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Abstract—In the ever-evolving era of Artificial Intelligence
(AI), model performance has constituted a key metric driving
innovation, leading to an exponential growth in model size and
complexity. However, sustainability and energy efficiency have
been critical requirements during deployment in contemporary
industrial settings, necessitating the use of data-efficient ap-
proaches such as few-shot learning. In this paper, to alleviate
the burden of lengthy model training and minimize energy
consumption, a finetuning approach to adapt standard object de-
tection models to downstream tasks is examined. Subsequently, a
thorough case study and evaluation of the energy demands of the
developed models, applied in object detection benchmark datasets
from volatile industrial environments is presented. Specifically,
different finetuning strategies as well as utilization of ancillary
evaluation data during training are examined, and the trade-
off between performance and efficiency is highlighted in this
low-data regime. Finally, this paper introduces a novel way to
quantify this trade-off through a customized Efficiency Factor
metric.

Index Terms—Few-Shot Learning, Green AI, Deep Learning,
Model Optimization, Object Detection, Industrial Image Data

I. INTRODUCTION

Over the last few years, the adoption of Deep Learning
(DL) techniques in a variety of applications, such as energy,
construction, healthcare, security and others, has been rapidly
accelerating in a wide spectrum of domains. This growth
is propelled by the need for high accuracy and automation
in complex industrial environments, where precision and ef-
ficiency are paramount. These environments often present
unique challenges that require robust and adaptive solutions,
which DL techniques are particularly adept at providing. Fur-
thermore, this growth is fuelled by the broader evolution of AI
across various sectors, with the implementation and addition
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of new and enhanced computing and cognitive capabilities
all contributing to more sophisticated and capable AI systems
capable of tackling more difficult, general and complex tasks.

The global industrial ecosystem is increasingly incorporat-
ing AI capabilities for operational efficiency and innovation,
particularly in areas like predictive maintenance, quality con-
trol, logistics, and supply chain optimization. DL models are
crucial for identifying outliers, anomalies, and irregularities in
environments, enabling decisive decision-making and proac-
tive safety operations [1]. However, the innate nature of AI
presents challenges, particularly regarding energy consump-
tion. As complex models process larger datasets, the energy
required to train and run these models increases, raising envi-
ronmental, sustainability, and scalability concerns. Therefore,
energy efficiency of AI systems is a critical area of focus,
necessitating research to create more energy-efficient and cost-
effective AI models without compromising performance and
accuracy. Addressing this challenge is vital for the sustainable
growth and integration of AI in industrial settings.

Few-shot learning [2] (FSL) is a learning paradigm that
enables models to learn from a limited amount of data and
has emerged as a prominent solution to tackle the extensive
resource demands of traditional and modern AI models. In
the industrial ecosystem, where data can sometimes be scarce
or expensive to acquire or are dependent to sensitivity and
provenance limitations, FSL offers a viable pathway for ef-
ficient model training and optimization. This is especially
important in the case of object detection [3] where data is
not only subject to privacy regulations but also it is difficult
to acquire large amounts of image data for specific scenarios.
However, quantifying and enhancing the energy efficiency of
FSL models remains a challenge.

This paper examines the energy efficiency of FSL algo-
rithms in object detection, a crucial issue for industries seeking
sustainable and cost-effective AI solutions. This work aims
to jointly evaluate these algorithms’ performance and energy
consumption patterns, providing insights into the trade-off
between these two objectives. In particular, this work system-
atically evaluates the energy efficiency of various finetuned
YOLOv8 models, considering both detection performance and
energy consumption. To evaluate the models, three benchmark
image datasets from the volatile industrial environment are
used, namely, i) a Personal Protective Equipment (PPE) de-
tection dataset, ii) a Construction Safety detection dataset and
iii) a Fire Detection dataset. The overall contributions of this
paper can be summarized as follows:

• Introduces a novel metric, Efficiency Factor, to quantify
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and correlate the energy consumption vs performance
trade-off of FSL models.

• Presents a thorough evaluation of various finetuned mod-
els’ performance against their energy efficiency.

• Creates an in-depth comparative study of the effect of
different benchmark datasets on a widely used object
detection model.

• Evaluates the efficacy of FSL as a prominent method to
minimize training time and energy consumption in AI
models.

The rest of this paper is organized as follows: the related
work is discussed in Section II, followed by an overview
of the methodology in Section III. Section IV provides a
comprehensive analysis of the available data while measuring
the energy efficiency and performance of the models. Section
V offers concluding remarks.

II. RELATED WORK

A. Object Detection

Object Detection has made great progress through the
development of models such as YOLOv8, Mask RCNN, and
Fast RCNN, each making distinct contributions to the area.
YOLOv8, being a successor to YOLOv5, provides signif-
icant enhancements in terms of both accuracy and speed
[4] However, the energy efficiency of YOLOv8 still remains
a challenge, especially in edge computing situations. Mask
RCNN is an extension of Faster RCNN [5] that allows for
pixel-level segmentation [6], which means it can accurately
locate objects and perform instance segmentation. It performs
exceptionally well in situations that demand precise detection,
such as medical picture analysis. Nevertheless, the intricate
structure of the system results in increased computational
expenses, hence affecting its energy efficiency in settings
with limited resources. Fast RCNN, an antecedent to Faster
RCNN, integrates selective search with a deep CNN, thereby
diminishing the duplication in feature computing [7]. Although
it represented a notable advancement in the efficiency of object
identification, its dependence on external region proposal
methods hinders its speed and energy efficiency in comparison
to more integrated models such as Faster RCNN.

B. Few-Shot Object Detection

While most FSL research has traditionally focused on
image classification, in recent years there is an increasing
interest in the development of novel few-shot object detection
(FSOD) algorithms. One of the first approaches towards that
direction has proposed a reweighting module that transforms
the extracted feature representation and is jointly trained with a
YOLO detection model in a two-step training procedure [8]. A
two-step training approach has also been explored in [9] which
demonstrates the effectiveness of finetuning in FSOD without
the need for external modules. More recently, recasting the
object detection problem as an image classification problem
and learning new object classes in an adversarial manner has
also been proposed [10]. Additionally, meta-learning has been
leveraged to enable learning task-specific and task-agnostic

model parameters in the context of FSOD [11]. Finally, FSOD
has also been extended to novel settings via its combination
with incremental learning [12] and domain adaptation.

C. AI Model Energy Efficiency

The field of Green and Energy efficient AI is steadily
evolving, with research currently focusing on mitigating the
ecological consequences associated with training extensive
ML models and aiming to quantize and subsequently tackle the
energy needs of modern AI. In particular, the rise in model size
and complexity has led to a large increase in energy usage and
carbon emissions [13] and consequently, several methods have
been suggested to reduce these impacts, such as calculating the
carbon emissions caused by AI models and creating tools to
assess the environmental impact of model training. Federated
Learning (FL) has also been investigated as a means to miti-
gate energy usage [14]. However, constraints in computational
capacity and the requirement for inter-device communication
present obstacles. Although Green AI is crucial, there remains
a dearth of research on employing FSL as a viable alternative.
While meta-learning has achieved excellent results in terms
of performance in FSL, its large computational complexity
renders it inhibiting for energy efficient applications. However,
recently, transfer learning methods, such as fine-tuning, have
emerged as viable alternatives in this context, due to their high
performance and low computational cost.

III. METHODOLOGY

A. Model Architecture

Given that our focus is towards models that adhere to the
principles of Green AI[15] and at the same time demonstrate
strong generalization performance, YOLOv8, the latest version
of the You-Only-Look-Once (YOLO) object detection mod-
els family, is used. Compared to its predecessor, YOLOv5,
YOLOv8 introduces a highly efficient anchor-free object de-
tection approach that leads to increased performance.

Regarding its architecture, YOLOv8 consists of a backbone
feature extractor, used to extract meaningful feature represen-
tations from the images, followed by the model’s head network
that produces the final predictions. As for the feature extractor,
it is based on a modified version of CSPDarknet53[16]. Its
structure follows that of feature pyramid networks (FPNs)
[17], which enables the identification of objects of varying
sizes and scales within an image by extracting features at
multiple scales. On the other hand, the head network consists
of a series of convolutional layers followed by three different
detection modules whose inputs are features extracted from
different levels of the FPN, allowing for multi-scaled object
detection.

B. Few-shot Object Detection

The main objective of FSOD is training of models that
are capable of quickly adapting to novel tasks given only a
minimal number of training samples within each new task.
In the context of FSOD, a standard approach is to consider
two different sets of data with different object classes, the



base classes and the novel classes. In this case, it is realistic
to assume that the examined object detection model has
been trained on a training set that consists of abundant data
belonging to these base classes. More specifically, the training
set can be denoted as:

Dtrain = {(xi, yi)}|D
train|

i=1 (1)

where xi ∈ RM is the i-th training image, yi ∈ {0, 1, ..., NB−
1} is its label, and NB is the total number of base classes.
Consequently, a trained model fθ is produced.

Following training of the model on Dtrain, the next step
is its adaptation to the novel classes. In general, these novel
classes can be formulated as part of a few-shot task that
consists of only a small of number of novel class images
available during adaptation and an arbitrary number of novel
class images used for evaluation of the model. Specifically,
for a given task τ with NN novel classes, it can be split into
a support set S = {(xi, yi)}|S|

i=1 used for adaptation, and a
query set Q = {(xj , yj)}|Q|

j=1 used for model evaluation in
this task. Adhering to the standard methodology of FSL, N -
way K-shot tasks are examined, which consist of N novel
classes and there are K training samples for each novel class
in the task’s support set (as a result |S|= NK).

To adapt to task τ that contains the novel class samples,
the trained model fθ is further trained on τ ’s support set S,
producing an adapted model fθ′ which is then evaluated on
τ ’s query set Q. Finally, the model’s overall performance is
its mean performance across all tasks {τi}Ti=1, where T is the
total number of tasks, reported along with the corresponding
standard deviation.

C. Few-Shot Learning via Model Finetuning

Based on the aforementioned standard methodology of
FSOD, one question that typically arises in these settings is
how to effectively and efficiently obtain fθ′ from fθ using
S. One of the simplest approaches in this case, that has re-
cently achieved competitive results compared to more complex
solutions in various settings, is to simply finetune the trained
model fθ in S. Overall, this finetuning approach can be seen as
a two-step procedure. In the first step, the model is trained on
Dtrain, emulating a form of model pretraining, and producing
fθ. In the second step, the pretrained model is then finetuned
on each task’s support set S, producing the final finetuned
model fθ′ . This two-step approach is also illustrated in Figure
1.

A common consideration when finetuning is used to adapt
a model in the context of FSL is deciding on a full vs partial
finetuning approach. In general, both approaches have been
successfully employed in this setting with one side arguing
that adapting only the head of a model is enough to achieve
competitive results, without imposing any additional compu-
tational burden, and the other side claiming that finetuning the
backbone, too, is essential to avoid producing distorted feature
representations due to the possible domain shift between base
and novel classes.

𝑓θ

YOLOv8

Base Dataset

Object detection 

on base classes 𝑓θ'

YOLOv8

query-set

support-set

Novel Task

Stage 1: Pretraining on base classes Stage 2: Finetuning on novel classes

Object detection 

on novel classes

Fig. 1: Illustration of the two-step training procedure based on base class
pretraining and novel class finetuning.

To further examine these two different approaches both in
terms of downstream task performance as well as computa-
tional efficiency during training, we employ three different
model finetuning variations, leveraging YOLOv8’s internal
structure: (a) full finetuning of the whole model, including
both backbone and head, (b) partial finetuning including the
model’s head only, and (c) partial finetuning including the
model’s detection modules only.

IV. EXPERIMENTAL RESULTS

A. Experimental Configuration

To allow for a fair comparison across the three aforemen-
tioned finetuning approaches, model pretraining is fixed in
all cases and a pretrained version of YOLOv8 trained on
the MSCOCO dataset is used, specifically YOLOv8n which
consists of 3.2M parameters. In the case of full model finetun-
ing all 3.2M parameters are adapted, while detection modules
finetuning involves the adaptation of ≈750K parameters, and
head finetuning involves the adaptation of ≈1.7M parameters.
In our experiments, full finetuned models are denoted as full,
models with finetuned heads are denoted with head, and
models with finetuned detection modules are denoted with det.

Additionally, during model finetuning, object classes have
only K support set samples, with K ∈ {1, 2, 3, 5, 10, 30}. The
number of finetuning epochs is also adapted based on K. For
K = 1, the number of epochs is 10, for K ∈ {2, 3, 5} it is 30,
and finally for K ∈ {10, 30} it is 200. The use of a validation
set to measure model performance after each finetuning epoch
is also examined (despite potential computational overhead)
to facilitate selecting the best-performing model to be used
during model testing. In our experiments, models using a
validation set are denoted as best, while the rest are denoted as
last. To ensure robust comparisons, each model is evaluated
in three different downstream tasks, with the mean value and
standard deviation reported for each metric across these tasks.

Finally, the optimized AI models are tested on an edge
ecosystem, considering resource limitations. A resource-
constrained edge device with a 12th Gen Intel i7 CPU, 16GB
memory, integrated graphics, and Ubuntu 22.04 was used.

B. Datasets

For the following experiments, three different datasets
related to object detection of objects commonly found in



Fig. 2: Dataset Preview. (a) PPE, (b) Construction Safety, (c) Fire Detection

industrial settings were utilized to finetune the object detection
models, in an effort to establish recognition and proactiveness
in safety upkeeping and robust decision-making:

• Personal Protective Equipment Detection [1]: Aims to
help AI detectors locate and identify various PPE used
by first responders for enhanced safety.

• Construction Safety Detection [18]: Trains AI mod-
els to identify PPE presence or absence in indus-
trial/construction settings.

• Fire Detection: Focuses on training AI to locate, recog-
nize, and classify fires for proactive safety measures

The abovementioned datasets were utilized to finetune the
leveraged AI models of this work in the premise of evaluating
the final models’ performance vs energy efficiency for object
detection. The attributes of these datasets are summarized in
Table I, while Figure 2 shows some examples of these datasets’
images.

C. Evaluation Metrics

For the evaluation of the examined models, both perfor-
mance and efficiency should be taken into consideration. In
this setting, model performance refers to the typical evaluation
metrics used to measure the generalization capabilities of a
model on a given dataset and, consequently, can be quantified
using Mean Average Precision (mAP):

mAP =
1

N

N∑
i=1

APi (2)

where APi is the average precision for class i, and N is the
total number of classes in the dataset.

On the other hand, model efficiency refers to a measure
of how energy-efficient is the examined model. Consequently,
energy consumption, measured in watt-hours (Wh), during
training of the model is used. Since all models used here
leverage the same pretrained model, we only focus on the
energy consumption during model finetuning. To compute en-
ergy consumption, CodeCarbon, a lightweight Python library
suitable for emission and energy consumption tracking was
used.

Finally, to account for both model performance and ef-
ficiency, a novel metric, Efficiency Factor (EF ), is intro-
duced that takes into consideration both mAP and energy
consumption. Specifically, optimal models should demonstrate
high performance (high mAP) as well as high efficiency (low
energy consumption). As a result, EF can be formulated as:

EF =
mAP

1 + EC
(3)

where mAP ∈ [0, 100] is in its percentage form, and EC ∈
(0,+∞) is the model’s energy consumption measured in Wh.
A constant value is also included in the denominator so that
EF is bounded in [0, 100), with higher EF values given to
models that achieve both high mAP values during testing and
low energy consumption during training.

D. Experimental Results

Model Performance. Table II shows the performance of
all six different finetuning combinations in terms of mAP for
the three examined datasets. It is evident that in almost all
cases, using a validation set during finetuning leads to con-
sistently better-performing models, outlining the importance
of carefully selecting the number of finetuning epochs. At
the same time, increasing the number of shots also leads to
increased model performance, which is reasonable considering
that there are more available training data in the task’s support
set. Finally, model performance seems to be less sensitive in
the selection of the finetuning strategy with all three strategies
leading to comparable results for the same number of shots.
This is also illustrated in Figure 3, where the performance of
models using evaluation sets during finetuning can be seen for
different finetuning strategies and different numbers of shots.
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Fig. 3: Mean mAP and standard deviation of best models for varying
finetuning strategies and numbers of shots.

Model Efficiency. Table III shows the energy consumption
of the evaluated models during finetuning, clearly demon-



TABLE I: Main characteristics of the examined industrial object detection datasets.
Dataset Name Total Samples Classes Train Test Validation
PPE Detection Dataset 342 Helmet, Gloves, Mask, Cloth Localize and identify PPE for first responders 280 31 31
Worker-Safety Computer Vision Project 3200 Helmets, Vests, other PPE Identify presence/absence of PPE in industrial settings 2991 90 119
Fire Detection Dataset 3677 Fire scenes Locate, recognize, and classify fires 3527 - 150

TABLE II: Few-shot detection performance (mean mAP and standard devia-
tion) on each of the three examined datasets.

Dataset Model Shots
1 2 3 5 10 30

PPE

y8-det-last 9.68±1.43 6.79±2.35 10.49±1.94 10.93±1.10 16.50±1.89 19.11±1.12
y8-det-best 9.71±1.39 10.22±1.51 12.47±1.41 13.10±0.64 16.21±0.72 21.29±0.94
y8-head-last 9.97±2.04 6.84±2.32 10.95±1.66 10.91±1.88 19.63±4.09 29.88±1.49
y8-head-best 10.01±1.99 9.66±1.14 11.53±1.88 12.46±0.47 20.92±2.05 29.55±1.12
y8-full-last 9.69±1.07 8.84±2.20 12.76±3.06 10.07±3.78 13.09±2.07 29.87±1.52
y8-full-best 9.69±1.07 9.91±2.26 12.79±2.71 12.59±1.60 14.68±2.58 31.96±1.59

Fire

y8-det-last 1.63±0.24 1.99±0.49 1.75±0.15 1.74±0.42 1.54±0.49 1.63±0.53
y8-det-best 1.81±0.03 1.94±0.07 1.93±0.17 2.09±0.35 2.42±0.26 3.15±0.42
y8-head-last 1.69±0.20 2.04±0.27 1.95±0.27 1.73±0.36 0.79±0.34 1.12±0.76
y8-head-best 1.82±0.05 2.11±0.26 1.77±0.07 2.18±0.32 2.82±0.55 3.62±0.69
y8-full-last 1.61±0.15 1.39±0.27 1.75±0.98 0.86±0.38 0.73±0.40 0.84±0.69
y8-full-best 1.82±0.06 1.95±0.21 2.51±0.86 1.56±0.40 2.61±0.34 2.52±1.69

CS

y8-det-last 8.54±0.98 10.30±3.41 10.88±2.64 12.79±2.70 19.48±3.03 31.64±0.74
y8-det-best 8.62±0.85 11.44±2.91 12.67±1.65 13.81±1.60 17.17±2.46 32.02±1.95
y8-head-last 8.77±1.43 11.92±0.76 9.57±3.16 11.31±1.94 26.16±0.42 36.28±1.74
y8-head-best 8.96±1.17 13.41±1.13 12.59±2.02 12.86±1.63 23.49±4.12 36.76±1.97
y8-full-last 8.81±1.37 11.70±0.80 10.15±2.77 13.00±2.57 24.76±5.39 34.54±3.91
y8-full-best 8.92±1.23 13.30±1.22 13.09±1.89 13.89±1.66 24.67±5.21 34.19±4.06

TABLE III: Energy consumption (mean Wh and standard deviation) on each
of the three examined datasets.

Dataset Model Shots
1 2 3 5 10 30

PPE

y8-det-last 0.271±0.003 0.639±0.036 0.843±0.007 1.194±0.060 12.435±0.268 30.010±0.658
y8-det-best 0.774±0.020 2.400±0.016 2.607±0.007 2.916±0.053 24.738±0.442 42.395±1.153
y8-head-last 0.282±0.002 0.720±0.032 0.994±0.001 1.464±0.066 16.821±0.359 41.395±0.715
y8-head-best 0.779±0.015 2.280±0.045 2.668±0.017 3.070±0.047 27.647±0.185 52.831±0.691
y8-full-last 0.360±0.004 1.095±0.068 1.517±0.014 2.196±0.096 25.169±0.290 63.614±0.919
y8-full-best 0.852±0.003 2.762±0.020 3.190±0.017 3.866±0.077 36.599±0.224 74.630±1.195

Fire

y8-det-last 0.487±0.010 0.601±0.005 0.660±0.007 0.734±0.004 3.772±0.040 10.294±0.062
y8-det-best 2.161±0.041 6.341±0.015 6.448±0.036 6.573±0.011 43.335±0.470 48.161±0.434
y8-head-last 0.545±0.009 0.741±0.012 0.783±0.009 0.897±0.013 5.709±0.021 13.889±0.110
y8-head-best 2.316±0.069 6.734±0.020 6.775±0.032 6.809±0.013 46.277±0.760 50.452±1.361
y8-full-last 0.532±0.012 0.782±0.014 0.852±0.009 1.018±0.013 7.235±0.018 20.388±0.504
y8-full-best 2.273±0.014 6.421±0.044 6.472±0.039 6.576±0.113 43.477±0.259 54.348±1.413

CS

y8-det-last 0.443±0.007 0.857±0.011 1.095±0.025 1.677±0.028 15.681±0.088 43.325±0.673
y8-det-best 1.855±0.077 5.588±0.031 5.620±0.053 6.111±0.160 44.621±0.703 70.761±1.686
y8-head-last 0.495±0.006 1.032±0.008 1.365±0.041 2.033±0.013 20.858±0.384 57.974±0.673
y8-head-best 1.801±0.045 5.506±0.025 5.778±0.037 6.300±0.102 49.440±0.402 85.889±0.524
y8-full-last 0.616±0.009 1.468±0.018 1.913±0.067 3.093±0.031 33.436±0.776 88.492±0.635
y8-full-best 1.986±0.097 5.977±0.045 6.222±0.040 7.263±0.079 62.464±1.427 119.86±2.998

strating that finetuning only the detection modules without
using a validation set consistently outperforms the rest of the
models in all three datasets and for each number of shots.
Overall, models that do not use a validation set demonstrate
better energy efficiency compared to the corresponding ones
that use, which is logical given that finetuning becomes less
computationally expensive without the use of the validation set
in each finetuning epoch. Additionally, reducing the number
of model parameters that are finetuned also leads to reduced
energy consumption since the finetuning procedure becomes
less computationally heavy.

Effect of finetuning. Figure 4 illustrates model perfor-
mance with respect to the energy consumed during training
for each of the examined datasets. Overall, optimal models in
terms of performance and energy efficiency should achieve
high mAP combined with low energy consumption. As a
result, models that lie on the upper left area of each scatter
plot are considered best. However, there is a clear trade-off
between performance and efficiency since better-performing
models consume more energy during finetuning. Finally, it is
also worth noticing that finetuning the model’s head seems to
constitute a good compromise between these two conflicting
objectives, especially for an increased number of shots.

Effect of validation set. To illustrate how model perfor-
mance with respect to energy consumption is affected by the
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Fig. 4: mAP with respect to energy consumption for different finetuning
strategies and numbers of shots.

use of a validation set during finetuning the related results
from the PPE dataset are displayed in Figure 5. Similar to
Figure 4, there seems to be a clear trade-off between model
performance and energy consumption, underlining the chal-
lenges in developing FSOD models that are both sustainable
and effective. Additionally, in terms of mAP, the use of a
validation set becomes less important as the number of shots
increases. However, its use leads to a significant increase in
energy consumption, rendering it less useful in these scenarios.

EF as a consolidated performance-efficiency measure.
While performance and training efficiency seem to be two
conflicting objectives in the context of FSOD, it is important
to be able to compare models in a unified way, taking into
consideration both of these desired properties. Table IV shows
the EF values of the examined models in all three datasets
for a varying number of shots. It is manifest that not using
a validation set during finetuning leads to increased EF
values due to the reduced energy consumption of these models
compared to the corresponding ones that use validation sets.
Additionally, while adapting less parameters during finetuning
shrinks energy consumption, it does not necessarily lead to
increased EF values, since it might also be accompanied
by a loss in performance. However, the number of shots
directly affects EF , with a smaller number of shots leading
to increased EF values. This can be attributed to the dis-
proportionate increase in energy consumption as the number
of shots increases because of the corresponding escalation of
the finetuning epochs. The aforementioned observations are
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Fig. 5: Model performance with respect to energy consumption in the PPE
dataset.

TABLE IV: Model performance per units of energy efficiency (mean EF and
standard deviation) on each of the three examined datasets.

Dataset Model Shots
1 2 3 5 10 30

PPE

y8-det-last 7.618±1.141 4.151±1.475 5.696±1.077 4.977±0.439 1.230±0.150 0.617±0.044
y8-det-best 5.484±0.828 3.008±0.453 3.456±0.385 3.347±0.208 0.630±0.026 0.491±0.032
y8-head-last 7.784±1.605 3.982±1.363 5.488±0.832 4.417±0.698 1.106±0.248 0.705±0.033
y8-head-best 5.635±1.154 2.948±0.374 3.146±0.519 3.060±0.079 0.730±0.071 0.549±0.027
y8-full-last 7.132±0.808 4.255±1.204 5.071±1.226 3.160±1.228 0.500±0.079 0.462±0.024
y8-full-best 5.235±0.575 2.637±0.605 3.052±0.647 2.590±0.348 0.390±0.067 0.423±0.027

Fire

y8-det-last 1.096±0.159 1.241±0.301 1.052±0.085 1.002±0.244 0.326±0.101 0.145±0.047
y8-det-best 0.573±0.003 0.265±0.010 0.260±0.023 0.276±0.047 0.055±0.006 0.064±0.008
y8-head-last 1.097±0.131 1.173±0.146 1.094±0.157 0.913±0.197 0.119±0.050 0.075±0.050
y8-head-best 0.549±0.007 0.272±0.033 0.227±0.010 0.280±0.041 0.060±0.013 0.070±0.013
y8-full-last 1.051±0.108 0.777±0.147 0.945±0.531 0.426±0.183 0.089±0.049 0.039±0.032
y8-full-best 0.556±0.019 0.263±0.028 0.336±0.114 0.206±0.054 0.059±0.008 0.046±0.030

CS

y8-det-last 5.762±0.801 6.936±0.637 4.819±1.566 4.295±1.090 1.211±0.215 0.726±0.015
y8-det-best 3.009±0.272 2.065±0.234 1.866±0.287 1.836±0.289 0.397±0.063 0.452±0.026
y8-head-last 5.868±0.975 5.866±0.398 4.067±1.415 3.724±0.620 1.197±0.034 0.615±0.023
y8-head-best 3.195±0.367 2.061±0.176 1.855±0.287 1.759±0.205 0.466±0.085 0.423±0.023
y8-full-last 5.452±0.864 4.742±0.338 3.508±1.046 3.171±0.602 0.723±0.171 0.386±0.046
y8-full-best 2.978±0.322 1.907±0.185 1.813±0.273 1.679±0.184 0.391±0.089 0.282±0.026

also illustrated in Figure 6, where the EF values of models
finetuned without using a validation set are displayed.

V. CONCLUSIONS

While modern machine and deep learning approaches have
led to tremendous strides towards operational efficiency, pro-
cedure optimization, and safety enhancement in various in-
dustrial settings and applications, their adaptation to realistic
volatile industrial environments with scarce available data has
been limited. At the same time, recent research developments
have mainly focused on performance increase overlooking en-
ergy efficiency which is also a critical factor in these scenarios.
In this paper, we examine how few-shot learning can be lever-
aged in the context of object detection in industrial settings
to produce models that demonstrate both high performance
and energy efficiency. Using a finetuning-based approach, an
object detection model is adapted to downstream detection
tasks with limited samples. An empirical study based on three
different industrial datasets is conducted, demonstrating the
trade-off between model performance and energy efficiency,
while also examining how these variables are affected by dif-
ferent finetuning strategies. Finally, a novel metric, Efficiency
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Fig. 6: Mean EF and standard deviation of last models for varying finetuning
strategies and numbers of shots.

Factor, is introduced to help quantify the interaction of model
performance and efficiency in a consolidated way.

ACKNOWLEDGEMENT

This project has received funding from the European
Union’s Horizon Europe research and innovation programme
under grant agreement No. 101070181 (TALON).

REFERENCES

[1] A. Sesis, I. Siniosoglou, Y. Spyridis, G. Efstathopoulos, T. Lagkas,
V. Argyriou, and P. Sarigiannidis, “A robust deep learning architecture
for firefighter ppes detection,” in 2022 IEEE 8th World Forum on Internet
of Things (WF-IoT), 2022, pp. 1–6.

[2] G. Tsoumplekas, V. Li, V. Argyriou, A. Lytos, E. Fountoukidis, S. K.
Goudos, I. D. Moscholios, and P. Sarigiannidis, “Toward green and
human-like artificial intelligence: A complete survey on contemporary
few-shot learning approaches,” arXiv preprint arXiv:2402.03017, 2024.

[3] R. Padilla, S. L. Netto, and E. A. B. da Silva, “A survey on perfor-
mance metrics for object-detection algorithms,” in 2020 International
Conference on Systems, Signals and Image Processing (IWSSIP), 2020,
pp. 237–242.

[4] F. M. Talaat and H. ZainEldin, “An improved fire detection approach
based on YOLO-v8 for smart cities,” Neural Computing and Applica-
tions, vol. 35, no. 28, pp. 20 939–20 954, Oct. 2023.

[5] N. Rane, “Yolo and faster r-cnn object detection for smart industry
4.0 and industry 5.0: applications, challenges, and opportunities,” SSRN
Electronic Journal, 01 2023.

[6] K. Sujatha, K. Amrutha, and N. Veeranjaneyulu, “Enhancing object
detection with mask r-cnn: A deep learning perspective,” in 2023
International Conference on Network, Multimedia and Information
Technology (NMITCON), 2023, pp. 1–6.

[7] T. Diwan, G. Anirudh, and J. V. Tembhurne, “Object detection using
YOLO: challenges, architectural successors, datasets and applications,”
Multimed. Tools Appl., vol. 82, no. 6, pp. 9243–9275, 2023.

[8] B. Kang, Z. Liu, X. Wang, F. Yu, J. Feng, and T. Darrell, “Few-
shot object detection via feature reweighting,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision, 2019, pp.
8420–8429.

[9] X. Wang, T. E. Huang, T. Darrell, J. E. Gonzalez, and F. Yu,
“Frustratingly simple few-shot object detection,” arXiv preprint
arXiv:2003.06957, 2020.



[10] B. Li, B. Yang, C. Liu, F. Liu, R. Ji, and Q. Ye, “Beyond max-margin:
Class margin equilibrium for few-shot object detection,” in Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition,
2021, pp. 7363–7372.

[11] Y.-X. Wang, D. Ramanan, and M. Hebert, “Meta-learning to detect rare
objects,” in Proceedings of the IEEE/CVF International Conference on
Computer Vision, 2019, pp. 9925–9934.

[12] L. Yin, J. M. Perez-Rua, and K. J. Liang, “Sylph: A hypernetwork
framework for incremental few-shot object detection,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2022, pp. 9035–9045.

[13] P. Henderson, J. Hu, J. Romoff, E. Brunskill, D. Jurafsky, and J. Pineau,
“Towards the systematic reporting of the energy and carbon footprints
of machine learning,” J. Mach. Learn. Res., vol. 21, no. 1, jan 2020.

[14] X. Qiu, T. Parcollet, J. Fernandez-Marques, P. P. de Gusmao, Y. Gao,
D. J. Beutel, T. Topal, A. Mathur, and N. D. Lane, “A first look into the
carbon footprint of federated learning.” J. Mach. Learn. Res., vol. 24,
pp. 129–1, 2023.

[15] R. Schwartz, J. Dodge, N. A. Smith, and O. Etzioni, “Green ai,”
Communications of the ACM, vol. 63, no. 12, pp. 54–63, 2020.

[16] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “Yolov4: Op-
timal speed and accuracy of object detection,” arXiv preprint
arXiv:2004.10934, 2020.

[17] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie,
“Feature pyramid networks for object detection,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2017, pp.
2117–2125.

[18] computer vision, “Worker-safety dataset,” https://universe.roboflow.
com/computer-vision/worker-safety, jul 2022, visited on 2024-01-
23. [Online]. Available: https://universe.roboflow.com/computer-vision/
worker-safety

 https://universe.roboflow.com/computer-vision/worker-safety 
 https://universe.roboflow.com/computer-vision/worker-safety 
https://universe.roboflow.com/computer-vision/worker-safety
https://universe.roboflow.com/computer-vision/worker-safety

	Introduction
	Related Work
	Object Detection
	Few-Shot Object Detection
	AI Model Energy Efficiency

	Methodology
	Model Architecture
	Few-shot Object Detection 
	Few-Shot Learning via Model Finetuning

	Experimental Results
	Experimental Configuration
	Datasets
	Evaluation Metrics
	Experimental Results

	Conclusions
	References

