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Motivation

m Load forecasting is essential for efficient energy management and grid operations.

m Accurate load forecasting enables utility companies to make informed decisions about

generation, distribution, and maintenance
m Traditional methods may not capture the complexity of the electricity demand pattern

m Deep Learning offers the potential to enhance accuracy by capturing complex

relationships

m Emphasis on the application of load forecasting techniques in real-world
environmental settings, ensuring applicability to diverse energy management

scenarios




Aim and Contribution

m Research Aim
- Prove the superiority of ML/DL in load forecasting in terms of performance
- Enhance accuracy and reliability in predicting electricity demand patterns

- Support efficient energy management, grid operations, and sustainable resource allocation.

m Contributions
- Deep Learning techniques can be utilized in the context of real-world environmental settings

- Complex forecasting models can be integrated as part of a digital twin of a real system, as they
are capable of predicting future values based on limited data, and, thus, they accurately represent
actual forecasts

- Nonlinear patterns that are present in current energy consumption can be captured by deep
learning techniques



Methodology

m Comparison of:
- ARIMA
- SARIMAX
- Long Short-term Memory (LSTM)

— Deep Neural Network (DNN)




ARIMA

1. Autoregression (AR) component, is responsible for modeling the relationship between an
observation and several lagged observations (previous time stamps). AR assumes that the

value of a variable at a specific given time linearly depends on its own previous values.

2. Differencing (I) component, which is utilized to point out the differencing of raw
observations to make the time series stationary. Stationarity ensures that statistical

characteristics such as mean, variance, and autocorrelation remain constant through time.

3.  Moving Average (MA) component, which models the relationship between an observation
and an error from a moving average model which is applied to lagged observations, and

captures short-term, and potentially random variations in the data.




SARIMAX

1. Seasonal (S) component, which is responsible for capturing seasonal patterns in time
series data, and, simultaneously, introducing additional parameters to model seasonal

variations that may exist in fixed periods.

2. ARIMA model, which included the autoregressive, differencing, and moving average

components

3. Exogenous Variables (X), also known as external regressors, are factors that possibly
Influence the time series, and their inclusion can potentially improve the accuracy of

forecasting.




Long Short-term Memory (LSTM)

1.

Memory Cell, which enables LSTMs to keep track of captured information over long
periods of time. This memory cell serves as storage and is responsible for retaining, or

discarding information based on the input and internal gates.

Gates, which focus on controlling the flow of information within the network. There
exist several different types of gates, such as forget, input, and output gates, each

serving a different purpose.

Non-linear Activation Function, such as sigmoid, or hyperbolic tangent (tanh) to

regulate the flow of information and compute the output of the aforementioned gates.



Deep Neural Network (DNN)

1.

Input Layer, which receives the sequential data, is represented as a time series,

corresponding to a feature, or a lagged value of the time data.

Hidden Layers which perform feature extraction and nonlinear transformations on the
Input data. It is important to note that multiple hidden layers exist, aiming to learn

hierarchical representations of the time series data

Output Layer, which produces the forecasted values of the data. More precisely, in the
context of time series forecasting, this layer consists of a single neuron predicting the

next value in the sequence.



Dataset

m The dataset Is available on HEDNO's website and includes raw and processed data

(

m Data collected from HEDNO's metering points at various locations

m Live data displayed in HEDNO's SCADA systems and saved in structured form in

database

m Data gathering enables DNO surveillance of grid operation, real-time intervention,

historical archive creation, and optimization
m Non-sensitive data published for use by interested third parties

m Indicators highlight excess wind production, supporting HEDNOQO's decarbonization goals



https://deddie.gr/el/themata-tou-diaxeiristi-mi-diasundedemenwn-nisiwn/leitourgia-mdn/dimosieusi-imerisiou-energeiakou-programmatismou/ησ-ικαρίας/
https://deddie.gr/el/themata-tou-diaxeiristi-mi-diasundedemenwn-nisiwn/leitourgia-mdn/dimosieusi-imerisiou-energeiakou-programmatismou/ησ-ικαρίας/

Dataset

Timestamp The time stamp that the measure was reported

Mean Hourly Load The actual mean load of the island for the specified hourly frame in MW

Thermal Energy Production | Thermal energy production through conventional production units in MW

Active Thermal Units Specification of which conventional production units are actively producing at the specified time frame

Wind Energy Production Production from wind energy of the islands Wind Parks in MW

Wind Energy Restriction

Commands Maximum allowed total production from wind energy specified by HEDNO

Maximum Potential Wind

: Maximum potential energy production in MW from the Wind Parks in a theoretical scenario without curtailments
Energy Absorption

Max Wind Actual wind energy production (4.) to maximum potential energy absorption (6.) ratio

Hydroelectric Production Total energy production that comes from Ikaria’s Hydroelectric Hybrid Station in MW

timestamp actual_mean_hourly_load thermal_energy_production wind_energy_production hybrid_production G1 G2 G3 G4 G5 G6 G7 G8 HZ restriction_command_to_wind_energy_park maximum_absorption_of_wind_energy_production

1/2/23 0:00 3,14 1,38 0,96 08 1 0,97 0,97
1/2/23 1:00 2,81 1,67 0,94 02 1 0,95 0,95
1/2/23 2:00 2,56 1,63 0,9 0,03 1 0,91 0,9
1/2/23 3:00 2,48 1,59 0,86 0,03 1 0,87 0,87
1/2/23 4:00 2,42 1,57 0,83 0,02 1 0,85 0,85
1/2/23 5:00 2,42 1,6 0,8 0,01 1 0,85 0,85
1/2/23 6:00 2,65 1,74 0,88 0,03 1 0,93 0,93
1/2/23 7:00 3,14 2,14 0,96 0,03 1 1 0,98 0,98
1/2/23 8:00 3,31 1,73 0,87 0,71 1 0,91 0,91
1/2/23 9:00 3,51 1,81 0,89 082 1 0,95 0,95
1/2/23 10:00 3,58 1,65 0,86 1,07 1 0,89 0,88
1/2/23 11:00 3,51 1,46 0,9 1,16 1 0,96 0,96
1/2/23 12:00 3,47 1,44 0,87 1,16 1 0,99 0,99
1/2/23 13:00 3,5 1,53 0,82 1,15 1 0,99 0,99
1/2/23 14:00 3,61 1,55 0,92 1,14 1 0,99 0,99
1/2/23 15:00 3,81 1,69 0,97 1,16 1 0,99 0,99
1/2/23 16:00 3,92 1,66 0,94 1,32 1 0,99 0,99
1/2/23 17:00 4,2 1,66 0,89 1,65 1 0,99 0,99
1/2/23 18:00 4,59 1,82 0,85 1,92 1 0,99 0,99
1/2/23 19:00 4,58 1,62 0,77 2,19 1 0,99 0,99
1/2/23 20:00 4,57 1,7 0,69 2,18 1 0,99 0,99
1/2/23 21:00 4,31 1,55 0,67 2,08 1 0,99 0,99
1/2/23 22:00 3,99 1,77 0,58 1,64 1 0,99 0,99
1/2/23 23:00 3,5 1,78 0,52 1,21 1 0,99 0,99
2/2/23 0:00 2,99 1,97 0,1 092 1 0,99 0,99
2/2/23 1:00 2,65 1,92 0,12 061 1 1 0,95 0,95
2/2/23 2:00 2,47 1,93 0,1 0,44 1 1 0,86 0,86
2/2/23 3:00 2,39 1,92 0,02 0,44 1 0,85 0,85
2/2/23 4:00 2,34 1,89 0,01 0,44 1 0,84 0,84
2/2/23 5:00 2,34 1,83 0,07 0,44 1 0,81 0,81




Results: Evaluation Metrics

1
m Root Mean Square Error. RMSE = \/ﬁ >N (i — Viserear )

m Mean Absolute Error. MAE = % i=1 |Yi — Ypreal

100% Yi—Ypred;
m Mean Absolute Percentage Error. MAPE = v - Iiv=1 l ypre l
i




Results: Experimental Outcomes
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Conclusion and Future Work

m Conclusion

- Comparative analysis of load forecasting techniques reveals insights into predictive
modeling in energy management and proves the superiority of ML/DL Techniques

- Deep learning methods, specifically LSTM and DNN, outperform traditional
statistical methods like ARIMA and SARIMAX in real-world load forecasting

m Future Work

- Deep learning model implementation requires careful consideration of resources,
complexity, data, and response time.

- Future research aims to improve transparency and explainability of deep learning
methods in load forecasting.

- Ensemble technigues can enhance predictive capabilities by combining various
forecasting methods with external factors like weather or economics




Thank you for your attention!
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