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ABSTRACT Despite the fact that Artificial Intelligence (AI) has boosted the achievement of remarkable
results across numerous data analysis tasks, however, this is typically accompanied by a significant short-
coming in the exhibited transparency and trustworthiness of the developed systems. In order to address the
latter challenge, the so-called eXplainable AI (XAI) research field has emerged, which aims, among others, at
estimating meaningful explanations regarding the employed model’s reasoning process. The current study
focuses on systematically analyzing the recent advances in the area of Multimodal XAI (MXAI), which
comprises methods that involve multiple modalities in the primary prediction and explanation tasks. In par-
ticular, the relevant AI-boosted prediction tasks and publicly available datasets used for learning/evaluating
explanations in multimodal scenarios are initially described. Subsequently, a systematic and comprehensive
analysis of the MXAI methods of the literature is provided, taking into account the following key criteria:
a) The number of the involved modalities (in the employed AI module), b) The processing stage at which
explanations are generated, and c) The type of the adopted methodology (i.e. the actual mechanism and
mathematical formalization) for producing explanations. Then, a thorough analysis of the metrics used for
MXAI methods’ evaluation is performed. Finally, an extensive discussion regarding the current challenges
and future research directions is provided.

INDEX TERMS Artificial intelligence, deep learning, evaluation, explanation, multimodal explainable
artificial intelligence, neural networks.

I. INTRODUCTION

OVER the last decade, humanity has witnessed unprece-
dented advancements in the field of Artificial Intelli-

gence (AI), largely due to the emergence of the so-called
Deep Learning (DL) paradigm that relies on the deployment
of large-scale artificial neural networks and high-performing
(GPU-enabled) computational infrastructures [1]. The intro-
duced algorithms have been adopted in numerous application
areas, leading to ground-breaking solutions and tremendous
performance improvements. For example, DL has revolution-
ized the nature of research in the fields of computer vision,
Natural Language Processing (NLP), audio analysis, self-

driving cars and robotics [2]–[6], to name a few.

Although AI-enabled solutions have consistently resulted
into remarkable outcomes across various tasks to which they
have been applied, this is, however, accompanied by a cost in
the exhibited transparency and trustworthiness of the devel-
oped systems [9]. In particular, it is typically very difficult to
provide compact and precise explanations of the Neural Net-
works’ (NNs) behavior and their eventual decision-making
process. In order to address the latter challenge, the so-called
eXplainable AI (XAI) research field has emerged, which
aims, among others, at estimating meaningful explanations
regarding the model’s reasoning procedure [9]–[16]. More
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(a) (b)

FIGURE 1: Difference between unimodal andmultimodal XAI: a) Unimodal explanation (saliencymap) for image classification
[7], and b) Multimodal explanation (visual and text) zero-shot learning [8].

specifically, how a prediction model works, how input data
are used and what are the most critical/contributing features
are some of the questions that XAI aims to answer. In this
respect, XAI methods contribute towards making the mod-
els for the primary prediction task more transparent, while
also significantly supporting the process of improving their
performance. Indicative results of one of the most popular
XAI methods are presented in Fig. 1a, where the Gradient-
weighted Class Activation Mapping (Grad-CAM) approach
is used for detecting and removing model bias in an image
classification scenario [17].

While a large body of research works devoted to XAI has
already been introduced, more recently the so-called Multi-
modal XAI (MXAI) approaches have been proposed, which
naturally extend the fundamental principles and goals of uni-
modal XAI to the multimodal case (i.e. AI/DL-empowered
methods that involve multiple types of modalities). The cur-
rent work makes use of the term modality as defined in [18],
which states that ‘‘Modality refers to the way in which some-
thing happens or is experienced and a research problem
is characterized as multimodal when it includes multiple
such modalities". In other words, the current work considers
as MXAI methods those XAI approaches where: a) Multiple
(two or more) modalities are used by the primary prediction
model, b) Multiple (two or more) modalities are used for
producing the primary models’ behavior explanation, or c)
The unimodal feature spaces of the primary model’s input
and the generated explanation are different (e.g. image/visual
classification prediction (input) and textual explanation (out-
put)). Therefore, MXAI refers to methods that overall involve
multiple modalities in the primary and the explanation tasks.
In this context, the most commonmodalities that are typically
used in multimodal analytics schemes (and which in turn
require multimodal analysis for explaining their behavior)
include visual, audio, text, tabular, and graph data [8], [19]–
[21].

Investigating the scope of MXAI in more detail, questions
like ‘‘How?", ‘‘What?" and ‘‘Why?" need to be addressed
in the multimodal setting, i.e. taking into account the in-

creased AI/ML model complexity and the respective data
multimodality, which inevitably requires a different mathe-
matical consideration than that in the conventional unimodal
XAI case. For example, it is evident that the two modalities
that are used in Fig. 1b to explain a particular classifica-
tion decision provide a more complete, justified and human-
understandable explanation, compared to the respective one
in Fig. 1a. Therefore, MXAI approaches can support expla-
nations using multiple modalities that are complementary and
cover more aspects of explainability. While aiming at devel-
oping robust MXAI schemes, the following key challenges
(that also constitute clear advances and contradistinctions
from the unimodal XAI case), need to be addressed (among
others):

• Identification of the modality with the highest impact on
the overall model’s prediction;

• Discovery of the most salient features in each modality;
• Explanation of the employed modality fusion scheme

itself, in order to understand the overall model’s infer-
ence procedure and the cross-modal correlations that are
learned;

• Detection of causal relations in the model’s input-output
data streams for generating explanations more easily
conceivable by humans;

• Analysis of algorithms of increased complexity that are
usually needed for handling multimodal data.

As clearly outlined by the above analysis, MXAI emerges
as a rather challenging, yet promising, research field that
has recently received increased attention, while its particular
characteristics differentiate it significantly from the conven-
tional unimodal XAI paradigm. In this context, this study
aims to comprehensively investigate, summarize and analyze
in depth all recent advances and current research trends in the
field of MXAI. Specifically, the main contributions of this
work are:

• Formulation of a comprehensive registry of AI/ML-
boosted tasks (i.e. specific application cases) where
MXAI solutions have been applied until now, as well
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TABLE 1: Datasets for MXAI learning and evaluation for a VQA task.

Dataset (date) Input space Output space Description

VQA-X (2018) [22] Image, textual questions Textual answer,
textual explanation

Extension of VQA 2.0 [23] (204,721 images, 1 million questions, 6.5
million of answers and 295,538 complementary QA pairs) with one
textual explanation for each training QA pair, three for those in test/val
sets and visual explanations collected from humans.

VQA-E (2018) [24] Image, textual questions Textual answer,
textual explanation

VQA 2.0 extension with explanations created from im-
age/question/answer triplets.

TextVQA-X (2021)
[25] Image, textual questions

Textual answer,
visual & textual
explanation

In addition to images (11,681 instances), questions (15,374 instances)
and answers, it contains visual and textual explanations (67,055 instances
each).

SCIENCEQA (2022)
[26]

Image and/or textual
context, textual questions

Textual answer,
lecture, text
explanation

Multiple choice questions in various scientific fields annotated with
lectures (17,798 instances) and textual explanations (19,202 instances).
Some questions have image context (10,332 instances), some text context
(10,220 instances) and some both (6,532 instances).

CLEVR (2017) [27] Image, textual questions,
symbolic program Textual answer

Image (100,000 instances), questions (864,968 instances) and answers
(849,980) for training and validation. Only images and questions for
testing. Annotated scene graphs and symbolic program representations for
images in training and validation sets.

CLEVRCoGenT
(2017) [27]

Image, textual questions,
symbolic program Textual answer Same with CLEVR, but the objects and their colors in images are captured

under two different conditions.

SHAPES (2016) [28] Image, textual questions,
symbolic program Textual answer Yes/no answers and annotated programs for each question (244 unique

questions for 15,616 images).

Visual genome
(2017) [29]

Image, textual questions,
scene graph, attributes Textual answer

It contains images (108,077 instances) with region descriptions (4,3 mil-
lion instances), objects (1,4 million instances), relations between objects
(1,5 million instances), attributes (1,6 million instances), scenes (108,249
instances), region graphs (3,8 million instances) and question-answers
(1,773,258 instances).

VQA-HAT (2017)
[30] Image, textual questions Textual answer,

attention map

Extension of the VQA dataset of [31] (614,163 questions, 203,721 images
and 10 answers for each train and validation question) with human atten-
tion maps for a subset of the training and the validation sets (58,475 and
1,374 instances, respectively).

as a thorough report of the relevant datasets that
have been used for learning/evaluating explanations in
multimodal scenarios;

• Systematic and comprehensive analysis/review of
MXAImethods that have been introduced so far, taking
into account three main criteria:

-- the number of involved modalities (in the AI/ML
module);

-- the processing stage at which explanations are
generated;

-- the type of the adopted methodology (i.e. the
actual mechanism andmathematical formalization)
for producing explanations;

• Thorough examination of the metrics used for MXAI
methods’ evaluation;

• Extensive discussion of current challenges and future
research directions in the field.

It needs to be highlighted that the current work signifi-
cantly extends the respective/previous review of the MXAI
methods’ landscape presented in [32], since the present study:
a) Follows a more systematic approach for analyzing the
literature grounded on three different criteria (namely the
number of involved modalities, the explanation generation
stage and the type of the adoptedmethodology), b) Focuses on
investigating only MXAI methods’, while maintaining not to

revisit the relevant multimodal processing and unimodal XAI
fields, and c) Provides a thorough analysis of the metrics used
for quantitative MXAI evaluation.
The manuscript is organized as follows: Section II dis-

cusses the various tasks and applications in which MXAI
has been utilized, along with the respective publicly available
datasets. Section III systematically presents the methods for
generating explanations in multimodal scenarios. Section IV
details the metrics used for evaluating explanations in the
multimodal setting. Finally, Section V discusses the current
challenges and future research directions in the field, while
Section VI concludes the paper.

II. PREDICTION TASKS AND DATASETS USED IN MXAI
SCENARIOS
MXAI approaches are employed for explaining the behavior
of AI/ML prediction models that involve multiple types of
modalities and/or producing explanations (of the primary AI
model’s behavior) using different or multiple modalities. In
this respect, the most popular AI/ML tasks that exhibit the
above characteristics and are shown to benefit from the gener-
ation of MXAI explanations are: Visual Question Answering
(VQA) [22]–[26], [43]–[63], visual captioning [49], [50],
[64]–[69], [69], [70], visual common-sense reasoning (in-
cluding also the visual dialog case extension) [40], [71], [72],
recommendation systems [42], [73], fine-grained visual clas-
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TABLE 2: Datasets for MXAI learning and evaluation for different primary prediction tasks.

Task Dataset (date) Input space Output space Description

Visual captioning

COCO-2017 (2017) [33] Image
Caption, bbox,
segmentation,
labels

Object and stuff image segmentations from 80 and 91
categories, respectively, and 5 captions per image.

COCO-2014 (2014) [33] Image
Caption, bbox,
segmentation,
labels

Object and stuff image segmentations from 80 and 91
categories, respectively, and 5 captions per image.

Flirck30K entities (2015) [34] Image Caption, bbox 244,000 co-reference chains for the Flickr30K captions
[35].

Visual genome (2017) [29]
Image, scene
graph,
attributes

Caption See Table 1

Zero-shot learning
& fine-grained
classification

CUB (2011) [36] Image,
attributes

Labels, textual
explanation, bbox

Bird images from 200 categories with 15 locations, 312
attributes, 1 bounding box and 5 sentences per image.

Activity
recognition

Olympic sports (2010) [37] Video Labels, bbox,
attributes

Videos from 16 sport categories with attributes and
bounding boxes.

UCF101 (2012) [38] Video Labels, bbox,
attributes

Videos of 24 activities with attributes and bounding
boxes.

ACT-X (2018) [22] Image Labels, textual &
visual explanation

Images of 397 activities with descriptions, 3 textual ex-
planations and visual explanations per image.

Self-driving cars BDD-X (2018) [39] Video Actions, textual
explanations

77 hours of driving videos containing 3-4 actions each,
annotated with descriptions and explanations.

Visual
common-sense
reasoning

VCR (2019) [40]

Image,
multiple
choice
questions

Answer, textual
rationale

290,000 multiple choice image questions, including a
rationale for the correct answer.

Breast mass
diagnosis DDSM (1998) [41] Image Labels, textual

explanation
605 mass images with BI-RADS descriptions and mass
locations.

Outfit
recommendations ExpFashion (2019) [42] Image

Recommend-
ations, text
explanations

200,745 outfit images with at least 3 explanations for
each.

sification and zero-shot learning [8], [20], [74]–[82], (human)
activity recognition [19], [22], [83], [84], emotion/sentiment
recognition (including also hate speech detection and affect
recognition) [21], [85]–[91], candidate screening [92], self-
driving cars [39], [93], computer aided diagnosis [94]–[96],
sleep range classification [97], and many more.

Regarding the main datasets that have been introduced so
far for developing and evaluating MXAI approaches, these
are illustrated in Tables 1 and 2. In particular, the tables
group the various datasets with respect to the corresponding
application task (as discussed above), while they also include
information about the type of the input/outputmodalities, date
and a short description for each entry. It needs to bementioned
that Table 1 includes only datasets related to the VQA task,
due to the increased popularity of this particular application
case. On the other hand, it must be highlighted that additional
relevant datasets are publicly available for each task (e.g.
VQA); however, the ones indicated in Tables 1 and 2 provide
the framework for enabling MXAI evaluation (and not only
the development of the related AI/MLmodule for the primary
prediction task).

III. EXPLAINABILITY IN THE MULTIMODAL SETTING
This section investigates in depth the application of XAI
methods under multimodal scenarios. In particular, Section
III-A provides the fundamental criteria that are considered
for classifying the various MXAI approaches, as well as the
resulting categories. Subsequently, Section III-B investigates
conventional unimodal XAI approaches that are directly, or
after being extended in a straightforward way, applied to mul-
timodal cases. Then, Sections III-C, III-D and III-E analyze
the MXAI literature in relation to the number of the involved
modalities, the processing stage at which explanations are
generated and the adopted methodology, respectively.

A. CRITERIA AND RESULTING CATEGORIES OF MXAI
METHODS
Aiming at systematically analyzing the MXAI literature, an
initial categorization can be made based on the classes of
methods that have been widely adopted for the unimodal
XAI case [9], [12], [16], [32], [98], [99]. In particular, the
following criteria, which are graphically illustrated in Fig. 2a,
can be used:

• Aim of explanation: Depending on the scope of the
explanation, MXAI methods can be considered as in-
trospective [17] (i.e. focusing on the internal logic and
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(a)
(b)

FIGURE 2: Categorization of MXAI approaches: a) Main classes of conventional (unimodal) XAI methods that can also be
adopted in MXAI analysis, b) Basic categories that can be considered only for MXAI approaches.

behavior of the examined model) or justification-related
[20], [32] (i.e. aiming at interpreting the model’s predic-
tions in a more human-friendly way).

• Exclusiveness of explanation: With respect to the ex-
tent of the validity of the generated explanation, MXAI
methods can be either global [21] or local [100]. The for-
mer methods explain the overall model’s behavior, while
the latter focus on interpreting the produced decisions
concerning specific data points.

• Model dependency: Concerning whether the internal
structure and the architectural characteristics of the ex-
amined model are taken into account, MXAI approaches
can be model-agnostic [100] (i.e. they can be applied
to any type of ML model, regardless of its architecture
or underlying algorithms) or model-specific [22] (i.e.
they can be tailored to specific types/architectures of AI
models).

• Data dependency: MXAI methods can be adapted so as
to operate only for specific data types [99], e.g. visual,
text, tabular, audio, etc., i.e. they can essentially be data
type-specific approaches.

A critical characteristic of anyMXAImethod is the number
of modalities that are being involved, considering both those
that relate to the primary prediction task and those associated
with the generated explanation. To this end, the following four
main categories can be identified (Fig. 2b), while representa-
tive examples of each category are also graphically illustrated
in Fig. 3:

• Unimodal task and unimodal explanation (UU):
Comprises methods that for a unimodal primary pre-
diction task estimate an explanation using a single, but
different, modality. Fig. 3a illustrates an example of an
image classification algorithm (primary task), associated
with a textual description/justification of the produced
prediction (generated explanation) [20].

• Unimodal task and multimodal explanation (UM):
Includes approaches that for a unimodal primary task
produce an explanation consisting of at least two modal-
ities. Fig. 3b depicts an example of an image classifi-
cation model (primary task), accompanied by a saliency
map and a textual rationale description of the estimated
prediction (generated explanation) [8].

• Multimodal task and unimodal explanation (MU):
Comprises methods that for a multimodal primary task
employing at least two modalities produce a unimodal
explanation. Fig. 3c illustrates an example of a VQA ap-
proach that receives as input an image and an associated
question in textual format (primary task), while an image
saliency map is estimated for interpreting the model’s
output (generated explanation) [56].

• Multimodal task and multimodal explanation (MM):
Includes approaches that for a multimodal primary task
(using at least two modalities) estimate also a multi-
modal explanation. Fig. 3d illustrates an example of a
VQA method, which is associated with both a saliency
map and a textual rationale justification (generated ex-
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planation) [22].

The development/processing stage (with respect to the
model for the primary task) at which explanations are pro-
duced significantly differentiates the design of the corre-
sponding MXAI approaches. Using the latter as a criterion,
the following three main categories can be defined (in Fig.
2b):

• Intrinsic: Comprises methods that produce explanations
by analyzing the internal structure and the parameters of
the model that has been developed for the primary task
[16], [32], [87].

• Post-hoc: Corresponds to those methods that do not
investigate the internal architecture of the original model
(developed for the primary task), i.e. approaches that
are solely based on the analysis of the primary model’s
output [65], [69].

• Separate module: Incorporates methods that develop a
distinct model (i.e. different from the one deployed for
the primary task), in order to generate the required expla-
nations [22], [100]. Depending on the actual phase dur-
ing which the (new) explanation module is constructed,
the approaches under this category can be further divided
into:
-- Joint training, where the explanation module is

trained along with the model used for the primary
task [20], [80];

-- Incremental training, where the explanation mod-
ule is constructed after the model for the primary
task has been developed [19], [45].

MXAI methods can also be classified based on commonly
met methodologies (i.e. mathematical formalizations and
mechanisms) that constitute fundamental building blocks of
their processing pipeline. In particular, some of the proposed
methodologies (e.g. causal-modeling [19], reasoning [20],
graph-modeling [55] and attribute-based [8]) highly depend
on the utilized data, while others (e.g. interactive [46], fusion
[85] and attention-based [47]) are mostly related to the ar-
chitecture of the examined model for the primary prediction
task.

Table 3 summarizes the main MXAI approaches of the
literature, which are hierarchically organized based on the
number of the involved modalities, the explanation stage and
the adopted methodology.

B. UNIMODAL XAI METHODS EXTENDED TO
MULTIMODAL SCENARIOS
Several conventional XAI approaches, despite having been
originally developed for unimodal tasks, can be extended to
the multimodal setting in a relatively straightforward way. In
the following, key representative examples of such methods
are discussed in more detail.

DisentangledMultimodal Explanations (DIME): It con-
stitutes a local model-agnostic method that extends the fun-
damental idea of the Local Interpretable Model-agnostic Ex-
planations (LIME) [106] approach to multimodal scenarios.

In particular, DIME [100] disentangles the examined model
into unimodal contributions and multimodal interactions, as-
suming that the overall model is formed as the aggregation of
them. More specifically, LIME is applied separately to each
unimodal contribution and to the multimodal interaction of
the resulting aggregation.
Gradient-weighted Class Activation Mapping (Grad-

CAM): The fundamental conceptualization of the Class Acti-
vationMap (CAM) [107] approach is applicable to anymodel
comprised of convolutional and a Global Average Pooling
(GAP) layers. In this respect, the Grad-CAM [17] approach
follows a back-propagation gradient-based scheme, where
salient points in the input data that lead to the achieved predic-
tion are identified, regardless of the number of the involved
modalities.
Grad-CAM++: It is a modified version of the original

Grad-CAM method, which uses a weighted average of the
positive gradients of the target class. The updated method is
able to locate multiple occurrences of the same type of objects
in an image more accurately. Grad-CAM++ [108] makes use
of the same fundamental mechanism as Grad-CAM, which
renders it possible to be applied tomultimodal models as well,
like those used for the tasks of VQA and image captioning
(Fig. 4a).
LIFT-CAM: The conventional Grad-CAM method [17]

can be extended to themultimodal setting, as a combination of
the SHapley Additive exPlanations (SHAP) [109] and Deep
Learning Important FeaTures (DeepLIFT) [110] approaches.
In particular, LIFT-CAM [58] determines activation maps,
making use of SHAP values; DeepLIFT is used in this case
as an approximation to SHAP coefficients, due to their in-
tractable nature (Fig. 4b).
Combination of SHAP andGrad-CAM: A combined ap-

proach of the conventional Grad-CAM and the SHAP meth-
ods is investigated in [94], in order to provide explanations in
a skin lesion diagnosis application. In particular, the SHAP
method is used for handling tabular input data (e.g. age,
gender, etc.), while Grad-CAM is employed for processing
the visual input; hence, overall resulting in a multimodal
explanation scheme.
Integrated Gradients (IG): The original method [111]

aims to correlate the model’s prediction results with the input
data and to identify the most salient features, by estimating
the path from the prediction output to the original input, using
gradient-related information. Extending to the multimodal
case, IG is applied in a VQA scenario in [112], in order
to identify which words in the question are significant for
producing the estimated answer.
Layerwise Relevance Propagation (LRP): The conven-

tional LRP method relies on propagating the estimated pre-
diction through the layers of the neural network [113]. Mov-
ing to the multimodal case, a variant of the LRP is used con-
sidering a convolutional neural network that receives as input
three different sequences of MRI images, in order to detect
characteristics of the brain that have an effect on its aging
[114]. In a similar way, multimodal LRP is also employed
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(a) (b)

(c) (d)

FIGURE 3: MXAI categories with respect to the number of the involved modalities in the primary prediction model input and
the generated explanation: a) Unimodal task and unimodal explanation (UU) [20], b) Unimodal task and multimodal explanation
(UM) [8], c) Multimodal task and unimodal explanation (MU) [56], and d) Multimodal task and multimodal explanation (MM)
[22].

in [65], in order to identify both the important pixels in the
image and the contribution of previously generated words in
the produced caption.

Randomized Input Sampling for Explanation (RISE):
The conventional RISE method [68] makes use of masked
image inputs, in order to subsequently observe the resulting
effect on the producedmodel’s class prediction. The weighted
aggregation of the masks and the respective prediction scores
create the saliency map used for explanation. RISE’s exten-
sion to the multimodal setting is straightforward. For ex-
ample, saliency maps are estimated for each word in the
produced textual description in an image captioning task [68]
(Fig. 4c).

Guided-backpropagation: The original backpropagation
method [115] aims at visualizing specific image features that
have been detected from certain neurons, e.g. in an image
analysis task. Its application to the multimodal setting is also
relatively straightforward. For example, saliency maps are
produced in a VQA task [59], where the Hadamard product
of the visual and the textual features results in more accurate
importance maps, compared to those resulted from using the
respective attention weights [47], [116] (Fig. 4d).

Concept Activation Vectors (CAV): The original method
[117] aims at identifying specific semantic concepts, whose
presence in the input data affects the model’s prediction with

respect to a given class. The latter relies on the use of differen-
tial/derivative estimations to assess how important is a certain
pre-defined concept to a particular classification decision. In a
multimodal scenario, CAV vectors can be used for explaining
multimodal (audio, video and text data) emotion recognition,
taking into account concepts that are relevant to different
types of emotions [87].

C. MXAI CATEGORIZATION BASED ON THE NUMBER OF
THE INVOLVED MODALITIES
MXAI methods can be classified taking into account the
different combinations of the number of modalities involved
in the primary prediction task and the generated explanation,
as discussed in Section III-A and graphically illustrated in
Fig. 3.

1) Unimodal task and unimodal explanation (UU)
Methods belonging to this category often involve the visual
modality as input for the primary prediction task, while the
explanation can be either in textual format or in the form of a
graph for efficiently representing correlations among entities.
Fig. 5 illustrates indicative examples of representative litera-
ture approaches.
Textual explanations: Explanations of models’ predic-

tions in textual form provide an efficient way for intuitively
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TABLE 3: Categorization of MXAI methods based on the number of involved modalities, explanation stage and adopted
methodology.

Task &
explanation
modalities

Explanation stage Methodology

UU
Joint training Reasoning [20], [80], graph/example-based [101], graph/attribute/rule-based [84]

Incremental
training Counterfactual [78]

UM

Post-hoc Example-based [82], gradient/attribute-based [81], interactive/graph-based [83]

Joint training Example/attribute-based [74], gradient/attribute-based [8]

Incremental
training

Gradient/attribute-based [8], counterfactual [19], attention [39], counterfactual/reasoning [75],
attribute/example-based [79]

MU

Intrinsic Concept-based [21], fusion/graph-based [85], attention [49], [51]–[54], [56], [57], [62], [63], [66], [73], [89],
[102], [103], attention/gradient-based [50], fusion/attention [88]

Post-hoc Clustering [86], ablation [91], [97], graph-based [55], concept-based [87], attention [69]

Joint training Reasoning [26], [48], attention [60], [64], example-based [23], interactive [72] , concept-based [70],
graph-based [61]

Incremental
training Reasoning [104], graph-based/reasoning [71], attention/attribute-based [67]

MM

Intrinsic Attention [47], [105]

Post-hoc Gradient/occlusion [44], gradient/attribute-based [76], rule-based [92]

Joint training Attention/reasoning [22], [24], [93], attention [43], attention/interactive/graph-based [46], graph-based [25],
reasoning [40]

Incremental
training Attention [22], [45], [95], gradient/attribute-based [77]

detailing the actual models’ reasoning process. As an ex-
ample, in a bird image classification task, the justifications
of object classification decisions are generated based on the
key discriminator factors of different bird species in [20]; the
method employs reinforcement learning techniques, while the
generated explanations are class/prediction-specific, focusing
on the explanation and not on a general-purpose image cap-
tion (Fig. 5a). Similarly, the activations of all neural network
layers are concatenated in [80], targeting to provide a concrete
explanation for the prediction of the bird class (Fig. 5b).
Hendricks et al. [78] extend the latter idea to the case of
estimating counterfactual explanations, where missing char-
acteristics/properties of the depicted objects are identified,
aiming at providing a rationale regarding why a specific bird
does not belong to a given category. In a different image-based
task, where the goal is to train a recommender system to also
provide meaningful explanations, user comments are treated
as ground-truth explanations in [42], in order to justify the
matching of top and bottom clothes (e.g. shirts and trousers).

Graph-based explanations: Graph models provide an el-
egant way for formulating explanations, since they are in-
herently capable of representing multiple and diverse types
of relationships among entities. Such an approach is par-
ticularly suitable for several application tasks requiring the
justification of the prediction outcome based on the detected
relationships, like in visual captioning, image classification
and action recognition, to name a few. In [101], an object-
relation graph is created for connecting the objects detected
in an image with various relationships (Fig. 5c), where three

types of connections between objects in the examined image
are supported. Zhuo et al. [84] follow a graph-based approach
in video-based action recognition, where for each input video
frame the output consists of a scene graph depicting the
relations among the objects inside the scenery (Fig. 5d).

2) Unimodal task and multimodal explanation (UM)
Explanations of AI models’ behavior are usually in a uni-
modal form, which, however, can sometimes lead to incom-
plete representation and understanding of the model’s reason-
ing process. To this end,multimodal explanations can often be
advantageous, since they provide additional/supplementary
explanatory statements in different modalities. In the follow-
ing, UM MXAI approaches, which are grouped with respect
to the combination of modalities involved in the generated
explanation, are discussed in detail.
Heatmap-text explanation: A reasoning approach is fol-

lowed in [81], where the primary task attribute prediction is
initially performed, while a combination of the prediction’s
embeddings is subsequently used for producing the final clas-
sification. Then, using a back-propagation formalism, a score
for each image attribute is obtained and the top-3 ones are
subsequently utilized for forming a textual explanation, while
Grad-CAM is also used for generating corresponding visual
explanations (Fig. 6a). Similarly, a reasoning-based MXAI
method focusing on the activities of acceleration and course
prediction in the scenario of a self-driving car is investigated
in [39], where an attention map provides introspective infer-
ence behind the obtained prediction results, while text is also
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(a)
(b)

(c)
(d)

FIGURE 4: Conventional XAI methods’ generated explanations for multimodal scenarios: a) Grad-CAM++ for image caption-
ing [108], b) LIFT-CAM for a VQA task [58], c) RISE for image captioning [68], and d) Guided-backpropagation for a VQA
task [59].

generated as a supporting means to justify them. Moreover,
the Grad-CAM approach is employed within the zero-shot
learning paradigm for estimating a CAM (i.e. heatmap) for
each image attribute in [8], where a whole image CAM
representation is obtained bymerging the individual CAMs of
all considered attributes to form a heatmap for the examined
class, while a textual description is also generated using visual
features, attributes and latent embeddings.

Image-text explanation: Natural language explanations
do not always provide a sufficient and complete justification
of a model’s particular decision; hence, grounding the pro-
duced explanations also on the visual modality is shown to
be beneficial. In this respect, the methods of [20] and [75]
generate textual explanations for the examined image, chunk
them into phrases and estimate a score for each of them,
indicating image relevance; the highest-scoring chunks are
subsequently used for reinforcing the textual explanations
(Fig. 6b). In [79], the textual part of the explanation is com-
bined with complementary visual examples (e.g. images),
which are associated with the generated textual justification;
the estimated example can belong to the same or an opposing
semantic class. Moreover, the textual justification is accom-
panied by an additional counterfactual part in [19], where
action predictions in videos are justified using a combination
of textual explanations and a bounding box of the predicted
and the opposing classes.

Example-attribute explanation: Aiming at increasing the
expressiveness and the completeness of the generated ex-
planations, estimated attributes (e.g. shape, color, etc.) can
be combined with exemplary instances of the original input
image data. In particular, Ul Hassan et al. [74] follow a
visual search approach, apart from incorporating attributes

for producing a justification of the model’s prediction, in a
visual classification task (Fig. 6c). This visual search strategy
relies on exploiting the convolutional features of the utilized
NN model, in order to retrieve similar data instances that
serve as additional justification information. Moreover, an
adversarial approach is followed in [82], in order to estimate
complementary/counter-examples, each associated with indi-
vidual image attributes (e.g. bird bill shape, color, etc.).
Graph-text explanation: The expressiveness of graphs in

representing accurate explanations can be further reinforced,
by combining them with an interaction mechanism. In partic-
ular, a video is provided as input to a network that outputs a
graph, based on the detected objects and actions [83]. Apart
from the explanation composed of the identified semantic
concepts and their relations, the graph is utilized by an in-
teractive question-answering agent that can answer inquiries
regarding the graph structure and the video (Fig. 6d); hence,
producing additional textual explanations or alternative graph
explanations.

3) Multimodal task and unimodal explanation (MU)

MXAI techniques are particularly suitable for addressing
explainability needs concerning multimodal prediction tasks,
i.e. when the examined AI model receives as input data from
multiple modalities. In the following, MU MXAI methods
that produce unimodal explanations are discussed. For the
sake of clarity, the presentation is organized according to
the particular methodology/mechanism that is adopted for
producing the explanations.
Attention-based: Attention schemes constitute the most

widely used mechanism in MU MXAI methods, due to their
inherent ability to adjust the analysis focus (during the expla-
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(a)
(b)

(c)

(d)

FIGURE 5: UU MXAI methods’ generated explanations: a) Textual [20], b) Textual [80], c) Object relationships [101], and d)
Scene graph [84].

nation generation process) on the important parts of the input
data (e.g. critical image regions and words). One of the most
common primary tasks that attention mechanisms exhibit
wide applicability is that of visual captioning. In particular, a
stochastic and a deterministic attention mechanism are used
in [66], in order to estimate heatmaps of the image regions
that correspond to the predicted captions (Fig. 7a). Similarly,
spatial and spatiotemporal saliency maps are computed for
the estimated image and video captions in [69], respectively.
Han et al. [64] compute relevance scores between the detected
objects and the respective words in the estimated captions,
aiming at explaining why certain words are generated. More-
over, attended regions in the visual medium are employed in
captioning and VQA settings [49], in order to interpret the
produced captions or answers, respectively.

Attention-based MU MXAI methods are also widely used
in VQA applications, where the typical approach consists
of estimating an attention map over the input image that
highlights important regions that mostly contribute to the
generated visual answer. Specifically, a pooling operator is
used twice in the examined model in [102], where the at-
tended regions are used for grounding the produced answer.
Additionally, Zhu et al. [52] combine an attention map with a
bounding box of the detected object for estimating a visual
explanation. Multiple attention layers are used in [53] and
various attention distributions over the image are considered
in [54], in order to localize the important image regions.
Moreover, objects and regions of attention are used during the
training phase of a visual grounding model in [63]. Alipour
et al. [51] introduce an explainable VQA system, in order to

examine the impact of the explanations on the users in terms
of model competency. Furthermore, important visual regions
are estimated within a clothing recommendation system [73],
analyzing both product images and customer reviews.
Among other application cases of MUMXAI methods that

rely on the use of attention mechanisms, object detection and
human-generated heatmaps are used by the so-called Human
Importance-aware Network Tuning (HINT) [50] approach,
in order to improve performance in vision-language models,
by leveraging gradient-based explanations. Additionally, the
most contributing words in hate speech detection are esti-
mated in [89], using text, social and demographic features.
Moreover, attention to both image and text is employed in
[103], in order to visualize regions of interest that correspond
to a specific hypothesis in a visual entailment task.
Graph-modelling: Graph models are suitable for produc-

ing unimodal explanations from a multimodal input feature
space. In particular, bounding boxes are used to interpret the
answer regarding the counting abilities (e.g. counting objects
in images) of a model in [60], while a text explanation is
estimated using an image scene graph and an attention map
in [55] (Fig. 7b). Additionally, Vedantam et al. [61] follow a
probabilistic approach to create an interpretable VQAmodel,
using symbolic programs that can track the model’s reason-
ing. Symbolic programs are also used in [62], in order to
generate visualizations of each step of the model’s inference
procedure.
Reasoning: An emerging line of research in the field of

MXAI concerns the use of various reasoning formalisms,
which often aim to mimic the human way of inference for
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FIGURE 6: UM MXAI methods’ generated explanations: a) Heatmap-text [81], b) Heatmap-text [39], c) Example-attribute
[74], and d) Graph-text [83].

generating improved explanations. In that respect, textual
explanations provided by humans are used for creating aVQA
model in [48], which learns not only to estimate answers but
also makes use of retrieved explanations to generate more
accurate ones. Additionally, Lu et al. [26] produce textual
explanations in response to scientific questions, making use
of lectures (related to the subject in question), complemen-
tary to the use of relevant images and questions. Pre-trained
transformer-based language models exploit objects and their
relations to provide full-sentence answers and rationales in
a VQA setting in [71]. Moreover, a visual dialog approach is
presented in [72], where a conversation regarding the image at
hand is produced, by answering consecutive questions about
it.

Example-based: An alternative approach, aiming at in-
creasing the expressiveness of the generated explanations,
consists of the use of exemplary data instances. In this con-
text, counter-visual instances are used in a VQA scenario in
[23], targeting to both support the quality of the produced
answers and to restrict the model’s bias (with respect to the in-
put questions), by collecting similar images for which for the
same question a different answer is estimated. Additionally,
images that support/oppose the produced answer in a VQA

setting are used to create a map in [56], which depicts the
image regions that humans would have focused on (Fig. 7c).

Concept-based: Explanations that are grounded on
concept-based representations are often shown to be advanta-
geous, regarding their interpretation by the human user. In this
respect, semantic information, extracted using Latent Dirich-
let Analysis (LDA), is considered for detecting activations
that correspond to certain topics (e.g. people, dancing and
eating, among others) in a video captioning setting in [70]; the
explanation is eventually provided by a numerical metric that
quantifies the correlation of a given neuron activation with a
topic in a video frame. Additionally, Tsai et al. [21] estimate
local and global explanations formultimodal sentiment analy-
sis using a routing approach to identify the importance of data
(either characterizing individual modalities or cross-modal
features), based on explainable hidden embeddings (Fig. 7d).

Fusion: Fusion schemes are also shown to be beneficial in
the explanation generation process. In particular, an explain-
able fusion scheme is proposed in [85], which is applied in
the context of sentiment analysis and provides a numerical
effectiveness metric calculated from the fusion parameters,
indicating how modality interactions contribute to the final
prediction. Additionally, scores illustrating modality contri-

VOLUME 11, 2023 11

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3467062

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Rodis et al.: Multimodal Explainable Artificial Intelligence
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FIGURE 7: MU MXAI methods’ generated explanations: a) Attention map for image captioning [66], b) Textual explanation
for a VQA task using graphs [55], c) Example-based combined with attention mechanism for a VQA task [56], and d) Concept-
based mechanism for an interpretable emotion recognition task [21].

butions (for two different representations of each modality)
are used for an emotion recognition task in [88]. Furthermore,
Wu et al. [90] propose the use of capsules to obtain estimates
on modality dynamics indicative of their contribution to the
final emotion recognition prediction.

Ablation: Ablation-based approaches can also be efficient
in generating meaningful explanations. Specifically, the over-
all significance score of each modality is estimated in a
medical signal classification application in [97]. Additionally,
Lin et al. [91] introduce a feature importance method (for
obtaining significance scores at the sensor level) and an abla-
tion approach (for estimating feature importance at the signal
level) in a multimodal affect recognition setting in [91].

Clustering: Clustering techniques are also shown suitable
in MXAI applications. In [86], the embeddings of each NN
layer are used to demonstrate that deep layers distinguish
emotions better than shallow layers in a multimodal emotion
recognition model, utilizing audio and text features.

4) Multimodal task and multimodal explanation (MM)
MM approaches constitute the most complex type, in terms
of the number of modalities in the input and output feature
spaces, since they support multimodal information both for
the primary prediction task and the generated explanation. In

the following, different types of MMMXAI methods are dis-
cussed, which are grouped according to the (most common)
combinations of modalities/representations in the generated
explanations.

Image heatmap and text explanation: The so far most
popular MM MXAI category of methods relies on the use
of a heatmap for the input image, along with supplementary
text for generating amore complete explanation. In particular,
an attention map and textual justifications are estimated for
the VQA and the action recognition tasks in [22] (Fig. 8b).
Similarly, Li et al. [24] employ an attention mechanism for
estimating important image regions and corresponding tex-
tual rationales are produced for complementing the expla-
nation output for a VQA application. Interactive explanation
schemes that allow users to interact with the model, when it
provides erroneous answers, and subsequently to improve its
behavior are employed in [46], in order to investigate their
efficiency in a VQA setting. Additionally, Patro et al. [43]
adopt a correlation estimation approach between answers and
explanations, in order to increase the robustness of the exam-
ined model, but also to provide meaningful explanations for
the produced answer. Ground-truth visual and textual expla-
nations are used in [25], in order to train a model to generate
corresponding multimodal explanations. Moreover, attention
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FIGURE 8: MM MXAI methods’ generated explanations: a) Image- and text-heatmap [47], b) Image heatmap and text
explanation [22], c) Image heatmap and text attributes [76], and d) Personality trait scores and text justification [92].

maps over video frames and respective textual justifications,
regarding control predictions in a self-driving vehicle setting,
are presented in [93].

Image- and text-heatmap explanation: One of the most
common techniques relies on the combination of heatmaps
produced (separately) for both the image and the text modal-
ity. In particular, backpropagation and occlusion methods are
used in [44], in order to identify words (in questions) and im-
age areas of significant importance when answering a visual
question. Additionally, Lu et al. [47] use attention schemes at
multiple levels (between image and text phrases information
streams) in a VQA application, in order to produce heatmaps
over the input image and the respective question [47] (Fig.
8a). Along with the textual answer in a VQA scenario, a
justification is also produced in [45], based on the segmented
image regions that correspond to specific words in the esti-
mated rationale.

Image heatmap and text attributes: Apart from com-
bining image heatmaps with textual explanations, extracted
text attributes can also be incorporated. In particular, domain-
specific knowledge is employed in [76], following an
attribute-based formalism for the text stream and a Grad-
CAM-grounded approach for the visual one in a zero-
shot learning approach (Fig. 8c). Similarly, a gradient-based
method for zero-shot learning and fine-grained classification
is presented in [77], where, apart from the produced visual
heatmap images, a text explanation generator is developed
that takes into account the detected attributes (e.g. color,
shape, etc.).

Other multimodal explanations: The wide set of com-
binations that can be considered regarding the input modal-
ities for the primary prediction task and the corresponding

ones used for generating explanations allows for multiple and
significantly diverse MMMXAI techniques to be developed.
In particular, in an attempt to move towards cognition-level
understanding, the so-called Recognition to Cognition Net-
works (R2C) are introduced in [40], where, given a challeng-
ing question about an image, the networks target to answer
correctly and then to provide a rationale justifying their an-
swer; the explanations receive the form of bounding boxes
that are associated with semantic concepts in the generated
rationale. Additionally, Cao et al. [105] investigate the infor-
mation learned in visual-language transformer models, aim-
ing at identifying which is the most significant modality that
captures the cross-modal interactions from certain attention
heads, as well as the hidden visual or linguistic information
that is stored in the latter.Moreover, an imagewith the aligned
face of a candidate, normalized personality trait scores and a
respective rationale are produced in [92], in order to explain
the outcome of an interview in a job screening scenario (Fig.
8d).

D. MXAI CATEGORIZATION BASED ON THE EXPLANATION
STAGE
MXAI methods can also be grouped into different categories
based on the development/deployment stage (with respect to
the primary prediction task model) at which explanations are
learned/produced, as discussed in Section III-A and detailed
in the remainder of this section.

1) Intrinsic
The methods of this category make use of the primary pre-
dictionmodel’s parameters to estimate meaningful interpreta-
tions of the produced results. In the following, intrinsicMXAI
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FIGURE 9: Intrinsic MXAI methods’ generated explanations: a) Attention heatmap [53], b) Image and attention heatmap [50],
and c) Modality importance [85].

approaches are discussed in detail, while they are organized
based on the most common types of generated explanations.

• Attention heatmap: Importance masks are efficient for
demonstrating the components of the input data that
are critical for explaining the model’s inference process.
In particular, a so-called Multimodal Compact Bilinear
(MCB) pooling operator is introduced in [102], in order
to address the problem of intractable outer product cal-
culation between matrices in VQA settings; the operator
is used twice for creating spatial attention maps over
the image to justify the estimated answer. Yang et al.
[53] introduce the so-called Stacked Attention Networks
(SANs) (Fig. 9a), which follow a multi-step reasoning
approach; each layer identifies individual parts of the
input image that the SAN has attended to produce an-
swers for a VQA task. Additionally, a stochastic and a
deterministic approach are presented in [66], in order to
compute the attention weights for an image captioning
model and to estimate the corresponding importance
maps for each generated word. In order to force the
model to focus on the same image regions that a hu-
man would do, an example-based approach is followed
in [56], where a nearest-neighbor method is adopted
concerning the semantic similarity of images and dis-
tances between attentionweights of similar examples are
maintained to be lower than those of counter-examples.
Patro et al. [57] adopt a gradient-based approach for
computing the loss gradients and attention maps are
subsequently produced for the answers in a VQA setting,

along with the corresponding uncertainties in the pre-
diction process. Bidirectional Encoder Representations
from Transformers (BERT) attention maps are investi-
gated in a VQA application in [51], which are shown to
concentrate on the most relevant areas in the examined
image. Moreover, attention schemes are used to decom-
pose the model’s reasoning into individual/consecutive
steps that converge to the final generated answer in a
VQA problem in [62]. Furthermore, Chen et al. [73]
employ attention schemes in recommender systems, in
order to detect important regions in product images that
significantly affect the recommendation decision, taking
into account user/item properties and the corresponding
image. Text, tabular and graph data are considered by a
self-attention mechanism in [89], aiming at estimating
salient features in hate-speech detection.

• Image and attention heatmap: In order to estimate
more complete and informative explanations, attention
heatmaps have also been combined with parts of the in-
put image. In particular, an LSTMmodel is introduced in
the context of a VQA task in [52], where a spatial atten-
tion mechanism relates words in the provided questions
with corresponding image regions and eventually esti-
mates bounding boxes of critical detected objects (over
an attention heatmap) to ground the produced answer.
Similarly, attention weight parameters are considered in
[49], in order to estimate salient regions that relate to
each word in the generated captions and answers in a
VQA task. Additionally, Zhang et al. [63] make use of
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an attention-based model within a supervised setting in
a VQA task, in order to estimate region/object-based
groundings in the examined image. Selvaraju et al. [50]
follow a Grad-CAM-oriented approach for obtaining
salient image regions and associating themwith saliency
scores (Fig. 9b).Moreover, a self-attentionmechanism is
used for both images and text in a visual entailment task
in [103], in order to generate either heatmap- or image-
based explanations.

• Modality importance: A critical aspect in MXAI anal-
ysis comprises the assessment of the level of impor-
tance of the various modalities involved in the primary
prediction task. In this respect, a graph-based fusion
approach is implemented in [85], in order to dynami-
cally model the interactions between modalities in the
emotion recognition and sentiment analysis tasks (Fig.
9c). Additionally, Tsai et al. [21] estimate local and
global explanations for emotion recognition, where dy-
namically adjusted importance measures are assigned to
unimodal and bimodal interactions for each processed
data sample. Moreover, a so-called capsule network is
integrated into a routing mechanism in [90], in order
to estimate a contribution score for each modality in-
volved in an emotion recognition task. An attention-
based scheme is also used in [88] to align text and speech
representations in an emotion recognition setting; even-
tually, the extent of contribution of each modality to
the final outcome is calculated. Furthermore, Cao et al.
[105] make use of the learned attention weights and
heads of visual-language models, in order to visualize
what type of information has been encoded in each head,
whichmodality is more important and the interactions of
the latter.

2) Post-hoc
MXAI approaches under this category aim to produce mean-
ingful explanations of a model’s behavior after the AI pre-
diction module has been applied and its results are made
available, i.e. the model for the primary prediction task is
considered as a ‘black box’ one. In the following, post-hoc
MXAI approaches are presented in detail, while they are
grouped taking into account the relevant (and most popular)
primary prediction tasks.

• Visual classification and captioning: An attention
mechanism is employed to provide saliency maps (both
spatial and temporal) for each generated word for the
tasks of image and video captioning in [69]; the mech-
anism takes into account the decrease observed in the
output word probabilities when frames or image regions
are removed from the input (Fig. 10a). Additionally,
an inherently explainable decision tree is employed in
[92], in order to interpret positive/negative outcomes,
when deciding about interview invitations. A zero-shot
learning approach for image-level classification is in-
troduced in [76], which targets the modeling of seman-
tically meaningful concepts that have been implicitly

learned by individual neurons in convolutional neural
networks and produces a heatmap and the top acti-
vated attributes. Moreover, a back-propagation-based
approach is adopted in [81], in order to identify the
extent of the detected attributes’ (e.g. color, shape, etc.)
contribution to the final outcome, while also producing
complementary saliency maps and textual justifications
(Fig. 10b). Gulshad et al. [82] select examples from
an opposing semantic class while considering visual
attributes extracted by a model trained in an adversarial
way; the explanation is eventually formed by combining
attributes/examples of the original and the counter class.
Furthermore, a graph representation is produced in [83],
incorporating concepts detected in the input video; then,
an interactive agent is applied on top to provide expla-
nations of the depicted action.

• Visual question answering: A guided backpropagation
method is combined with a part occlusion one (applied
to segments of input images and questions) in [44], in
order to identify visually important image regions and
to predict the contribution of individual question words
in the VQA generated answer (Fig. 10c). Additionally,
Ghosh et al. [55] employ an attention-based heatmap to
define the most relevant parts in an image, while a scene
graph is also incorporated, alongwithNLP technologies,
to provide natural language rationales, using the detected
entities and their relations.

• Biomedical signal processing: A random forest algo-
rithm is adapted to a multimodal affect recognition set-
ting in [91], in order to provide sensor-level feature
importance assessments and signal-level explanations.
Additionally, principal components of layered embed-
dings of audio and text features are considered in [86], in
order to reason about the separation of the detected emo-
tion classes. Ellis et al. [97] apply an ablation-oriented
analysis at the modality level, in order to determine the
significance of different signals in sleep stage classifi-
cation, by replacing one of the captured modalities with
noisy data and observing the variation in the prediction
probabilities (Fig. 10d).

3) Separate module
This category comprises methods that rely on the develop-
ment of a new/distinct module that generates explanations of
the primary model’s behavior.

a: Joint training
Under this consideration, the models for the primary pre-
diction and the explanation generation tasks are constructed
together, allowing in this way the training process of each
module to affect the respective procedure of the other one. In
the following, joint training MXAI approaches are discussed,
while being grouped according to the primary task of concern.

• Visual question answering: An explanation module is
trained together with the actual VQA model in [23], in
order to provide a similar image with a different answer
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(a) (b)

(c) (d)

FIGURE 10: Post-hoc MXAI methods’ generated explanations: a) Video captioning [69], b) Fine-grained visual classification
[81], c) VQA [44], and d) Biomedical signal processing [97].

(a) (b)

(c) (d)

FIGURE 11: Separate module MXAI methods’ generated explanations: a) Joint training for VQA [24], b) Incremental and joint
training for zero-shot learning [8], c) Incremental training for VQA [45], and d) Incremental training for video classification
[19].

(for a given question), essentially forming an example-
based explanation. An attention-based mechanism (for
the visual information stream) and an LSTM architec-
ture (for the textual information stream) are combined
on top of the actual model for producing the required
explanations in [22]; the models can be trained either
jointly or incrementally, depending on the selected task
(namelyVQAor action recognition, respectively). Addi-
tionally, a multi-task learning architecture is introduced
in [24], where a computational model is trained to gen-
erate an explanation, along with the answer predicted
by the primary model (Fig. 11a). On the other hand,
symbolic programs, which are used to represent the
model’s reasoning, are utilized in [61], in order to justify
the generated answers. Patro et al. [43] make use of a

generator module (for producing textual explanations)
and a respective correlation one (for ensuring that the
produced answer complies with the estimated explana-
tion). Moreover, an interactive approach is followed in
[46], where an attention-based scene graph, which takes
into account the detected objects, is incorporated. Ex-
planations are used in a competitive fashion to improve
both the answers and the corresponding rationales in
[48]. Furthermore, Nagaraj Rao et al. [25] make use of
ground-truth visual and textual explanations for learning
to interpret the generated answer.

• Visual classification: An image classifier is jointly
trained with a respective textual explanation genera-
tion module in [20], following a reinforcement learn-
ing approach. Similarly, a reasoning-based method is
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developed in [80], in order to rationalize classification
decisions, using the activations of the fully connected
layers of the classification model as input to the ex-
planation generation one. Additionally, Ul Hassan et
al. [74] introduce an LSTM-based explanation module
equipped with two attention mechanisms (one applied
to the considered attributes and one operating on top of
the target categories), in order to produce rationales for
the generated prediction and also to (supplementarily)
retrieve semantically similar images. A saliency map
and an associated attribute-based textual justification are
used in [8] (Fig. 11b), where the joint training strategy is
shown to lead to significant performance improvements,
compared to the separate training case. Moreover, Zhuo
et al. [84] exploit scene graph-based representations
(making use of objects, their attributes and object rela-
tions information), aiming at both tracking the illustrated
actions across the video frames and demonstrating the
model’s reasoning process.

• Visual captioning: Topics extracted using LDA analysis
are used in [70], in order to jointly train a model with
both a negative log-likelihood (for the primary caption-
ing task) and an interpretable loss (for measuring the
feature agreement with respect to semantically similar
topics). Additionally, Han et al. [64] design a module
for examining whether the captioningmodel has focused
on relevant image objects, by measuring the compliance
of the detected objects/concepts and the correspondingly
generated words using an attention mechanism.

• Other: Lu et al. [101] concentrate on detecting relation-
ships among image objects and formulating a respec-
tive explanation graph, trained in an end-to-end fashion.
Textual rationales are generated for answering follow-
up questions regarding the examined image in a visual
dialog setting in [72]. Additionally, responses to visual
questions and textual rationales are jointly produced in
the context of a visual common-sense reasoning task in
[40]. Kim et al. [93] introduce a combined approach for
simultaneously realising next action prediction and jus-
tification in a self-driving cars application case. More-
over, recommendation and explanation functionalities
are jointly developed in a reasoning framework in [42],
aiming at providing explanations for each suggested
item.

b: Incremental training
In many cases, the explanation generation module is con-
structed separately from the respective primary task one
(namely after the primary AI model is developed), due to
factors like reduction in required training computations, lack
of availability of explanations in the training data, etc. In the
following, incremental training MXAI methods are presented
that are grouped with respect to the primary task of concern.

• Visual question answering: Park et al. [22] estimate
both a textual rationale and a visual attention heatmap,
by jointly or incrementally training the explanationmod-

ule (depending on the task at hand). Additionally, Li
et al. [104] initially extract attributes (e.g. sit, phone,
bench, etc.) and generate textual explanations for the
image, while a reasoning module subsequently utilizes
the extracted justifications to infer an answer to the
given question. Attention mechanisms are used over
segmented images (Fig. 11c) in [45], in order to pro-
duce explanations consistent with the predicted answers.
A transformer-based model is employed for providing
justifications in various vision-language tasks in [71],
making use of pre-trained GPT-2 language models.

• Visual classification: A so-called Deep Multimodal
Explanation (DME) model, which incorporates a joint
visual-attribute embedding module and a multi-channel
explanation one trained in an end-to-end fashion, is
introduced in [8] (Fig. 11b), addressing the needs of
explainable zero-shot learning applications. An explain-
able AI agent is developed in [75], where a phrase-
critic model receives as input an image and a candidate
explanation, and outputs a score indicating how good
the candidate explanation is grounded on the image. Ad-
ditionally, a method to generate textual counterfactual
explanations is presented in [78], focusing on inspecting
which evidence data in the input is missing, but which
could potentially contribute to a different classification
decision if present in the examined image. Kanehira et
al. [19] exploit a spatio-temporal video region (tube)
and textual attributes (e.g. using a pole, flipping, etc.)
for estimating counterfactual multimodal explanations
(Fig. 11d). Linguistic explanations and a set of visual
examples for rendering the classification decision inter-
pretable are used in [79], where explanations are pa-
rameterized by three different NNs (namely a predictor,
a linguistic explainer and an example selector model).
Moreover, Wickramanayake et al. [77] generate post-
hoc linguistic justifications to rationalize the decision
of a CNN, where a decision-relevance metric that mea-
sures the faithfulness of an explanation to a model’s
reasoning is used. Furthermore, Lee et al. [95] intro-
duce an explanation module that can be stacked to any
Computer-Aided Diagnosis (CADx) network model, in
order to provide rationales for medical diagnosis appli-
cation cases.

• Other: Kim et al. [39] produce introspective explana-
tions in a self-driving vehicles scenario, which combine
a visual (spatial) attention model (that identifies image
regions that potentially influence the model’s output)
and an attention-based video-to-text module (that pro-
duces textual explanations of the primary model’s ac-
tions). Additionally, Fang et al. [67] introduce textually-
grounded explanations in computer vision applications,
where the text descriptions are decomposed into three
levels (namely entity, semantic attribute and color infor-
mation) for progressively realizing compositional justi-
fication.
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E. MXAI CATEGORIZATION BASED ON THE ADOPTED
METHODOLOGY

Within the field of MXAI research, there are certain com-
monly met methodologies (i.e. mathematical formalizations
and mechanisms) that constitute fundamental building blocks
of the respective proposed methods, as discussed in Section
III-A. To this end, using the particularly adoptedmethodology
as a classification criterion, MXAI approaches can be catego-
rized as follows:

• Casual-modeling: It mainly corresponds to techniques
that support explainability through the use of counterfac-
tual examples. In particular, counterfactual explanations
aim at determining which are the minimum allowed
modifications to the input data, so as to alter the primary
model’s prediction to a specific/pre-defined, yet differ-
ent, output [19], [78].

• Reasoning: Similarly to numerous approaches in var-
ious AI-boosted application domains, extensions of the
traditional multi-task learning conceptualization are also
applied to the MXAI field. In particular, the examined
AI model is jointly trained so as, apart from providing
only predictions for the primary task, also to produce ex-
planations about the generated outcomes and the overall
model’s reasoning process [20], [22], [39].

• Graph-modeling: Analysis based on graphs constitutes
a particularly valuable approach in MXAI scenarios,
since they are highly efficient in identifying correla-
tions among data points (also of diverse nature), while
they also enable the generation of insightful represen-
tations/visualizations of the detected relations. In par-
ticular, graphical models have been extensively used in
computer vision applications, where, for example, scene
graphs have been employed for representing an image
and for subsequently estimating answers/explanations
for a given question [46]. Similarly, graphs have been
utilized for estimating symbolic representations of tex-
tual sources, targeting, for example, to produce a step-
by-step representation of the AI model’s inference pro-
cess [62].

• Attribute-based: Identifying attributes in the input data,
which are critical for shaping the model’s predictions,
constitutes an efficient way for subsequently produc-
ing accurate explanations of the model’s behavior. For
the case of visual input data, attributes can refer to
certain image characteristics (e.g. color and shape of
objects), aiming at eventually estimating an overall
image saliency map [8]. In a similar fashion, natural
language rationales can be formed to explain individ-
ual model’s decisions, e.g. determining the specific at-
tributes/arguments behind a bird being classified as be-
longing to a particular breed [74].

• Interactive: Approaches under this category allow hu-
mans to interactively intervene in the explanation gener-
ation process. Specifically, the user is allowed to provide
feedback about the model’s produced predictions and,

subsequently, the model exploits the collected informa-
tion for improving its performance or posing questions
about the assessment of the results. For example, hu-
mans are capable of evaluating AI models’ predictions
and corresponding explanations through an interactive
framework in [46], while follow-up questions are pre-
sented to the user for justification purposes in [72].

• Fusion-based: Numerous and diverse fusion schemes
have been adopted in multimodal prediction models
for estimating comprehensive data representations and
achieving accurate prediction results. For example, a
multiplication operator of image and question represen-
tations is typically used in VQA approaches. In this
context, investigating the way that fusion is applied and
the effects that the latter mechanism imposes can provide
significant insights in terms of explainability purposes,
e.g. identifying how each modality contributes to the
produced outcome [88].

• Attention-based: The scope of the attention mechanism
is to enable the trained model to focus only on spe-
cific features in the input data space that are impor-
tant for realizing robust predictions, e.g. specific im-
age patches or individual words in textual phrases. The
latter is achieved by estimating weights that modulate
the model’s attention on the input data. The estimated
computed weights can be utilized though for providing
meaningful explanations of the model’s decisions, e.g.
in the form of visualizations of the attended regions in
an image or words in a sentence [22], [47], [49], [57].

IV. EVALUATION OF GENERATED EXPLANATIONS
Evaluation schemes in XAI applications aim at assessing the
accuracy and efficiency of the generated explanations, i.e.
the ability to which the XAI method at hand explains the
behavior/decisions of the model developed for the primary
prediction task. The main categories to which XAI (including
MXAI techniques) evaluation approaches can be roughly
classified to comprise [118]: a) Application-grounded, i.e.
implementing experimental evaluations with domain experts,
b) Human-grounded, i.e. conducting experiments with hu-
mans, without necessarily being domain experts in the exam-
ined field, and c) Functionally-grounded, i.e. using a formal
definition of explainability in order to assess the quality of the
produced explanations. With respect to the particular case of
MXAI methods, the evaluation protocol can consider/assess
the involved modalities independently (with textual and vi-
sual explanations being the most common ones) or also take
into account cross-modal inter-relations/dependencies.

A. EVALUATION OF TEXTUAL EXPLANATIONS
In order to assess the quality (i.e. accuracy, correctness, etc.)
of the generated textual explanations (that are usually in the
form of natural language sentences), a large body of the rel-
evant literature relies on the implementation of user-centered
studies, i.e. experimental procedures that require the provi-
sion of human-user assessments (e.g. in the form of question-
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naires, explanation gradations/rankings, etc.) [20], [22], [39],
[48], [71], [75]. The latter is mainly due to: a) Lack of pub-
licly available datasets that include ground-truth explanation-
related annotations, and b) Inherent difficulty in determining
precisely and unequivocally what a ‘good’ explanation is for
a given data input. However, when ground-truth explanation
data are available, the following main metrics (where BLEU-
1,2,3,4, ROUGE, METEOR, CIDEr and SPICE have been
borrowed from the NLP literature) have been widely used, in
order to evaluate the similarity between the generated textual
justification and the corresponding target/ground-truth one:

• BLEU: It counts an n-gram (i.e. continuous sequence of
n words) based matching score between the candidate
explanation and the ground-truth one, regardless of the
word order [8], [22], [24]–[26], [43], [45], [48], [74],
[80], [93], [95], [104].

• ROUGE: Among the various individual metrics belong-
ing to this category, ROUGE-L takes into account the
longest common sub-sequence between the reference
and the predicted explanation phrase [8], [22], [24]–[26],
[43], [45], [48], [74], [80], [93], [95], [104].

• METEOR: While originally designed to address short-
comings of the respective BLEU score, its estimation is
based on an explicit word-to-wordmatching between the
generated explanation and all respective reference ones
[8], [20], [22], [24], [25], [39], [43], [45], [48], [74], [80],
[93], [104].

• CIDEr: It assesses the degree of consensus between a
candidate explanation sentence and a set of reference
ones, by examining how often n-grams in the candidate
phrase appear in the reference ones [8], [20], [22], [24],
[25], [39], [43], [45], [48], [74], [80], [93], [95], [104].

• SPICE: It is based on the creation of semantic scene
graphs from dependency parse trees created using the
candidate and reference explanation sentences, taking
into account objects, attributes and their relationships;
it relies on assessing the generated explanation/sentence
quality using an F-score metric calculated over tuples
(conjunction of logical propositions) belonging to both
graphs [22], [43], [45], [48], [93].

• Ratio of unique or novel sentences: These focus on
identifying/counting the explanation sentences that have
not been generated before and those that do not exist in
the training set [119].

• Cosine-similarity: It measures the correspondence of
the generated natural language explanations and the
ground-truth ones, taking into account the respective
available semantic embeddings [120].

• Phrase error and accuracy with counterfactual test:
These metrics are applicable to the case of counterfac-
tual textual explanations [78]. In particular, phrase error
estimates the degree of similarity of the counterfactual
and the ground-truth sentence, i.e. an ideal score should
be equal to zero. Additionally, accuracy aims at measur-
ing the decrease in class prediction performance, where

additional counterfactual text is provided (along with the
originally generated textual explanation) as input to the
classifier.

• Class similarity: It relies on estimating the relevance
of the generated explanation for a particular semantic
class with the ground-truth ones for the same class [20],
by employing the CIDEr metric between the generated
explanations and all reference sentences of the examined
class (and not just the ground-truth ones for the specific
image in question).

• Class ranking: It is an extension of the class similarity
concept to further validate whether the generated ex-
planations are class relevant. It relies on the estimation
of the similarity score for each examined sentence and
every considered class [20].

• Relevance of visual attributes: Such metrics measure
the proportion of accurately represented ground truth
attributes in the top-k generated explanations for each
instance [76] or use the estimated attributes to assess the
relevance of the generated explanations with the visual
features that the examined model has learned [77]. The
latter is accomplished by counting the words that are
common in the ground-truth description of an object and
the generated justification, and then calculating the ratio
of this count to the total number of words in the ground-
truth description.

• Relevance of textual attributes: It evaluates the ac-
curacy of the generated explanations (i.e. predicted at-
tributes (in text form) and estimated captions), by utiliz-
ing a cosine similarity-based formalism.

• Word importance: It is based on estimating the impor-
tance of the individual words comprising the generated
explanations under different evaluation scenarios, e.g.
removing the top-3 relevant words [65], consideration
of part-of-speech tags [44], etc.

• Position of first and number of relevant explanations:
These estimate the ranking position of the first relevant
explanation in the set of all generated ones and the
number of relevant explanations in the top-5 produced
ones [55].

B. EVALUATION OF VISUAL EXPLANATIONS
Similarly to the case of evaluating textual justifications, a
large portion of the MXAI literature that produces visual
explanations relies on the implementation of user-centered
studies. For the latter case, qualitative assessment of the
produced outcomes is usually realized by superimposing the
explanation (e.g. heatmap) to the input visual data (either
image or video) and, subsequently, the human-user is in-
volved, so as to judge whether the identified/highlighted areas
correspond to truly important pixels/points for the primary
model’s prediction. On the other hand, when relevant ground-
truth information is available, quantitative evaluation can be
performed by: a) Estimating the correspondence of the gener-
ated explanations (e.g. in the form of target bounding-boxes,
human attention and segmentation maps, etc.) to the ground-
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truth ones, and b) Examining the contribution of individual
image pixels and regions to the model decisions, by observing
the effect of removing or superimposing them from/to the
model’s input data. When ground-truth explanation-related
information is provided, the followingmetrics/approaches are
commonly used in the literature:

• Intersection-over-Union (IoU): This measures the
correspondence between a given reference mask or
bounding-box and the respective one associated with the
explanation [8], [25].

• Mask alignment: It evaluates the visual alignment be-
tween the ground-truth and the generated explanation
masks, focusing on e.g. examining whether the max-
imum attention weights reside inside the ground-truth
bounding-box area [52].

• Average fraction of activations: It estimates the aver-
age percentage of the points (belonging to the produced
activation maps) that lie within the provided ground-
truth bounding boxes [17].

• Earth Mover’s Distance (EMD): It measures the simi-
larity/distance between the produced attention/explanation
map and the human-provided one, while considering
them as two different probability distributions [22], [45],
[57].

• Rank correlation: It relies initially on the ranking of the
pixels of the produced/available heatmaps according to
their spatial attention values and, subsequently, estimat-
ing the correlation between these ordered lists of pixels
[22], [30], [43], [44], [50], [56], [57].

• Foreground Attention Rate (FAR): It measures the
degree of compliance of the detected foreground objects
with the provided attention heatmap over the examined
image [81].

• Quality of attention/saliency map: It assesses the ac-
curacy of the generated heatmaps, by estimating the de-
gree of consistency with the respective human-annotated
ground-truth ones [121].

• Precision and recall: The conventional precision and
recall performance metrics are extended to the case of
evaluating the generated visual explanations, by e.g.
estimating how often the center of the generated atten-
tion map overlaps with the available ground-truth region
annotation [62].

• Attention correctness [122]: Specifically designed for
attention models used in visual captioning tasks [65],
[69], it is equal to the normalized sum of all attention
weights that relate to a given word that, at the same time,
correspond to the respective ground-truth annotated re-
gions.

• Negative class accuracy: It aims at assessing the va-
lidity of the produced counterfactual explanation, by
examining the extent to which the output explanation
changes when the estimated attended region is removed
[19].

Assessing the explanation evaluation issue from a causal

relation modeling perspective, the analysis focuses on exam-
ining whether the generated visual regions contribute to the
correct prediction and how changes in the input affect the
final prediction result, i.e. not being constrained only to the
case of examining solely the alignment of visual explanations
with ground-truth data. In this context, the following mea-
sures/approaches are widely used:

• Deletion: It identifies critical pixels, which, when re-
moved from an image, lead to a drop in detection per-
formance for a given semantic class [68].

• Insertion: It determines important pixels, which, when
added to an image, lead to an increase in the detection
performance for the examined semantic class [68].

• Average drop: It corresponds to the average decrease
in the model’s prediction performance for a given class,
when only explanation-related information is provided
as input to the model, instead of the full original image
[108].

• Average drop in deletion: It is similar to the ‘average
drop’metric described above, but it makes use of the pre-
diction score for the class of interest, when considering
the inverted explanation heatmap [58].

• Increase in confidence: It corresponds to the increase in
the model’s prediction confidence, when providing only
explanation-related information as input to the model,
instead of the original image [108].

• Win percentage: It compares the performance of dif-
ferent methods, by estimating the frequency that the
performance achieved by a given method, when using
only the generated explanation heatmap, is higher than
that obtained by other/competitive approaches [108].

C. MULTIMODAL EVALUATION
While the wide majority of the literature approaches consid-
ers individual unimodal metrics for evaluating the quality of
the generated MXAI explanations, methods that implement
multimodal evaluation schemes (i.e. assessment approaches
that take into account the correlations among the examined
modalities) have also been proposed, as follows:

• Concept accuracy [19]: This aims at evaluating multi-
modal (visual and textual) counterfactual explanations
for video classification. The metric estimates the com-
patibility of the estimated words (i.e. assigned attributes,
e.g. using pole, flipping, etc.) in the textual justification
and their visual counterparts, by comparing the conven-
tional IoU metric of a given attribute-bounding-box pair
with the respective pairs corresponding to the remaining
generated counterfactual explanations.

• Complementarity [79]: It estimates the degree of com-
plementarity between the visual and the textual part of
an explanation, by utilizing the ‘‘reasoner"’s (it receives
as input the generated explanation pairs) score for the
class identified by the ‘‘predictor" (the actual prediction
module) for each candidate combination of text and
image explanation pairs.
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• Fidelity [79]: This metric aims at examining how class
predictions are obtained, by utilizing the generated ex-
planations. The ‘‘reasoner" (it receives as input the gen-
erated explanation pairs) and the ‘‘predictor" (the actual
prediction module) are compared in terms of accuracy
and prediction consistency.

V. CURRENT CHALLENGES AND FUTURE RESEARCH
DIRECTIONS
Despite the large body of MXAI works that have recently
been introduced, significant challenges and open research
problems are still present, which if sufficiently addressed
will further increase the efficiency and acceptance of MXAI
schemes. It needs to be mentioned that the research directions
described below are often applicable also to the unimodal
XAI field.

Convergence to formal and widely accepted defini-
tions/terminology. Although many research studies have re-
cently appeared in the MXAI field, little to no formality has
been adopted, concerning the definitions and terminology
used. In particular, many researchers make use of ad-hoc
descriptions to delineate their research activities, while they
often define ‘explainability’ and ‘interpretability’ in various
(and often conflicting) ways. As a result, no concrete and
widely accepted terminology is currently present. Defining
what an explanation is and how its accuracy/efficiency can be
measured using well-defined qualitative/quantitative norms
and experimental frameworks, apart from enhancing formal-
ization aspects in the field, will also significantly facilitate
the comparative evaluation of the numerous proposed ex-
plainability methods [123]. The latter will also greatly assist
in addressing current controversies, like assigning different
terms to similar methods or associating similar names with
fundamentally different (algorithmic) concepts.

Usage of attention mechanisms in explanation schemes.
Attention mechanisms, apart from being used in numerous
data analysis tasks, have also been utilized for generating
explanations of the prediction models’ behavior, typically in
the form of visualization schemes (indicating words or image
areas where the primary model focuses on) or feature im-
portance metrics. However, several concerns and conflicting
arguments have emerged, raising fundamental doubts regard-
ing the suitability of attention mechanisms to produce actual
explanations. In particular, experimental studies show that
distributions between learned attention weights and gradient-
based feature relevance methods are not highly correlated
for similar predictions [124]; hence, conventional attention-
based explanations can not be considered equivalent to oth-
ers. However, contradictory experimental results move in
the opposite direction, i.e. the usage of attention schemes
for explanation generation is not always applicable, but it
depends on the actual definition of explanation that is adopted
in the particular application at hand [125]. In this context,
more detailed and in-depth studies need to be conducted,
in order to shed more light on whether and under which
exact conditions attention schemes can be used for providing

meaningful explanations, as well as how such methods relate
to other non attention-based MXAI approaches.
Generalization ability of MXAI methods. The wide ma-

jority of the availablemethods has only been designed for spe-
cific AI model architectures, regarding the primary prediction
task. For example, there is a significant number of methods
that have been designed for the VQA scenario; however, such
approaches have not been evaluated in other vision-language
applications. Naturally, it can be well admitted that introduc-
ingmodel-specific explanation schemes is very restrictive and
expensive. Robustly extending existingmethods to other tasks
and architectures would significantly save research resources
and would likely lead to performance improvements.
Extension of MXAI schemes to more than two expla-

nation modalities. Most MXAI methods focus on producing
unimodal or bimodal explanations. However, extending these
representations to higher dimensionality multimodal feature
spaces (i.e. feature spaces that are composed of more than two
modalities) would inevitably further increase the expressive-
ness and accuracy of the produced explanations.
Estimation of causal explanations. So far no significant

attention has been given to the causality perspective of ex-
planations, while causal relationships are the particular type
of relations that humans inherently perceive. In this respect,
causal explanations can enable the interpretation of how one
event can lead to another one and, hence, the development
of a deeper understanding of the world. On the other hand,
identifying the factors that cause an event to occur can also
facilitate the prediction of how the event might unfold and/or
how it could/should be treated in the future [123]. Therefore,
apart from identifying which features are important for a
given model, how predictions are affected by modifications
in the feature values is important to understand the model’s
reasoning process itself. In the context of the multimodal
setting, causality needs to be examined in terms of how
each individual modality and the correspondingly particular
features affect the prediction outcome (and not simply iden-
tifying which features are important).
Removing bias in textual explanations. The main

paradigm being followed for estimating textual explanations
consists of collecting natural language rationales from hu-
mans and subsequently developing/training an explanation
module with these descriptions as ground truth data. How-
ever, human textual annotations (especially when it comes to
long textual justifications) typically contain (contradictory)
biases that are related to the particular background and tem-
perament of each involved individual. To this end, develop-
ing modulation schemes for identifying/removing bias and
resolving conflicting annotation cases would significantly
improve the quality of the generated textual annotations.
Lack of ground-truth visual explanations. Contrary to

the case of textual explanations, a lack of corresponding
ground-truth visual explanation data, which would enable
the development of explanation generation modules trained
under a supervised learning scenario, is observed. Despite
the fact that collecting such manual annotations can be very
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expensive, the availability of such data would greatly boost
the development of more accurate and robustMXAI schemes.

Insufficient MXAI evaluation. One of the main gaps
in MXAI research concerns the lack of standard evaluation
metrics, protocols and benchmarks for assessing the quality
of the produced explanations. This naturally hinders the ob-
jective comparative evaluation of different methods and the
identification of the most efficient practices for generating
accurate explanations. Additionally, the most widely adopted
norm consists of examining each modality separately (i.e. not
investigating the correlations among the different information
streams of the produced explanations); hence, often leading to
inaccurate observations and possible misconceptions regard-
ing the obtained results. Moreover, the inherent human sub-
jectivity, when it comes to explanation assessment, adds to the
problem difficulty. Addressing all the aforementioned chal-
lenges, towards achieving objective MXAI evaluation results,
should be coupled with the definition of suitable multimodal
interpretability evaluation metrics, where only very few and
highly task/model-specific ones have been introduced so far
[19], [79].

Explanations targeting specific domains and end-users.
A critical aspect of explainability is that of producing ex-
planations that are tailored to specific end-users, considering
their individual needs and diverse backgrounds. Interpretation
capabilities should be inherently tied to the nature of the
particular user’s experience and expertise (something that is
usually neglected), and in the majority of the scenarios the
produced explanations cannot be well understood by non-
experts. The design of explanation schemes should consider
the diverse backgrounds, knowledge and cognitive capabili-
ties of the end-user interacting with a particular AI system.
Users with limited technical expertise may require concep-
tually simpler explanations that would support a clear un-
derstanding of the system’s decision-making process. On the
other hand, users with domain-specific expertise may require
more detailed and accurate information. On the other hand,
tailoring explanations to different user profiles would further
enhance the user’s experience, by fostering comprehension,
building trust and enabling effective collaboration between
humans and AI systems.

VI. CONCLUSIONS
In this paper, a comprehensive, systematic and in depth
study regarding the developments in field of Multimodal
eXplainable Artificial Intelligence (MXAI) was presented.
Initially, an extensive analysis of the relevant primary pre-
diction tasks (e.g. image/video captioning, visual question
answering, etc.) and the corresponding publicly available
datasets, where MXAI approaches have been applied so far,
was provided. Subsequently, a thorough and structured pre-
sentation of the MXAI methods of the literature was given,
based on the following key criteria: a) The number of the
involved modalities (regarding both the primary prediction
model input and the generated explanation feature spaces),
b) The development/deployment stage (with respect to the

primary prediction task model) at which explanations are
learned/produced, and c) The type of the methodology (i.e.
mathematical formalism/mechanism) adopted for producing
the actual explanations. Then, a detailed discussion regarding
the issue ofMXAImethods’ evaluationwas provided, empha-
sizing on outlining the relevant quantitative performance met-
rics. Finally, a comprehensive analysis of current challenges
and future research directions in the field was given.
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