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Abstract—Load forecasting has a significant impact on energy
management and planning, facilitating efficient allocation of
resources and grid operations. In this study, a comparative
analysis of traditional statistical methods and deep learning
techniques is conducted utilizing a real-world dataset from
the Ikaria islanded grid. This paper focuses on four differ-
ent forecasting approaches: Autoregressive Integrated Moving
Average (ARIMA), Seasonal Autoregressive Integrated Moving
Average with Exogenous Variables (SARIMAX), Long Short-
Term Memory (LSTM) networks, and Deep Neural Networks
(DNN). Through the appropriate processing of the data, extensive
experimentation took place, aiming to capture the complex and
nonlinear patterns of the dataset. The results indicated that
LSTM and DNN outperformed both ARIMA and SARIMAX
in all three evaluation metrics, achieving 0.13, 0.09, and 2.11%,
RMSE, MAE, and MAPE, respectively. As a result, this study
validates the superiority of deep learning techniques in real-world
islanded grid environments being capable of accurately predicting
future load values based on historical data.

Index Terms—Deep Neural Networks, Electricity Demand
Prediction, Load Forecasting, Long Short-term Memory, Time
Series Analysis

I. INTRODUCTION

Electrical load forecasting plays a crucial role in the op-
eration of power systems. The ability to predict system load
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accurately enables utility companies to make well-informed
decisions regarding generation, distribution, and maintenance,
thus ensuring the reliable, cost-efficient, and sustainable supply
of electricity [1]. Traditionally, utility companies employed
statistical methods and time series analysis to perform load
forecasting. Nevertheless, these methods, even effective, do
not capture the complex, non-linear relationships and intrinsic
variabilities of electricity demand patterns, present especially
at smaller scale electricity grids [2], [3].

The emergence of smart grids and the proliferation of high-
resolution and high-volume data stemming from the plethora
of smart meters across the grid led to the wide adoption
of Machine Learning (ML) techniques for load forecasting
[4], [5]. These techniques offer the possibility to model
electricity demand patterns more accurately by learning from
historical data, considering multiple factors, and adapting to
changing patterns over time [6]. However, despite significant
advancements in these models, the utilization of ML in load
forecasting raises many challenges. These include handling
the high dimensionality of input data, accounting for temporal
and spatial dependencies, and ensuring the replicability of
forecasting models across different occasions and scales.

This work presents a thorough comparative analysis be-
tween traditional statistical methods such as Autoregressive
Integrated Moving Average (ARIMA), Seasonal ARIMA with
Exogenous Variables (SARIMAX) against modern deep learn-
ing techniques, namely Long Short-Term Memory (LSTM)
networks, and Deep Neural Networks (DNNs). This compar-
ison offers insights into their competencies and limitations in
terms of forecasting accuracy, computational efficiency, and
applicability across different forecasting horizons. Moreover,
it showcases the advantages and trade-offs associated with
each method, providing a deep understanding of how these
techniques can be applied to real-world scenarios, such as the
one tested in this work, focusing on a challenging real-world
dataset of an Islanded grid. The results of this study benchmark
the predictive performance of these models and highlight their
operational implications in the energy sector.

The contributions of this work can be summarised as
follows:

1) Deep Learning techniques can be utilized in the context
of real-world environmental settings
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2) Complex forecasting models can be integrated as part
of a digital twin of a real system, as they are capable
of predicting future values based on limited data, and,
thus, they accurately represent actual forecasts

3) Nonlinear patterns that are present in current energy con-
sumption can be captured by deep learning techniques

The remainder of the paper is organized as follows: A
relevant literature review is presented in II so as to highlight
the contributions of this work. In Section III, the methodolog-
ical framework and the corresponding mathematical analysis
of the forecasting methods are presented, the experimental
evaluation, describing the setup, the dataset, and the exper-
imental results in Section IV. Finally, Section V concludes
the paper with the main findings and proposes directions for
future research.

II. RELEVANT LITERATURE

Various kinds of forecasting techniques for energy and load
forecasting in power networks are analyzed in [7], highlighting
the benefits of Artificial Neural Networks (ANN), Machine
Learning (ML), time series analysis, such as Autoregres-
sive Integrated Moving Average (ARIMA) and probabilistic
forecasting or even the combination of the aforementioned
techniques. In this context, it was noted that the forecast
of small-scale systems, e.g., a building or a low-voltage
microgrid, was less accurate than the forecast of large systems,
where the load/generation was aggregated. Furthermore, the
accuracy of a forecasting technique was reduced when the time
horizon was expanded, meaning that forecasts of the demand
or generation within the next hour of the day tend to be more
accurate than those of the next/last time steps.

The authors of [8] perform demand forecasting in the large-
scale power system of Ukraine, exploiting the advantages of
a hybrid classical statistical and ML algorithm. The proposed
solution is particularly effective in long-term demand fore-
casts, on an hourly resolution, showing up to 96.83% accuracy.
The authors of [9] aim to forecast a single household’s daily
electricity consumption profile. For this purpose the authors
compare ANN and ARIMA and comment on the seasonal-
ity and the difficulties of forecasting such small scale load
accurately, highlighting that the average error of forecasting
for both the models was smaller in winter than in summer
and also suggesting that future research focuses on a hybrid
model based on both ARIMA and ANN models.

The authors of [10] assess the performance of physics-
informed ML models for wind turbine and photovoltaic power
forecasting. According to the results, the performance of
hybrid CNN-LSTM and Random Forest (RF) is considered
to be better than others when it comes to five-minute and
hourly resolution. Particularly for the wind turbine forecast
with an hourly resolution, the hybrid CNN-LSTM model
had the lowest RMSE, equal to 24.77%, and the lowest
MAPE, equal to 28.01%. The same applies to the photovoltaic
forecast with hourly resolution, where the respective values
are equal to 6.11% and 10.94%, resulting in a lower error in

photovoltaic-related forecasts is expected since irradiation is
more predictable than wind speed.

Following another approach, in [11] the Theta method
is proposed. This method is less complex than the afore-
mentioned ones and is considered to be similar to Simple
Exponential Smoothing (SES), which is the simplest of the
exponentially smoothing methods as it only incorporates one
parameter. Despite its simplicity, the Theta method became
popular for exceeding the rest of its competitors in the M3
competition and is, therefore, suitable for demand, generation,
or other time series forecasting.

In [12] a novel hybrid forecasting model is introduced com-
bining Grey Wolf Optimization (GWO), Convolutional Neural
Networks (CNN), and Bidirectional Long Short-Term Memory
(BiLSTM) for predicting building electricity consumption with
high accuracy and stability. Utilizing one-dimensional CNN
with BiLSTM for nonlinear feature extraction from time series
data, the performance was tested on datasets from buildings
with diverse characteristics, outperforming conventional fore-
casting models. In [13] a hybrid forecasting model is proposed
that integrates Residual Neural Network (ResNet) with LSTM
to enhance short-term load forecasting accuracy by leveraging
load time series characteristics. By reconstructing data with
multiple features for ResNet-based feature extraction followed
by LSTM for forecasting and considering weather variables
prediction, the model demonstrates superior prediction accu-
racy over conventional methods.

In [14] the authors propose a method based on statistical
analysis to pre-process the time series data before solving the
problem of short-term load prediction. The main feature of
this method is to optimize the super-parameters of a neural
network by using the statistical attributes of each time series
data set and transform the given data set into a form that allows
maximum advantage of the CNN algorithm. In [15], the short-
term load forecasting is investigated by comparing various
stochastic and deterministic methods. Utilizing historical load
data over two years, the study identifies the CNN-LSTM
hybrid model as the most accurate.

A combined probabilistic forecasting method was proposed
in [16]. Authors introduce a Combined Probabilistic Forecast-
ing Model (CPFM) that improves traditional statistical and
quantile regression machine learning models. By employing
an improved multi-objective optimizer, the CPFM forecast
accuracy is superior. The effectiveness of the CPFM is tested
upon a case study using ISO New England data, outperforming
13 other models in comparative analysis. In[17], an innova-
tive short-term load forecasting is suggested leveraging wild
horse optimization method for feature extraction, combined
with deep learning (WHODL-STLFS). Experimental results
indicate that the proposed technique achieves high accuracy in
load forecasting. In [18], the authors propose a tuned LSTM
model for multivariate time-series forecasting of electricity
load, utilizing an open European dataset for benchmarking.
The study demonstrates a significant improvement in fore-
casting accuracy through parameter tuning, comparing the
performance of traditional grid search methods.



Finally in [19] authors present a unified machine learning
framework designed for simultaneous real-time electrical load
forecasting and unsupervised anomaly detection. The proposed
approach optimizes forecasting by adapting based on past per-
formance and identifies anomalies by comparing current and
historical load fluctuations, addressing class imbalance issues
common in anomaly detection. The method was evaluated on
a complex dataset, and demonstrated superior performance
in both forecasting and anomaly detection, showcasing its
effectiveness and potential for practical application in smart
grid management.

III. METHODOLOGY

This paper employs a methodology that is designed to
thoroughly investigate and provide a comparison of the per-
formance of several forecasting techniques in the domain of
load forecasting. Based on the criticality of load forecasting in
overall energy management and planning, accurate prediction
of future energy consumption is vital in ensuring optimal
resource allocation and operational efficiency. This section out-
lines and describes the methodological framework for the eval-
uation of four (4) forecasting techniques, namely Autoregres-
sive Integrated Moving Average (ARIMA), Seasonal Autore-
gressive Integrated Moving Average with Exogenous Variables
(SARIMAX), Long Short-Term Memory (LSTM) Networks,
and Deep Neural Networks (DNNs). Each of the aforemen-
tioned methods represents a different approach to modelling
and forecasting load demand, ranging from traditional statisti-
cal analysis techniques to Machine Learning/Deep Learning
(ML/DL) methods. Through this comparative analysis, this
paper aims to reveal the strengths, limitations, and overall
performance of these methods in identifying temporal patterns
present in load data.

A. ARIMA

ARIMA is a widely known statistical method for time series
forecasting and analysis. In particular, this technique consists
of three (3) key components:

1) Autoregression (AR) component, which is responsible
for modelling the relationship between an observation
and a number of lagged observations (previous time
stamps). AR assumes that the value of a variable at a
specific given time linearly depends on its own previous
values.

2) Differencing (I) component, which is utilized to point
out the differencing of raw observations to make the
time series stationary. Stationarity ensures that statistical
characteristics such as mean, variance, and autocorrela-
tion remain constant through time.

3) Moving Average (MA) component, which models the
relationship between an observation and an error from
a moving average model which is applied to lagged
observations, and captures short-term, and potentially
random variations in the data.

An ARIMA model is typically expressed as ARIMA(p, d,
q), where:

• p, represents the order of the AR component,
• d, represents the degree of Differencing component to

achieve stationarity to the time series data,
• q, represents the order of the MA component.

The mathematical expression of ARIMA is:

Yt = µ+ ϕ1Yt−1 + ϕ2Yt−2 + . . .+ ϕpYt−p

+ θ1εt−1 + θ2εt−2 + . . .+ θqεt−q + εt

Where:

• Yt is the value of the time series at time t.
• µ is the constant (mean).
• ϕ1, ϕ2, . . . , ϕp are the parameters of the autoregressive

(AR) part of the model, where p represents the order of
the autoregressive part.

• θ1, θ2, . . . , θq are the parameters of the moving average
(MA) part of the model, where q represents the order of
the moving average part.

• εt is the error term at time t.

ARIMA technique gained popularity due to its ability to
capture short-term and long-term trends in time series data,
making it suitable for a wide range of forecasting tasks.
However, its strong dependency on linear relationships and
its sensitivity to outliers, significantly reduce its overall per-
formance.

B. SARIMAX

SARIMAX extends the ARIMA model by incorporating
seasonal components and exogenous variables into the fore-
casting processes. This technique is particularly useful in cases
where seasonal patterns and external factors influence the
corresponding time series data. SARIMAX consists of the
following components:

1) Seasonal (S) component, which is responsible for cap-
turing seasonal patterns in time series data, and, simul-
taneously, introducing additional parameters to model
seasonal variations that may exist in fixed periods,

2) ARIMA model, which included the autoregressive, dif-
ferencing, and moving average components, as described
in the previous subsection,

3) Exogenous Variables (X), also known as external regres-
sors, are factors that possibly influence the time series,
and their inclusion can potentially improve the accuracy
of forecasting.

A SARIMAX model is typically expressed as SARIMAX(p,
d, q)(P, D, Q, s), where:

• p, d, q are the non-seasonal ARIMA parameters,
• P, D, Q are the seasonal ARIMA parameters that SARI-

MAX introduces,
• s is the seasonal period, providing the number of time

steps in each seasonal cycle.



The SARIMAX equation can be expressed as follows:

(1− ϕ1L− ϕ2L
2 − . . .− ϕpL

p)

× (1− Φ1L
s − Φ2L

2s − . . .− ΦPL
Ps)

× (1− L)d(1− Ls)Dyt

= (1 + θ1L+ θ2L
2 + . . .+ θqL

q)

× (1 + Θ1L
s +Θ2L

2s + . . .+ΘQL
Qs)xt + ϵt

Where:

• L is the lag operator.
• ϕ1, . . . , ϕp and Φ1, . . . ,ΦP are the autoregressive pa-

rameters for the non-seasonal and seasonal components,
respectively.

• θ1, . . . , θq and Θ1, . . . ,ΘQ are the moving average pa-
rameters for the non-seasonal and seasonal components,
respectively.

• d and D are the orders of non-seasonal and seasonal
differencing, respectively.

• xt represents the exogenous variables.
• ϵt is the error term.

SARIMAX is applied in various fields, such as economics,
finance, and energy management, which are characterized by
seasonal patterns and external influences. Its utilization offers
a flexible method for modelling and forecasting complex data,
providing insights for decision-making processes.

C. Long Short-Term Memory (LSTM)

LSTM networks are a specialization of Recurrent Neural
Networks (RNNs) architecture, aiming to handle and tackle
the issue of vanishing gradients in traditional RNNs, making
them suitable to effectively model and forecast time series
data. In particular, LSTMs offer a way to capture long-term
dependencies that are present in sequential time-stamped data.
LSTMs consist of several features:

1) Memory Cell, which enables LSTMs to keep track of
captured information over long periods of time. This
memory cell serves as storage and is responsible for
retaining, or discarding information based on the input
and internal gates.

2) Gates, which focus on controlling the flow of informa-
tion within the network. There exist several different
types of gates, such as forget, input, and output gates,
each serving a different purpose.

3) Non-linear Activation Function, such as sigmoid, or
hyperbolic tangent (tanh) to regulate the flow of infor-
mation and compute the output of the aforementioned
gates.

The internal architecture of an LSTM network consists of
several LSTM cells in a layered approach, in which each
LSTM cell contains the memory cell, along with the forget,
input, and output gates, while the input to each cell is the
combination of the current input and output from previous
cells.

The mathematical expression of LSTM is:

ft = σ(Wf · [ht−1, xt] + bf )

it = σ(Wi · [ht−1, xt] + bi)

C̃t = tanh(WC · [ht−1, xt] + bC)

Ct = ft ∗ Ct−1 + it ∗ C̃t

ot = σ(Wo · [ht−1, xt] + bo)

ht = ot ∗ tanh(Ct)

Where:
• ft, it, ot are the forget, input, and output gates respec-

tively.
• C̃t is the candidate cell state.
• Ct is the cell state.
• ht is the output of the LSTM cell.
• Wf , Wi, WC , Wo are weight matrices, and bf , bi, bC ,

bo are bias vectors.
LSTM is a powerful and flexible approach in time series

forecasting, providing promising results as it is capable of
capturing long-term dependencies that traditional statistical
methods may struggle with, and capturing complex and non-
linear relationships in time series data.

D. Deep Neural Networks (DNNs)

DNNs are another machine-learning technique, capable of
identifying and capturing complex patterns and relationships
toward time series forecasting. While it is widely known
that DNNs are utilized in the context of image recognition
and natural language processing, they can also be effectively
applied to time series forecasting tasks. In an abstract manner,
DNNs consist of:

1) Input Layer, which receives the sequential data, repre-
sented as a time series, corresponding to a feature, or a
lagged value of the time data,

2) Hidden Layers which perform feature extraction and
nonlinear transformations on the input data. It is im-
portant to note that multiple hidden layers exist, aiming
to learn hierarchical representations of the time series
data,

3) Output Layer, which produces the forecasted values
of the data. More precisely, in the context of time
series forecasting, this layer consists of a single neuron
predicting the next value in the sequence.

The mathematical expression of DNN is:

y = f

(
W (L) · f

(
W (L−1) · f( . . . f(W (1) · x+ b(1)) . . . )

+ b(L−1)
)
+ b(L)

)
Where:
• y is the output of the neural network.
• x is the input.
• f(·) represents the activation function, such as sigmoid,

ReLU, etc.



• W (l) and b(l) are the weight matrix and bias vector,
respectively, for the l-th layer of the network.

Overall, by utilizing deep learning techniques to capture
complex patterns and dependencies, DNNs offer a powerful
approach to time series forecasting. With careful architecture
design, pre-processing steps, and appropriate training, DNNs
can provide accurate and robust forecasts for multiple time
series applications.

IV. EVALUATION ANALYSIS

A. Experimental Setup

As already described, this paper examines different fore-
casting techniques, namely, ARIMA, SARIMAX, LSTM, and
DNNs. Regarding the experimental setup, the main program-
ming language used was Python. Pandas framework was
utilized for the pre-processing of the dataset, while statsmodels
and Keras framework were utilized for the development and
testing of the forecasting techniques. It’s worth noting that
these experiments were conducted in a Macbook with the M1
chip.

B. Dataset Description

For the purposes of training the aforementioned models,
historical data concerning Ikaria’s grid operation and electrical
production had to be gathered. The dataset is publicly available
on HEDNO’s (Hellenic Energy Distribution Network Operator
– Greek DNO) website and is a combination of raw and
processed data. The features that are reported are summarised
in Table I.

TABLE I
FEATURES DESCRIPTION IN IKARIA’S DATASET

Feature Description
Timestamp The time stamp that the measure was re-

ported
Mean Hourly Load The actual mean load of the island for the

specified hourly frame in MW
Thermal Energy Produc-
tion

Thermal energy production through conven-
tional production units in MW

Active Thermal Units Specification of which conventional pro-
duction units are actively producing at the
specified time frame.

Wind Energy Production Production from wind energy of the islands
Wind Parks in MW

Wind Energy Restriction
Commands

Maximum allowed total production from
wind energy specified by HEDNO

Maximum Potential Wind
Energy Absorption

Maximum potential energy production in
MW from the Wind Parks in a theoretical
scenario without curtailments

Max Wind Actual wind energy production (4.) to max-
imum potential energy absorption (6.) ratio

Hydroelectric Production Total energy production that comes from
Ikaria’s Hydroelectric Hybrid Station in
MW

This dataset is monitored and gathered live by HEDNO’s
metering points located at the start of the Medium Volt-
age transport lines, the thermal production station, and the
dispersed production feeders respectively. The live data is
displayed in HEDNO’s SCADA systems and is also saved in

a structured form in HEDNO’s database. The active thermal
units and wind energy restriction commands are compiled
from HEDNO’s daily operational controls, and the maximum
potential wind energy absorption is calculated by extrapolating
the recorded wind speed of each park on a wind speed-
production curve. Lastly, the max speed is derived by dividing
the wind energy production by the maximum potential wind
energy absorption. This data-gathering process is necessary for
the DNO in order to surveil the grid’s operation and intervene
in real-time, create a historical archive for further analysis and
optimization, and publish the non-sensitive data to be utilized
by any interested third parties. Furthermore, certain indicators
showcase the excess wind production that was not utilized and
are useful to HEDNO’s decarbonization goals.

As far as experimentation is concerned, the first six months
of the dataset were fed as input to train the forecasting models,
while the last three months were used for evaluating the
performance.

C. Experimental Results

Aiming to measure the performance of each forecasting
method, and provide a comparative study, appropriate metrics
need to be selected. As stated in similar comparative studies,
this paper will measure the following metrics: Root Mean
Squared Error (RMSE), Mean Absolute Error (MAE), and
Mean Absolute Percentage Error (MAPE). The mathematical
formulas of these metrics are presented in the equations (1),
(2), and (3):

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2 (1)

MAE =
1

n

n∑
i=1

|yi − ŷi| (2)

MAPE =
100%

n

n∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (3)

In Table II, the aforementioned metrics per forecasting
method are reported and presented.

TABLE II
PERFORMANCE PER FORECASTING METHOD

RMSE MAE MAPE
ARIMA 1.20 0.95 25.05%

SARIMAX 4.02 3.77 92.78%
LSTM 0.14 0.11 2.45%
DNN 0.13 0.09 2.11%

Based on Table II, the superiority of deep learning tech-
niques is obvious compared to traditional statistical methods.
In particular, LSTM and DNN achieved an extremely low
RMSE, MAE, and MAPE with the DNN providing slightly
better performance with 0.14, 0.11, and only 2.45% RMSE,
MAE, and MAPE respectively. On the other hand, SARIMAX
had the poorest performance with 4.02, 3.77, and 92.78%
RMSE, MAE, and MAPE respectively. Figure 1 illustrates



and validates the high performance of DNN in predicting the
values of the last three months.

Fig. 1. Load Forecasting with DNN

V. CONCLUSIONS & FUTURE WORK

In conclusion, this comparative analysis of load forecasting
techniques provided insights into the fast-evolving landscape
of predictive modelling in energy management. Through mul-
tiple experiments and evaluations, this study proved that deep
learning techniques, particularly LSTM and DNN, outperform
traditional statistical forecasting methods such as ARIMA and
SARIMAX in real-world load forecasting settings. The ability
of deep learning techniques to capture complex patterns and
non-linear dependencies in the time series data serves as the
foundation of their superiority and their performance in suc-
cessfully analyzing modern dynamic environmental settings.
However, while deep learning approaches demonstrate high
performance, their implementation, and deployment need care-
ful consideration in the context of computational resources,
model complexity, data requirements, response time, and the
interpretability and accountability of these methods. Toward
this, future works can focus on enhancing the transparency, and
explainability of deep learning approaches in load forecasting.
Additionally, the investigation of ensemble techniques to take
advantage of the benefits of different forecasting methods
for load forecasting combined with the exogenous factors
and knowledge can significantly enrich the overall predictive
capabilities.
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Wójcikiewicz, and R. Stoean, “On the benefits of using metaheuristics
in the hyperparameter tuning of deep learning models for energy
load forecasting,” Energies, vol. 16, no. 3, 2023. [Online]. Available:
https://www.mdpi.com/1996-1073/16/3/1434

[19] X. Wang, Z. Yao, and M. Papaefthymiou, “A real-time electrical
load forecasting and unsupervised anomaly detection framework,”
Applied Energy, vol. 330, p. 120279, 2023. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0306261922015367




