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AI in Industrial Applications

• Sustainability and energy efficiency are critical requirements in industrial settings

• Data can be scarce or expensive to acquire due to privacy regulations

• Hardware and bandwidth resources are limited on edge devices

Few-shot Learning

• Learning from a limited amount of data

• Reduced resource demands, alleviation of lengthy model training

• Finetuning-based approaches have shown promising results

Current Limitations

• Quantifying and enhancing the energy efficiency of finetuning-based FSL models is an 

underexplored topic
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• Explore the trade-off between the training performance and energy efficiency of finetuning-

based methods for few-shot object detection

• Propose Efficiency Factor as a novel metric to quantify the performance vs energy consumption 

trade-off of FSL models

• Perform a thorough performance and energy consumption evaluation of finetuning-based object 

detectors on three benchmarks of volatile industrial data



Methodology
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• Objective:

• Develop a model that can be adapted to each novel few-shot task (e.g., learn to identify new classes) and 

achieve good performance in it.

• Novel few-shot task

• Most object detection datasets with industrial data are typically small

• Under this problem formulation, these datasets constitute our novel few-shot tasks

• Each novel few-shot task (dataset with new classes) contains NN classes that the model has not 

encountered before

• Each novel few-shot task can be broken down as follows:

o Support set S: Used for training, contains 1-30 samples / class (also called samples)

o Query set Q: Used for evaluation

• Base dataset Dtrain

• Contemporary object detection modules are typically pretrained in a 

large dataset containing abundant annotated images (e.g., MS-COCO)

• This dataset contains images of objects belonging to NB classes

• Under this problem formulation this dataset constitutes the base 

dataset Dtrain that the Yolo model is initially trained on.
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Object Detector Model: YOLOv8n (3.2M 

parameters)

Main Components:

• Backbone feature extractor

o CSPDarknet53 based on the Feature Pyramid 

Network (FPN) architecture

• Detection Head

o Convolutional layers

o Three detection modules for multi-scaled 

object detection Source: https://github.com/ultralytics/ultralytics/issues/189
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Backbone

• Primary Function: 

• Acts as the feature extractor in the neural network.

• Process Details:

• Processes input images through convolutional 

layers.

• Generates feature maps capturing essential visual 

details.

• Impact on Performance:

• Influences the speed of object detection.
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Detection Head

• Primary Function: 

• Responsible for making final predictions in the 

network.

• Process Details:

• Receives processed feature maps from the backbone.

• Applies convolutional layers specifically designed to 

predict class probabilities, object locations, and size.

• Outputs:

• Generates bounding boxes around detected objects.

• Assigns class labels and confidence scores to each 

detection.
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Detection Module

• Primary Function:

• Localizes and classifies objects within the image.

• Process Details:

• Integrates feature maps from both the backbone 

and neck.

• Utilizes multiple scales for detection to enhance 

accuracy at various object sizes.

• Components:

• Consists of multiple detection layers tailored for 

different scales.

• Each layer predicts bounding boxes, class 

probabilities, and objectness scores.
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1st stage: Pretrain model in the base dataset 

Dtrain  (MS-COCO as the base dataset)

2nd stage: Finetune different modules of the model 

in the novel few-shot dataset (PPE, CS, Fire) to 

enable the model recognize the new classes

Finetuning strategies:

We employ three strategies for finetuning:

• Whole model (full finetuning), finetuned parameters: 3.2M 

• Detection Heads (partial finetuning), finetuned parameters: 1.7M

• Detection Modules (partial finetuning), finetuned parameters: 750K

These strategies train different parts of the Yolov8 model to investigate 

the best optimization technique under Few-shot learning.
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Results[1/5] - Datasets
Utilization of 3 open-source datasets of objects found in industrial settings

Dataset No. Classes Classes Purpose

PPE Dataset 4 Helmet, Gloves, Mask, 

Cloth

Localize and identify PPE for 

first responders

Construction Safety 

(CS) Dataset

3 Helmets, Vests, other PPE Identify presence/absence of 

PPE in industrial settings

Fire Dataset 1 Fire scenes Locate and recognize fires

PPE Dataset CS Dataset Fire Dataset
11
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• Object Detection Performance: Mean Average Precision (mAP)

• Energy Efficiency: Energy consumption (Wh) during finetuning stage

• Efficiency Factor (EF): Novel metric that takes into consideration both mAP and energy 

consumption (EC)

• Higher EF values given to models with high mAP during evaluation and low energy 

consumption during finetuning
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Main Insights:

• Increasing the number of shots (images per class) leads to increased model performance

• Comparable performance for all finetuning strategies in most cases for the same number of 

shots

• Notably, the Full model achieves worst results than the Detector/Head because the whole model needs 

bigger dataset to train efficiently.
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Main Insights:

• Reducing the number of finetuned parameters leads to reduced energy consumption

• Trade-off between model performance and energy efficiency

• Finetuning only the detection heads achieves the best performance vs efficiency balance

• Finetuning the detector modules is the most energy-efficient choice, but the performance (mAP) is poor.

• Finetuning the whole model has the second-best performance, and it is too energy-consuming.

• Finetuning the detection heads leads to the best compromise between performance and energy preservation.
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Main Insights:

• Finetuning less parameters reduces energy consumption but does not necessarily lead to 

increased EF values

• Best EF values achieved when the number of shots is small

• As the number of shots (i.e., images per class) increases, the energy consumption needed to finetune the 

model outweighs any performance advantage and as a result the EF metric drops significantly.



Conclusion
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Takeaway points:

• Energy efficiency evaluation of FSL approaches has been an underexplored topic

• This study: focus on finetuning-based approaches for object detection in industrial datasets

• Examination of full and partial finetuning approaches on YOLOv8

• Trade-off between model performance and energy efficiency

• Introduction of Efficiency Factor (EF) as a metric that captures and quantifies this trade-off
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Energy Efficiency

intrusion detection; vulnerability research; risk 

assessment; honeypots; security games

Cybersecurity in Critical 

Infrastructures

Energy Efficiency

5G core, NG-RAN, 5G Testbed, NFV, SDN, PFCP, AI 

Optimization, HTTP2

Beyond-5G Communications

smart grid; smart meters; PLCs; RTUs; IoT Protocols; IoT 

Security & Privacy, Energy Optimization

AI- Architectures, Data Analysis, Federated Learning, AI 

Optimization, Data Oriented AI

AI & Advanced Analytics

Energy EfficiencyMINDS addresses these challenges 
with leading edge solutions that 
harness the power of artificial 
intelligence, machine learning and 
IoT technologies.
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