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>Rapid Growth of 5G Networks: Significant advancements in connectivity, speed, and
reliability.

>Security Challenges: Increased security and privacy concerns in distributed, dynamic 5G
networks.

»>Dynamic and Complex Nature: Difficulty of traditional Intrusion Detection Systems (IDS)
to handle 5G's diverse devices.

>Privacy and Data Exchange Issues: Limitations in data sharing among devices due to
privacy concerns.

>Need for Effective IDS: Critical for detecting cyber threats, with the balance of accuracy
and privacy.
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Research Aim

Explore the use of Federated Learning (FL)-based Intrusion Detection Systems (IDS) in 5G
networks to detect 9 different types of intrusions while upholding user privacy.

% Innovative Approach: Utilization of FL to train an IDS across different nodes without
direct data exchange.

Contributions

»>Demonstrated higher effectiveness and privacy preservation of FL-based IDS.
»>Provided insights into the impact of FL aggregation strategies on IDS performance.

»Offered a scalable, adaptable solution for securing 5G networks against cyber threats.
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Al/ML Model: Multi-Layer Perceptron (IMILP) nput  Hidden  idden  Hidden  Hidden  Hidden  Output

o Layer Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer

& Hidden layers: 5

& Neurons/layer: 150 - 100 - 75 - 50 - 25
o
o

Output layer’s neurons: 9

& Output’s layer activation function: Softmax

Softmax(x) = [e”*x_1 / sum(e”x),
ex_2 [ sum(e™x),..,e*x 9/ sum(e”x)]

OOOptimizer: Adam

Adam_update = Ir * m /np.sqrt(v+ le-8)
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Federated Learning: FL Strategies

Aggregation
& FedAvg: Weighted average of local model updates.

& FedProx: Generalization of FedAvg introducing a
proximal term. Aims to reduce the impact of variable
local updates.

Optimization

&
& FedAdam: Introduces two decay parameters
controlling historical and current model update
Importance.

3 FedAdagrad: Aggregates based on the difference
between client and server models.

& . . .
& FedYogi: Considers distance from server model,
direction of difference, and a decay parameter.
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= Origin and Data Collection: Generated for 5G-NIDD at University of Oulu's 5G Test
Network, focusing on intrusion detection in 5G; data from Raspberry Pi attackers and live
mobile traffic saved independently across two base stations.

£ Data Format and Structure: Data collected in packet and flow formats, saved in
PCAPNG, Argus, and CSV file formats, divided by base station and attack session.

= Dataset Composition: Focuses on BTS 1.csv (728,316 rows) and BTS 2.csv (487,574
rows), each featuring 52 features such as network packet flags, sequence numbers,
runtimes, statistical measures, and TCP details.

= Primary Study Variable: "Attack Type" highlighted as the pivotal feature, encompassing
O distinct categories: 1 benign and 8 varied attack types.

13-15 November 2023 // Baltimore, MD, USA
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Consistent modifications applied to both BTS 1 and BTS 2 datasets.

Managed missing values through sample removal or imputation.
Eliminated duplicates.

Applied one-hot encoding for categorical attributes.

QO Oy Uy Oy

Stratified train-test split was done with an 80/20 ratio to maintain representation of all
classes.

& . .
& Standard scaling was employed to ensure all features had consistent scale and

distribution.

& SMOTE oversampling technique was implemented to address class imbalances in the

"Attack Type" column, creating synthetic samples for minority classes.

13-15 November 2023 // Baltimore, MD, USA
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Results: Evaluation Metrics

©) Confusion Matrix:
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@Accuracy:

@F ] Score:

TP: Model correctly
identifies an attack.

FP: Model incorrectly
identifies an attack.

True label

FN: Model fails to

identify an actual attack.

TN: Model correctly
identifies no attack.

TP+TN

TP+TN+FP+FN

2XTP
2XTP+FP+FN

Predicted label

——

The evaluation metrics were weighted based on each
client’s data sample size to ensure a fair assessment
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Results: Experiments Outcomes

Strategy Evaluation | Clientl | Client2 | Average
Metric

FedAvg Accuracy | 99.45% | 95.64% 97.89%

F1-score 99.45% | 95.55% 97.85%

FedProx Accuracy | 82.22% | 97.18% 88.35%

F1-score 79.01% | 96.33% 86.11%

FedAdam Accuracy | 76.05% | 75.12% 75.67%

F1-score 73.47% | 72.97% 73.27%

FedAdagrad | Accuracy | 78.35% | 77.87% 78.15%

F1-score 73.22% | 74.76% 73.85%

FedYogi Accuracy | 79.18% | 75.49% 77.67%

F1-score 74.00% | 71.01% 72.77%
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Results: Experiments Outcomes
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Conclusion

Concluding Insight: Federated Learning, particularly using the FedAvg aggregation
strategy, proves effective for enhancing privacy and security in 5G networks by enabling
base stations to collaboratively train a deep ANN for reliable intrusion detection.

Future Work

»)Aggregation Strategies: Development of innovative, intrusion-specific federated
aggregation strategies to enhance both communication and computational efficiency.

2 Real-World Testing: Extensive testing in practical, large-scale scenarios to validate the
approach's feasibility and identify any potential limitations.

13-15 November 2023 // Baltimore, MD, USA
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Thank you for your attention!
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