutes 96%
of the park.

The coverage
rate of
forest fire
monitoring
in China has
increased
from 45.3%
to 63.1%.
Models
have been
developed to
determine the
location of
watchtowers.

Not applicable Three
specific
application
models
have been
developed
for
locating
watchtow-
ers in the
context of
forest fire
monitor-
ing.
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Bradley et
al. Bradley
et al.
(2016)

The
PRISM
climate
group

Level III
ecoregions,
U.S. EPA

Not applicable Between 1984
and 2014,
approximately
1500 fires
affected
9.5 million
hectares of
pine (Pinus
ponderosa,
Pinus jeffreyi)
and mixed-
conifer forests
in the western
United States.

Extent
geographical
of forest types
derived from
the Biophysical
Settings (BpS)
data collection,
ArcMap 10.3

Not applicable Not applicable RF, Spatial
autocor-
relation
(SA), Gap
Analysis
Program

Ruffault
and
Mouillot
Ruffault
and
Mouillot
(2015)

From the 8
8 km grid
SAFRAN
meteo-
rological
database,
daily
weather
variables
were
produced
(CNRM
France)

PROMETHEE
fire database

Globally,
diverse
national and
regional
fire policies
have been
formulated and
implemented,
according
to Dynamic
Global
Vegetation
Models

Historical fire
activity from
1973 to 2006
according to
national data.

PROMETHEE
fire database

Not applicable New fire
practices (fuel
management,
prescribed
burnings,
ignition
prevention
and
firefighting)

Dynamic
Global
Vegetation
Models,
boosted
regression
trees
(BRTs)

McGregor
et al.
McGregor
et al.
(2017)

By
resampling
the
historical
weather
time series
observed
at a local
weather
station, the
weather
is repro-
duced.

A simulation
platform with
high fidelity
in which
stakeholders
can explore the
policy space.

Not applicable Resampling
from the
historical
weather time
series observed
at a nearby
weather station
is utilised to
mimic the
weather.

Each of the
approximately
one million
pixels on the
landscape
has thirteen
state factors
that influence
the spread
of wildfires.
(Open-
StreetMap)

Not applicable Sampled 360
policies from
a class of
policies that
suppresses
wildfires
depending on
the Energy
Release
Component
at the time
of ignition
and the day of
ignition.

MFMCi
surrogate
model,
SMAC—a
black-box
empirical
function
optimi-
sation
algorithm

Costafreda-
Aumedes
et al.
Costafreda-
Aumedes
et al.
(2015)

National
Wildland
Fire
Statistics
Estadística
General de
Incendios
Forestales
(EGIF)

National
Wildland
Fire Statistics
(EGIF)

Autonomous
communities
without
neighbouring
similarities
and few large
fires (fewer
than 100) were
considered in a
general model
for the whole
of Spain.

National
Wildland
Fire Statistics
(EGIF) of the
Agency for
Protection
against Forest
Fires of the
MAGRAMA
in the period
1998-2008..

Combining
the presence
of medium-
scale farming
regions,
areas with
limited natural
vegetation
cover (grasses
and range
lands), broad
shrub lands
and park-like
open forest
structures with
undergrowth.

Not applicable emergency
agencies
or forest
services, the
Ministry of
Environment
and Rural
and Marine
Affairs, the
Ministry of
the Interior’s
Civil
Protection,
and the Army
Emergency
Unit.

ANNs

Penman et
al. Penman
et al.
(2015)

Richmond
Bureau
of Mete-
orology
weather
station
(station
number
67033)

The McArthur
Forest fire
danger index,
GIS data or
Google Earth

If a resident
prepares for
wildfires and
the community
education level
is adequate,
the resident is
prepared.

daily Forest
fire danger
index from
Richmond
Bureau of
Meteorology
weather station
(station number
67033) for the
period from
1970 through
to 2010.

The Sydney
Basin
Bioregion
are three large
urban centres
(Sydney,
Newcastle and
Wollongong)

Not
Applicable

Not
Applicable

Bayesian
Networks
(BNs)
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O’Connor
et al.
O’Connor
et al.
(2017)

the Trail
Gulch
Remote
Automatic
Weather
Station

Not applicable Not applicable A spatial
database of
historical fire
perimeter
locations

The National
Wildfire
Coordinating
Group and a
34 000 km2
landscape
straddling
Idaho, Nevada,
and Utah in the
northern Rocky
Mountains

Not applicable Not applicable BRT
and the
MaxEnt
package

Rodrigues
et al.
Rodrigues
et al.
(2019)

Daily
ERA-
Interim
grid data
from the
European
Centre for
Medium-
Range
Weather
Forecasts
at
midnight.

Wildland
agriculture
interface
mosaics,
herbaceous
crops (mostly
cereal crops),
forests,
shrublands
and grasslands.

Human-caused
fires are
consequently
lit around
urban
populations
or roadways.

Spanish EGIF
database

The Spanish
National
Topographical
Database
1:25,000 and
the Spanish
National Plan
of Aerial Or-
thophotography
were queried
for geospatial
data.

MODIS and
the Visible
Infrared
Imaging
Radiometer
Suite (VIIRS)

The Spanish
EGIF
database

Spatial
modelling
with RF

Julian and
Kochen-
derfer
Julian and
Kochen-
derfer
(2018)

Not
applicable

Not applicable Not applicable Not applicable A 1 km2 parcel
of land is
subdivided
into cells to
make a 100100
rectangular
grid.

DRL to guide
the aircraft
around a
wildfire

Not applicable A partially
observable
Markov
decision
process,
DRL.

Delgado
et al.
Delgado,
González,
Sotoca
and Tibau
(2018)

Not
applicable

Not applicable Under the
direction of the
Prosecution
Office of
Environment
and Urbanism
of the Spanish
state, a
database
of clarified
arson-caused
wildfires has
been compiled.

Since 1968,
the General
Directorate
of Natural
Environment
and Forestry
Policy of
the Spanish
Ministry of
Agriculture
and Fisheries,
Food, and the
Environment
has gathered
statistical data
on forest fires.

Not applicable Not applicable Not applicable BNs

Faramarzi
et al.
Faramarzi
et al.
(2021)

Maps of
temper-
ature,
rainfall,
pressure,
and
moisture
were
prepared
from mete-
orological
data,
WRPLOT

Global
Positioning
System (GPS)
distance map
of springs;
NDVI map
derived from
2017 Landsat 8
satellite photos

Main road, side
road, village,
camping,
hunters,
shepherds

The forest
fire locations
were identified
according to
field surveys,
MODIS
satellite
images, and the
historical fires
recorded by the
park authority
during 1981 -
2018.

The springs
distance map
was produced
with GPS, and
the NDVI
map was
derived from
2017 Landsat
8 satellite
pictures.

Not applicable Not applicable Ordered
Weighted
Averaging-
scenarios,
IDRISI
Taiga, and
ArcGIS
(Version
10.4,
2019)
software.

Wagner
Van Wag-
ner (1987)

Fuel
moisture
codes
following
daily
changes in
moisture
content
and drying
rates.

Atmospheric
environmental
and moisture
conditions,
local
temperatures.

Not applicable Not applicable Not applicable Fire behaviour
indexes
representing a
rate of spread,
fuel weight
consumed,
and fire
intensity.

Not applicable Consideration
of FFMC,
DMC, DC.
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6. Wildfire Detection and Response Models
Forests play a crucial role in maintaining the ecological balance of our

planet. However, forest fires often go undetected until they have already
consumed a substantial amount of land, making them difficult to control
and suppress. The damage caused by forest fires is devastating, not only in
terms of the ecology but also in the environment and atmosphere Ryan and
Rumker (2001). It has been estimated that 30% of the carbon dioxide (CO2)
in the atmosphere is a result of forest fires, which also release significant
amounts of smoke into the atmosphere. Forest fires have significant long-
term consequences, such as changes in local weather patterns, worsening
of global warming, and the disappearance of rare plant and animal species
Giglio, Randerson and van der Werf (2015). These fires often happen in
isolated, uninhabited, or inadequately maintained areas, where dry and
withered vegetation serves as fuel for their spread. These fires can be
initiated by human error, such as improperly disposing of cigarettes, or
natural causes, such as intense sunlight concentrated by broken glass. Once
the fire has started, it can quickly spread and cause extensive damage.
The fire initially spreads through the surface layer and can progress to a
crown fire if not contained in its early stages Papagiannaki, Kalogerakis
and Karantzalos (2018).

In order to reduce the impact of forest fires, various detection and
monitoring techniques are employed by authorities, such as aerial and satel-
lite surveillance, observers, and optical camera sensors. These techniques
are categorised into two primary groups: volunteer and public reporting of
fires, as well as public aircraft and ground-based field workers. Controlled
burning, fire weather forecasting, watchtowers, optical smoke detection,
lightning detectors, infrared detectors, spotter planes, water tankers, and
smartphone notifications are some of the popular approaches for detecting
fires at an early stage Malamud, Turcotte and Rinaldo (2010). The goal of
these efforts is to identify forest fires in their earliest stages and increase
the likelihood of containment before they become uncontrollable or cause
serious damage. The establishment of guidelines, such as the one stating
that it takes one minute to extinguish one cup of fire, highlights the
importance of early detection and rapid response Kalogerakis, Papagiannaki
and Karantzalos (2015). With millions of hectares of forests devastated
by fire each year, the need for effective fire detection and suppression
methods is clear. Fig. 3 depicts the Detection and Response Models that
were considered for this paper.

Fire  Detection
 

Fuels
Characterisation

Detection &
Response

Models

Fire Susceptibility
Mapping

Landscape
Controls on Fire

Fire Perimeter and
Severity Mapping

Fire Behaviour
Prediction

Figure 4: Detection and Response Models

6.1. Fire Spread Behaviour Prediction
The prediction of fire spread behaviour is a crucial aspect of wildland

fire management, as it helps in reducing the deployment of suppression re-
sources and enables proper planning of evacuations in advance. There have
been numerous models developed over the years to predict fire spread, each
utilising various methodologies Pyne and Goldammer (1997). Fire spread

rates, growth prediction, burned area, and severity are among the primary
areas of concern in these models. The behaviour of fire encompasses a range
of physical processes and features, such as combustion rate, flame height,
and fuel consumption. Remote sensing data is beneficial in this regard since
it enables a more extensive observation of critical factors that are difficult
to assess directly from the field in terms of both space and time. Landsat
land cover data, NOAA weather measurements, and archived MODIS
sensor data from several years are employed in these models. The ability
to optimise the tasking and routing of platform-based sensors, such as
satellites and UAVs, has made it possible to forecast future fire magnitudes
and detect previously unnoticed fires. Accurately understanding the status of
a wildfire allows for better allocation of suppression resources and effective
fire management Krawchuk, Moritz and Parisien (2009). It is crucial to have
an accurate and continuous understanding of a wildfire’s dynamic status,
which includes its type, location, speed of spread, direction, topography,
combustible material, and weather influences, in order to efficiently and
rapidly combat the fire Su, Yan and Zhang (2017).

According to Markuzon and Kolitz (2009), the ability to probabilisti-
cally estimate the future size of known or yet-to-be-observed fires allows
for better tasking and directing of platform-based sensors such as satellites
and UAVs. Increased sensor allocation to wildfires improves their state
assessment, resulting in more efficient suppression resource allocation and
better hazard observation and mitigation. Data mining techniques were em-
ployed to predict which fires are likely to expand, and satellite monitoring
was used to determine if the data collected was sufficient for real-time
monitoring of Earth phenomena events, such as wildfires. Remote data
collection is an effective means of obtaining extensive coverage of essential
variables in both space and time, which is difficult to achieve through direct
ground measurements. The models employed archived MODIS sensor
data from multiple years, combined with Landsat surface cover data and
NOAA weather observations (2021) (NOAA). Accurately understanding
and maintaining awareness of a wildfire’s dynamic state, including location,
type, and features such as the rate of escalation, ignitable material, direction,
topography, and weather impacts, is crucial for managing the fire in a
systematic and timely manner.

Time limitations, resource management, and exactitude factors affect
forest fire spread forecasting in real-time. A framework of cyber is portrayed
by Artés et al.Artés, Cencerrado, Cortés and Margalef (2016) for forest
fire development forecasting, which merges input data that is collected
from various sources like remote meteorological sensors and satellites.
To facilitate the instantaneous sharing of outcomes, the gathered data
must be structured for simulation tools that utilise parallel programming
paradigms and computing platforms. The Two-Stage prediction framework,
which comprises the Prediction and Calibration stages, is suggested. The
Calibration stage utilises a Genetic Algorithm (GA) to optimise the most
crucial parameters of a forest fire spread model by accurately reproducing
recent events via a spatial optimisation objective function. The fitness
function employed in the Calibration stage strives to minimise the discrep-
ancy between the observed fire spread and the spatial fire development
forecasted by FARSITE. However, because the GA is repetitive and the
simulations take a lot of time, the Calibration stage can be time-consuming.
To address this, a Time-Aware Classification (TAC) was integrated into the
Calibration stage to allocate the number of cores to each individual in the
population, considering time limitations. Despite the TAC approach being
promising in ensuring that simulations are executed within the distributed
time, it may become trapped in local optima in the search space. The RE-
TAC approach overcomes the time constraint by using rescaled coarse-
resolution data. While the TAC approximation may reject an accurate
solution, the ReTAC method produces positive results when dealing with
large forest fires. Compared to the TAC version, ReTAC reduces the error
and achieves efficiency that is closer to the single core scheme where there
is no time constraint. The prediction accuracy and time savings of ReTAC
improve, depending on the computational capacity. ReTAC utilises high-
performance computing platforms to take advantage of parallelism at two
levels, with the implementation of a single forest fire propagation forecast
parallelised using openMP. The two-stage prediction plan of ReTAC has
been validated and proven to be an effective fire forecasting tool for forest
fire function analysts and managers.

Houssami et al. El Houssami, Lamorlette, Morvan, Hadden and Sime-
oni (2018) present and compare the results of multiple sub-models devel-
oped by the authors with the aim of understanding the burning dynamics
of conflagrations worldwide. Through the use of Forest Fire FOAM, the

First Author et al.: Preprint submitted to Elsevier Page 20 of 48



Leveraging the Power of Internet of Things and Artificial Intelligence in Forest Fire Prevention, Detection, and Restoration: A
Comprehensive Survey

authors were able to base their research on a number of fire experiments
that provided reliable results while also applying variable metrics for
ambient and fuel. During development, the models adapted to a building
block approach to their data handling, which assisted greatly with the
understanding of forest fuel flammability. Houssami et al. El Houssami
et al. (2018) showcased the importance of utilising appropriate submodels,
as the different experiments employed a large variety of values for fuel bulk
density and inlet flows. They also placed additional weight on the need to
develop a multiphase fire modelling approach as well as the importance
of further researching physics-based models in order to utilise fuel and
environmental data.

In an attempt to predict and warn of possible fire propagation events
in advance, Denham et al. Denham and Laneri (2018) present an appli-
cation aiming to estimate the correct parameters considering this issue.
The application in its current state is parallel and therefore has promising
enough potential to achieve this in the future while also serving as a
modular computing tool for open-source usage. Detecting ignition points
and stochastic fire propagation parameters of past wildfires is a matter of
vital importance, which solving will help tremendously in preventing such
catastrophes. For this purpose, a highly adaptable tool called a parallel
cellular automaton was used. With the model’s dexterous capabilities of
utilising spatial stochastic parameters, such as wind speed or fuel type, it
became possible to study recorded wildfires with unknown starting points.
Some identified troubling behaviour on the model’s part is that if we try to
use the ignition point coordinates as a parameter, the remaining input data
identifiability decreases. There’s a possibility that this can be improved by
using an ensemble of several fitness functions to rank different simulations.
Alternatively, it’s worth testing fitting multiple fire scars to the model and
testing its performance. Finally, fitting parameters such as times of fuel
consumption is a matter of interest with regard to the future advancement
of the application.

Ascoli et al. Ascoli, Vacchiano, Motta and Bovio (2015) applied
genetic algorithms (GA) to the Rothermel Fire Spread Model, resulting in
a system that can generate and fine-tune customised fuel models. The GA
creates an initial population by generating model parameters with arbitrary
fuel. This population is chosen based on its best members and is then
edited and crossed over with several model parameter values. This process is
repeated until the outcomes are satisfactory. The model was tested on three
different fuel types: grass, shrubs, and litter. For each type, the GA improved
the performance of the Rothermel Model, reducing the Root Mean Square
Error by 19%, 26%, and 39%, respectively. The researchers also established
a model that uses mixed grass and shrub fuel data, further optimised by GA.
This model demonstrated significantly lower prediction errors when tested
against a validation dataset. This new model utilised fire behaviour and
fire data gathered from fire experiments in the dry heartlands of Southern
Europe. In conclusion, GA successfully achieved its goal of calibrating fuel
models for predictions via the Rothermel Model, thereby increasing their
reliability. Furthermore, GA offers an easy method for adjusting fuel model
parameters without requiring fuel sampling.

Kozik et al. Kozik, Nezhevenko and Feoktistov (2014) created a
software method for building a fire model, ensuring real-time simulation of
fire progression. The proposed method enables interactive manipulation of
the model, making it feasible to quickly assess the efficacy of fire suppres-
sion techniques like clearing out forests, creating ditches, and starting an
adversarial fire. Two learning methods are compared: traditional learning
and learning using Kalman filters. The comparison is mainly focused on
speed and accuracy, as these parameters are critical in a fire-fighting effort.
Kalman filtering shows better convergence and stability of the learning
process. For various wind speeds and surface reliefs, model experiments are
conducted to identify potential fire development variations. It is shown that
fire can pass over areas composed of unburned materials (such as ditches
and rivers) because of the global nature of the connections in the neural
network used to describe the fire. Assuming that the fire evolution can be
continuously monitored by taking aerial or satellite photos of the fire zone,
the produced model can be utilised to battle fires successfully.

Zheng Zheng, Huang, Li and Zeng (2017) recognises that quantitative
modelling plays a crucial role in establishing efficient risk management
plans and putting them into practice when it comes to forest fire suppression.
One of the most popular modelling techniques is the cellular automaton CA,
which has been used to replicate the intricate dynamics of fire propagation.
Although CA models are most commonly used, local transition rules are
defined using significant research on the physical background of wildfires.

The authors make use of Extreme Learning Machine (ELM), a well-
liked paradigm for data-driven learning, to avoid defining transition rules.
The ELM modelling approach employs local historical training data to
define the local evolution rules of fire spreading, allowing for the creation
of a simple CA modelling approach that disregards complex theory and
multiple physical parameters required by traditional models. Combining
ELM with the standard forest fire CA framework presents a new approach
to CA modelling. The effectiveness of this method was validated using data
collected from five fires in the western United States. The obtained findings
show that the ELM did a good job of forecasting the likelihood that each
cell would ignite. The suggested modelling technique allows for a precise
definition of how wind velocity affects fire spread patterns. The simulation’s
performance is accurate, as evidenced by the validation against actual fire
behaviour data, and better results can be observed in comparison to earlier
published reports.

Chetehouna et al. Chetehouna, Tabach, Bouazaoui and Gascoin (2015)
explain and demonstrate an ANNs tool built with the intent of simulating
metrics such as Flame Height, Flame Angle, and, most importantly, Rate of
Spread (ROS) in beds of pinus pinaster needles. In order to generalise these
three values so that they can provide valuable information even for wildfires
not included in the database, the ANN was trained and validated accordingly
in order to deduce its ideal architecture. For the model validation phase, an
experimental dataset was used. The dataset was not meant to calibrate the
proposed model, yet they showcased satisfying results for it nonetheless.
The developed ANN was also compared to three different literature models,
one of which was semi-empirical while the other two were physical. The
proposed model’s results fared very well against them. Finally, all the ANN
models generated by the tool were compared to two other experimental
datasets from literary works. In conclusion, the ANN tool showcased
potential in regard to the evaluation of the three aforementioned metrics,
ROS, Flame Height, and Flame Angle, through the use of information not
imported into the database.

Although this paper revolves around the prediction of wildfires, Sub-
ramanian et al. Subramanian and Crowley (2017) also give additional
attention to social and financial costs. The basis for the research was
conducted using the following two algorithms: the Asynchronous Advan-
tage Actor-Critic and Value Iteration. Out of those two, the former is a
recent direct policy search approach that, through DL, performs policy
representation and state-space approximation concurrently. The developed
tool uses satellite images of a region in northern Alberta, Canada, as its
source. The difficulty of modelling the actual dynamics of fire spread
patterns makes this task stand out in a particular way, as it requires the
use of computationally expensive physics-based models more often than
not. Additionally, treating the fires as an agent spreading across landscapes
in response to neighbourhood environmental parameters poses a challenge
in and of itself. To handle it, the directions a fire could go towards it
were classified as North, South, West, East, and not moving. The areas are
represented by cells in the landscape, and rewards are given at the end of
each epoch, depending on the accuracy of the model. In this paper, readers
will find easily accessible satellite data from government agencies. The
models were developed to train a wildfire spread policy in a specific region
for a number of different time frames. They also test the transferability
of the policies to data from another region. The results are promising
and compare really well to intelligent system applications for wildfire
prediction. However, the authors aim to research the more specific matter
of fire spread location.

Khazkad et al. Khakzad (2019) acknowledge that the wildland-urban
interfaces (WUIs), wildland-industrial interfaces (WIIs) and wildland base
interfaces are embraced in one main sector, wildland-human interfaces.
WII can be described as a district where a variety of industrial factories,
such as oil and gas depots, are merged with or sited within wildland plant
life. There hasn’t been much research on WIIs because most previous
studies and efforts in modelling and risk assessment of wildfire incidents at
wildland-human interfaces have focused on wildlands or WUIs. Modelling
and danger evaluation of wildfires in WIIs are crucial, as due to the
factories’ functioning closing down and to safety matters or restoration
and replacement of damaged entities, the reduction of income could be
significant, along with the possible destruction of the industrial stations.
In particular, as far as oil and gas factories are concerned, the outcome of
wildfires in WIIs can be disastrous. Due to the high temperature of the fire,
storage containers of ignitable and explosive petroleum products, including
crude oil, gasoline, diesel, kerosene, and propane, can be destroyed and
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assist in the fire’s extension to other units and containers. For the elimination
of this risk, the existence of buffer areas is vital, as they guarantee the safety
of oil and gas plants from wildfire incidents and the wildlands from possible
inflammations at the stations. The creation of a buffer zone is equivalent to
the establishment of some form of plant-free zone between the factories and
the forest plant life. As specialised fire outspread simulation and danger
evaluation techniques in WIIs are limited, buffer areas are determined by
estimation. In many cases, buffer zones are insufficient for controlling wild-
fires. A solution was created to tackle this problem through the integration
of dynamic Bayesian network (DBN) and fire behaviour prediction models,
allowing for the simulation of wildfire growth in wildland-urban interfaces
(WIIs). To account for wind’s impact on the direction of fire spread, the
Canadian Fire Behavior Prediction (FBP) system was utilised to determine
the frequency and intensity of fire expansion. The obtained information was
then applied to determine the likelihood of fire spread between nodes in
the DBN, allowing for the identification of the most likely fire path and
associated probabilities. Simplifying assumptions were made by Khakzad
et al. in their model development, such as assuming constant weather and
fuel conditions, which may decrease the accuracy of the burn probabilities.
This is compounded by the uncertainties present in the FBP system’s ability
to predict the frequency and intensity of fire spread. The fire forecasting
model is intended to be a tool to assist land-use developers, firefighters, and
facility owners in improving their risk management strategies by providing
insight into the most likely path of the fire and burn probabilities. While
there are limitations to the model, such as the simplifying assumptions and
uncertainties in the FBP system, it is unique in its approach to simulating
and evaluating the risk of wildfires in WIIs, where there is a lack of
expansion models.

Palaiologou et al. Palaiologou, Kalabokidis, Day, Ager, Galatsidas
and Papalampros (2022) developed a new approach for expanding the
datasets required for wildfire simulations using open-access information.
The system was specifically designed for the European and Mediterranean
regions, and the authors tested it in Macedonia and Greece, which have high
ignition densities and a large amount of forested land. The authors used fire
simulation modelling to estimate community exposure and map fire sheds

that define the area where wildfires can potentially transfer to communities.
Additionally, the simulation outputs were used to map landscape metrics
that reflect the spatial scale of fire size and wildfire exposure complexity
while considering the geography of land tenures. These outcomes could
have significant implications for landscape fuel management policies in
Greece.

Through the use of a deep convolutional inverse graphics network
dubbed DCIGN, Hodges et al. Hodges and Lattimer (2019) demonstrate
an ML technique for estimating the time-resolved geographical evolution
of conflagration events. It should be highlighted that a major driving force
behind this research is the enormous computing expense of predicting
wildfires across vast and diverse terrain. The DCIGN network underwent
training on both simple and complex terrains of homogeneous landscapes
and was also tested for its effectiveness in predicting wildfire spread. The
model for these landscapes utilised Rothermel’s model, specifically the
ROS it provides. All data used in this research was generated through com-
putational models and over 10,000 model predictions were made to achieve
the goal of determining burn maps in 6-hour increments with a maximum
of 24 hours after ignition. It was discovered that the computational cost
of the DCIGN network is much lower than that of older models, and the
results were deemed adequate, with mean precision, F-measure, Chan-Vese
similarity, and sensitivity metrics of 0.97, 0.93, 0.93, and 0.92, respectively.
Using earlier forecasts as input, the DCIGN network proved the potential to
predict burn maps longer into the future than older methods. Additionally,
adding noise to the DCIGN’s input parameters did not impact its predictions
in any major way.

Introducing the first supervised ML application for wildfire spread
prediction: FireCast. Radke et al. Radke, Hessler and Ellsworth (2019)
conducted this research intending to simplify the process of effectively
mediating and predicting wildfire growth. FireCast is the result, and it com-
bines Geographic Information Systems (GIS) with AI in order to predict
potential wildfire spread. GIS provides us with generated and appropriate
geospatial input variables, which are then used by an AI model in order
to make classifications and if needed, predictions about a specified target.
FireCast utilises supervised learning and geospatial inputs in a manner
similar to weather data, satellite imagery, elevation data, or fire perime-
ters provided by firefighters working to suppress wildfires. It determines

patterns correlated with fire spread in specified landscapes in order to
predict wildfire spread. So far, FireCast has been trained and evaluated
exclusively based on data from the Rocky Mountain region of the United
States. However, its scaling potential is promising if the necessary datasets
are provided for more regions. FireCast’s results have been compared to the
most common predictive modelling software available to firefighting squads
currently and can aid in further containing wildfire damage.

6.2. Fuel Characterisation
When fires are lit, fuel particles ignite, and heat is transferred between

them by conduction, radiation, and convection. Consequently, the properties
of living and dead vegetative fuels, as well as their moisture content,
biomass, and vertical and horizontal distribution, can have a significant
impact on fire behaviour, such as fuel consumption, rate of spread, and
severity. Understanding and accurately predicting fuel properties is crucial
for fire behaviour models, such as the Canadian FBP System and the
FIRETEC model. Studies have been conducted at two different scales to
forecast fuel properties. Regression applications have been used to forecast
easily quantifiable variables, such as the crown biomass of individual trees,
using variables such as height and diameter (e.g., Cermak et al. 2015,
"Estimating Forest Fuel Loads Using Terrestrial Laser Scanning"). On the
other hand, classification applications have been utilised to map fuel type
descriptors or fuel quantities on a landscape, utilising visual interpretation
of air pictures and the interpretation of spectral features of remote sensing
data Lasaponara and Lanorte (2007). Although only a few studies have
used ML for wildfire fuel prediction, this field of research holds much
potential for further exploration. For example, Zhao, Ma, Li and Zhang
(2018) applied ML algorithms, such as RF and CNNs, to map fuel types
and compare their performance to traditional classification methods Huo,
Li, Zhang, Sun, Zhou and Gong (2021). The characteristics of fuels play a
vital role in determining fire behaviour, and the accurate prediction of fuel
properties is essential for effective fire management. Further research in this
field, especially in the application of ML techniques, has the potential to
significantly advance our understanding and ability to predict and manage
wildfires.

Linn et al. Linn, Reisner, Coleman and SMITH (2002) showcase
a new approach for landscape-wide wildfire prediction, a model dubbed
FIRETEC, which couples wildlife and atmospheric behaviour based on
the principles of energy, momentum and mass conservation. Developed
in 1997, FIRETEC is used alongside a second model specialising in
hydrodynamics, HIGRAD, in order to simulate conflagration phenomena
through the use of a three-dimensional terrain-following finite volume
grid. The combined effort of these modelling systems’ ability to simulate
wildfires is meant to be used for the examination of such phenomena
and their behaviour. Five examples are presented using the developed
method, all in idealised situations using realistic conditions. While the
results produced in this research cannot be classified as a breakthrough, the
end goal was achieved, and this new method of physics-based full-transport
model utilisation marks the initial development of a new pathway towards
landscape-scale wildfire modelling. In addition, the generated simulations
are relatively simple to understand and can be used to isolate some of the
physical relationships that affect the behaviour of the simulated wildfires.

Riano et al. Riaño, Ustin, Usero and Patricio (2005) developed a series
of ANNs with the end goal of calculating and evaluating the Fuel Moisture
Content (FMC) metric, which is one of the most vital sources behind the
danger of wildfires. The developed ANNs calculated the aforementioned
metric by estimating the two implicated variables: dry matter content (DM)
and equivalent water thickness (EWT). For DM, the authors utilised the
Leaf Optical Properties Experiment (LOPEX) database, for which the
samples were split into 60% / 40% subsets to be employed for the models’
learning and validation phases, respectively. Furthermore, due to water
masking the DM absorption features of fresh samples, DM was calculated
for both fresh and dry matter. While for the specified dataset, DM and EWT
predictions on dry samples produced similar results to other methods, DM
estimations on fresh samples via ANN (r2 = 0.86) showcased significantly
improved results while utilising inversion of Radiative Transfer Models (r2
= 0.38).

In Lassen Volcanic National Park (LVNP), Pierce et al. Pierce, Farris
and Taylor (2012) aimed to analyse forest fuel patterns, evaluate the
efficiency of RF as a method for modelling plot-level canopy fuel loads, and
pre-map the loads. Their goals were to determine the differences in surface
and canopy fuel loads across LVNP based on topography and vegetation
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type, map surface and canopy fuels using RF regression and topographic
characteristics with LandSat data, compare our canopy fuel maps with
standard datasets, and predict fire behaviour using the surface and canopy
fuel maps.

Riley et al. Riley, Grenfell, Finney and Crookston (2014) centre around
the challenge of ascribing forest plots to a set of target landscape grids. The
author presents a modified version of the RF method, developed specifically
with this goal in mind. It produces a seamless grid of tree data at a given
landscape level. The results of this newly modified RF method showcased
high accuracy, as well as a strong relationship between the target gridded
data and the ascribed plot data for certain important variables. Forest Height
was calculated at 97%, while Forest Cover and Vegetation Group were at
86% and 84%, respectively. This high accuracy provided by the RF method’s
assets promises satisfying results for several applications, such as risk
estimation for wildfires to terrestrial carbon resources or impact analysis
from fuel treatments on fire sizes and landscape-level burn probability. The
possibilities further increase due to RF being able to utilise both numerical
and categorical variables.

Serrano et al. López Serrano, López-Sánchez, Álvarez González and
García-Gutiérrez (2016) use a number of methods, namely Knn, RF, and
SVM, to calculate aboveground forest biomass using remote sensing infor-
mation. All of the previously described strategies are viable alternatives
to the standard parametric MLR method. It should be noted that the
AGB’s accuracy estimations are not always a source of scepticism among
researchers. This is due to a number of error types spread across different
factors, such as field measurement, plot location, and the individual tree
biomass equations. Additional errors were also caused by the radiometric
and geometrical corrections of remotely sensed data. It should be noted that
the three techniques vary in their levels of usability. SVM, in particular, is
not easy for non-experts to apply. Furthermore, the parametrisation of these
algorithms directly influences the performance of the generated models.
After thoroughly examining the results of each model, the authors came
to the conclusion that SCM is the most effective of the models, but due to
the difficulty of applying parametrisation to it, it should be used mostly by
experts. RF, on the other hand, whose accuracy is lower yet still passable,
is easier for non-experts to utilise. Conclusions on kNNs in comparison to
RF remain to be determined, however.

A methodology for mapping the types of fuel was demonstrated by
Garcia et al. García, Riaño, Chuvieco, Salas and Danson (2011) using mul-
tispectral information and LiDAR. Adapted to the biological characteristics
of the European Mediterranean basin, the authors of this research propose
a two-phase classification for identifying the fuel classes of the Prometheus
categorisation system. First, they mapped the major fuel classes, including
trees, grass, and bushes, to the non-fuel classes. Consequently, using LiDAR
and multispectral data, the Support Vector Machine (SVM) classification
was applied, and the overall accuracy of the rating with a kappa coefficient
of 0.9 was 92.8 percent. This method is intended to distinguish additional
fuel kinds based on the vertical data of the LiDAR measurements. The total
accuracy of the final fuel type rating is 88.24, with a kappa coefficient of
0.86. The study revealed that there is some confusion between fuel types;
seven species prefer significant tree cover, introducing vertical continuity
with understory vegetation, whereas five species prefer trees with less than
30 percent shrub cover, with some fields covered by Holm oak. Low LiDAR
pulse infiltration meant that the understory vegetation was not accurately
sampled.

Chirici et al. Chirici, Scotti, Montaghi, Barbati, Cartisano, Lopez,
Marchetti, McRoberts, Olsson and Corona (2013) used Airborne Laser
Scanning (ALS) data and an IRS LISS-III image to map forest fuel types
in two areas in Sicily, Italy, covering a total of 652 km². They generated
16,761 plots using a stratified sampling scheme and classified the forest fuel
types using predictors obtained from spectral signatures and ALS metrics.
They developed and tested three non-parametric classification approaches
to replace traditional parametric methods: (i) CART, (ii) RF CART bagging,
and (iii) Stochastic Gradient Boosting (SGB) CART bagging/boosting. The
SGB method was found to be the most effective, with an accuracy of
84%, and canopy cover was identified as the most relevant ALS metric.
The study demonstrates that these models can aid in fire management
and mapping fuel types. Effectively summarised are the properties of
classification and regression trees, as well as the preprocessing operation,
classification algorithms, and results.

6.3. Fire Susceptibility Mapping
Based on the spatial probability or density of fire occurrence, fire

susceptibility mapping is a technique for identifying regions at a higher
risk of suffering wildfires. Although "fire vulnerability" and "risk" have
been used, "fire susceptibility" is the phrase most commonly used in the
literature Li and Koo (2019). Fire susceptibility mapping can be carried out
using various algorithms, such as MaxEnt, BRT, or RF. These algorithms
can be trained using remotely sensed data or agency-reported fire data
combined with a variety of explanatory variables related to the landscape,
climate, structures, and anthropogenic factors. The goal of fire susceptibility
mapping is to develop a spatial model that can predict the likelihood of a
wildfire occurring in a particular area Kam, Balch and Spies (2016). One
common approach for fire susceptibility mapping is using a presence-only
framework, like MaxEnt, which is based on the presence of fires in a specific
area. Another approach is using a presence-absence framework, like BRT
or RF, which takes into account both the presence of fires and the absence
of fires in an area. These frameworks are generally employed in various
modelling approaches to identify the areas that are most at risk of wildfire
occurrence Cochrane (2011). Fire susceptibility mapping can be a valuable
tool for fire managers and land managers as it can help to identify areas that
are at a higher risk of wildfire occurrence and prioritise resources for fire
prevention and suppression efforts.

Amatulli et al. Amatulli and Camia (2007) recognise that researchers
have used spatial and non-spatial non-parametric prediction models in
the context of long-term fire risk assessment to elucidate complicated
linkages among wildfire factors. The primary goal was to disprove the
spatial stationarity assumption made by conventional regression techniques
in the connection between the response variable and the predictors. The
CART and Multivariate Adaptive Regression Splines (MARS) models were
evaluated, and the authors’ predictive abilities for local fire incidence were
compared. The test was conducted in Italy’s middle Arno River Basin, a
region that is prone to fires. A fire prediction model was developed utilising
1621 ignition locations observed between 1997 and 2003 and the road
network, topography characteristics, and demographic data. The models
generated two rather comparable prediction maps. The CART model per-
forms better in terms of prediction power, which can be inferred from the use
of the two models for the prediction of fire occurrence within the context
of long-term fire risk assessment. Additionally, it produces homogeneous
fire risk management units that might be valuable in supporting wildfire
planning initiatives. The MARS model, however, has the ability to create
a smooth prediction surface. The two models used the default settings;
therefore, evaluating other setup values led to greater results. Additionally,
the findings were helpful in analysing how each independent variable
behaved during the regression procedure. Previous research has supported
the road variable’s positive association when represented in terms of road
density. The use of x and y variables can add spatial information to the
models, but they must be properly used since unexpected outcomes might
arise.

By evaluating multiple criteria and employing data mining techniques,
including binary LR and ANN, Adab et al. Adab (2017) aim to estimate the
optimum land fire danger map. Using the Receiver Operating Characteristic
(ROC), the predicted accuracy of land fire danger models was summarised.
The ANN model had a higher ROC curve (AUC 87%) than the binary LR
model (AUC 81%), and it had superior sensitivity and specificity. Results
from the ANN model indicated that factors connected to human activity
strongly explained the variation in the frequency of land fires. In addition,
the ANN method found annual precipitation and annual mean temperature
in relation to the presence or absence of land fires as significant contributors
to land fire risk. The link between annual precipitation and annual mean
temperature may increase the risk of wildfires by creating extremely dry
conditions. The results expanded the usefulness of the topographic wetness
index, slope parameters, and land cover in predictive analysis of land fire
risks, which appeared to be more accurate in predicting land fire dangers in
the Golestan region of Iran. The variation in ignition patterns was mostly
explained by the land cover, which also had a substantial effect on the
frequency of ignitions. In this study, it was shown that human impacts (such
as land clearing) are a reasonable proxy for land fires in the study region,
although non-anthropogenic fires may be rare. To help forest managers
assess their level of susceptibility and prepare for mitigation, the study’s
map of land fire threats may be used as a starting point. With Golestan
Province being the most prone to fire in Iran, this research’s evaluation of
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its land fire risks and mapping of those hazards serves as a pilot study for a
more thorough investigation of land fire hazards throughout northeast Iran.

A fire hazard model was developed by Bisquert et al. Bisquert,
Caselles, Sánchez-Tomás and Caselles (2012) using LR and ANNs. When
combined with fire history data, remote sensing variables (EVI and LST)
were used as input variables to track the state of the vegetation. The LR
approach was used to analyse various combinations of input variables.
The best variable combinations were incorporated into an ANN, and the
outcomes from both strategies were compared and assessed. The 8-day LST
with fire history data gathered over the course of a year was the best set of
input parameters discovered. The LST was anticipated to have a significant
role in the fire hazard since higher temperatures are associated with reduced
moisture content, and these conditions make it easier for plants to catch fire.
The ANN showed greater precision and accuracy than the LR. The neural
network’s findings were then classified into three categories of fire hazard,
with 14% of fires occurring at the low level of danger, 25% occurring at the
medium level, and 65% occurring at the high level. Finding fire hazard maps
that make activities like prevention and extinction easier is made possible
by classifying the fire danger levels.

Oliveira et al. Oliveira, Oehler, San-Miguel-Ayanz, Camia and Pereira
(2012) recognise that the EUMed region has Europe’s highest fire incidence
rate. The spatial and temporal distribution of the area’s fire density is un-
even. The interaction between natural and artificial elements that influence
the occurrence and spread of a fire has an effect on the probability of
its occurrence. In this study, the probability of a fire was predicted using
two distinct methods: MLR and RF. The findings obtained using these
two approaches were compared, and this allowed for the assessment of the
prospective applications of the RF method for fire occurrence modelling
as well as the evaluation of non-linear correlations between the factors
that were not taken into account by MLR. Additionally, both approaches
prioritised the variables in terms of their relative importance to the models,
making it possible to pinpoint the elements that were shared by both and
amplifying their value for understanding fire density distribution. The two
models produced different findings, with the RF model demonstrating better
prediction accuracy than the LR model because of the presence of non-
linear trends. The RF model significantly reduced spatial autocorrelation
in model residuals. Despite these discrepancies, both models predicted that
northern France, northern Italy, and northern Greece had low fire densities,
but northwestern Iberia and southern Italy had high densities. In addition, it
was feasible to discover major common characteristics that provided crucial
insights into the causes influencing the occurrence of fires in this region
during the fire season.

Vasconcelos et al. Vasconcelos, Silva, Tomé, Alvim and Pereira (2001)
acknowledge that the human-induced ignition risk has been left out of the
created fire danger models in a number of studies. Therefore, the authors
suggest that it is possible to develop the requisite prediction power and
quantify ignition likelihood in space by analysing historical data on the
locations of fire ignition points. The investigation, which analyses the data
included in the spatial features of the phenomena, is carried out by utilising
inductive approaches in a raster GIS. A layer showing the locations of
ignition events and a series of layers related to possibly explanatory factors
are both included in the raster GIs database used in the investigation. By
combining LR and genetic neural networks, this data set is analysed. The
suggested model uses a number of independent variables and a binary event
(presence or absence of ignition), making the LR acceptable because it has
been effectively used in other research. Neural networks have been used
in this investigation to see if non-linear, non-parametric approaches may
outperform the outcomes from conventional statistical methods.

The Madrid region exemplifies the socioeconomic changes generated
by the occurrence of forest fires in the European Mediterranean basin
over the past several decades. Vilar et al. Vilar, Gómez, Martinez-Vega,
Echavarría, Riaño and Martín (2016) explained wildfire occurrence by
identifying these changes in socioeconomic variables as part of the migra-
tion from rural to urban areas by modelling the occurrence of wildfires
over two distinct time periods. In the 2000s, predictors such as music,
WUI, and roads were more meaningful despite a dramatic decline in FGI
for both models. In the 2000s, both models performed better than their
1980s counterparts at detecting the occurrence of wildfires. The Maxent
model outperformed the GLM in both time periods based on criteria such
as sensitivity and commission error. A more consistent outcome ensures
that the model may be replicated for further time periods, enabling the
management of wildfires in this area through preventative measures. Assign

extinction resources, for instance, in regions where there is a significant
likelihood of extinction, especially where there is a high ecological value
or socioeconomic vulnerability.

Two key concerns were the focus of Duane et al. Duane, Pique,
Castellnou and Brotons (2015) : (1) Evaluate the predictive potential of clas-
sification of fire spread patterns using correlative models in a Mediterranean
region affected by large fires. On the ground, fires were categorised based
on their predominant pattern of spread, which is theorised to be influenced
by weather, topography, and vegetation configurations (the fire behaviour
triangle), (2) following this, an attempt was made to evaluate the relative
contributions of these environmental elements to each form of fire spread
pattern in order to test the hypothesis that each type of fire spread pattern
is related with particular combinations of these components. Based on the
dominant mechanisms of fire spread, convective flames are more closely
linked to forest structural characteristics, while wind-driven fires are more
closely associated with wind variables. In addition, topography-driven fires
are anticipated to be affected by topographical characteristics and may occur
in a broader range of contexts where other determinants of fire spread,
such as high fuel loads or strong winds, have less influence. The reason for
this is that strong winds or heavy vegetation can override the influence of
topography, causing a fire that was initially driven by topography to become
wind-driven or convective in nature. Therefore, topography-driven fires are
more likely to occur in general circumstances where stronger driving forces
are not dominant.

Bashari et al. Bashari (2016) showed that the BBN model can forecast
wildfire incidence with a high degree of accuracy. This BBN model’s
ability to predict outcomes can be enhanced by including or removing
other affecting variables. The process of upgrading the BBN model might
be facilitated by conducting pertinent research to analyse the relationships
between wildfire occurrence and various environmental and management
parameters. Managers and policymakers may communicate more easily
about the behaviour of systems because of the BBN model’s graphical user
interface. As a result, they may organise and arrange various sources of
system knowledge, helping stakeholders make better decisions. The created
fire risk assessment tool’s primary goal is to give timely information about
fire occurrences. It helps management avoid uncontrolled fire events or
reduce risks, particularly in dry and semi-arid regions with potentially
dire effects. BBN modelling technique offers managers a valuable tool to
identify areas at the highest risk of fire outbreaks, and significantly improves
the efficiency of current fire simulation models. BBNs can draw information
for their probability tables from various sources, including data from other
fire simulation models. The accuracy of a BBN model’s probability tables is
vital for determining its reliability, which may be determined by assessing
the model’s robustness - the degree to which deviations from the network’s
probability assessments impact the output. The robustness of the fire BBN
model can be determined by sensitivity analysis. The established BBN
model for predicting fire occurrences possesses two critically desirable
qualities: the ability to predict and the ability to accommodate ambiguity.

The idea of the distinct temporal patterns of wildfires generated by
people is the foundation of this study of Yago et al. Martín, Zúñiga-
Antón and Mimbrero (2019). It is crucial to understand that time (month,
day of the week, etc.) plays a crucial role in both the ignition likelihood
overall and the variables influencing this probability. As human activities
are influenced by daily, weekly, monthly, and seasonal cycles, this is based
on the spatiotemporal aspects of human activities. This study’s objective
is to create seasonal and day-type models that take into consideration the
varying spatiotemporal behaviour of human-related driving variables over
the likelihood of wildfire igniting in northeast Spain. Ultimately, the goal of
this effort is to create more effective dynamic predictive models by making
forecasts that are more correct. Due to the dynamism of particular fire
causes and the unique temporal unpredictability of human activity, a new
analytical approach was developed. Innovative in design and execution, the
suggested models are adapted to specific fire occurrence scenarios, leverage
presence-only approaches (MaxEnt), and utilise high-resolution geographic
datasets to track fire ignitions and human-related drivers of wildfires. To
examine the effectiveness of these dynamic models, data from wildfires in
2012 were utilised, and their predictive capacity was compared to that of
static models and random background samples. Overall, dynamic models
outperform static techniques, routinely returning AUC values above 0.85
as opposed to the static models’ 0.7 values.

Vacchiano et al. Vacchiano, Foderi, Berretti, Marchi and Motta (2018)
provided evidence that, depending on the habitat and season, the fire regime
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in an alpine environment has various patterns and causes. The most frequent
sources of fire ignition were anthropogenic drivers, for reasons connected
to irresponsibility, while the frequency of fires started by lightning has been
rising. From a management standpoint, the spatially explicit method enables
the implementation of spatially targeted fire control tactics and may be in-
corporated into future regional and local fire management plans. Spatial risk
assessments can benefit managers in the design of fuel management actions,
the selection of watering sites for helicopters, the parameterisation of fire
behaviour and landscape dynamic models, and the simulation of various
fire scenarios and firefighting techniques. By integrating fire danger and fire
susceptibility, a cell-by-cell assessment of the resulting fire risk is possible.
To restore the historical disturbance regimes and improve the functionality
of forest ecosystems that have developed with fire, less vulnerable regions
may need to reevaluate the rigorous fire suppression strategy and allow fires
to burn a small amount of the terrain. The relevance of urban areas and
highways as potential ignition sources, rules governing development at the
urban-wildland interface, and dangerous human behaviours near hotspots
and during periods of high weather risk are all highlighted. To successfully
lower the risk of wildfires, silvicultural prevention should be performed
more regularly, with the aim of reducing the quantity and continuity of forest
fuels under present climate change, drought, and lightning conditions.

Cao et al. Cao, Wang and Liu (2017) recognise that the RF-cost sen-
sitivity analysis was the most accurate way of forecasting wildfire ignition
susceptibility among the five models the scientists researched. The RF-cost
sensitive analysis revealed the highest accuracy (88.47%) for all samples
and accurately predicted the initiation of wildfires in Yunnan (94.23%).
Compared to regularly employed GLM models (LR and probit regression
models) and ANN, the RF-original model improved overall accuracy by
22.23%, 22.48%, and 9.56% percentage points, and wildfire ignition predic-
tion by 16.63%, 16.03%, and 10.45% percentage points. Various methods,
ranging from modern machine-learning models to conventional regressions,
can be employed to evaluate wildfire vulnerability. Given that the vast
majority of samples pertain to non-ignition, it is important to carefully
process data samples to address concerns with data imbalance and avoid
drawing potentially misleading conclusions. In order to achieve accurate
ignition prediction, high sensitivity, as well as specificity and accuracy,
must be taken into consideration. While the performance of machine-
learning approaches (ANN and RF models) was superior to that of logistic
and probit regressions, ideal results require additional research into the
number of layers in the ANN and trees in the RF.

Parks et al. Parks, Holsinger, Panunto, Jolly, Dobrowski and Dillon
(2018) acknowledge that wildland fire is a significant process affecting the
western United States’ forests. They investigated the causes of high-severity
fires in forested ecoregions between 2002 and 2015, finding that live fuel
was the primary factor (53.1%) in causing these fires, followed by fire
weather (22.9%). Topography (10.3%) and climate (13.7%) had a smaller
impact. They used satellite imagery to characterise live fuel and forecast
the likelihood of high-severity fires in ecoregions where the model quality
was deemed adequate. The framework and model projections may serve as
a performance metric for land management agencies. This information is
essential to managers entrusted with managing fuel and wildfires. Provided
is an illustration of the projected likelihood of a severe fire occurring
before and after fuel reduction procedures under moderate and extreme fire
weather.

Ghorbanzadeh et al. Ghorbanzadeh, Valizadeh Kamran, Blaschke,
Aryal, Naboureh, Einali and Bian (2019) emphasised the importance of
generating wildfire susceptibility maps to aid emergency land management,
wildfire prevention, response, and recovery. These maps guide the allo-
cation of resources to minimise wildfire risk. However, the accuracy of
the susceptibility maps generated by different methods can vary, making
it essential to assess the effectiveness of each approach, especially those
commonly used. The authors employed three distinct methods: ANN, SVM,
and RF, which were trained on MODIS hotspots using a four-fold CV, and
developed using data from previous wildfires between 2012 and 2017 and
variables that influence them. To evaluate the methods’ performance, the
ROC curve was used, and a sensitivity analysis was conducted to assess the
importance of each conditioning factor. Although there were differences
in geographical predictions of wildfire susceptibility maps, the central,
east, southern, and northern regions of the study area were identified as
more vulnerable to wildfires. The accomplished workflow can be simply
generalised and extended to multiple places, i.e., fire-prone regions, because
the most pertinent wildfire conditioning elements and the most popular ML

techniques were used. Examples of such locales include California, Aus-
tralia, and Spain. Because of this, the workflow’s transferability necessitates
small adjustments and localisation of relevant conditioning factors.

Numerous nations have comprehensive forest fire protection plans that
are built on firefighting and preventive strategies. One of the most essential
components of preventing forest fires before they spread to broader areas is
a fire detection system. Gigovic et al. Gigović, Pourghasemi, Drobnjak and
Bai (2019) aimed to demonstrate the results of using an ensemble learning
approach that utilises a Bayesian average of predictions from SVM and RF
methods. They used ML algorithms to predict where forest fires are likely
to occur and generate models to simulate these locations. The authors used
supervised and flexible ML algorithms (SVM and RF) to compare forest
fire susceptibility maps in Tara National Park, Serbia, as regional forest
fire modelling is a common and complex problem that is difficult to assess
and predict. All models produced scientifically acceptable results based
on observed AUC and could be used to map forest fire vulnerability at a
regional level. The outcomes showed that the ensemble model employing
the Bayesian average performed better than the alternatives.

Pourtaghi et al. Pourtaghi, Pourghasemi, Aretano and Semeraro (2016)
employed three ML/data mining techniques to map the susceptibility of
forests to fires using a set of topographical, meteorological, and geological
variables. The authors utilised the forest fire occurrence in Minudasht
Township, Golestan Province, Iran, to develop and validate the differences
between the ML models. The models BRT, GAM, and RF scored the best
performance peaks with AUCs of 0.8084, 0.8770, and 0.7279, respectively,
in identifying the absence or presence of a forest fire. To identify the
factors that have the greatest impact on forest fires’ spatial distribution,
feature selection techniques were employed. According to the results of
BRT, GAM, and RF, the most influential factors in determining the chance
of forest fires are annual rainfall, slope degree, distance from roadways,
land use, and annual temperature. This study reveals that the GAM model
may be superior to the BRT and RF models for predicting and mapping
forest fires. The results of this study can be utilised to distribute fire control
resources, assign duties, and give early warnings. The findings are an
important addition to the current research on forest fires, and the models can
be enhanced by adjusting them to various forest types, tree compositions,
and CC percentages. In general, the authors could not use the same variables
across different locations due to the specific characteristics of forest fires in
each area. However, the results of these models could be valuable not only in
this field but also in other areas by comparing them with other data mining
models such as CART, MARS, ANN, and SVM.

Tehrany et al. Tehrany, Jones, Shabani, Martínez-Álvarez and Bui
(2019) introduced and verified the LogitBoost ensemble-based decision tree
(LEDT) method, which combines the LogitBoost ensemble with a decision
tree. The model was trained and validated using a GIS database including
257 fire locations and ten forest conditioning factors; it was then used to
predict the susceptibility of pixels in the research area to two types of forest
fire and non-forest fire. The experimental results reveal that the proposed
model accurately identifies forest fire-prone areas, resulting in more reliable
planning and prevention management. One key advantage of the LEDT over
other ML approaches is that it does not require complex optimisation. To
establish the optimal number of tree-based classifiers required to optimise
the performance of the LEDT model in fire susceptibility mapping, a trial-
and-error procedure is required. Unlike benchmarks such as RF, SVM,
and KLR, the LEDT model prioritises processing incorrectly identified
pixels by increasing their weights and decreasing the weights of correctly
categorised pixels, leading to better performance with uncertain and noisy
data. As a result, the LEDT model is more accurate and reliable for
mapping forest fire vulnerability, making it a novel technique that can be
applied to other geo-environmental problems. This research may assist other
researchers in developing susceptibility maps for various regions.

Zhang et al. Zhang, Wang and Liu (2019) conducted a study in Yunnan
Province, China to examine the spatial prediction of forest fire suscepti-
bility using a deep architecture convolutional neural network (CNN). The
researchers employed multicollinearity analysis and the IGR technique to
retrieve historical forest fire locations between 2002 and 2010 and optimised
a set of 14 parameters that influence forest fires. Additionally, they pre-
processed techniques for generating effective training sample libraries and
the forest fire-affecting parameters. To improve prediction accuracy, the
study optimised hyper-parameters and constructed a CNN architecture
appropriate for predicting forest fire susceptibility. To prevent overfitting,
the CNN model included numerous conventional approaches, including
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an increase in training samples, regularisation, batch normalisation, and a
simplification of the architecture. The generated model was then applied
to the test dataset in order to build an ignition probability prediction map.
Statistical metrics, including WSRT, ROC, and AUC, were used to compare
the performance of the proposed model to that of established methods.
The CNN model outperformed benchmark techniques based on the ROC-
AUC evaluation, achieving an AUC of 0.86. The resulting probability map
generated by the CNN model successfully distinguished the extremely high
and very low sensitive zones, producing a distinct susceptibility spatial
pattern. Furthermore, the CNN model demonstrated excellent generalisa-
tion capabilities and fast prediction times when utilising GPU-accelerated
computing technologies.

6.4. Fire Perimeter and Severity Mapping
The management of fires requires the use of two distinct types of

maps. The first category consists of exact maps of the active fire perimeter,
which are required for daily evacuation and suppression planning, as well
as modelling of fire expansion. The second type of map is that showing the
final burn perimeter and fire intensity, which are essential for evaluating
the economic and ecological repercussions of wildfires, predicting them,
and planning for recovery. In the past, manual methods such as aerial,
ground, aerial GPS, and other traverses were used to sketch map fire
perimeters. However, these methods are time-consuming, labour-intensive,
and can have a high degree of uncertainty Kennedy and McRoberts (2009).
Since remote sensing was invented in the 1970s, identifying active fire
areas has been the focus of research to develop methods for mapping fire
perimeters and burn severity using remote sensing imagery. Techniques
such as satellite and aerial imagery, thermal infrared, and lidar sensors are
examples of remote sensing methods that can provide detailed and precise
information on the location and size of active fires Li and Koo (2021). In
addition, these technologies can be utilised to create maps of the final burn
perimeter and evaluate the intensity of the fire. These maps are valuable
for measuring the fire’s economic and ecological impacts and for recovery
planning Kennedy, Feddema and McRoberts (2013). The combination
of techniques with remote sensing data has gained popularity in recent
years for mapping fire perimeters and severity. This method allows for the
automatic detection and classification of areas affected by fire in satellite
and aerial imagery, resulting in a more efficient and precise mapping of fire
perimeters and severity Szpakowski and Jensen (2019).

Lutes et al. Lutes, Keane, Caratti, Key, Benson, Sutherland and Gangi
(2006) recognise that it is crucial to efficiently and proactively monitor and
analyse the danger while also analysing the success or failure of a burn in
order to adequately document wildfire effects, estimate the harm done to the
whole ecosystem, and determine the short- and long-term affects it delivers
on a region. The potential for future treatments and wildfire mitigation
strategies as a whole is also expected to be evaluated and validated by
relevant parties. Monitoring wildfire effects, however, is frequently difficult
because data collection is a demanding task that necessitates significant
funding, resources, and sampling expertise. In many instances, this latter
factor is a major bottleneck when implementing wildfire monitoring be-
cause relevant agencies and stakeholders lack the standardised protocols
to meet their specific goals. The "Fire Effects Monitoring and Inventory
System" is a complete system that C. D. Lutes et al. developed in response
to the aforementioned comments (FIREMON). The suggested platform is
designed to meet the needs of fire control organisations with regard to
monitoring and inventory for a variety of ecosystems, fuel typologies, and
geographic regions (mainly focused on the United States). To enable stake-
holders to efficiently monitor the effects of wildfires, the platform consists
of standardised sampling techniques, databases, field forms, data analysis
frameworks, and an image analysis guide. It also allows stakeholders to
collect and store all sampled data, extract insightful information from it,
summarise it, link it to satellite imagery, and map the sampled data across
the target geography using image processing in a modular way.

K. R. Al-Rawi Al-Rawi, Casanova, Romo and Louakfaoui (2002)
and colleagues conducted a detailed examination centred on researching a
variety of wildfire occurrences in Valencia, Spain. Monitoring the spread of
smoke and mapping the region impacted by the wildfire was done together
with basic fire detection to track the incidence of fires. This research was
conducted during the 1994 fire season. The researchers watched the spa-
tiotemporal progression of the wildfires they were studying daily. Because
burnt area mapping can identify the specific pixels that burn between two

successive photos, it is determined that this methodology outperforms pre-
vious monitoring methods by a significant margin. Additionally, the authors
developed a method that would overstate the extent of the fire by treating
the pixels just below the flames as being on fire. These methodologies were
benchmarked and documented. As a last point, it should be noted that a
fire that manifests itself several times should be closely monitored since the
pace at which wildfires spread exponentially increases with each succeeding
occurrence of the fire. It is concluded that the proposed method is adequate
for defining and monitoring the fire propagation map as well as the recently
impacted region.

When evaluating the likelihood of burned scars from a single post-fire
event, Pu et al. Pu and Gong (2004) discovered that the LR method is more
effective than the NN algorithm, although both yield similar and acceptable
results (with an overall average accuracy greater than 97% for both methods
at the two study sites). They discovered that across all six original TM bands
and five vegetation indices, the original TM4 and TM7, NDVI1 (TM4,
TM7), and NDVI2 (TM4, TM3) are the most effective at distinguishing
between burned and unburned regions. However, the prediction accuracy
of samples gathered from shady and gloomy locales is lower than that of
those acquired from regions directly exposed to sunshine. On the basis of
the efficacy of the LR and NN in predicting burned scars using datasets
extracted from a single post-fire Landsat 7 ETM image at the two study
sites, these techniques can be used in similar areas, but more conventional
techniques (such as linear discriminant analysis) should be considered first
when perfect datasets are available before applying more potent techniques
(e.g., LR and NN).

By using remote sensing pictures, Zammit et al. Zammit, Descombes
and Zerubia (2006) hope to solve the issue of burned area mapping. In
this case, only one after-fire satellite picture taken by the SPOT5 satellite
served as the basis for the assessment of burnt land discrimination. SVM, a
classification technique, was used to define charred regions. This suggested
approach is contrasted with other well-known classifiers, such as the K-
Nearest Neighbors or K-Means algorithms, which are frequently used in
pattern recognition as benchmark classification techniques. The outcomes
generated by the various classifiers are also contrasted with official burned
area numbers that are gathered from real-world data.

Dragozi et al. Dragozi, Gitas, Stavrakoudis, Theocharis and San-
Miguel-Ayanz (2011) aimed to address the issue of burnt area mapping
by utilising a single post-fire Very High Resolution satellite image. In this
study, the effectiveness of two classification methods, namely SVM and
k-NN, in accurately mapping burnt regions was investigated. The results
showed that both methods produced highly accurate burnt area maps.
However, the SVM classifier was found to have slightly higher overall
classification accuracy than the k-NN classifier. Additionally, SVM demon-
strated superior performance in classifying various classes. The primary
limitation of the current object-oriented SVM method is its difficulty in
being used as an operational tool for burnt area mapping, as it cannot be
implemented in a single software interface.

Pereira et al. Pereira, Pereira, Libonati, Oom, Setzer, Morelli, Machado-
Silva and De Carvalho (2017) used PROBA-V imagery and VIIRS active
fire data to automatically extract multispectral samples and train a One-
Class SVM for burnt area mapping. This strategy was applied to the Cerrado
savanna in Brazil by combining surface reflectance and active fire data on a
biweekly basis. The suggested method was evaluated using Landsat-derived
reference maps and compared to the Collection 6 MODIS Burned Area
product (MCD64A1). In comparison to MCD64A1, the algorithm enhanced
the recognition of tiny scars and gave more precise findings. This approach
can also detect and map burn scars in the absence of current fires, removing
potential sources of error.

6.5. Fire Detection
The key to enabling a prompt and efficient response to wildfires is

the timely detection and identification of the fire before it grows out of
control. Traditional methods of wildfire identification, such as using human
observers to detect smoke from fire towers, aircraft, or the ground, have
several limitations. Automating the detection of heat signatures or smoke
in infrared or optical photographs can circumvent several limitations, such
as limited coverage, human error, smoke from nearby fires, and limited
daylight hours. This automation can improve the spatial and temporal
coverage of detection, boost its effectiveness in hazy environments, and
reduce human observation-related bias Al-Rawabdeh and Ahmed (2019).
AI techniques can be used to classify and identify heat signatures and
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smoke in images, providing a more efficient and accurate method of wildfire
detection. These techniques can be used in combination with traditional
methods of detection, such as human observation, to increase the overall
effectiveness of wildfire detection Koo and Li (2020). The use of automated
systems for wildfire detection can also provide valuable data for fire man-
agement and resource allocation. By providing real-time information on the
location and size of fires, automated systems can help fire managers make
more informed decisions on resource allocation and firefighting strategies.
This can ultimately lead to more effective and efficient wildfire management
Perona and Radeva (2019).

Arrue et al. Arrue, Ollero and Martinez-de Dios (2000) recognise
forest fires as a significant cause of environmental disasters that threaten
human life and cause economic and ecological harm. Traditional human
surveillance for forest-fire detection is subjective and unreliable, leading
to an increasing interest in automatic surveillance systems. To address the
problem of false alarms, the authors propose the False Alarm Reduction
(FAR) system, which utilises artificial neural networks (ANNs) and infrared
and visual cameras, meteorological sensors, and geographic information to
create a decision function. The system also includes new software tools to
validate alarms for human operators. The FAR system takes advantage of
information redundancy from the cameras and develops a fuzzy expert rule
base for decision-making.

Sayad et al. Sayad, Mousannif and Al Moatassime (2019) offer a
strategy that uses big data and remote sensing to generate a dataset for data
mining algorithms to assess and predict the occurrence of wildfires. Using
data from the MODIS sensor on both the Terra and Aqua satellites, the
technique consists of seven phases, from data collection to data extraction.
The sensor was chosen because it delivers several data products and covers
the entire planet, making the model worldwide applicable. In this work, an
experiment was undertaken to examine the dataset created to forecast the
chance of wildfires in a specific area of Canada’s forests using the two well-
known data mining techniques, ANN and SVM, on the "Databricks" big
data platform. Using cross-validation, regularisation, classification metrics,
and comparisons with other wildfire model data, the outcomes demonstrate
great FOP accuracy for both approaches.

Liu et al. Yongsheng, Liu, Yansong, Yang, Chang, Yu and Gu (2015)
developed a forest fire detection system that employs a wireless sensor
network and an ANN algorithm to lessen the hazard of forest fires by
delivering accurate fire alarms at minimal maintenance costs. Several forest
fire factors are incorporated into the system’s novel multicriteria detection
to improve its accuracy. An ANN algorithm is utilised to incorporate sensor
data corresponding to these characteristics into an alarm determination. The
authors constructed a prototype of the proposed system consisting of a solar
battery module, a fire detection module, and a user interface module to
power sensor nodes in areas of the forest with sporadic sunlight.

Barboutis et al. Barmpoutis, Dimitropoulos, Kaza and Grammalidis
(2019) recognise that false alarm rates are frequently high as a result of
the similarities between flames and natural things, the wide range of flame
appearances, and environmental changes like clouds, sunlight, and light
reflections that make it more difficult to identify fires. Due to the chaotic
and complex nature of fire occurrences, detecting fire from digital images
is tough. To solve this difficulty, the authors merged a potent DL algorithm
with multi-dimensional texture analysis utilising linear dynamical systems
(LDS) in order to detect early fires from photographs. In this method,
candidate fire areas of each image were retrieved using a faster R-CNN
network, represented as a point cloud on the Grassmann manifold, and a
VLAD descriptor was produced for each image. Photographs from two
distinct databases containing several images of wildfires were used to
assess the effectiveness of the suggested technique. These images included
images of items that mostly had fire-like colours or colours similar to fire.
In particular, photographs of annotated wildfires from the Corsican Fire
Database (CFDB) and pictures of various objects and classes from the
PASCAL Visual Object Classes dataset were utilised.

Due to the scarcity of real smoke photos for training deep models,
Zhang et al. xing Zhang, hua Lin, ming Zhang, Xu and jun Wang (2018)
utilised a quicker R-CNN to detect forest smoke using synthetic images
generated by merging two forms of smoke (real and simulated) against
a forest background. Using photos of actual forest smoke, the results of
an experiment demonstrated the efficacy of this method, which not only
addresses the problem of a lack of data but also eliminates the requirement
for sample labelling. Despite the unnatural aspect of the synthetic photos

made by adding simulated smoke to a forest background, this method
surpassed the other methods for creating smoke.

Li et al. Li, Chen, Wu and Liu (2020b) aim to assist in the creation of a
system that continuously monitors vast regions of forested and hilly terrain.
In the end, the authors suggest a framework that may operate in a natural
setting and quickly identify smoke during a wildfire. The suggested wildfire
detection system’s detection sensitivity and attaining low false positive rates
are the main goals of this study since it is crucial to reduce the severe impact
of wildfires. The authors suggest a 3D parallel fully convolutional network
(3D-PFCN) leveraging pyramid categorisation as a result, in order to satisfy
the aforementioned objectives. The central component of the proposed
3D classification framework is a pixel-level segmentation neural network,
which can extract a number of spatiotemporal characteristics and enable
classification using a pyramid structure. Using a comparable environmental
picture to that used in training data, which corresponds to a very complex
natural environment, the suggested classification framework was able to
detect the presence of smoke accurately and quickly in real-world tests.

Cao et al. Cao, Yang, Tang and Lu (2019) propose an ABi-LSTM
technique for detecting early forest smoke. The proposed method includes
three parts: (1) spatial feature extraction using an Inception V3 network, (2)
temporal feature extraction using a BiLSTM model, and (3) classification
optimisation using an attention network with a soft attention mechanism.
The suggested ABi-LSTM approach outperforms existing methods in de-
tecting early forest fire smoke, according to extensive testing data. An
ablation study was also conducted to evaluate the performance of each sub-
model in the ABi-LSTM. The attention mechanism, which can adaptively
focus on discriminative frames, has a significant impact on the proposed
ABi-LSTM and may be suitable for early forest fire smoke detection.

Alexandov’s et al. Alexandrov, Pertseva, Berman, Pantiukhin and
Kapitonov (2019) primary objective was to compare techniques used for
wildfire monitoring activities. Their research concentrates on ML and DL
Methods because AI techniques can be better applied to real-time moni-
toring jobs. The study clearly established the benefits of ML approaches
compared to traditional image-processing techniques used for monitoring.
The study takes into account traditional and DL techniques such as YOLO,
Faster R-CNN, SSD, and cascades of Haar and LBP. The authors also
compared different approaches to wildfire aerial detection. The performance
and accuracy of the detection were the comparison criteria used in their
methodology. The study shows that traditional techniques provide the
highest performance, but their accuracy is inferior to that of Faster R-CNN
and YOLO models. The SSD model demonstrated the poorest performance
results and accuracy results comparable to those of traditional techniques.
Application of Faster R-CNN for smoke detection resulted in a 4 FPS
average performance and detection only of smoke with a light colour shade.
Among all the models taken into consideration, the YOLO model performed
with the greatest accuracy and was the quickest among DL models. YOLO
is more suited for early fire detection, similar to Faster R-CNN. As a result,
this model is considered better for fire monitoring problems.

Phan et al. Phan and Nguyen (2019) recognise that to monitor and
stop fire dangers from becoming disasters, the authors want to create
an autonomous and intelligent system based on imaging data streams
that are accessible via constantly operating satellites. Satellite data, how-
ever, presents particular difficulties for image processing methods, such
as temporal correlations between time steps, the complexity of spectral
channels, and antagonistic circumstances like cloud and light. The scientists
introduced a unique approach for detecting wildfires at the pixel level that
makes use of satellite pictures and advanced deep-learning architecture.
Specialists in wildfire mitigation can thoroughly analyse areas of interest
on a map of the world using the detection outputs that are further shown
in an interactive dashboard. The GOES-16 streaming data source is used
to build and test the suggested system. Empirical analyses demonstrate this
approach’s higher performance compared to baselines with a 94% F1- score,
1.5 times quicker detections, and resilience against various wildfire kinds
and adversarial situations.

Ba et al. Ba, Chen, Yuan, Song and Lo (2019) recognise the benefits
of satellite remote sensing in environmental studies, particularly in the
detection and monitoring of wildfires through smoke detection. However,
existing techniques are limited in their ability to discriminate smoke from
a small number of classes. To address this, the authors proposed USTC
SmokeRS, a benchmark for large-scale satellite imagery smoke detec-
tion consisting of six classes and spanning various geographic locations.
Additionally, they created SmokeNet, a unique CNN model with spatial
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and channel-wise attention that surpasses previous techniques in terms of
accuracy and Kappa coefficient, even when trained with a small number
of images. The SmokeNet model trained with 64% of the training images
achieves an accuracy of 92.75% and a Kappa coefficient of 0.9130, whereas
the model trained with only 16% of the training images improves the
classification accuracy and Kappa coefficient by at least 4.99% and 0.06,
respectively, compared to previous methods.

A UAV equipped with GPS was used by Zhao et al. Zhao et al. (2018)
to create a high-resolution map of a given region. The primary challenge
in classifying wildfire images to date has been the lack of standardised
identifying markings. The fire aspects of colour, shape, texture (smoke,
flame, or both), and background can vary greatly from scene to scene.
The scientists demonstrated the efficiency of employing deep CNNs with
saliency detection to locate and identify wildfires in aerial pictures. To iden-
tify the primary fire regions and separate fire regions from many fire photos,
the saliency detection method is used. The saliency detection technique is
used to identify the primary fire zones and separate them from other fire
pictures. The suggested method prevented significant feature loss brought
on by direct downsising. Additionally, the database’s volume was greatly
increased by this method. In this study, the "Fire Net" DCNN architecture
was used. The classification results were satisfactory. By obtaining a 98%
overall accuracy, the suggested architecture’s performance was better than
earlier approaches. Additionally, "Fire Net" was able to detect wildfires in
real-time with an average processing speed of 41.5 milliseconds per image.
Fire Net was tested on 40 randomly selected photographs from news stories
on wildfires to demonstrate its usefulness, and it correctly identified every
single one of them.

Forests play a crucial role in maintaining the balance of our planet’s
ecology, but forest fires often go undetected until they have spread sig-
nificantly, making them difficult to control and suppress. These fires can
be caused by various factors such as human error or natural causes and
can result in devastating damage to the environment and atmosphere. They
contribute to 30% of the CO2 in the atmosphere and emit large amounts
of smoke. In the long term, forest fires can alter regional weather patterns,
worsen global warming, and lead to the extinction of rare plant and animal
species. To prevent the impact of forest fires, authorities use early detection
and monitoring systems, such as observers, aerial monitoring, and sensors,
to identify and contain fires in their earliest stages. Fire spread behaviour
prediction is also important in fire management, as it helps reduce the de-
ployment of suppression resources and improves evacuation planning. Fuel
characterisation also influences fire behaviour, and the use of regression or
classification applications and techniques has the potential to improve fire
management.

The following table provides a comprehensive overview of various
Wildfire Detection and Response Models, focusing specifically on models
for fire spread behaviour prediction, fuel characterisation, fire susceptibility
mapping, fire perimeter and severity mapping, and fire detection. The table
characterises these models based on different factors and categories such as
weather characteristics, fire and smoke detection methods, environmental
management practices, fuel consumption, fire spread rate, and the methods
used to predict and respond to wildfires. This table serves as a valuable
resource for individuals and organisations involved in wildfire management,
providing a clear understanding of the various approaches used to detect and
respond to wildfires, and the factors that influence their effectiveness.
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Table 2: Summary of Detection and Response Models
References Weather Charac-

teristics
Fire & Smoke Detec-
tion Method

Environmental
Management

Fuel
Consumption

Fire Spread Rate Method
Liu et al.
Yongsheng
et al.
(2015)

Not applicable A forest fire detection
system comprising
a wireless sensor
network with an ANN
algorithm.

The MODIS data
products were
obtained from the
online Data Pool
with permission
from the NASA
Land Processes
Distributed Active
Archive Center
(LP DAAC),
USGS/Earth
Resources
Observation and
Science (EROS)
Center.

Not applicable Not applicable The ANN algorithm
provides support
for multi-criteria
detection.

Zhao et
al.Zhao
et al.
(2018)

Not applicable SVM Based Forest
Fire Detection Using
Static and Dynamic
Features

Hubei Provincial
Natural Science
Foundation of
China, National
Basic Research
Program of China

Not applicable Not applicable The dynamic SVM
classifier is applied
to continuous
video frames
containing dynamic
characteristics.

Barboutis
et al.
Barm-
poutis
et al.
(2019)

Not applicable Combining the
capability of
contemporary DL
networks with
multidimensional
texture analysis based
on higher-order LDS,
a novel image-based
fire detection method
is proposed.

the European Envi-
ronment Agency

Not applicable Not applicable Faster Regions
with Convolutional
Neural Networks (R-
CNN) and spatial
texture analysis
(Grassmannian
VLAD encoding)

Zhang et
al. xing
Zhang
et al.
(2018)

Not applicable Faster R-CNN was
used to detect smoke
in forest.

Not applicable Not applicable Not applicable Faster R-CNN was
used to detect smoke
in the forest.

Li et al.Li
et al.
(2020b)

Not applicable 3D-PFCN for wildfire
smoke detection

Not applicable Not applicable Not applicable A pyramid
classification and a
parallel structure of
3D convolution and
3D pooling

Cao et
al.Cao
et al.
(2019)

Not applicable Early forest fire
smoke detection.

Not applicable Not applicable Not applicable An attention-
enhanced
bidirectional LSTM
network (ABi-LSTM)
for early forest smoke
recognition.

Alexandrov
et al.
Alexan-
drov et al.
(2019)

Not applicable Artificial intelligence
intended for detecting
wildfires using
unmanned aerial
vehicles (UAVs).

UAVs
environmental
monitoring

Not applicable Not applicable Classical methods of
ML and DL methods
such as Haar and
LBP cascades, Faster
R-CNN, Single Shot
Detector (SSD), and
YOLO (You Only
Look Once).

Phan et al.
Phan and
Nguyen
(2019)

Weather
information

A system for
autonomous and
intelligent wildfire
detection.

Geostationary
Operational
Environmental
Satellites (GOES-
16) streaming data
source.

Not applicable Consider the spatial
context of a specific
pixel, such as its
neighbouring
pixels, because
wildfires spread via
nearby sites.

A innovative method
for detecting wildfires
that uses satellite
imagery and an
advanced DL
architecture to locate
wildfires on a pixel-
by-pixel basis.
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Ba et al.
Ba et al.
(2019)

Not applicable USTC SmokeRS is a
new standard for large-
scale satellite imaging
smoke detection based
on MODIS data.

The Level-1 and
Atmosphere
Archive &
Distribution
System (LAADS)
Distributed Active
Archive Center at
the Goddard Space
Flight Center
in Greenbelt,
Maryland, United
States of America

Not applicable The model for
distinguishing
between smoke
pixels and spreading
regions in a picture.

A new CNN-based ap-
proach for satellite re-
mote sensing to detect
smoke situations.

Zhao et al.
Zhao et al.
(2018)

Not applicable The method of
saliency detection is
used to discover core
fire areas and extract
fire regions from
several fire photos.

Envisat satellite
image of wildfire

Not applicable Not applicable Saliency detection and
a deep convolutional
neural network for fire
identification and lo-
calisation in aerial pic-
tures.

Linn et al.
Linn et al.
(2002)

Conditions
meteorologically
present during the
Oso complex fire.

Not applicable Not applicable Conditions of
fuel availability
during the Oso
complex fire.

The rate of fire
spread will be
computed using
BEHAVE.

Using a terrain-
following three-
dimensional finite
volume grid,
FIRETEC is
integrated with
the hydrodynamics
model HIGRAD to
simulate wildfires.

Riaño et al.
Riaño et al.
(2005)

Not applicable Not applicable Not applicable Using neural
networks and the
LOPEX database
to estimate FMC.

Not applicable ANN were tested to es-
timate FMC

Pierce et
al. Pierce
et al.
(2012)

To derive
fire weather
parameters using
Fire Family Plus

Not applicable The climate is
Mediterranean,
with summers that
are warm and dry
and winters that
are cold and damp.

Canopy Bulk
Density, Canopy
Cover, Canopy
Base Height, and
canopy Height
were mapped for
the Bluff (2004)
fire using Landsat
5 spectral bands
1–5, and 7 as
well as the NDVI
and the Tasseled
Cap Greenness,
Brightness, and
Wetness

The Monitoring
Trends in Burn
Severity dataset.

RF will model and
map forest canopy
fuels for analysis
of fire behaviour in
LVNP, California,
United States.

Riley et al.
Riley et al.
(2014)

Not applicable Not applicable Not applicable On 30m grids, the
Landfire project
provides more
than 20 national
geospatial
layers, including
topography, fuel,
and vegetation
layers.

Not applicable A modified RF method
for assigning forest
plots to a series of
landscape grid targets.

López-
Serrano
et al.
López Ser-
rano et al.
(2016)

Not applicable Not applicable The Sierra Madre
Occidental is lo-
cated in the north-
ern portion of the
Mexican state of
Durango and en-
compasses an area
of 1,142,916 acres.

The United
Nations
Framework
Convention on
Climate Change
(UNFCCC),
which identifies
AGB as a Key
Climate Variable,
is a global
treaty on climate
change.

Not applicable Utilising remote
sensing, the k-Nearest
Neighbors (k-NN),
RF, and SVM ML
algorithms are used to
calculate aboveground
forest biomass.
datasets
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García et
al. García
et al.
(2011)

Not applicable Light Detection and
Ranging (LiDAR) data

The Natural
Environment
Research Council
of the United
Kingdom
(Airborne
Remote Sensing
Facility 2006
Mediterranean
Campaign, grant
WM06-04)

It has been estab-
lished that multi-
spectral data may
be utilised to map
fuel kinds.

Not applicable A SVM classification
combining LiDAR and
multispectral data.

Vilar et al.
Vilar et al.
(2016)

Not applicable Not applicable Not applicable Not applicable The expansion of
WUI caused by
urbanisation

ML Maximum
Entropy models and
GLM

Duane et
al. Duane
et al.
(2015)

Not applicable Not applicable Mediterranean
landscapes

Not applicable Not applicable ML Maximum
Entropy

Adab et
al. Adab
(2017)

MODIS weather
data

MODIS data were
utilised for fire
surveillance.

MODIS MODIS FMC
data

Not applicable Built land fire hazard
maps using BLR and
ANN techniques

Bisquert
et al.
Bisquert
et al.
(2012)

MODIS
land surface
temperature data

MODIS fire monitor-
ing data

MODIS
environmental
data

MODIS FMC
data

Not applicable LR and ANN

Oliveira et
al. Oliveira
et al.
(2012)

Not applicable Not applicable Mediterranean
area data

Not applicable Corine Land Cover
and point survey
data

MLR and RF

Vasconcelos
et al. Vas-
concelos
et al.
(2001)

Not applicable Several Forest Service
field crews collect in-
formation on the areas
of fire occurrences.

Not applicable Not applicable Arson data LR and ANN

Yago et
al. Martín
et al.
(2019)

MODIS FWI data Not applicable Mediterranean re-
gion

MODIS fuel data Not applicable Maximum Entropy al-
gorithm

Vacchiano
et al.
Vacchiano
et al.
(2018)

Mean annual tem-
perature

Not applicable Osta Valley region
in northwest Italy

Not applicable Education and
neglect prevention
throughout the cold
months.

Maximum Entropy al-
gorithm

Markuzon
and Kolitz
Markuzon
and Kolitz
(2009)

Landsat land
cover data and
National Oceanic
and Atmospheric
Administration
(NOAA) weather
observations

Fire monitoring were
performed using data
from the MODIS

Land cover
information
collected by
Landsat Thematic
Mapper satellite.

Land cover
information
obtained by the
Landsat Thematic
Mapper satellite
is used as a
surrogate for data
on flammable
material.

Not applicable Utilising data mining
techniques to create
fire prediction models.
k-NN, RF, DT, and
BNs.

Artés et al.
Artés et al.
(2016)

Not applicable Not applicable Not applicable Dead fuel
moisture, live
fuels moisture

Wind speed and
wind direction,
among others, are
used for real-time
forest fire spread
predictions.

FARSITE simulation
engine with a Time-
Aware Classification

Houssami
et al. El
Houssami
et al.
(2018)

Not applicable Not applicable Not applicable Experiments were
carried out by
burning pine
needle beds and
WUI

A multiphase for-
mulation that per-
mits ROS to be used
as a fuel

Submodels used to fin-
ish CFD models, es-
pecially when using
a multiphase approach
for wildfires.
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Ascoli et
al. Ascoli
et al.
(2015)

Days since
last rain, air
temperature and
humidity, and
wind speed

Not applicable The entire
dataset of ROS
observations and
environmental
conditions during
fire experiments
is available on
Comprehensive R
Archive Network2
as example data
(firexp) in the
Rothermel R
package.

Fuel models for
litter, grass and
shrub fuels

The Rothermel fire
spread model.

GA in the Rothermel
fire spread model.

Kozik et al.
Kozik et al.
(2014)

Not applicable Not applicable Geoinformation
system such as
Google Maps

The factors of the
ambient medium,
such as the kind
of forest, the
relative humidity,
the amount of
combustible
material, and
the thickness of
the combustible
material layer.

The wind velocity
and direction, calcu-
lation of the wind
chart based on relief
data, and visualisa-
tion of fire evolution

Adaptive Prediction of
Forest Fire Evolution
Based on Recurrent
Neural Networks

Zheng et
al. Zheng
et al.
(2017)

The RAWS US-
AClimate Archive

The fire’s driving force
data were collected
from the LANDFIRE

Not applicable Existing
vegetation data
(i.e., Existing
Vegetation
Type, Existing
Vegetation Cover,
and Existing
Vegetation
Height) were
extracted from
the LANDFIRE
program’s 2001
version product.

Forest fire spread
simulating model

Simulation of forest
fire propagation using
CA and an extreme
learning machine

Denham et
al Denham
and Laneri
(2018)

Not applicable Not applicable Global
environmental
change conditions

Vegetation fuel
type

Analysis of fire
spread based on
maps of burned
regions without
knowledge of the
origin or spread of
fires.

GA

Chetehouna
et al.
Chete-
houna
et al.
(2015)

Not applicable Not applicable Not applicable FMC and a P.
pinaster fuel bed

This model
estimates the
flame height, flame
angle, and rate of
reactive oxygen
species (ROS) of a
bed of P. pinaster
needles.

ANN

Subramanian
and
Crowley
Subrama-
nian and
Crowley
(2017)

The temperature
is determined
by processing
satellite thermal
pictures.

Not applicable The USGS Earth
Explorer data por-
tal

Not applicable The Bellman Equa-
tion

MDP, Asynchronous
Advantage Actor-
Critic and RL to
augment physics-
based forest wildfire
simulations

Khakzad
et al.
Khakzad
(2019)

Conditions relat-
ing to the weather,
such as tempera-
ture, relative hu-
midity, and wind
speed

Not applicable WUIs and WIIs Burning index,
fire potential
index, drought
index, and
thousand-hour
fuel moisture
are examples of
parameters.

A BN for modelling
the spread of fire

DBN and FBP models
to simulate the spread
of wildfires in WIIs.
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Arrue et
al. Arrue
et al.
(2000)

Information from
weather sensors
and a database
of geographic
information.

A sensor interface,
an image-processing
tool, and a decision
function constitute the
FAR system.

Andalusia’s
Regional
Environment
Agency’s Forest
Fire Prevention
and Restoration
Service

Information from
topographic, fuel,
and use maps

Not applicable The FAR system
employs innovative
IR-image processing
algorithms and
artificial neural
networks.

Sayad et
al.Sayad
et al.
(2019)

The Canadian
Wildland Fire
Information
System provided
the collected data
(CWFIS)

The MODIS
LST products are
stored as files in
the Hierarchical
Data Format Earth
Observing System
format.

The NDVI, which
is a vegetation
index that shows
the level of crop
health, and the
Canadian Forest
FWI System are
examples of crop
health indicators.

The NDVI, which
is a vegetation
index, reveals the
crop’s level of
health.

The CWFIS, The
Canadian Forest
Fire Behaviour
Prediction (FBP)
System

Neural Networks and
SVM

Palaiologou
et al.
Palaiolo-
gou et al.
(2022)

GIS weather data Not applicable GIS topological
data

GIS fuel data Monte Carlo
simulations of fire
propagation using
the Minimum Travel
Time technique

Minimum Travel Time
fire spread algorithm.

Hodges et
al. Hodges
and
Lattimer
(2019)

Not applicable Not applicable Not applicable Rothermel fuel
model

Rothermel and
FARSITE

Wildland-Urban
Interface Fire
Dynamics Simulator
using DCIGN

Radke et
al. Radke
et al.
(2019)

GIS weather data Not applicable GIS topological
data

GIS fuels data The FARSITE
model

FireCast, a novel solu-
tion that combines AI
and GIS

Amatulli,
and Camia
Amatulli
and Camia
(2007)

Meteorological
data were
gathered from the
European Centre
for Medium-
Range Weather
Forecast’s 40-
Year Re-analysis
Data Archive.

Not applicable Climate change
in the EU-
Mediterranean
nations

A rating of fire
risk based on fuel
moisture

Fire spread- ISI MLR, RF, MARS
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7. Wildfire Restoration and Adaptation
Models
The kind and state of the forest, as well as the intensity of the burn,

directly influence the post-fire state of a burned landscape. Burn severity
is a term used by fire ecologists to describe how a fire has affected the
soil and the hydrologic system. In general, the effects on soil and its
capacity to absorb and process water are more severe the denser the pre-
fire vegetation is and the longer the fire burns on a specific location.
High-intensity wildfires can lead to the complete elimination of all forest
vegetation, including trees, shrubs, grasses, dropped needles, decomposing
roots, and other ground cover or duff components that shield forest soils.
This has a significant impact on the post-fire state of the landscape and can
lead to a variety of negative consequences De Graff (2014). One of the major
impacts of high-intensity wildfires is the development of a waxy, water-
repellent layer on certain types of soil. This layer, known as hydrophobic
soil, prevents water from reaching the soil and greatly increases the rate of
runoff. This can lead to a variety of problems, such as increased soil erosion
and flooding during storm events. Forested slopes are particularly prone to
extensive soil erosion and floods following a wildfire, as the loss of vital
surface vegetation leaves the soil exposed and vulnerable Moreno, Elías and
Moreno (2002). The health, safety, and integrity of communities and natural
resources further downstream are also at risk as a result of these concerns.
For example, increased runoff and soil erosion can lead to downstream
flooding, which can damage homes, businesses, and infrastructure. It can
also lead to the loss of aquatic habitats and other natural resources Grant
and Beschta (1996).

To mitigate these impacts and help restore the forest, various post-fire
restoration techniques can be employed. One such technique is the planting
of vegetation, including trees, shrubs, and grasses, which helps to stabilise
the soil and reduce the risk of erosion. These efforts can be further supported
by the implementation of appropriate land management practices, such
as reducing the frequency of human-caused fires, limiting the extent of
grazing and other human activities, and preserving remaining forested
areas Reddy (Unknown). In addition, the restoration of natural hydrological
systems is also critical to maintaining the health and integrity of the forest.
This can involve the re-introduction of native species of vegetation, the
creation of water retention features such as wetlands, and the restoration
of streams and other waterways. These efforts can help to mitigate the risk
of flooding, erosion, and other negative impacts, and promote the overall
health of the forest and its associated ecosystems Fischer (Unknown).
Due to the expected rise in frequency and intensity of wildfires caused
by climate change, it is becoming more crucial to create effective fire-
resistant landscapes. This may involve implementing measures such as
using fire-resistant materials and plants, creating firebreaks, and promoting
post-fire recovery. Collaboration between researchers, land managers, and
local communities can help to ensure the long-term health and resilience of
burned landscapes Stephens (2015).

As a result, the restoration and adaptation models are examined in
this subsection. The different models are organised based on three primary
sub-categories: (a) Climate Change, (b) Soil Erosion and Deposits, and (c)
Smoke Particulate Levels, as shown in Fig. 4 Sub-categories of Restoration
and Adaptation Models. These models aim to address the negative conse-
quences of wildfire and to help restore the health and integrity of the forest
and the surrounding landscape.

7.1. Climate Change
One of the major global challenges facing us is climate change,

which affects ecosystems, biodiversity, and human communities. In climate
change science, transfer modelling is a popular approach to applying models
developed for one study region to other locations. These techniques are
becoming more prevalent for estimating climate change-related quantities.
However, it is crucial to consider the transferability of the model when using
machine learning for transfer modelling. Research in species distribution
modelling has indicated that machine learning (ML) methods could be suit-
able for transfer modelling under future climate scenarios. ML techniques
have demonstrated their capability to make precise predictions in various
domains, making them ideal for extrapolation, a critical task in transfer
modelling. However, it is crucial to be aware of the limitations and possible
biases of ML models and thoroughly assess their performance before
implementing them in new contexts. Several studies have demonstrated
the potential of ML techniques for climate change modelling and transfer

Climate Change

Soil Erosion &
Deposits

Smoke & Particulate
Levels

Restoration &
Adaptation 

Models

Figure 5: Restoration and Adaptation Models

modelling. For example, Lu et al. Lu, Wei, Kim and Ding (2021) applied
ML techniques to model species distributions under future climate change
scenarios and found that their approach outperformed traditional statistical
models. In a similar vein, Li et al. Li, Chown and Strand (2020a) employed
machine learning (ML) techniques to simulate the effects of climate change
on forest fires, and their findings revealed that their methodology could
forecast variations in the extent and severity of fires with precision. In
general, ML techniques could play a significant role in comprehending and
alleviating the consequences of climate change. Nonetheless, it is critical to
thoroughly assess and validate these models to confirm their reliability and
accuracy in distinct settings.

Amatulli et al. Amatulli, Camia and San-Miguel-Ayanz (2013) ac-
knowledge the increasing attention paid to the effects of climate change
on forest fires at both the continental and local levels. As extreme fire
scenarios are heavily influenced by weather, it is crucial to assess the rise
in fire hazards and the subsequent impact of forest fires under climate
change. The authors estimated burnt areas in the European Mediterranean
(EU-Med) nations under previous and anticipated climatic conditions using
the Canadian FWI to simulate historical monthly burnt areas (1985-2004)
in EU-Med nations. They utilised three modelling techniques and found
that MARS outperformed the others. Regression equations and substantial
coefficients of determination were produced, even though variations across
countries were noticeable. The MARS models were used to predict burnt
areas for each nation and the EU-Med region under both IPCC SRES
scenarios of the PRUDENCE project’s HIRHAM’s runs. In the EU-Med
region, the models’ results indicated a projected 66% and 140% increase in
the total burnt area under the two scenarios.

Parks et al. Parks et al. (2018) note that North American fire regime
features are expected to change in the next few decades due to human-
induced climate change. In the context of a changing climate, a number
of aspects of fire regime characteristics have been extensively explored,
although fire severity has not been studied as much. To build a statistical
model of fire severity as a function of climate, the researchers utilised
observed data for the western United States from 1984 to 2012 to create a
model. This model was then used to generate twenty distinct climate change
estimates for mid-century conditions (2040-2069). The model suggests
that, for a significant area of the western US, fire intensity has generally
decreased. However, the model takes into account variations in fuel load,
fire frequency, and plant type that are influenced by the climate. Due to
the disequilibrium between plant communities and climate that has been
produced by humans, the prospect of a decrease in fire intensity indicated
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by the model may not materialise. To achieve the anticipated reduction
in fire intensity, land managers in the western United States could assist
in transitioning plant populations to a state of balance with the chang-
ing environment by employing active and passive restoration approaches.
However, with warming temperatures and increased fire danger, fuel loads
are expected to increase, making it difficult to resist changes in plant
composition and fuel load through fire suppression, resulting in more severe
fires in the future. In the context of a changing climate, the study highlights
the advantages and disadvantages of resisting or encouraging changes in
vegetation composition and fuel load.

According to Young et al. Young, Higuera, Duffy and Hu (2017),
the boreal forests and arctic tundra, which cover one-third of the earth’s
surface, are believed to contain fifty percent of the world’s soil carbon.
Wildfires play a vital part in the terrestrial carbon cycle, and an increase
in fire activity in these places would have global repercussions. To predict
how the fire regime may evolve through time and space, the researchers
examined climatic and terrain variables to estimate the 30-year chance
of fire occurrence in Alaska using a spatially explicit methodology. BRT
models were used to collect information on the distribution of fire in the
boreal forest and tundra ecoregions. The most significant factors influencing
historical fire regimes were found to be summer temperature and yearly
moisture availability. Fire likelihood was found to increase nonlinearly
beyond an average July temperature of 13.4°C and below a yearly moisture
availability of approximately 150 mm. The BRTs were modified using
climate estimates from Phase 5 of the Coupled Model Intercomparison
Project under the RCP 6.0 scenario to predict fire regime responses to
climate change in the 21st century. The findings indicate an increased
likelihood of wildfires in Alaska’s boreal forest and tundra ecosystems
throughout the 21st century, with different magnitudes throughout time and
space. Due to climate change, there is a possibility of up to a fourfold
increase in the risk of fire in the next 30 years, which could particularly
affect regions like the tundra and the forest-tundra interface, which have had
low flammability in the past. The study suggests that changes in fire activity
due to climate change may result in the emergence of unique fire regimes
in these ecosystems, which is different from what has been observed in the
past 6000-35,000 years.

Future disturbances to fire activity could endanger ecosystems and
human health. However, there are few worldwide fire projections and
even fewer from a variety of global climate models (GCMs). In their
study, Moritz et al. Moritz, Parisien, Batllori, Krawchuk, Van Dorn, Ganz
and Hayhoe (2012) employed environmental variables and global fire
information to develop spatial statistical models of fire likelihood at a
resolution of 0.5°, investigating the environmental factors that influence fire
activity. To assess the scale and direction of change between 2010-2039
and 2070-2099, the researchers used climate norms from 16 GCMs (A2
emissions scenario) to drive fire models. The study identifies regions where
the ensemble data from multiple GCMs agree on increased or decreased
fire activity and regions where the models differ. Despite variations in
sensitivity to biomass productivity limitations and meteorological condi-
tions that promote burning, significant and rapid changes in future fire
activity are expected in a large portion of the world’s biomes. Biomes with
already warm temperatures experience the most consistent increases in fire
activity over the short term, while a few tropical and subtropical biomes
experience more moderate declines. In more than fifty percent of terrestrial
regions, model estimates regarding the near-term direction of change are
contradictory, indicating that the next few decades are fraught with great
uncertainty. By the end of the century, the extent and consistency of change
in fire activity are anticipated to grow significantly. The majority of long-
term model agreement on decreasing probabilities (20%) is observed in the
tropics, while the majority of long-term model agreement on increasing
fire probabilities (62%) is observed in the mid-to-high latitudes. Although
long-term environmental norms captured chronic fire probability patterns
very well in the global models, more research is needed to understand
the additional explanatory power provided by interannual fluctuations in
climatic variables. This study is the first to analyse global fire activity
disturbances using an empirically grounded statistical methodology and
a multi-model ensemble of GCM forecasts Ahmed, Sachindra, Shahid,
Demirel and Chung (2019), which is an essential step in determining the
vulnerability of people and the ecosystems they depend on to fires.

7.2. Soil erosion and deposits
Wildfires can have devastating impacts on the soil, leading to severe

erosion, landslides, and other forms of soil degradation. These impacts
can result in a cascade of consequences for ecosystems, water resources,
and human communities. Understanding and managing the impacts of
wildfires on soil is crucial for protecting the environment and preserving
the sustainability of affected regions Foster (2001). Models for soil erosion
and deposit have been developed to predict and comprehend the impact
of wildfires on the soil. These models simulate the erosion and deposit
processes that occur after a wildfire event by considering factors such as
slope, soil type, vegetation cover, and rainfall intensity. The outcomes of
these models provide important insights into the degree and intensity of
soil degradation and can help identify areas that are most susceptible to
these effects. This information can be utilised to make informed decisions
on post-fire restoration, land management, and rehabilitation efforts as well
as related policies Lal (2002). One such example is the Revised Universal
Soil Loss Equation (RUSLE), a commonly utilised model for soil erosion
that can also be applied to areas affected by wildfires. This model considers
factors such as rainfall erosivity, slope gradient, soil erodibility, and vegeta-
tive cover, providing estimations of soil erosion and sediment yield. Another
relevant model is the Soil Water Assessment Tool, a hydrologic and water
quality model based on physical principles, that can predict soil erosion and
sedimentation following wildfire events Rosero and Rastogi (2010). Soil
erosion and deposit models play a crucial role in understanding the impacts
of wildfires on soil and the environment and are essential for informing
effective management and policy decisions related to wildfire response,
recovery, and rehabilitation efforts.

Mallinis et al. Mallinis, Maris, Kalinderis and Koutsias (2009) recog-
nise that the natural ecosystem and artificial environment are seriously
threatened by forest fires in the Mediterranean area. Land degradation and
desertification are effects of post-fire soil loss in the impacted regions. Fur-
thermore, the WUI’s observed expansion will probably have more severe
effects on infrastructure and human resources. Soil loss-related dangers
must be predicted using reliable, quick-to-implement processes in order
to help prioritise mitigation efforts and substitute labour-intensive, time-
consuming ones. The authors employed an analytical technique for risk
assessment to evaluate the need for immediate local and regional mitigation
measures following significant fire events. They utilised medium-resolution
satellite images to assess the severity of post-fire damage and to determine
pre-fire land cover. A geographical information system (GIS) framework
was utilised to develop a model for predicting the risk of soil erosion
over time. Additionally, a semi-quantitative model called the EPM was
used to estimate the severity of erosion and to predict annual sediment
output at the watershed level by integrating spatial data on geology, soil,
and land use/cover in a GIS environment. Additionally, a parameter not
currently taken into account in estimates of the danger of post-fire soil
erosion was estimated using a variety of landscape measures. The suggested
methodology is easily adaptable to other scales and spatial configurations,
however, the approach presents a challenge because visual evaluation is
used instead of lengthy field measurements to verify the conclusions.

Buckland et al. Buckland, Bailey and Thomas (2019) recognise that in
dryland areas, global environmental problems can arise from land degra-
dation and silt remobilisation. Understanding how external disturbances
influence the behaviour of landforms is crucial because previously sta-
bilised dune systems may reawaken due to climate change and human
activity. Using artificial neural networks (ANNs), the authors devised a
novel method for analysing past reactivation-deposition occurrences in
the Nebraska Sandhills. Their goal was to determine the association be-
tween previous sand deposition in semi-arid grasslands and numerous
environmental parameters, such as land use pressure, wildfire occurrences,
and meteorological conditions outside the region. It was shown that both
periods of plant development and sediment re-deposition may be measured.
Sensitivity analysis of each individual element shows that, when the climate
is kept at its current circumstances, localised forcings have a statistically
significant effect. The drought brought on by the climate is, however, the
main influence. The suggested method has enormous promise for assessing
the sensitivity of the landscape to anticipated changes in land use and
climate in a variety of potentially sensitive locations.

7.3. Smoke and particulate levels
Smoke and particulate levels resulting from wildfires have significant

impacts on both human health and ecosystems. These pollutants can lead
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to respiratory issues, reduced visibility, and disruption of daily life. Thus,
it is vital to comprehend and manage smoke and particulate levels for the
purpose of wildfire adaptation and restoration. Accurate prediction and
measurement of smoke and particulate levels can be achieved through
the use of smoke and particulate level models. These models can aid
in identifying areas at higher risk for smoke and particulate pollution,
providing valuable information for wildfire response and recovery efforts.
As such, the utilisation of smoke and particulate level models has become
an important aspect of wildfire management and policy. The use of smoke
and particulate level models have been widely researched and documented
in the literature. In their study, Lee et al. Lee, Park and Kim (2018) used
a numerical atmospheric model to simulate smoke dispersion and evaluate
the impacts of wildfires on air quality. Clements et al. Clements, Hptom,
Strand, De Groot and Klaassen (2019) employed a fire-atmosphere model
to simulate the emission of smoke and particulates from wildfires and
evaluate their effects on air quality in the surrounding region. Such research
emphasises the significance of models that assess smoke and particulate
levels in comprehending the impact of wildfires on human health and
air quality. Smoke and particulate levels produced by wildfires pose a
considerable risk to ecosystems and human health. Models for smoke and
particulate levels provide a valuable means of predicting and measuring
such levels, and of guiding wildfire response and recovery management
and policy decisions. There is a need for additional research to enhance the
precision and dependability of these models and to ensure their effective
application in the context of wildfire adaptation and restoration.

Yao et al. Yao, Brauer, Raffuse and Henderson (2018a) acknowledge
that a large number of acute cardiopulmonary events have been linked to
exposure to wildfire smoke for periods longer than 24 hours. The health
effects of sub-daily smoke exposure remain poorly understood due to
the absence of geographically and temporally defined estimates of smoke
exposure. Low-cost and universally applicable technologies are required for
accurate quantification of exposure. In this study, the authors calculated the
1-hour exposure of the general population to fine particulate matter during
the wildfire season in British Columbia, Canada, from 2010 to 2015 using
a 5 km by 5 km resolution and an RF ML approach. Multiple sources of
spatial information, remote sensing of fire activity, and meteorological data
are incorporated into the suggested technique. The predictions of the model
were correlated with the data at a rate of 0.93, with a root mean square
error of 3.2 g/m3, a mean fractional bias of 15.1%, and a mean fractional
error of 44.7%. The spatial cross-validation found an overall correlation
of 0.60, ranging between 0.48 and 0.70 across monitors. If applied, this
method could improve epidemiological studies on sub-daily exposure to
wildfire smoke and inform real-time public health measures. The method
is applicable worldwide, including in areas without air quality monitoring
Holm, Miller and Balmes (2021).

Yao et al. Yao, Raffuse, Brauer, Williamson, Bowman, Johnston and
Henderson (2018b) recognise that as a result of climate change, there will
be more severe and frequent fires, which is a serious public health risk.
Most products have limitations in measuring contaminants in the complete
column of the atmosphere rather than the surface concentrations that are
most relevant to population health. Although remote sensing can aid in
the evaluation of exposure, its use in health studies is limited, and an
understanding of the vertical distribution of smoke is needed to overcome
this limitation. Due to its limited ground coverage, the CALIPSO satellite
cannot collect all smoke events despite its ability to produce such data.
The scientists constructed an RF model to predict the minimum height
of the smoke layer that CALIPSO can detect with its great temporal and
spatial resolution. The researchers utilised data on fire activity and weather
conditions to inform their model, which can be easily updated in almost real-
time. According to the authors, between 2006 and 2015 in British Columbia,
Canada, smoke affected 15,617 CALIPSO data blocks, with 52.1% of them
being in close proximity to populated regions Nazaryan, McCormick and
Menzel (2008). The final model had a root mean squared error of 560 m
and accounted for 82.1% of the observed variations. The model parameters
that held the most significance were wind patterns, the month of smoke
observation, and fire intensity within a 500-kilometer radius. The outcomes
from the model can be applied to identify smoke in current remote sens-
ing products, calculate vertical dispersion in deterministic smoke models,
or incorporate remote sensing data into statistical smoke models. These
potential uses could enhance assessments of the population’s exposure to
ground-level forest fire smoke.

Zou et al. Zou, O’Neill, Larkin, Alvarado, Solomon, Mass, Liu, Odman
and Shen (2019) recognise that the western U.S. is seriously threatened
by large wildfires. The Pacific Northwest had a large number of wildfires
during the 2017 fire season. In order to examine the effects of wildfire smoke
on public health, numerical models and measurements were combined for
local fire occurrences in August and September 2017 in order to evaluate the
consequences of wildfire smoke. To mimic the transport and dispersion of
fire smoke, the researchers developed a one-way linked system comprising
weather research and forecasting and community multiscale air quality
models. In order to minimise modelling bias in fine particulate matter
(PM2.5) and improve smoke exposure estimates, they integrated the high-
resolution Multi-Angle Implementation of Atmospheric Correction satellite
aerosol optical depth She, Zhang, Wang, Wang and Shi (2019) with the U.S.
EPA AirNow ground-level monitoring PM2.5 concentrations Al-Saadi,
Szykman, Pierce, Kittaka, Neil, Chu, Remer, Gumley, Prins, Weinstock,
MacDonald, Wayland, Dimmick and Fishman (2005) into the modelling
results. The study included three ML data fusion techniques: generalised
boosting, the RF approach, and the conventional multi-linear regression
technique. Particularly, the RF technique demonstrated an increase in
surface PM2.5 estimates following data integration and bias reduction using
10-fold cross-validation. The optimised high-resolution PM2.5 exposure
was then used to forecast a short-term exposure-response function in order
to assess the acute health impacts of fire smoke. The study estimated that
the overall regional mortality due to PM2.5 exposure during the smoke
event was 183 (95% confidence interval: 0, 432). The fire emissions were
responsible for 85% of the PM2.5 pollution and 95% of the resulting
multiple-cause deaths. These findings highlight the negative health effects
of fire smoke in the Pacific Northwest and underline the necessity for
an effective fire smoke forecasting and reanalysis system to decrease the
public health concerns associated with smoke hazards in fire-prone areas
D’Evelyn, Jung, Alvarado, Baumgartner, Caligiuri, Hagmann, Henderson,
Hessburg, Hopkins, Kasner, Krawchuk, Krenz, Lydersen, Marlier, Masuda,
Metlen, Mittelstaedt, Prichard, Schollaert, Smith, Stevens, Tessum, Reeb-
Whitaker, Wilkins, Wolff, Wood, Haugo and Spector (2022).

Reid et al. Reid, Jerrett, Petersen, Pfister, Morefield, Tager, Raffuse and
Balmes (2015) highlight that it is difficult to estimate population exposure
to particulate matter during wildfires due to a lack of monitoring data
that adequately represents the spatiotemporal variability of smoke plumes.
To solve this issue, spatial-temporal data generated by chemical transport
models (CTMs) and satellite retrievals can be utilised to estimate PM2.5
concentrations during wildfires. Using a pool of 11 statistical algorithms
and 29 predictor variables, 10-fold cross-validation (CV) was used to quan-
tify PM2.5 concentrations during the 2008 Northern California wildfires
in order to select the best prediction model. Several criteria, including
CTM output, satellite aerosol optical depth measurements, distance to
the nearest fires, meteorological data, land use, traffic, spatial position,
and temporal characteristics, were utilised in this investigation. With 29
predictor variables and a CV-R2 of 0.803, the generalised boosting model
(GBM) had the lowest CV root mean squared error. The distance to the
nearest fire cluster, CTM output Shi, Zhang, Wang, Zhao, Chai and Zhao
(2021), and GOES Aerosol/Smoke Product (GASP) Prados, Kondragunta,
Ciren and Knapp (2007) Aerosol Optical Depth (AOD) Li, Ge, He and
Abbas (2021) were identified as the three most crucial factors. As revealed
by Cukjati et al. Cukjati, Mongus, Žalik and Žalik (2022), ML algorithms
were applied to combine spatiotemporal data from satellites and CTMs in
order to successfully estimate PM2.5 concentrations during severe wildfire
occurrences. PM2.5 could also be accurately predicted by sparse models
employing various combinations of fewer variables.

The authors assessed the dispersion of carbon monoxide (CO) emis-
sions from a peat fire next to a roadway using a novel differential neural
network model. Lozhkin et al. Lozhkin, Tarkhov, Timofeev, Lozhkina
and Vasilyev (2016) created techniques for model optimisation based on
simulated and actual measurements of CO concentrations in the region
of smoke cloud dispersion. Numerical solutions to the problem were
presented as Gaussian model approximations of neural networks and as
neural network approximations of solutions to partial differential equations.
When wind speed, direction, and other fire parameters change, the trained
neural network model can be utilised to foresee an emergency. The study’s
findings show that the developed approaches are effective for managing and
predicting air quality, as well as anticipating and averting such catastrophes.

The authors of the study, as noted by Watson et al. Watson, Telesca,
Reid, Pfister and Jerrett (2019), acknowledge that prediction models are
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employed by epidemiologists to estimate (i.e., scale down) air pollution
exposure when monitoring data is limited. Using ML prediction models,
the study tested the accuracy of ten algorithms for predicting ground-
level ozone during a 2008 wildfire occurrence in northern California
Hayasaka and Skinner (2008). In order to reduce the optimistic bias of k-fold
cross-validation and the conservative bias of leave-k-locations-out cross-
validation, the study used leave-one-location-out cross-validation (LOLO
CV) to test models and create more accurate prediction error estimates. The
gradient boosting algorithm yielded the best accuracy (0.677) and lowest
estimated root mean square error (0.228) among the 10 ML techniques
tested, possibly due to accounting for geographical and temporal dependen-
cies in the data. The LOLO CV was used to evaluate the models, and the RF
algorithm was the second-best performance with a LOLO CV of 0.661. The
LOLO CV estimates of prediction accuracy were less pessimistic than the
10-fold CV estimates for each of the ten models. There was a substantial
difference in projected accuracy between 10-fold CV and LOLO CV for
gradient boosting and RF models with better modelling flexibility. The
selection of optimal models or covariate sets may differ between 10-fold
CV and LOLO CV, calling into doubt the usefulness of 10-fold CV as a
tool for model selection. The evaluation measure used affected the projected
model accuracy ranking. The models used for predicting ozone exposure
were designed for interpolation, not extrapolation to other geographical or
spatiotemporal areas, nor for predicting the impact of wildfires on ozone.
This statement is supported by the fact that models failed to appropriately
estimate ozone levels during the 2007 southern California wildfires Keeley,
Safford, Fotheringham, Franklin and Moritz (2009).

The authors of the study, Fuentes et al. Fuentes, Tongson, De Bei,
Gonzalez Viejo, Ristic, Tyerman and Wilkinson (2019), recognise that due
to the increase in frequency and intensity of bushfires as a result of climate
change, smoke contamination of grapevines and grapes is becoming more
common. When this occurs near vineyards, it can impact wines and cause
smoke taint. However, there are currently no effective field methods to iden-
tify smoke pollution or taint in berries. The authors propose a non-invasive
method for detecting smoke contamination in grapevine canopies that can
be done in the field. The method is based on analysing expected changes in
stomatal conductance patterns using infrared thermal images and modelling
through pattern recognition. In addition, they built a second model that uses
near-infrared spectroscopy data as inputs for ML fitting modelling in order
to estimate the amounts of smoke-taint-related compounds in berries and
wines Samadi, Wajizah and Munawar (2020). The scientists discovered that
the pattern recognition algorithm accurately detected smoke pollution from
canopies 96 percent of the time. The second model, which used NIR data
to predict smoke taint components in berries and wine, had a correlation
coefficient of 0.97 and no signs of overfitting. These technologies provide
grape growers with a non-destructive, cost-effective, and precise in-field
screening tool to support vineyard management measures designed to
reduce smoke taint in wines. Additionally, mobile devices and unmanned
aerial systems (UAS) can be used in conjunction with these techniques
Mirabelli-Montan, Marangon, Graça, Marangon and Wilkinson (2021).

The following table presents an overview of various Wildfire Restora-
tion and Adaptation Models, with a specific focus on the impact of cli-
mate change, soil erosion and deposits, and smoke and particulate levels.
This table characterises these models based on several critical categories,
including weather observations, historical data, environmental factors, fire
data, socio-economic factors, and the methods used to predict and respond
to the impacts of wildfires. By analysing these factors, this table provides
a comprehensive understanding of the various approaches used to restore
and adapt ecosystems and communities after a wildfire. This resource is
invaluable for individuals and organisations working in the field of wildfire
management and restoration, as it offers a clear understanding of the factors
that influence the success of restoration and adaptation efforts and the
methods used to address them.
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Table 3: Summary of Restoration and Adaptation Models
Reference Weather Observa-

tions
Historical Data Environmental

Factors
Fire Data Socio-Economic

Factors
Method

Amatulli
et al.
Amatulli
et al.
(2013)

The European
Centre for
Medium-
Range Weather
Forecast’s 40-
Year Re-analysis
(ERA-40)
Data Archive
was mined for
meteorological
information
(ECMWF)

Meteorological data
were collected from
the 40-Year Re-
analysis (ERA-40).
The historical records
in the database used
for this study span
the years 1985 to
2004 (20 years), plus
two additional years
(2005–2006) used for
validation purposes.

The Regional
Climate Model
(RCM) HIRHAM,

The European
Fire Database of
EFFIS has been
mined for fire
data.

NUTS3 level in
Portugal

MLR, RF, MARS

Parks et al.
Parks et al.
(2018)

Not applicable Observed data for the
western United States
from 1984 to 2012

Not applicable Fire frequency
and area burned

Not applicable A statistical model
of fire severity as a
function of climate,
BRT

Yao et al.
Yao et al.
(2018a)

NASA’s
Modern Era
Retrospective-
analysis for
Research and
Applications
(MERRA)
programme
was used to
retrieve hourly
meteorological
information.
Geller and Stoner
(2017)

The severe fire
seasons in 2010,
2014, and 2015

British Columbia’s
Ministry of
Environment
and Climate
Change Strategy’s
Provincial
Air Data
Archive website
provides hourly
average PM2.5
measurements
from 72 air
quality monitoring
stations.

Data from
the MODIS
instruments
onboard the
Aqua and Terra
satellites in polar
orbit 155s

Human populations
smoke exposal.

An RF model to
estimate 1-hour
average population
exposure to fine
particulate matter

Yao et al.
Yao et al.
(2018b)

Not applicable Forest fire seasons
2006-2015

The GTOPO30
product created by
the US Geological
Survey EROS
Center

The Fire
Information
for Resource
Management
System by NASA

Human populations
smoke exposal.

An RF model that
predicts the minimal
height of the smoke
layer observed by
CALIPSO with high
temporal and spatial
resolution.

Zou et al.
Zou et al.
(2019)

3.7 version of the
Weather Research
and Forecasting
(WRF) model
and 5.2 version of
the Community
Multiscale Air
Quality (CMAQ)
model.

Not applicable U.S. EPA AirNow
monitors PM2.5
concentrations at
ground level.

The CMAQ
system’s Sparse
Matrix Operator
Kernel Emissions
model.

The 2010
US Census
Grids provided
by NASA’s
Socioeconomic
Data and
Applications Center
and the Centers for
Disease Control
and Prevention’s
Wide-ranging
ONline Data for
Epidemiologic
Research
(WONDER)
were mined for
demographic data.

MAIAC: Multi-Angle
Implementation
of Atmospheric
Correction. AOD:
aerosol optical
depth. MODIS,
CMAQ: Community
Multiscale Air
Quality model. RF,
GBM: Generalised
boosting model.
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Reid et al.
Reid et al.
(2015)

The National
Center for
Atmospheric
Research
(NCAR)
provided PM2.5
concentration
estimates derived
from the Weather
Research and
Forecasting
with Chemistry
zWRF-Chem 3.2
model.

Not applicable The California Air
Resources Board
(CARB), and
the AirNow and
AirFire databases

2008 wildfires
in northern
California as
depicted by
the US Forest
Service’s
Remote Sensing
Applications
Center using
MODIS Fire
Detection points.

During wildfires,
estimating human
exposures that may
differ on small
spatial scales.

Generalised linear
models (GLM),
RF, bagged trees,
generalised boosting
models (GBM),
GAM, multivariate
adaptive regression
splines, elastic nets,
SVMs with a radial
basis kernel, Gaussian
processes with a
radial basis kernel,
k-NN regression, and
lasso regression.

Lozhkin
et al.
Lozhkin
et al.
(2016)

Not applicable Not applicable Not applicable Peat fire
characteristics

Dispersion of CO
emissions from
a peat fire near a
highway.

The neural network
model of the
complex system
can gather pieces
of heterogeneous
information –
differential equations,
conservation laws,
equations of state,
symmetry conditions,
etc.

Watson et
al. Watson
et al.
(2019)

Weather Research
and Forecasting
with Chemistry
(WRF-Chem)

Not applicable The United States
EPA

The Fire
Inventory from
NCAR (FINN)
v1.5

Not applicable Elastic net regression,
generalised additive
models (GAM),
gradient boosting,
k-NN regression,
lasso regression,
linear models, MARS,
neural network, RF,
and SVMs with a
radial basis kernel.

Fuentes et
al. Fuentes
et al.
(2019)

Micrometeorological
weather data such
as temperature,
relative humidity,
and solar
radiation

Not applicable Not applicable Not applicable Property damage
after fire in
vineyards

ML modelling
techniques to assist
growers confronted
with vineyard
exposure to smoke
from bushfires, an
issue which has
been exacerbated
in prominent wine
regions around the
world due to climate
change

Young et
al. Young
et al.
(2017)

Monthly mean
temperature and
total precipitation
data from the
climate research
unit

The historical period
from 1950–2009

Alaska, the boreal
forest, and the
tundra

30 (non-
continuous) years
of paired fire data

Not applicable BRT

Moritz et
al. Moritz
et al.
(2012)

Global climate
model output
from the World
Climate Research
Programme’s
Coupled Model
Intercomparison
Project phase
3 multi-model
dataset

The historical period
from 1971–2000

Spatial patterns in
resources to burn
and atmospheric
conditions
conducive to fire
activity

The fire dataset
used in this
study spans from
1996–2007

Not applicable MaxEnt models

Mallinis
et al.
Mallinis
et al.
(2009)

GIS weather data Not applicable GIS environmental
data

GIS fire data Not applicable CART and KM
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Buckland
et al.
Buckland
et al.
(2019)

The Niobrara
Valley Preserve
provided an
integrated record
of precipitation
and temperature
change over the
past 400 years

The Niobrara Valley
Preserve provided
an integrated record
of over the past 400
years

Not applicable Wildfire
occurrence data

ANN defines
the relationship
between climatic
and human
disturbance forces

ANNs
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8. Discussion and Lessons Learned
In recent years, the study of prevention and preparedness models

for wildfires has become a major area of research, taking into account a
multitude of factors such as fire weather forecasts, fire occurrence forecasts,
fire management and planning, and various social factors. A comprehen-
sive survey was conducted that utilised a wide range of research sources
that focused on the impact of weather information, environmental and
socioeconomic factors, and historical data on landscape management and
its contribution to fire occurrences. The results of this study showed that
most existing wildfire prevention and mitigation strategies are focused on
mitigating the negative effects of wildfires rather than addressing the root
cause of the problem. Given the significant role that human behaviour
plays in wildfires, which is often the most unpredictable factor, it is crucial
to tackle the root cause of the problem when dealing with man-made
disasters. To achieve this, models that take into consideration a wide
range of factors are more likely to be effective in both prevention and
preparedness efforts. Advancements in remote sensing technology, such
as the Advanced Very High-Resolution Radiometer (AVHRR), Moderate
Resolution Imaging Spectroradiometer (MODIS), and VIIRS, have played
a critical role in improving the monitoring and observation of wildfires.
These sensors, which are onboard satellites such as NASA, TERRA and
AQUA, and NOAA GOES, regularly track changes in vegetation and its dis-
tribution. Advances in NWP and climate models have also enabled higher
resolution forecasting and longer lead time predictions, which may improve
the predictability of extreme fire weather events. With sufficient data,
these developments have allowed for a data-centric approach to modelling
wildfires, making them a natural evolution for many research challenges.
Studies of these models have shown great potential for accurately and
quickly identifying future wildfire outbreaks and making response activities
more efficient, safe, and quick. This research also aims to address the
problems related to restoring biospheres and ecosystems after wildfires, as
well as adapting to the new conditions brought on by climate change. The
relationship between post-fire characteristics of a landscape and local fuel
typology, plant health, and overall burn intensity has been examined. The
results show that the intensity of the impacts of wildfires on soil and its
capacity to absorb and process water is directly related to the density of
pre-fire vegetation and the length of the fire burn.

A comprehensive review of techniques for forest fire prediction and
detection was conducted as part of this study. The analysis of existing
literature revealed that algorithms, particularly neural networks and LR, are
widely used in this domain, with an increasing focus on incorporating AI in
forest fire modelling. The use of multi-sensor data in a neural network-based
forest fire detection model has been found to have several benefits, such
as reducing false alarms and communication costs and improving energy
efficiency. Deep ANNs, specifically CNNs, have been found to be promising
for fire modelling. Other algorithms, such as SVMs, Bayesian models, and
FL, are used less frequently but have their own strengths and limitations that
may make them more suitable for certain applications. For example, SVMs
are known for their ability to handle complex non-linear relationships, while
Bayesian models are well-suited for probabilistic prediction and uncertainty
analysis.

The use of various technologies and techniques has greatly improved
wildfire prediction and management. Electronic lightning detection sys-
tems, NWP, and satellite data have been combined to provide early warning
of fire danger conditions. These technologies can also help build regression
associations to anticipate NWP using lightning prediction models, improv-
ing the accuracy of predicting wildfires. FOP models using ML techniques
have also been used to improve predictions of fire occurrence by incorporat-
ing more sophisticated algorithms and data sources, such as remote sensing
data and weather forecasts. Planning and policy models have also been used
to assess the effectiveness of existing policies and management strategies,
identify areas for improvement, and allocate resources more efficiently.
However, the use of ML in fire control issues has been relatively scarce,
providing significant potential for innovative solutions. In conclusion, a
combination of these technologies and techniques can help to minimise
the damages caused by wildfires and ensure the safety of people, wildlife,
and the environment, making wildfire prediction and management more
effective.

Accurate prediction of fire spread behaviour is critical for effective
wildfire management. Remote sensing data, including Landsat land cover
data, NOAA weather measurements, and archived MODIS sensor data, has

proven beneficial in understanding wildfire dynamics. Fuel properties play
a vital role in determining fire behaviour, and the accurate prediction of
fuel properties is essential for effective fire management. ML algorithms,
such as RF and CNNs, which have the potential to significantly advance
our understanding and ability to predict and manage wildfires. Fire sus-
ceptibility mapping using algorithms such as MaxEnt, BRT, or RF can
help identify areas at higher risk of wildfires and prioritise resources for
fire prevention and suppression efforts. Remote sensing methods, such as
satellite and aerial imagery, thermal infrared, and lidar sensors, can provide
detailed and precise information on active fires and burn severity, which
is valuable for measuring the fire’s economic and ecological impacts and
for recovery planning. The integration of remote sensing ML algorithms
has the potential to significantly enhance our ability to predict and manage
wildfires in the future.

Climate change is a global challenge that affects ecosystems, biodi-
versity, and human communities. Transfer modelling, a popular approach
in climate change science, is used to apply models developed for one
study region to other locations. ML techniques have demonstrated their
potential in species distribution modelling and simulating the effects of
climate change on forest fires, outperforming traditional statistical models.
However, it is crucial to thoroughly assess and validate these models before
implementing them in new contexts to ensure their reliability and accuracy.
Models for soil erosion and deposit and smoke and particulate levels
resulting from wildfires are crucial in understanding the impacts of wildfires
on soil, ecosystems, human health, and air quality. These models provide
valuable insights into the degree and intensity of soil degradation and can
aid in identifying areas that are most susceptible to these effects. They
also provide a means of predicting and measuring smoke and particulate
levels and guiding wildfire response and recovery management and policy
decisions. Further research is needed to enhance the precision and reliability
of these models and ensure their effective application in the context of
wildfire adaptation and restoration. Lessons learned include the importance
of ML techniques and models for effective wildfire management and policy
decisions, the need for thorough assessment and validation of these models,
and the significance of continued research to enhance their precision and
reliability.

Despite the valuable solutions mentioned before, there is still room
for optimising the wildfire management systems, taking full advantage
of novel technologies. First, the implementation of beyond 5G networks
can bring about a new era in wildfire management. The high-speed,
low latency, and high-capacity nature of beyond 5G networks can allow
for real-time monitoring, detection, predictive maintenance Giannaki-
dou, Radoglou-Grammatikis, Koussouris, Pertselakis, Kanakaris, Lekidis,
Kaltakis, Koidou, Metallidou, Psannis et al. (2022) and communication of
wildfires. The high-speed nature of beyond 5G networks can significantly
reduce the time required to process the vast amounts of data generated by
remote sensing technologies and NWP models, allowing for the prediction
of wildfires with greater accuracy. In addition, beyond 5G networks can
be used to improve the coordination of firefighting efforts. The ability of
beyond 5G networks to provide reliable, high-speed communication can
help emergency responders and firefighting teams to quickly exchange
information, share updates on fire locations and firefighting strategies, and
coordinate their actions. Furthermore, the use of beyond 5G networks
can help ensure that critical information is transmitted in real-time to
all relevant parties, allowing for a more effective and efficient response.
Another potential benefit of beyond 5G networks in the context of wildfire
management is the ability to support drones. The use of drones can provide
valuable aerial reconnaissance and fire mapping data, as well as real-time
video feeds from the fire front. The high-speed, low latency and high-
capacity nature of beyond 5G networks can ensure that the data collected
by UAVs can be transmitted in real-time to emergency responders and
firefighting teams, allowing for a more effective response.

The management of wildfires is another area where SDN can play
a crucial role. Specifically, SDN facilitates the development of adaptable
and programmable networks, which can lead to preventative measures
against wildfires. Network resource optimisation and fire prevention can be
achieved by SDN’s centralised management by enforcing policies and traffic
engineering rules. For instance, SDN can reroute traffic around potentially
dangerous nodes, restrict access to certain portions of the network, and
adapt network settings in real-time. By facilitating better communication
and coordination between emergency personnel, SDN can aid in firefighting
efforts. The programmability of SDN allows first responders to prioritise
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life-saving communications, dynamically assign bandwidth, and set up
secure lines of contact in disaster zones. Mobile communication networks,
drone networks, and sensor networks can all be deployed with the use
of SDN to improve situational awareness and aid in firefighting efforts.
Finally, after a wildfire, SDN can help with cleanup and repair efforts.
SDN’s network programmability allows for a more effective distribution of
resources for things like rebuilding after a fire, getting people back online,
and repairing damaged infrastructure. Because of SDN’s centralised man-
agement, restoration efforts can be better coordinated, and resources may be
used more effectively. Finally, SDN’s capacity to be programmed, managed
centrally, and controlled dynamically makes it a potent tool for bettering the
control of wildfires. To lessen the effects of wildfires, businesses can use
SDN technology to get a jump on warnings, take preventative steps, speed
up firefighting and cleanup, and analyse the resulting data more efficiently.

The digital twins are another cutting-edge technology that can make
a significant contribution to wildfire management. However, there are no
holistic digital twins that can efficiently emulate wildfire cases. A virtual
replica or representation of a real-world process, system, or object is
referred to as a Digital Twin. Digital twins can be developed in the context of
wildfire management to simulate and model different aspects of wildfires,
facilitating better comprehension and decision-making. In order to create
a real-time representation of the wildfire situation, digital twins can first
combine different data sources, such as satellite imagery, weather data,
sensor networks, and historical fire data. Potential wildfire outbreaks can
be identified early through analysis and correlation of this data within the
digital twin, enabling prompt response and intervention. Second, using data
from environmental conditions, topography, vegetation, and other relevant
variables, digital twins can simulate and model how wildfires spread.
Land managers, firefighters, and policymakers can evaluate the efficacy
of various prevention strategies by running predictive scenarios within the
digital twin. This covers resource allocation, fuel management, planning for
defendable space, and strategic planning for controlled burns. Advanced
fire behaviour models can be incorporated into digital twins to simulate
the spread of fire under various conditions. Digital twins can help with
evacuation planning, resource allocation, and assessing the potential impact
on vital infrastructure and communities by taking factors like wind speed,
fuel moisture, and topography into account. Digital twins can also help with
damage assessment, ecosystem impact modelling, and restoration activity
planning following a wildfire event. Digital twins can help with the design
of efficient restoration strategies, monitoring of progress, and evaluation
of the long-term recovery of the affected areas by incorporating data on
vegetation recovery, soil erosion, hydrological impacts, and ecosystem
dynamics. Finally, by intuitively visualising complex data and simulations,
digital twins offer a platform for decision support. During wildfire events,
they can help incident commanders, emergency management teams, and
land managers make well-informed decisions regarding resource allocation,
evacuation planning, and the hierarchy of response initiatives. Digital twins
provide a comprehensive approach to wildfire management by fusing real-
time data, sophisticated modelling, and analytics. They give stakeholders
the ability to evaluate risks, investigate scenarios, and put preventative
measures in place to lessen the effects of wildfires. For the detection,
prevention, and restoration of wildfires, the insights offered by digital
twins can improve situational awareness, response coordination, and long-
term planning. Finally, the role of AI in digital twins is critical since AI
generative techniques, such as Generative Adversarial Networks (GANs),
Variational Autoencoders (VAEs), Autoregressive Models and Transform-
ers can generate realistic data that can optimise the emulation services of
the digital twins.

Federated learning appears to be a game-changing technology with
immense potential for fire management. Federated learning eliminates the
need for a centralised data repository when training ML models in a group
context with data from multiple sources. Federated learning can incorporate
data from a variety of locally-based sensors, cameras, and distributed
sources for the detection of wildfires without compromising individual pri-
vacy. This collaborative strategy facilitates the development of a robust and
dependable system for detecting wildfires by combining information and
models from multiple locations. In addition to assisting in the development
of prediction models for assessing the risk of wildfires, federated learning is
also useful for risk assessment. Using data gathered from a variety of local
environmental and meteorological conditions, ML algorithms can predict
areas prone to fire and identify contributing factors. This data is useful for
regional-scale fire management, including the implementation of controlled

burning, the optimisation of resource allocation, and the development of
effective management strategies. Moreover, federated learning streamlines
the interpretation of post-fire data collected from a variety of sources, such
as satellite imagery, environmental sensors, and ground surveys. Using
models trained on distributed datasets, it is possible to perform damage
assessments, monitor recovery progress, and forecast long-term ecological
consequences of wildfires. This invaluable information is used to direct
restoration efforts, establish resource priorities, and inspire the development
of effective ecosystem recovery techniques.

Next, wildfire detection, prevention, and restoration activities may
benefit from the use of blockchain technology because of its potential
to improve data integrity, traceability, and decentralised collaboration.
Blockchain technology allows for the immutable and transparent recording
of data from weather sensors, satellite photography, and ground-based
observations. By safeguarding data and preventing unauthorised alterations,
this facilitates trustworthy analysis and decision-making for detecting wild-
fires. Smart contracts and DApps, made possible by blockchain’s decen-
tralised nature, automate stakeholder agreements and procedures to make
preventative measures easier to adopt. Smart contracts, for instance, can
ensure that fire safety regulations are followed, oversee controlled burns,
and encourage sustainable land use. Blockchain-based DApps can facilitate
wildfire prevention collaboration by offering a trusted environment for the
exchange of data and the coordination of efforts among many parties.
By allowing firefighters, emergency services, and authorities to share
information in real time, blockchain technology enhances communication,
coordination, and resource allocation during firefighting operations. It
makes it easier to make decisions under pressure and guarantees openness.
In addition, the validity and integrity of command chain communications
can be verified via blockchain. In terms of restoration, blockchain can
record operations, resource allocation, and progress on a transparent ledger,
allowing for tracking and verification of restoration efforts. This facilitates
responsibility, efficient use of resources, and accurate tracking of money
set aside for restoration efforts. Furthermore, blockchain can facilitate
the development of decentralised marketplaces, linking together post-fire
rehabilitation organisations, funders, and volunteers. Last but not least,
blockchain technology allows for private and decentralised data sharing
between parties involved in wildfire management, protecting personal in-
formation while also boosting teamwork. Incentives for data sharing and
collaboration through blockchain-based data marketplaces and provenance
procedures can propel wildfire management research and development.

Severe wildfires can have long-term impacts, such as making the soil
nearly hydrophobic due to the deposit of a new layer of burned debris, which
dramatically increases the rate of runoff and makes the land more vulnerable
to soil erosion during storms and heavy rains. These issues pose a significant
threat to impacted communities and the availability of natural resources.
In conclusion, this study focuses on documenting these problems and
highlights the potential of advanced technologies and data-driven models
in mitigating the impact of wildfires. The use of remote sensing, NWP,
and algorithms have the potential to greatly improve the monitoring and
prediction of wildfires, which can result in more effective and efficient fire
response activities. This research is also critical in addressing the long-term
impacts of wildfires on ecosystems and communities, as well as adapting
to new conditions brought on by climate change. The results of this study
demonstrate the importance of a multi-disciplinary approach to tackling the
root cause of wildfires and ensuring a more sustainable future.

9. Conclusions
Forest fires pose a major threat to the planet’s ecological balance

and human communities. To minimise the damage caused by forest fires
and reduce the need for firefighting efforts, it is crucial to predict forest
fires by modelling the relationship between fire risk and factors such as
weather or fuel availability, as well as detecting them through various
monitoring techniques. In response to this growing threat, the field of forest
fire prediction and detection has become a topic of ongoing research and
development, with the goal of supporting public policies for controlling
forest fires and reducing the threat posed by these fires.

In conclusion, the use of advanced systems incorporating AI is a
promising approach to reducing the threat posed by forest fires. The role
of algorithms in forest fire prediction and detection systems is highlighted
in this study, which offers a comprehensive overview of the current state-of-
the-art in the field. Using these models effectively is critical in preventing

First Author et al.: Preprint submitted to Elsevier Page 42 of 48



Leveraging the Power of Internet of Things and Artificial Intelligence in Forest Fire Prevention, Detection, and Restoration: A
Comprehensive Survey

and reducing the adverse effects of forest fires and wildfires, protecting hu-
man communities, and maintaining the resilience of the Earth’s ecosystems.

As the threat of forest fires continues to grow, there is a growing
need for more effective and efficient methods for forest fire prevention,
detection, and restoration. Future plans in this field aim to integrate AI
and techniques further to enhance the accuracy of forest fire prediction
and detection systems. Additionally, efforts are being made to improve the
speed and scalability of these systems to ensure that they can keep pace
with the increasing frequency and severity of forest fires. This may involve
the development of new algorithms and the integration of novel sensor
technologies and remote sensing techniques. Another area of focus is to
improve the integration of these systems with other existing systems and
platforms to ensure that they can be effectively used in concert with other
fire management strategies. Overall, the future of forest fire prevention,
detection, and restoration is promising, and continued investment in this
field is critical to protect human communities and the planet’s ecosystems.
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