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Abstract—The popularity of 5G networks has resulted in
significant advancement and opportunities in connectivity and
reliability of communications, but, concurrently, it raised security
challenges and privacy concerns due to the distributed and
highly dynamic nature of these networks. In particular, while
participating devices and nodes in a 5G network need to be
resilient against cyber threats, most of them are not allowed
to exchange their data, and, therefore, they are limited only to
the corresponding patterns identified locally. To tackle this, this
paper proposes a federated learning approach to enable different
nodes to collaboratively train a unified intrusion detection system
while avoiding the direct exchange of data. In our experiments,
we tested a number of different federated learning strategies
with two (2) base stations that serve as participating clients
in a federated learning scheme, while a server orchestrates the
training phase. In terms of evaluation, the proposed solution
was tested against the 5G-NIDD dataset and produced a high
detection rate of 97.89% accuracy.

Index Terms—5G, Federated Learning, Flower, Intrusion De-
tection Systems, Privacy, Security

I. INTRODUCTION

The emerging evolution of communication technologies
resulted in the introduction and integration of fifth-generation
(5G) wireless networks in various aspects of life, offering
significant advancements in connectivity, speed, reliability,
and, overall, enhanced network capabilities. However, the
rapid increase of interconnected devices, ranging from Internet
of Things (IoT) environments to components of critical infras-
tructures, such as healthcare facilities [1], or large financial
systems, that utilise 5G communications have raised certain
concerns related to security and privacy [2], due to the fact
that these 5G ecosystems are a potential surface of attacks

for malicious actors [3]. In this context, the utilisation of
an effective Intrusion Detection System (IDS) is of critical
importance in any network’s security structure. More precisely,
an IDS serves as the main actor of every network’s defense
strategy, as it is capable of detecting both simple and advanced
cyberattacks by closely monitoring the network traffic for
abnormal activity or unauthorized access. Traditional IDSs,
however, are significantly challenged by the dynamic and
complex characteristics of 5G networks [4]. These challenges
are directly connected with the advancements that 5G networks
offer. Firstly, the heterogeneity of the diverse range of devices
that participate in a 5G ecosystem in terms of communication
protocols, or data formatting, demand a unified intrusion
detection system that is able to keep track of all types of
network communication traffic. Moreover, the vast majority
of applications that incorporate 5G communications, such
as autonomous vehicles, or industrial automation, require an
extremely low latency. As a result, the IDS of these networks
mandates that the traffic analysis and the detection of attacks
must take place without producing any significant delays.
The aforementioned challenge is highly correlated with the
massive data volume of traffic that 5G networks can potentially
generate. In particular, traditional IDSs may struggle to handle
and monitor this large magnitude of data traffic, especially,
in real-time, leading to significant delays in detecting threats.
Finally, it is important to note that due to the diverse nature of
the participating entities in a 5G network, such as individual
users, large corporations, and/or public authorities, privacy
concerns have been raised as the monitoring of the network
traffic, and, as a result, the detection of potential attacks,
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should take place within each user’s privacy rights.
One emerging and promising solution to counter the afore-

mentioned challenges is the development of an IDS in a
Federated Learning (FL) approach. FL takes advantage of
the decentralized nature of 5G networks across the different
devices and network edges to collaboratively train an IDS
without the need to share data between the participating nodes.
This approach not only takes into account privacy concerns
due to the fact that data remain at each node, where the
training takes place but also increases the adaptability and
detection capability of the whole system. Furthermore, the
communication cost is significantly decreased, as data is not
required to be transmitted through the network.

This paper aims to investigate the potential of FL-based
learning IDSs in the context of 5G networks in order to best
counter the aforementioned challenges, while, simultaneously,
providing a high-performance threat detection rate. Addition-
ally, in order to have a deeper analysis of FL utilisation in
5G networks, we conducted experiments using different FL
aggregation strategies, providing insights into the level of
influence that aggregation strategies have.

The rest of the paper is organised as follows: Section 2
provides a brief description of related works on FL-IDS in 5G
networks. Section 3 describes the architecture of the proposed
solution, while Section 4 presents the main characteristics
of the dataset that was used for the evaluation. Section 5
illustrates the experimental setup and results of the proposed
solution, and Section 6 concludes the paper with a summary of
the most important aspects and provides directions for future
research.

II. RELATED WORK

In the context of securing 5G networks against rapidly
evolving cyber threats, conventional and traditional approaches
are encountering challenges such as privacy, scalability, and
heterogeneity among others. As a result, the research commu-
nity turned its attention towards more innovative solutions that
can potentially address these challenges. More precisely, the
concept of applying federated learning approaches in Intrusion
Detection Systems showed extremely promising results, as
without any reduction in the performance of the IDS, the
participating nodes did not have to exchange any kind of data.

The IoT devices that are the main components of most
5G and edge computing architectures have limited resources,
and, therefore, they are highly vulnerable to cyber-attacks. As
Fan et al. describe in [5], three major challenges influence
the security and privacy of 5G communications. The first
challenge is located around the difficulty of training, but
mostly designing a unified IDS due to the heterogeneity and
diversity of IoT devices, and, in extend IoT networks. Next,
the exchange of raw, or processed, data between nodes is not
allowed in most cases due to privacy and security reasons.
Finally, each participating device may not produce a high
volume of data, making its corresponding IDS less reliable.
To address these challenges, the authors designed an IDS for
5G IoT environments based on Federated Transfer Learning,

called IoTDefender. In particular, the proposed solution is
responsible for the aggregation during the FL procedures,
implementing detection models utilising transfer learning, and,
simultaneously, allowing the IoT devices to share information
without leaking any sensitive data. Regarding the evaluation of
the proposed framework, IoTDefender achieved an accuracy
of 91.93%, higher than traditional methods, and, simultane-
ously, produced a lower false positive rate, demonstrating its
generalisation ability.

With the main goal being the implementation and provision
of resilient systems in the context of 5G Smart Grids, machine
learning algorithms are utilised for the detection of intrusion
by closely monitoring the incoming traffic flow. This approach
requires the participating nodes to share their private data with
a centralised entity, which is responsible for the training of the
machine learning models. In order to keep each node’s data
private, Mirzaee et al. in [6] proposed a Federated Intrusion
Detection System (FIDS) framework in 5G environments.
More precisely, they developed a Federated Deep Neural
Network (FDNN) that is trained using each node’s data, and
a server that performs the aggregation of the nodes’ local
training, and the distribution of the result of the aggregation
back to the nodes. Regarding the evaluation of the proposed
solution, it achieved a 99.5% accuracy, precision, recall, and
F1-score using the NSL-KDD dataset.

It is undoubtful that there are significant advancements in
mobile communications due to the development of 5G, and 6G
technologies. However, along with this evolution, a number of
more sophisticated and advanced attacks threaten the security,
reliability, and privacy of these networks. Even though AI-
enabled IDS have shown remarkable results in detecting
attacks, the distributed nature of 5G, and 6G, environments
requires the deployment of these systems to take place in a
distributed manner, without any reduction in the performance.
In doing so, Park et al. in [7] developed a split training
approach that allows the training of such AI models to be
in a distributed scheme. The proposed method was evaluated
against the 5G-NIDD dataset and produced 96% accuracy.

In order to counter the high heterogeneity of networks,
Popoola et al. in [8] proposed a Federated Deep Learning
(FDL) architecture, in which the participating nodes train
a deep Artificial Neural Network (ANN) using only local
traffic flow. Additionally, they developed a server that is
responsible for the aggregation of the resulting parameters
of local training and the distribution of the updated model
back to the nodes. Regarding the ANN architecture, it consists
of the input layer, two hidden layers, and the output layer.
Regarding the evaluation, the authors conducted a comparison
between different federated aggregation strategies, and they
found that FedAvg+ produced the best results with an accuracy
of 99.27%, precision of 97.03%, recall of 98.06%, and F1-
score of 97.50%.

While this was a brief presentation of related studies in the
domain of IDS in FL environments, it is obvious that the need
for an effective IDS which not only detects cyber-attacks, but
preserves the privacy of sensitive data, and, simultaneously,



provides a resilient solution is vital. In the next section, the
architecture of the proposed solution will be presented along
with the dataset that it will be evaluated against and the
corresponding results.

III. ARCHITECTURE OF THE PROPOSED SOLUTION

Fig. 1: Architecture of the proposed solution

In response to the challenge of providing an effective
federated learning-based intrusion detection system that will
be able to train an AI/ML model without exchanging data, this
paper adopted the architecture shown in Fig. 1. More precisely,
as illustrated in Fig. 1, a server that is responsible for the
orchestration of the training phase coexists and communicates
with the two (2) base stations and their corresponding devices
that monitor the traffic and perform the IDS training that we
treat as the federated learning clients. In this schema, each
client (base station) trains an AI/ML model that it received
from the server by only using data generated internally and
then transmits back to the server the updated model. Then, the
server is responsible for the aggregation of each client’s model,
using a pre-defined FL strategy. Finally, the server broadcasts
back the aggregated model to the clients, completing one
training round. The whole procedure is executed for a specific
number of training rounds, or period of time.

Fig. 2: Neural network architecture

Considering the AI/ML technique that was utilised, we
designed and developed a custom Multi-Layer Perceptron
(MLP). In particular, this MLP consists of five hidden layers,
as shown in Fig. 2 with an output layer of nine (9) neurons,
as the number of classes that are present in the dataset that
we tested our solution. Each of the successive hidden layers
has a gradually decreasing number of neurons starting at
one hundred and fifty and ending at twenty-five. With nine
different network attack type classes to forecast, we used a
soft-max activation function to set up the output layer of the
neural network.

Regarding the FL implementation, after the local training
of the aforementioned MLP by each client, the resulting
local model parameters are transmitted back to the server,
where the aggregation will take place. With the main goal
being the analysis of different federated learning strategies,
we conducted experiments using the following strategies:

1) FedAvg. An FL strategy that performs a weighted aver-
age of local model updates [9].

2) FedProx. A generalisation of FedAvg, which introduces
a proximal term, aiming to limit the impact of variable
local updates [10].

3) FedAdam. An FL optimisation strategy which intro-
duces two decay parameters, which control the impor-
tance that the algorithm will give to historical updates
and the importance that will be given to current model
updates [11].

4) FedAdagrad. An FL optimisation strategy that performs
the aggregation based on the difference of each client
model from the server’s global model [11].

5) FedYogi. An FL optimisation strategy that aggregates
the clients’ models using the distance they have from
the server’s model, the direction of this difference (sign),
and a decay parameter, as described above [11].

Our thorough exploration of these FL strategies in combi-
nation with the custom MLP that we designed, allowed us
to comprehensively assess their suitability in the detection of
attacks in 5G networks.

IV. DATASET DESCRIPTION

Under the needs of work performed for 5G-NIDD [12], the
dataset was generated in an advanced environment centered
around the 5G Test Network (5GTN) at the University of
Oulu, Finland. This open ecosystem supports 5G technology
research and was augmented with additional components for
data collection. Notably, Nokia Flexi Zone Indoor Pico Base
Stations formed the core, linked to attacker nodes, benign
traffic devices, and a Dell N1524 switch. Raspberry Pi 4 Model
B devices were configured as attackers, connected via Huawei
5G modems. An innovative approach involved capturing live
traffic from real mobile devices, encompassing both attack and
benign traffic. This dynamic environment laid the foundation
for a dataset primed for realistic network intrusion detection
analysis.

As a result, an extended data folder was created contain-
ing data both in packet-based and flow-based formats. The



data were collected from two base stations at each attack
session separately and was stored in pcapng format. Also,
a GPRS(General Packet Radio Service) Tunnelling Protocol
(GTP) layer was removed from the data and the transformed
data was saved PCAPNG (Packet Capture Next Generation),
Argus, and CSV (Comma-Separated Values) file formats. The
rest of the files include some concatenated versions of the
initial files and also some encoded versions of them. Table
I offers a summary overview of the produced files under the
work performed for 5G-NIDD.

File Name Format

Attackname BSX.pcapng pcapng
Attackname BSX nogtp.pcapng pcapng

AttacknameX.argus argus
AttacknameX.csv csv

BTS X.csv csv
Combined.csv csv
Encoded.csv csv

TABLE I: All files in the 5G-NIDD dataset

To cater to the specific requirements of our study, we
adapted our architecture to ensure that each client, symbolizing
a base station, utilizes an appropriate dataset. As a result, we
exclusively employed the datasets BTS 1.csv and BTS 2.csv
to serve the objectives of our investigation. Both datasets
include the same number of features, 52 in total, but a different
number of rows, with BTS 1.csv containing 728,316 rows and
BTS 2.csv containing 487,574 rows.

The features included in both datasets have to do with
various aspects and metrics which observed during the attack
sessions. Among these features, ”Flgs” refers to the flags as-
sociated with network packets, ”Seq” represents the sequence
number of the packet and ”Dur” and ”RunTime” capture the
times of the runtime of network flows. Various statistical
attributes such as ”Mean,” ”Sum,” ”Min,” and ”Max,” are
included in the dataset also. The protocol used is denoted
by ”Proto”, while ”sTos” and ”dTos” stand for Type of
Service (ToS) values. Attributes like ”sDsb”, ”dDsb”, ”sTtl”,
”dTtl”, ”sHops” and ”dHops” represent source and destination
behavior flags, Time-to-Live values for source and destination
and the number of hops taken by packets from source to
destination accordingly. The feature ”Cause” provides a cause
code and the packet counts are represented by ”TotPkts”,
”SrcPkts” and ”DstPkts” while byte counts are captured by
”TotBytes”, ”SrcBytes”, and ”DstBytes”. Various load and
loss metrics are also included in the dataset like ”Load”,
”SrcLoad”, ”DstLoad”, ”Loss”, ”SrcLoss”, ”DstLoss”, and
”pLoss”. ”SrcGap” and ”DstGap” signify time gaps. ”Rate”,
”SrcRate” and ”DstRate” denote transmission rates. Regarding
state information the ”State” feature is used, while TCP-related
attributes include ”SrcWin” and ”DstWin” for TCP window
sizes, ”sVid” and ”dVid” for VLAN IDs, and ”SrcTCPBase”
and ”DstTCPBase” for TCP base values. Moreover, attributes
like ”TcpRtt”, ”SynAck” and ”AckDat” provide insights into
TCP Round-Trip Time and the presence of specific packet
types. Finally, labels for attack identification (”Label”), attack

types (”Attack Type”), and the tools used in attacks (”Attack
Tool”) complete the feature set.

In the context of our study, the ”Attack Type” feature serves
as our target variable. ”Attack Type” encapsulates the diverse
array of attack types present in the dataset (Table II), each
characterized by distinct patterns and behaviors.

Attack Type Description

Benign Normal, non-malicious traffic
UDPFlood Overload of UDP packets, leading to unresponsive-

ness due to ”Destination Unreachable” replies
HTTPFlood Mimics human behavior; Python Goldeneye tool

deployed for application layer attack on Apache2
web server

SlowrateDoS Exploits application layer with gradual attacks, evad-
ing detection. Slowloris establishes prolonged web
connections, exhausting resources. Alternatively, the
attacker sends false-size POST requests, stalling
servers

TCPConnectScan Mimics TCP handshake; full 3-way handshake per-
formed

SYNScan Scan uses SYN flag to detect open ports
UDPScan Scans probes ports using UDP datagrams; open ports

respond, non-UDP likely filtered
SYNFlood Exploits TCP handshake; attacker sends SYN, ex-

hausting receiver with half-open connections
ICMPFlood Uses high-frequency ICMP echo requests, over-

whelming services and network

TABLE II: Attack types in the 5G-NIDD dataset [8]

V. EXPERIMENTAL EVALUATION

A. Experimental Setup

For the needs of our study, the experimentation configura-
tion encompassed two local clients and a central server. Python
was employed as the principal programming language, with
the aid of numpy and pandas libraries for efficient dataset
manipulation. TensorFlow facilitated the construction of the
neural network architecture while the FL was realized through
the integration with the Flower framework [13], enabling
collaborative model training across different devices. It’s im-
portant to note that the experiments ran on standard local PCs
without high-end GPU capabilities.

B. Data Pre-processing

For the use of deep learning architectures, the utilization of
datasets like BTS 1 and BTS 2 which exhibit characteristics
like missing values and categorical features poses signifi-
cant challenges in achieving an optimal model performance.
In response, the formulation of a pre-processing pipeline
emerged. This pipeline, tailored to the aforementioned needs,
assumed a central role in our approach. What’s more, its
uniform implementation across the two distinct datasets not
only ensured consistency but also provided a robust foundation
for subsequent phases of model assessment. The proposed pre-
processing pipeline encompassed several stages, each designed
to enhance the quality and integrity of the data. By addressing
the challenge of missing values, we carefully implemented
strategies for handling them, whether through sample removal
or imputation. We also took measures to ensure data fidelity



by eliminating duplicates, followed by the application of one-
hot encoding techniques for effective feature representation.
By recognizing the significant importance of feature scaling,
we adopted the standard scaling approach to homogenize the
disparate scales among attributes. Additionally, we addressed
the concern of class imbalances in the ”Attack Type” column
by incorporating the the Synthetic Minority Over-sampling
TEchnique (SMOTE) technique [14], ensuring comparabil-
ity in distributions. Following the aforementioned steps, the
BTS 1 dataset was refined to contain 3,655,341 samples, while
the BTS 2 dataset was expanded to encompass 2,533,761
samples.

C. Evaluation Results

Regarding the performance evaluation, and given the nature
of our problem as a 9-class classification, we used some of
the most common evaluation metrics like confusion matrix,
accuracy, and F1 score. The confusion matrix for our ”Attack
Type” classification problem is a structured representation that
quantifies the performance of our MLP model in the context
of federated learning by presenting the average - per class -
clients’ count of true positive (TP); count of instances where
the model correctly predicts a sample belonging to a specific
attack type as that exact one, true negative (TN); count of
instances where the model correctly predicts a sample as not
belonging to a specific attack type and it indeed does not
belong to that type, false positive (FP); count of instances
where the model predicts a sample as a specific attack type,
but in reality, the sample does not belong to that attack type
and false negative (FN); count of instances where the model
fails to predict a sample as a specific attack type, even though
the sample actually belongs to that attack type.

It’s noteworthy to mention that due to variations in the num-
ber of evaluation data samples of each client, the evaluation
metrics were computed using appropriate weights to ensure
fair assessment, by accounting for each client’s different
contributions to the overall evaluation. Based on the outcomes
derived from the confusion matrix, we calculated accuracy and
F1 score, in (1) and (2) respectively, as essential indicators of
our model’s efficacy in handling the multi-class classification
task.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

F1 =
2× TP

2× TP + FP + FN
(2)

As mentioned above, for the needs of the federated learning
analysis, we tested a range of different techniques. FedAvg and
FedProx focus on the aggregation of model updates from local
clients to improve model convergence and generalization when
FedAdam, FedAdagrad and FedYogi integrate optimization
techniques, aiming to enhance the model aggregation process
by considering factors such as adaptive learning rates, and
historical and current model updates. The exploration of
federated learning techniques encompassed a sequence of 10

iterative training rounds, where an evaluation protocol was
established to evaluate the models produced at the end of each
round using the aforementioned metrics.

Strategy Evaluation Metric Client 1 Client 2 Average

FedAvg Accuracy 99.45% 95.64% 97.89%
F1-Score 99.45% 95.55% 97.85%

FedProx Accuracy 82.22% 97.18% 88.35%
F1-Score 79.01% 96.33% 86.11%

FedAdam Accuracy 76.05% 75.12% 75.67%
F1-Score 73.47% 72.97% 73.27%

FedAdagrad Accuracy 78.35% 77.87% 78.15%
F1-Score 73.22% 74.76% 73.85%

FedYogi Accuracy 79.18% 75.49% 77.67%
F1-Score 74.00% 71.01% 72.77%

TABLE III: Experimental results - Best model per strategy

Fig. 3: Clients’ average accuracy per round

Fig. 4: Clients’ average F1 score per round

Table III shows the best model that emerged for every
federated learning strategy per client, and the average of them.
Additionally, Fig. 3 and Fig. 4 show the clients’ average
accuracy and F1-score through the training phase.

As illustrated in Table III, FedAvg had the highest perfor-
mance, compared to the other strategies. In particular, FedAvg
achieved an average 97.89% accuracy and 97.85% F1-score.
It is important to note that the second best strategy was



FedProx producing an average 88.35% accuracy and 86.11%
F1-score. On the other hand, federated optimisation strategies
did not perform well overall. Finally, in order to have a more
complete analysis, we present the confusion matrix of the
FedAvg experiment that achieved the best results in Fig. 5. The
visual representation in Fig. 5 illustrates the system’s ability in
efficiently distinguishing between benign network traffic and
a variety of attack types. Notably, the only salient observation
arises from a limited number of instances where UDPFlood
attacks are incorrectly classified as benign network flow.

Fig. 5: FedAvg Confusion matrix

VI. CONCLUSIONS & FUTURE WORK

In the realm of 5G networks, where concerns regarding the
privacy of sensitive data, and the security of the systems have
significantly raised, the need for solutions that can address
these important challenges is vital. This paper adopted a
Federated Learning approach where multiple base stations
collaboratively trained a deep ANN, without exchanging their
corresponding data, but only the network’s parameters at each
training round. Additionally, we performed an investigation on
different federated aggregation strategies from simple averag-
ing to optimisation algorithms as they can highly influence
the training phase of federated learning, and, to an extent,
the performance of the model. As shown in the experimental
results, FedAvg achieved the highest accuracy and F1-score
with the federated optimisation strategies having the poorest
performance. As a result, we conclude that intrusion detection
systems that follow a federated learning approach can be
treated as a highly resultful solution for detecting attacks in
5G networks.

Moving forward, the attention should be on defining new
and more innovative federated aggregation strategies that are
tailored to detecting intrusions aiming to optimise both the
communication and the computation efficiency of a federated
learning system. Furthermore, the exploration of practical
and large-scale scenarios and the execution of corresponding

experiments will both prove the feasibility of the proposed
solution and, simultaneously, reveal any drawbacks of it.
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S. Kumar, and H. B. McMahan, “Adaptive federated optimization,” arXiv
preprint arXiv:2003.00295, 2020.

[12] S. Samarakoon, Y. Siriwardhana, P. Porambage, M. Liyanage, S.-Y.
Chang, J. Kim, J. Kim, and M. Ylianttila, “5g-nidd: A comprehensive
network intrusion detection dataset generated over 5g wireless network,”
arXiv preprint arXiv:2212.01298, 2022.

[13] D. J. Beutel, T. Topal, A. Mathur, X. Qiu, J. Fernandez-Marques,
Y. Gao, L. Sani, K. H. Li, T. Parcollet, P. P. B. de Gusmão et al.,
“Flower: A friendly federated learning research framework,” arXiv
preprint arXiv:2007.14390, 2020.

[14] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote:
synthetic minority over-sampling technique,” Journal of artificial intel-
ligence research, vol. 16, pp. 321–357, 2002.


