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Abstract—The evolution of cyberattacks has been significantly
impacted by the rise of Artificial Intelligence (AI). In partic-
ular, AI-driven attacks leverage Machine Learning (ML) and
Deep Learning (DL) methods to automate tasks like identifying
vulnerabilities, crafting convincing phishing emails, and evading
conventional security measures. These cyberattacks can adapt
in real time, making them more elusive and challenging to
detect. Furthermore, AI has enabled the development of AI-
powered malware that can learn and evolve, making it even
more dangerous. As AI continues to evolve, both attackers
and defenders are engaged in a relentless arms race, with
cybersecurity professionals striving to harness AI for threat
detection and response while cybercriminals seek to exploit AI’s
capabilities for their malicious purposes. This ongoing battle
underscores the need for proactive and adaptive cybersecurity
strategies to mitigate the evolving threats posed by AI-driven
cyberattacks. Based on the aforementioned remarks, it is evident
that efficient and adaptable countermeasures are necessary. In
this paper, we focus our attention on Cyber Threat Intelligence
(CTI) mechanisms. CTI is the process of collecting, analysing,
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and sharing information about potential cybersecurity threats
to help organisations proactively defend against cyberattacks. In
particular, after providing an overview of the CTI use cases,
a brief analysis of existing solutions follows, highlighting the
current trends and directions for future work in this research
field.

Index Terms—Cybersecurity, Cyber Threat Intelligence, Infor-
mation Sharing, Proactive Defense, Survey

I. INTRODUCTION

Cyberthreats are continuously evolving, taking full advan-
tage of emerging technologies, such as Artificial Intelligence
(AI). Ransomware attacks remain a major concern, becoming
more sophisticated and targeting not only individuals but
also critical infrastructure and supply chains. Nation-state
actors continue to engage in cyber espionage and disruptive
attacks, often focusing on political, economic, or technological
objectives. The expansion of the Internet of Things (IoT)
has also introduced vulnerabilities, leading to an increase
in attacks targeting interconnected devices. In addition, so-
cial engineering techniques like phishing and spear phishing
are becoming more personalised and convincing, exploiting
human psychology to gain unauthorised access to sensitive
information. The rise of AI and machine learning is both
a potential solution and a concern, as these technologies
are leveraged by both attackers and defenders to optimise
their strategies. As a result, a comprehensive and adaptable
cybersecurity approach is crucial to mitigate these evolving
threats.

Based on the aforementioned remarks, Cyber Threat Intel-
ligence (CTI) refers to the information collected, analysed,
and disseminated about potential and current cybersecurity
threats and vulnerabilities. It is a proactive approach to cy-
bersecurity that involves gathering data from various sources,
such as security research, hacking forums, malware samples,
and network monitoring, to understand and predict potential
cyberthreats. CTI encompasses a wide range of data, including
indicators of compromise (IoCs) such as IP addresses, domain
names, hashes of malicious files, patterns of attack behaviours,
and tactics, techniques, and procedures (TTPs) used by threat
actors. This information is then analysed to identify patterns,
trends, and potential risks. In this paper, we provide a brief
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analysis of CTI solutions, highlighting the current trends and
directions for future research works.

The rest of this paper is organised as follows. Section II
summarises the use cases of CTI. Section III describes existing
works in this field. Next, section IV summarises trends and
research directions. Finally, section V concludes this paper.

II. USE CASES OF CYBER THREAT INTELLIGENCE

As presented in Fig. 1, CTIS is composed of five main
stages: (a) Planning and Direction, (b) Collection, (c) Analysis,
(d) Production and (e) Dissemination and Feedback. Com-
monly, organisations adopt CTI mechanisms to:

• Enhance Proactive Defense: By staying ahead of po-
tential threats, organisations can implement measures to
detect and prevent attacks before they occur.

• Incident Response: CTI helps organisations respond
more effectively to security incidents by providing in-
formation about the nature and scope of the threat.

• Patch and Vulnerability Management: Understanding
emerging threats can help prioritise which vulnerabilities
to address first.

• Risk Assessment: CTI assists in evaluating the potential
impact of various threats on an organisation’s systems
and data.

• Cybersecurity Strategy: It aids in developing a strategic
approach to cybersecurity, focusing resources on the most
relevant and likely threats.

• Sharing Insights: Organisations can share CTI within
their industry or sector, contributing to a more collabo-
rative approach to cybersecurity.

• Decision Making: CTI provides actionable insights that
aid in making informed decisions about security measures
and investments.

• Understanding Attackers: By studying threat intelli-
gence, organisations can gain insights into the motiva-
tions, techniques, and intentions of various threat actors.

III. ANALYSIS OF EXISTING WORKS

In [1], M. Mena and B. Yang present an implementation
of the blockchain protocol in a home network with IoT
devices with the aim of providing a decentralised system that
shares CTI between service providers and consumers. As a
proof of concept, the authors designed a network simulation
environment with the following components: an Ethereum
blockchain network, a GNS3 server and another server that
acts as a gateway to the rest of the network. Bonesi, an
open-source tool that simulates botnet behaviour, was used
to simulate a Distributed Denial of Service (DDoS) attack.
The analysis was focused on three different metrics: network
performance, Ethereum network performance and network
security capabilities. There were two scenarios to test the
framework. One tested network performance without the at-
tacks to create a baseline for normal network activity, and
the other tested the Ethereum network performance under
DDoS attacks. A comparison was made between two groups,
one without blockchain instances (control group) and another

with blockchain instances (experimental group), during the
streaming of a Youtube performance. The DDoS attack
triggered a blockchain transaction through Snort, which was
then broadcast to the rest of the network, which in turn
automatically stopped the attack. The impact on the response
time for the home networks was a small delay of 2%, and
connection speed was better in the control group. There was
also a creation of a blockchain-based CTI report that took
only 55 seconds to reach the other blockchain nodes when the
attack was detected.

In [2], the authors aim to address the rare use of CTI by
Small and Medium-sized Enterprises (SMEs) by conducting a
systematic review of current approaches in sharing CTI and
presenting a prototype that uses a Malware Information
Sharing Platform (MISP). The prototype is particu-
larly useful for less digitally mature SMEs.The literature
review was conducted using a combination of an active
learning phase and a backward snowballing phase. It was
determined that structured open-source intelligence sources
and, more specifically, the VERIS Community Database
(VCDB) are more suitable for the SME’s needs. However,
these sources need to be complemented by the ENISA rank-
ings. The proposed solution uses MISP in conjunction with the
GEIGER application. The CERT-RO CTI feed in MISP pro-
vides GEIGER with processed MISP events via its Application
Programming Interface (API). Then, a process of prioritising
the CTI threats with the help of VCDB data for digitally
dependent SMEs,digitally-based SMEs and digital enablers
takes place. This classifies threats depending on which of
them are related to the SME users. The threat prioritisation is
done periodically with the help of an exponential smoothing
algorithm. The change in the threat prioritisation and in the
relevant countermeasures that need to be implemented does
not take into account internal data from SMEs and eliminates
the need for a security expert.

Following the previous paper, in [3], the authors present an
overview of MISP. First, it shows the data format of the events.
Then, the different sharing models are analysed. The concept
of taxonomies, with the triple tag structure, is also analysed.
The next section is about the synchronisation protocol. There
are three mechanisms present in the protocol, namely, the push
and pull mechanism and the cherry-pick technique. All three
are analysed in great detail. Finally, there are also statistics
about the use of MISP. A distribution of events per month
from 2013 to 2016 is presented with a peak of published events
in 2015 and 2016.

In [4], the authors present LUUNU, a blockchain-based,
MISP, Model Cards and Federated Learning (FL) enabled
CTI sharing platform. This platform provides transparency and
credibility to the CTI sharing by storing CTI data on the MISP
storage in the form of Model Card objects. The anonymity of
the organisations that report these data is ensured with the
use of a Self-sovereign identity-enabled mobile wallet. The
LUUNU architecture has five layers: the first is the Stakeholder
Layer, which contains incident reporters/viewers and admins.
The second is the Smart Contract Layer. This is where the



Fig. 1: Lifecycle of Cyber Threat Intelligence

user’s digital identity proofs are stored, along with CTI, FL
and notification contracts. Another service is the encoding
of CTI data and ML information into Model Card objects.
The Blockchain Storage Layer contains the nodes of each
organisation. The MISP Layer stores the Model Card objects
and allows the blockchain smart contracts to interact with it
via its API. The fifth layer, called the Data Analytic Layer,
provides the FL service. That is a service that uses FL models
to detect cyberattacks. The functionality of LUUNU is to
register the organisation on the platform as a blockchain node
so that they can report incidents, which are then encoded into
the Model Card and saved in the MISP database. The LUUNU
platform is implemented on top of the Rahasak blockchain.
The FL functions originate from Pytorch and Pysyft.
The Model Card service is built with TensorFlow Model
Card Toolkit, and the operation handling of the blockchain
is managed with Apache Kafka.

In [5], the authors present the Enriched Threat Intelligence
Platform (ETIP), whose functionality is to collect, relate and
aggregate OSINT data and data from the monitored infrastruc-
ture. The OSINT data are stored in the MISP database, and
the infrastructure data are stored in the Heuristic Component
database. The MISP platform was selected based on criteria
such as the integration with Security Information and Event
Management (SIEM) and Intrusion Detection Tool (IDS) tools
because the goal is to feed the enriched data to an IDS
or an SIEM. The ETIP architecture has two modules: the

Composed IoC module, which collects IoCs and interrelates
them, making them more enriched and the Context-Aware
Intelligence Sharing module, which contains a MISP instance
and a heuristic component. The heuristic component receives
data from MISP, and its purpose is to produce a Threat
Score(TS) for the received data. To compute the TS, the
Weighted Mean(WM) function was used, and it is calculated
by summing the individual heuristic values times and the
individual weight factor. The weighting criteria of this factor
are relevance, accuracy, variety and timeliness. If there is a
match with the MISP attributes, a score is computed according
to these criteria. Finally, depending on whether the TS score
is high enough, the enriched IoCs will help analysts determine
the risk score on tools such as IDS and SIEM.

The goal of this paper [6] is to describe the data interaction
methods used to evaluate the information exchanged in MISP
and to propose a scoring technique for decaying information.
A feature of MISP called taxonomies is used to evaluate
attributes. Taxonomies are a classification method with its own
vocabulary. The taxonomies are part of the scoring model
through tagging. A data interaction method in MISP is the
sightings, which provide information about the validity of an
attribute, categorising it into priority or decaying attributes.
Each attribute has a decaying function. There are also some
parameters that need to be considered for its overall score: the
base score of an attribute, which is calculated with the help
of its weighted applied tags and the source confidence, the



difference in time between the current time and the time of
the attribute’s last sighting and the decay rate or the speed at
which the attribute’s score decreases. The two parameters of
the model are the end time of an attribute and the variable
decay rate. Two models are considered for calculating the
score, one with exponential digression and another one with
a polynomial function. The polynomial function was more
advantageous.

Security playbooks present the necessary steps and pro-
cesses to mitigate cyberattacks, or they can also automate secu-
rity functions in an efficient way. In [7], the authors introduce
a metadata template to integrate security playbooks and, more
specifically, the Collaborative Automated Course
of Action Operations(CACAO) playbook into the
MISP threat intelligence platform and a cyber threat intelli-
gence ontology named Threat Actor Context ontology(TAC).
A CACAO playbook can consist of a series of actions for
cyberdefense functions such as threat hunting or attack em-
ulation. It is represented in JSON format and can be digitally
signed. To integrate the CACAO playbook into shareable threat
intelligence, a metadata template was created to map the
metadata of CACAO. The template contains elements such as
id, description, impact and severity. The MISP
platform allows the creation of objects, which are templates
that represent complex structures of attributes that share a
contextual bond. The object named course of action
describes the measures of responding to an attack. Based
on that, the proposed template elements now become the
attributes of a new object, called MISP Security Playbook
object, that can also be linked to other objects, such as
attack emulation objects. Finally, the TAC ontology, which
is based on the STIX 2.1 standard, a standard that also
includes course of action, can be converted into an
ontological representation. This representation is also based
on the proposed metadata template.

Because IoCs may not always be as effective in identifying
an attack and their value may decay with time, in [8],
the authors proposed a solution that shares ML models for
threat detection. To protect these models, they enforced a
cryptographic scheme so that only authorised parties in the
community have access to them. The sharing of ML models
is happening through a MISP object template. The goal is to
investigate a variety of ML models against a DDoS scenario
to determine which one provides a good classification of
malicious and benign traffic. The first model to be tested
was the Decision Tree Classifier with a depth of 2. The
classification was almost perfect, but when tested against a sce-
nario where the attacker sends a modified HyperText Transfer
Protocol (HTTP) payload, it misclassified the malicious traffic
as benign. Next, a Random Forest Classifier with 20 decision
trees was tested. The performance was better than the previous
model, but the modified HTTP payload was still misclassified.
The third model was a ‘OneClassSVM’ where the attack is
considered an outlier. The performance was not as good as
the other two, but it correctly classified the modified HTTP
responses as malicious. The fourth model was a Multi-Layer

Perceptron (MLP) binary classifier. The classifier not only
had excellent performance, but it also identified the modified
HTTP payload correctly as malicious. This model could be
a good contribution to the threat intelligence community.
Finally, a set of autoencoders was trained in an unsupervised
way on benign traffic. The modified HTTP payloads were
correctly classified as malicious. Next, the authors defined a
taxonomy for adversarial ML threats. Finally, a Ciphertext-
Policy Attribute-Based Encryption (CP-ABE) scheme was
used for the encryption of the data on the MISP database.

In [9], the authors present an investigation of available
formats, languages, and sources of threat feeds along with their
suitability for several use cases related to security. The cate-
gories of the examined CTI sources were internally sourced,
such as system logs and events or network events, externally
sourced observables or feeds and open-source intelligence. The
CTI format and languages investigation mainly focused on
CTI standards specifically used for CTI representation, such
as STIX, CybOX and CVRF, application-specific or vendor-
specific formats such as MISP, commonly used standards
that were not initially intended for CTI sharing and legacy
formats referred in the literature but no longer in use. The
analysis that the authors provide is focused on the CTI source
feeds, formats and languages. First, they examined the CTI
source originality, whether they are original or retransmitted.
Then, they presented the range of CTI types (like IP, URL,
domain) in the CTI source feeds. Based on that range, they
defined rich CTI as CTI with more than two types in the feed
and sparse CTI. It was found that only half of the examined
feeds contained rich CTI. Moreover, various CTI formats and
languages were searched for efficiency regarding different use
cases. These use cases could be Email Blocklists, Spam filters,
Network IDS (NIDS) or malware analysis.

The goal of this paper [10] is to capture the changes in
a threat actor’s behaviour and the polymorphism in their
actions over time. The tendency of some threat actors to
use obfuscation techniques prevents security analysts from
associating an event with a particular threat group. To resolve
this issue, the authors used a proof-of-concept ontological
representation of Threat Actor Library (TAL) to identify threat
actor types from CTI objects. TAL is a threat agent library, and
it is used for risk assessment. It enumerates twenty-one threat
actor types, such as government spies and radical activists.
Several threat actor knowledge bases are presented to show
how they could benefit from a more structured and automatic
way to query them. For example, the MISP Threat Actor
Cluster uses the term espionage for both an incident type and
a motive, which creates ambiguity. The domain ontology for
threat actor profiling created by the authors refined TAL to
remove ambiguities that may occur. As an example, the object
property hasDefiningMotivation on the ontology refers
to the object of an attack that was influenced by motivation.
It could also be hasPersonalMotivation. A threat actor
type object could be a HostileThreatActorType or a
NonHostileThreatActorType. Finally, the Lazarus
Group case is presented to evaluate how a polymorphic group



can be identified in an automatic way using deductive reason-
ing. Being polymorphic, it has exhibited behaviour that could
be categorised as organised cybercrime, hacktivists or cyber
vandals. Examining some attacks, such as the DarkSeoul
attack, and characterising them using the proposed domain
ontology, the Lazarus Group was revealed to be the one
behind them.

The goal of this paper [11] is to determine the criteria that
evaluate different TIPs. This was achieved by conducting a
literature review to gather studies related to threat intelligence
sharing (TIS) and TISPs. Out of the 40 collected papers
with the greatest relevance to the study, a set of 62 criteria
was extracted. The 62 criteria were grouped into two main
categories: functional and non-functional criteria. The func-
tional criteria contain the Phases of TIS, which are Collection,
Aggregation, Analysis and Dissemination of TI. Each one
of them contains subphases with Available Functions and
Degrees of Automation existing in every phase. The functional
criteria also contain Cross-Phase Support, which consists of
Information Security, Data Privacy, Data Quality, Trust, Import
and Export, Collaboration(which contains Anonymity Levels),
Reporting and Additional Functions. The non-functional cri-
teria contain Architecture and Interfaces (Type of Platform,
Architecture, APIs, User Interface), Content and Standardiza-
tion (Data Origin, Threat Intelligence and Standardization),
Provider and Users and Usage Fees, License and Distribution
(Usage Fees, License, Geographical Focus and Sectoral Fo-
cus). All these criteria are part of the evaluation framework,
which was then used to test ten TISPs, with three of them
included and analysed in the paper. These were MISP, OTX
and ThreatQ.Some similarities derived from the framework
were that all of them provide collection, aggregation and
dissemination of TI, all of them use the STIX, TAXII and
OpenIOC standards and all of them process external data
sources apart from internal. On the other hand, not all of them
have the same data quality and reporting functions, as only
OTX offers comprehensive reporting and individualisation.
Regarding the content, MISP focuses on IoCs while the other
two on TTPs.

In [12], T. Schaberreiter et al. introduce a framework to
evaluate trust in the quality of CTI sources. The approach
proposed here is based on a closed-world assumption. This
means that information provided by a specific set of CTI
sources is all the information that exists in the world of CTI.
The advantage of the closed world assumption is that every
time a new CTI is shared with the world, the evaluation
parameters of trust can be re-evaluated. There are two main
aspects in this framework: the first one describes a set of
quantitative evaluation parameters and the way they are com-
puted. These are Extensiveness, Maintenance, False Positives,
Verifiability, Intelligence, Interoperability, Compliance, Time-
liness, Completeness and Similarity. The second main aspect
is the derivation of a trust-based quality indicator to assess
the quality of each source that exists in the worldview. The
trust indicator(TI) of each intelligence source in the worldview
depends on the weighted sum of the respective parameters. It

also depends on the interval t at which the trust indicator is
recalculated. The selection of this time interval is dependent on
the rate at which the parameters change values and the specific
needs of the use case. The Extensiveness quality indicator
is calculated as a computational example. The data sample
contains three STIX messages from MISP.

In [13], the authors propose a platform for ORchestrated In-
formation SHaring and Awareness(ORISHA) which is backed
by a distributed Threat Intelligence Platform (TIP). In this
case, the TIP is a network of several MISP instances. The
benefits of ORISHA are the improvement of the detection ac-
curacy for the Threat Detection Systems(TDS) and the sharing
of reliable threat detection information among organisations
with different TDSs. The ORISHA platform consists of three
parts: the distributed TIP, responsible for storing data and
delivering them to the other components/other MISP instances.
The TDS layer includes ensemble-based IDS (EBIDS), an
ML-based intrusion detection method for classifying network
flows as attack-related or normal. The cooperation and active
learning among the TDSs with the goal of improving their
detection capabilities is very similar to a Query-By-Committee
(QbC) strategy. Let’s assume that TDS1 detects an anomaly in
network traffic. This triggers the creation of a MISP security
event. When the event is distributed in the TIP, a second IDS
(TDS2) analyses it. If the classification is different than the
one TDS1 gave, the event is returned to TDS1, which uses
the re-evaluated event for its training set. In the opposite case,
the event now has two consensus labels, and it is validated
by an expert and later retrieved by other TDSs.To evaluate
the platform, a series of experiments are conducted, where the
different entities in the TIP share anomalies detected by their
own TDSs. To measure the performance of the classification
models, AUC, AUC-PR and F-measure were used as metrics.
The experimental results showed an improvement in terms
of accuracy of detection due to the implementation of the
ORISHA.

In [14], K. Rantos et al. propose a layered model to
address the interoperability challenges that organisations face
when exchanging CTII. The four interoperability layers that
represent the security issues that organisations have to confront
when CTII is about to be shared are the following: legal
interoperability, which covers legal restrictions and the impact
on data privacy while sharing, policy and procedures, which
are formal statements of the organisations objectives, along
with instructions to achieve them, semantic and syntactic
interoperability, that concerns the different data types and
standards of CTII, such as STIX, MISP, CAPEC, MAEC,
IODEFv2 and IDMEF and finally technical interoperability
that involves protocols proposed for the transmission of CTII
and the protection of information during sharing. The authors
conducted an analysis of various CTII sources with respect
to interoperability and focused on semantic and syntactic
standards as well as policies. The analysis showed that 50%
of the sources chose the JSON format, while 59% and 31%
chose plaintext and CSV, respectively. Only a small percentage
opted for CTII-oriented standards such as MISP. The majority



of the sources provide information in generic formats only and
not CTII-related ones. As far as policies are concerned, only
15 out of 32 sources provide open and public information.

In [15], the authors present an evaluation methodology for
both threat intelligence standards and threat intelligence plat-
forms. Because of the overwhelming number of results found
in the literature, the standards and platforms that are unable to
cover two or more stages of the threat intelligence production
process flow were excluded. Then, the most popular free
and open-source standards and platforms were selected. To
evaluate them, a holistic architecture model was developed
based on the 5W3H (what, who, why, when, where, how,
how much and how long) method. For example, the field
describes the way the cyberattack took place and the related
techniques. Four additional entities, namely Threat, Incident,
Threat Actor and Defense, are added to the architecture.
Based on the popularity, the chosen standards were STIX,
TAXII, IODEF, RID, CybOX and OpenIOC.Based on the
holistic architecture and applicability in different use cases,
STIX, combined with TAXII, was the best choice. In the
same manner, the platforms selected for analysis were MISP,
CIF, CRITs, OpenCTI and Anomali STAXX. Based on
the holistic architecture and some processual criteria, such as
collection process, correlation and classification mechanisms,
visualisation and integration with other security tools and
platforms, MISP and OpenCTI were the two most complete
platforms.

IV. TRENDS AND RESEARCH DIRECTIONS

Based on the analysis of the previous works, the following
trends and research directions are identified:
Automation and AI: The use of automation and AI in CTI
has been growing. These technologies can help process and
analyse vast amounts of data more quickly and accurately,
enabling faster threat detection and response.
Contextual Threat Intelligence: Contextualising CTI by con-
sidering factors such as industry-specific risks, geopolitical
events, and an organisation’s own infrastructure enhances the
relevance and effectiveness of threat intelligence.
Dark Web Monitoring: Monitoring underground forums,
marketplaces, and other parts of the dark web has become
crucial for understanding cybercriminal activities, sharing in-
telligence, and staying ahead of emerging threats.
Threat Actor Attribution: While attribution remains chal-
lenging, there is growing interest in accurately attributing
cyberattacks to specific threat actors, groups, or nation-states.
This can help organisations understand motives and respond
effectively.
Regulatory Compliance: With the introduction of data protec-
tion regulations like the General Data Protection Regulation
(GDPR) and the California Consumer Privacy Act (CCPA),
threat intelligence is being used to ensure compliance and
demonstrate due diligence in protecting sensitive data.
Machine-Readable Threat Intelligence (MRTI): The adop-
tion of standardised formats for threat intelligence data enables

easier sharing, integration, and automation across security
tools and platforms.
Edge and Remote Workforce Focus: With the shift to edge
services and remote work, CTI is adapting to address the
unique security challenges associated with these environments.

V. CONCLUSIONS

The continuous evolution of cyberthreats requires the pres-
ence of adaptable and proactive countermeasures. In this paper,
we focus on CTI mechanisms, investigating existing solutions
in this field. Based on this analysis, trends and research
directions in this field are identified.
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