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ABSTRACT

Cyberattacks have increased radically over the last years, while the exploitation of Artificial Intelligence
(AI) leads to the implementation of even smarter attacks which subsequently require solutions that
will efficiently confront them. This need is indulged by incorporating Federated Intrusion Detection
Systems (FIDS), which have been widely employed in multiple scenarios involving communication
in cyber-physical systems. These include, but are not limited to, the Internet of Things (IoT) devices,
Industrial IoT (IIoT), healthcare systems (Internet of Medical Things / IoMT), Internet of Vehicles
(IoV), Smart Manufacturing (SM), Supervisory Control and Data Acquisition (SCADA) systems,
Multi-access Edge Computing (MEC) devices, among others. Tackling the challenge of cyberthreats
in all the aforementioned scenarios is of utmost importance for assuring the safety and continuous
functionality of the operations, crucial for maintaining proper procedures in all Critical Infrastructures
(CIs). For this purpose, pertinent knowledge of the current status in state-of-the-art (SOTA) federated
intrusion detection methods is mandatory, towards encompassing while simultaneously evolving them
in order to timely detect and mitigate cyberattack incidents. In this study, we address this challenge
and provide the readers with an overview of FL implementations regarding Intrusion Detection in
several CIs. Additionally, the distinct communication protocols, attack types and datasets utilized are
thoroughly discussed. Finally, the latest Machine Learning (ML) and Deep Learning (DL) frameworks

and libraries to implement such methods are also provided.
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1. Introduction

In the digital era of the Internet of Things (IoT) and
Artificial Intelligence (AI), smart ecosystems have emerged
as a cornerstone of innovation, thus seamlessly integrating
advanced technologies into the fabric of daily life and busi-
ness operations. Their interconnected nature and reliance on
vast data exchanges have revolutionised industries, offering
unprecedented efficiency and multiple benefits. However, this
digital transformation opens up a Pandora’s box of security
issues that may lead to catastrophic effects. In particular, the
integration of smart technologies in Critical Infrastructures
(Cls), introduces the risk of cyber-physical attacks capable
of causing substantial damages beyond the digital realm.
Moreover, the proliferation of smart devices can increase the
risk of both typical single-step cyberattacks and multi-step
cyberattacks. This is because their functions rely on insecure
communication protocols and heterogeneous technologies
that may be characterised by potential vulnerabilities. For

0009-0004-7130-3874 (N. Episkopos); 0000-0002-5458-6049 (E. Iturbe);
0000-0001-5541-1091 (E. Rios); 0000-0003-0262-7619 (N. Piperigkos);
0000-0003-0511-9302 (A. Lalos); 0000-0001-6718-122X (C. Xenakis);
0000-0002-0749-9794 (T. Lagkas); 0000-0003-4679-8049 (V. Argyriou);
0000-0001-6042-0355 (P. Sarigiannidis)

I. Makris et al.: Preprint submitted to Elsevier

Page 1 of 46


https://metamind.gr/, makris@metamind.gr
https://ithaca.ece.uowm.gr/, a.karampasi@uowm.gr
ttps://ithaca.ece.uowm.gr/, pradoglou@uowm.gr
https://metamind.gr/, nepisko@gmail.com
https://www.tecnalia.com/, Eider.Iturbe@tecnalia.com
https://www.tecnalia.com/, Erkuden.Rios@tecnalia.com
https://www.isi.gr/, piperigkos@ceid.upatras.gr
https://www.isi.gr/, lalos@isi.gr
https://www.unipi.gr/en/xenakis-2/, xenakis@unipi.gr
https://cs.duth.gr/, tlagkas@cs.duth.gr
https://www.kingston.ac.uk/staff/profile/professor-vasilis-argyriou-332/, vasileios.argyriou@kingston.ac.uk
https://www.kingston.ac.uk/staff/profile/professor-vasilis-argyriou-332/, vasileios.argyriou@kingston.ac.uk
https://ithaca.ece.uowm.gr/, psarigiannidis@uowm.gr

A Comprehensive Survey of Federated Intrusion Detection Systems: Techniques, Challenges and Solutions

instance, several industrial communication protocols, such as
Modbus/Transmission Control Protocol (TCP), Distribution
Network Protocol 3 (DNP3) and IEC 61850, are prone
to unauthorised attacks. On the other hand, it is worth
mentioning that the autonomous and automatic ability of
smart devices to communicate with each other and with ex-
ternal environments may raise security and privacy concerns.
Finally, cyber attacks are continuously evolving by leveraging
Machine Learning (ML) and Deep Learning (DL) methods
to automate and optimise malicious activities, making them
more efficient and difficult to predict or counteract. In contrast
to conventional cyberattacks that rely on predefined scripts
and methods, ML & DL approaches are able to adjust
in real-time and imitate human behaviour. Therefore, in
light of the aforementioned remarks, the need for robust
security measures that can ensure confidentiality, integrity
and availability principles is evident.

The role of Intrusion Detection Systems (IDS) and
Intrusion Prevention Systems (IPS) is indispensable for
safeguarding interconnected networks against a myriad of
cyberattacks. Such systems can effectively monitor various
kinds of data, such as network traffic, system logs and oper-
ational data, in order to recognise suspicious activities and
potential security breaches in real-time. For this purpose, they
can leverage both signature-based and anomaly-detection
methods. On the one hand, signature-based detection relies on
predefined patterns or signatures that characterize particular
malicious activities. On the other hand, anomaly-based
detection leverages statistical analysis and Al techniques in
order to detect and discriminate malicious actions. While the
use of Al for intrusion detection bears significant advantages
compared to traditional methods, even though these two
approaches act in a complementary manner, it also raises
several concerns. First, Al requires a vast amount of data
for training, thus creating privacy concerns, especially when
dealing with sensitive information. Moreover, usually, this
kind of data is not available and differs from environment
to environment. In addition, given the evolving nature of
cyberattacks, the Al models should continuously be updated
and re-trained towards recognising new attack patterns.
Finally, the use of Al in the context of critical operations
creates ethical considerations. Hence, despite the benefits of
Al, specific countermeasures are required in order to address
the aforementioned challenges.

Federated Learning (FL) is an ML approach that allows
multiple entities and environments to collaboratively learn
a common Al model while keeping all the training data lo-
calised. FL can resolve various concerns about the utilisation
of Al in cybersecurity, especially in the context of intrusion
detection. In particular, FL may unravel those challenges
that are related to data privacy and model robustness. On
the one hand, FL enables decentralised training without
sharing sensitive data with a centralised server or third parties
(Figure 1). Thus, given that the data remains within local
entities and environments, the risk of data breaches is reduced.
Additionally, FL. enhances the robustness and resilience of
Al models since they leverage multiple data sources. This

diversity results in generalised models that can encounter dif-
ferent attack vectors. Based on the aforementioned remarks,
this paper aims to investigate the impact of FL on intrusion
detection and prevention mechanisms. Therefore, based on
the aforementioned remarks, the contributions of this paper
are summarised as follows:

e Comprehensive Analysis of Federated Intrusion
Detection Systems: A holistic analysis of Intrusion
Detection Systems (IDS) leveraging Federated Learn-
ing (FL) is carried out. It is worth mentioning that the
paper discusses Federated IDS (FIDS) used in different
domains, such as the Industrial Internet of Things
(IIdT) and the Internet of Vehicles (IoV), demonstrating
the versatility and importance of FL in enhancing
cybersecurity across diverse domains.

e Analysis of Aggregation Methods and Challenges:
Different aggregation methods are analysed, paying
special attention to the challenges associated with each
method, including data privacy, model robustness and
efficiency.

e Trends and Research Directions: Based on the previ-
ous analysis, particular research directions for future
work in the context of FL-driven IDS are provided.

The rest of this paper is structured as follows. Section 2
discusses similar survey papers and summarises the differ-
ences and contributions of this work. Section 3 provides an
overview of intrusion detection and prevention. Similarly, a
background on FL is provided in section 4. Next, section 5
provides a comprehensive analysis of FIDS. Subsequently,
based on this analysis, lessons learned and directions for
future work in this research are provided in section 6. Finally,
section 7 concludes this paper.
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Figure 1: Federated Learning overview Shaheen et al. (2022).

2. Motivation, Relevant Work and
Contributions

Federated Intrusion Detection Systems (FIDS) have been
extensively studied to enhance the gained knowledge regard-
ing the safety of interconnected systems. The complexity that
is present in various environments, concerning the multiple
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end-devices which must communicate with each other or
with a main entity/server poses new challenges in effectively
addressing the highly trained attacks that are continuously
created. More specifically, in the digital era where the endless
battle between attackers and defenders evolves, the latter
should always be ahead in order to preserve the smooth
operation of the systems.

Towards fortifying the entities involved against cy-
berthreats, a variety of surveys have been provided to the
research community. More precisely, the authors in Ali, Li
and Yousafzai (2024) elaborate on the usage of blockchain, as
well as FL on Industrial Internet of Things (IIoT) in extensive
research regarding IDS and IPS on such an ecosystem. In
Alsamiri and Khalid (2023) the authors provide us with
a comprehensive survey for identifying the applications
of FL for IDS and IPS in the Internet of Vehicles (IoV)
environments. Moreover, in Mourad, Otrok and Guizani
(2023) the authors make an effort of not only identifying
IDS and IPS systems for a variety of environments, yet
they are additionally proposing a cybersecurity framework
encompassing explainability of the techniques implemented
against cyberattacks. In Girdhar, Singh and Kumar (2023)
the authors elaborated on comparing various attack detection
techniques focusing on Al and blockchain techniques, while
identifying any limitations and future proposals regarding
cybersecurity issues. Additionally, in Lavaur, Pahl, Busnel
and Autrel (2022) the authors try to determine FL-based IDS
systems from the creation of FL in 2016 up to 2021.

Having said this, we intend to provide a comprehensive
survey that investigates FIDS in terms of data types and
sources, FL aggregation techniques, attacks under consid-
eration, detection performance, technologies and datasets.
More notably, the importance of this study lies in the aggre-
gation of the relevant literature, while incorporating various
circumstances, and are, additionally, evaluated on similar
datasets making them comparable in terms of performance
in distinct scenarios, as they are posed in the current State of
the Art (SOTA) techniques.

3. Overview of Intrusion Detection and
Prevention

In recent years, it is obvious that even though smart tech-
nologies offer many advantages, the corresponding services
and applications are vulnerable to a significant number of
intrusions and cyberattacks. With the main goal being the
prevention of such attacks in a timely manner, unexpected se-
curity events and zero-day vulnerabilities make this intention
unrealistic. However, the prompt detection of cyberthreats
and anomalies, without the need to affect legitimate services,
can be treated as a realistic solution. Therefore, the develop-
ment and implementation of IDSs is necessary. To this end,
an overview of Intrusion Detection and Prevention Systems
(IDPSs) is given in this section. According to the Request For
Comments (RFC) 2828 (Internet Security Glossary) Shirey
(2000), intrusion detection is related to regularly checking,
evaluating, and monitoring security-related events aiming to

immediately detect any malicious behaviour or anomaly in the
system. In 1978, D. Denning built and defined the first solid
intrusion detection model, Denning (1987). Based on this
model, numerous engineers started building and designing
the first IDSs. In 1980, the term “IDS” was coined, and it
was directly connected to a hardware and/or software system
that automatically executed the aforementioned activities. In
that year, James Anderson discovered that log files could
be used as an efficient approach to monitor the health of a
computing system and the way in which individuals interact
with it, Anderson (1980). The following section defines (a)
the goals and specifications of IDPS, (b) an IDPS reference
architecture, (c) intrusion detection methods and (d) intrusion
prevention mechanisms.

3.1. Objectives and Requirements of Intrusion
Detection and Prevention Systems

According to the RFC 2828 (Internet Security Glossary),
a system intrusion is defined as: “A security event or combi-
nation of multiple security events, that constitutes a security
incident in which an intruder gains, or attempts to gain,
access to a system (or system resources) without being given
the authorisation to do so”. On the other hand, intrusion
detection is described as: “A security service that monitors
and analyses system events for the purpose of finding and
providing real-time or near real-time warning or attempts to
access system resources in an unauthorised manner”. Even
though attackers aim to exploit new vulnerabilities and evade
potential defence mechanisms, they follow a common attack
methodology consisting of ten steps, as presented by MITRE
ATT&CK: a) Initial access, b) Execution, c¢) Persistence,
d) Privilege escalation, e) Defense evasion, f) Credential
access, g) Discovery, h) Lateral movement, i) Collection and
exfiltration, and j) Command and control Roy, Panaousis,
Noakes, Laszka, Panda and Loukas (2023); Stallings, Brown,
Bauer and Howard (2012). Regardless of the primary goal
of IDPS, which is the instantaneous detection and mitigation
of potential attacks, the constrained characteristics of IoT de-
vices and applications have led to new requirements regarding
their role in IoT environments Zarpeldo, Miani, Kawakani and
de Alvarenga (2017). According to P. Radoglou-Grammatikis
et al. in Radoglou-Grammatikis and Sarigiannidis (2019),
these requirements are illustrated below:

e Detection of various cyber threats and anomalies:
Based on previous studies, an IDPS should be capable
of detecting and classifying a wide range of cyber-
attacks and anomalies, Heidari and Jabraeil Jamali
(2022); Arisdakessian, Wahab, Mourad, Otrok and
Guizani (2022); Yang, Liu, Li, Wu, Wang, Zhao and
Han (2022); Yi, Bo, Ji, Saltzman, Jachnig, Lei, Gao
and Zhang (2023); Thakkar and Lohiya (2023).

e Intrusion Detection in a Timely Manner: Based on
how critical each IoT application is, the corresponding
cyberattacks and anomalies should be detected as close
to real-time as possible.
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e High Detection Accuracy: Achieving high accuracy
is the most important challenge of an IDPS in terms of
detecting several cyberattacks and anomalies.

o Lightweight Resource Scaling: Due to the constrained
characteristics of IoT environments, an IDPS should be
capable of operating in the best possible way, particu-
larly in terms of high accuracy and punctual detection,
without consuming lots of computing resources and
influencing the core operation of the IoT devices and
applications.

e Scalability: Based on the size of the IoT applications
consisting of multiple IoT devices, a relevant IDPS
should be capable of monitoring and controlling them
efficiently.

o Resiliency against Cyberattacks: An IDPS should be
capable of detecting and countering threats that aim at
harming the system.

e Friendly User Interface: Similarly, due to the large
amount of data and security events in [oT environments,
the corresponding IDPS should be eligible for visualiz-
ing and finding the correlation of the different security
events and alerts in a clear and understandable way.

3.2. Reference Architecture of Intrusion Detection
and Prevention Systems (IDPS)

As illustrated in Figure 2, a classic IDPS consists of three
main components, namely the Agent(s), the Analysis Engine,
and the Response Module. The agents’ responsibilities are
monitoring the actions of the various entities and collecting
as well as pre-processing the necessary data. It is important to
note that depending on the position of the agent, an IDPS can
be categorized as Host-based IDPS (HIDPS), Network-based
IDPS (NIDPS) and Hybrid IDPS.

Detetion Techniques
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Figure 2: Typical IDPS Architecture Radoglou-Grammatikis
and Sarigiannidis (2019).

3.3. Intrusion Detection Techniques

The detection procedures within the Analysis Engine are
based on the assumption that the way an intruder behaves
differs from the behaviour of a normal/legitimate user, and
this difference can be measured using a variety of methods.
However, the two behavioural profiles are highly correlated.
Therefore, a non-tight interpretation of an intruder’s activities
and actions will result in the detection of more attackers but,
at the same time, it will also lead to more False Positives
(FP). On the other hand, a stricter analysis of the intruder’s
actions will be accompanied by more False Negatives (FN).
Figure 3 illustrates the correlation between the behavioural
profile of a normal/legitimate user compared to an intruder’s.
Based on this, it is obvious that there is a practical element of
settlement with respect to finding intrusions and anomalies.

Regarding the IDPS, it can be classified into one of two
groups based on the methods used by the Analysis Engine: (a)
signature & specification-based detection, and (b) anomaly-
based detection. Each method is further elaborated in the
following subsections.

Probability
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Figure 3: Behaviour Profiles of a Normal/Legitimate User and
an Intruder Stallings et al. (2012).

3.3.1. Signature & Specification-based Detection

According to the syntax of the patterns/rules, the IDPS is
classified as signature-based or specification-based. Signature-
based methods, also known as misuse detection, follow
a number of widely known malicious patterns or attack
rules (i.e., signatures) without being capable of detecting
unknown anomalies and zero-day attacks. On the contrary,
specification-based techniques utilize a set of rules (i.e.,
specifications) that define normal behaviours and, therefore,
are capable of detecting unknown anomalies, however, they
are inadequate in classifying different types of attacks.
Snort, Chakrabarti, Chakraborty and Mukhopadhyay (2010),
Suricata, Wong, Dillabaugh, Seddigh and Nandy (2017),
and Bro, Udd, Asplund, Nadjm-Tehrani, Kazemtabrizi and
Ekstedt (2016), are popular NIDPS of this category. Similarly,
OSSEC is a HIDPS of this category, Teixeira, Assuncao,
Pereira, Malta and Pinto (2019).

3.3.2. Anomaly-based Detection

The anomaly-based IDPS employs a model that distin-
guishes between normal and malicious behaviour patterns by
implementing statistics and Al. More precisely, supervised
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ML and DL methods are implemented and trained by utilising
previous data from various agents. The training procedure can
be established at distinct times or in a continuous way, thus
updating the model by feeding it with information regarding
new attacks and malicious behaviours. Such methods can
identify unknown anomalies and zero-day attacks, since
they are able to identify deviations from normal behaviour,
but also produce a large number of false alarms. Moreover,
this method requires a dataset that includes both malicious
and normal data samples, which are rarely publicly avail-
able Radoglou-Grammatikis, Sarigiannidis, Efstathopoulos,
Lagkas, Fragulis and Sarigiannidis (2021).

Although many ML/DL algorithms exist, the strong
majority of them follow the steps outlined below:

e Pre-processing Phase: Given an available dataset
(labelled or not), in this stage, every data point/instance
is appropriately pre-processed according to the feature
space and the tunable hyperparameters of the ML/DL
methods, which will be used in the next phase. Usually,
pre-processing methods like standardization, min-max
scaling, normalization, maximum absolute scaling, and
robust scaling are implemented, Garcia, Luengo and
Herrera (2015).

e Training Phase: In this phase, the selected ML/DL
model is implemented and trained using the pre-
processed data of the first stage. As mentioned, there
are various ML/DL models for this purpose. In general,
they can be split into four main groups: (a) supervised
detection, Cunningham, Cord and Delany (2008), (b)
unsupervised/outlier detection, Barlow (1989), (c)
semi-supervised/novelty detection, Van Engelen and
Hoos (2020) and (d) Reinforcement Learning (RL)
detection, Arulkumaran, Deisenroth, Brundage and
Bharath (2017). The first category needs a labelled
dataset, including a particular label like “Anomaly”,
“Normal”, or “Unauthorised Activity” for each data
point/instance. ML/DL models widely recognised
in this category include Naive Bayes (NB), Jiang,
Zhang and Cai (2008), Linear Discriminant Analysis
(LDA), Tharwat, Gaber, Ibrahim and Hassanien (2017),
Quadratic Discriminant Analysis (QDA), Tharwat
(2016), Decision Trees (DTs) Lomax and Vadera
(2013), Random Forest, Resende and Drummond
(2018), Logistic Regression (LR) DeMaris (1995), Ad-
aBoost, Sagi and Rokach (2018) and Neural Networks
(NNs), Giimiisbag, Yildirim, Genovese and Scotti
(2020), among others. On the contrary, the second
group utilizes clustering mechanisms for unlabelled
datasets, Saxena, Prasad, Gupta, Bharill, Patel, Tiwari,
Er, Ding and Lin (2017). However, outliers may be
present in the training data. Paradigms of methods
for detecting outliers include K-Nearest Neighbor
(KNN), Cunningham and Delany (2021), Principal
Component Analysis (PCA), Ringnér (2008), Angle-
Based Outlier Detection (ABOD), Kriegel, Schubert
and Zimek (2008), Minimum Covariance Determinant

(MCD), Hubert and Debruyne (2010), Stochastic
Outlier Selection (SOS), Janssens, Huszar, Postma
and van den Herik (2012), Isolation Forest, Hariri,
Kind and Brunner (2019), and Local Outlier Factor,
Alghushairy, Alsini, Soule and Ma (2020). In the third
group, namely the semi-supervised models, the training
dataset does not contain any outliers, and the goal
is to determine whether a new instance is an outlier
or not. OneClassSVM is a typical example in this
category, Li, Huang, Tian and Xu (2003). Concerning
RL implementations, the goal is to train an agent that
interacts with the environment in order to identify
the most efficient policy with regard to particular
states Lopez-Martin, Carro and Sanchez-Esguevillas
(2020a).

e Inference: After completing the training procedure,
the model is ready to be used by the Analysis Engine.
According to the decision made by the model, the
relevant alert can be either triggered or not by the
Response Module.

3.4. Intrusion Prevention Techniques

After the detection processes, mitigation and prevention
actions can be implemented by the response module. A
known example is the activation of some firewall rules that
aim to isolate cyberattackers. An alternative example is the
implementation of honeypots in order to mislead and capture
future malicious activities. Finally, the response module
can implement the Software-Defined Networking (SDN)
technology in order to reduce the impact of cyberattacks
or anomalies in near real-time, Xie, Yu, Huang, Xie, Liu,
Wang and Liu (2018). In this study, SDN and Honeypots
are used by the proposed Security Information and Event
Management (SIEM) system in order to mitigate the various
threats.

4. Overview of Federated Learning

Federated Learning is an emerging approach in AI/ML
that has gained high popularity due to its significantly high
performance in diverse and distinct tasks (i.e., intrusion
detection, image classification, and object detection) while
maintaining user privacy and data confidentiality. Compared
to traditional machine learning models that require the
centralization of data from various sources, raising privacy
concerns and data leakage risks, FL allows models to be
trained directly on decentralized devices, such as mobile
phones or IoT devices, without the need to exchange or move
raw and potentially sensitive data to a centralized entity. This
technique aims to advance Al utilization while preserving
privacy, enabling a diverse range of applications across
different domains. Federated Learning operation is based
on a decentralized principle. In particular, a global machine
learning model is initially distributed by a central device,
like a server, to all participating devices/nodes, each with its
local dataset. Since multiple terms are utilized throughout
the literature regarding these entities, we will maintain this
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Figure 4: Model-centric vs Data-centric Federated Learning Prendki (2022).

diversity in order to familiarize the reader with them. These
devices train the aforementioned transmitted model using
their local data and then broadcast the updated models back
to the central server. Following, the server is responsible for
the aggregation of the transmitted models from the nodes, in
order to produce a new global machine learning model that
is going to be re-transmitted to the nodes. This continuous
procedure is executed for a specific number of training rounds,
a pre-defined period of time, or when the model converges
to a satisfactory state, such as a given accuracy threshold.
In general, the nature of FL reduces data transfer overhead,
counters privacy risks, and allows collaborative training
of AI/ML models without the disclosure of sensitive or
confidential information.

4.1. Model-centric vs Data-centric

The following categories of FL approaches can be identi-
fied:

1. Model-centric FL: In this technique, a preconfigured
and existing NN model is hosted in the cloud. Then,
periodically, a number of individual workers spawn,
receive a copy of the said model, continue training
and improve the received model using their local,
isolated, and private data, and finally send their updated
model back to the cloud, which performs the local
models’ aggregation. An example of a model-centric
federated learning algorithm is what Google utilizes to
improve their Gboard next word prediction model using
their customers’ Android-powered smartphones, Hard,
Kiddon, Ramage, Beaufays, Eichner, Rao, Mathews
and Augenstein (2018).

2. Data-centric FL: In this case, a preconfigured and
existing data source is hosted in the cloud. Then,

spontaneously, a number of individual workers spawn,
with each one having its own custom model, and
train their corresponding models individually on the
data offered by the centralized data source in an ad-
hoc manner. In this approach, data can be constantly
improved and renewed, and the architectures of models
can be reevaluated and readjusted based on the data
attributes as well as on other useful qualitative and
quantitative characteristics of the data.

Currently, the majority of Al applications are model-
centric due to limited data quantity and data access restric-
tions that are enforced on data sharing and distribution, both
for preserving privacy and for enforcing intellectual property
protection, which makes it hard to create datasets that are
extensive, representative and generally recognized as public
standards. Furthermore, model-centric FL focuses on fine-
tuning an NN on a dataset with a fixed set of attributes
for solving a specific problem. However, data-centric FL is
more suitable for obtaining more accurate and continuously
evolving Al models since data are the most valuable assets in
data science workflows. Thus, a centralized and rich data
source can lead to a more accurate reflection of the real
world, especially for evidence that changes over time. Addi-
tionally, with the data-centric approach, model architectures
can change over time, adapting to new circumstances and
providing more accurate and up-to-date results. An abstract
comparison between the two aforementioned FL approaches
is presented in Figure 4.

4.2. Cross-device vs Cross-silo

Model-centric FL can be further distinguished into two
different federated learning-based settings based on the scale
of the federation, using the following distinctive terms:
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1. Cross-device FL: Cross-device FL refers to model
training through employing a highly scalable number
of computing devices, achieving a massively parallel
training procedure, Kairouz, McMahan, Avent, Bel-
let, Bennis, Bhagoji, Bonawitz, Charles, Cormode,
Cummings et al. (2021). Each of these devices has
limited computational and storage resources and its
own private dataset, which is only locally accessi-
ble, making the data most likely Independent and
Identically Distributed (IID) with a fixed partitioning.
During the federating training phase, computational
nodes can be added or removed at any point, Kholod,
Yanaki, Fomichev, Shalugin, Novikova, Filippov and
Nordlund (2020a). Eventually, the only central entity
is the model aggregation server, which orchestrates the
overall federated learning procedure. These computing
devices are usually edge devices, e.g. Smartphones,
and/or IoT devices. However, with this approach, even
though the number of available training devices can
be millions, only a fraction of them are randomly
employed as actual workers due to limited availability.

2. Cross-silo FL: Cross-silo FL refers to model training
through employing a small and mostly fixed number
of clients (e.g. less than a hundred), including orga-
nizations and/or companies or other geographically
distributed data centres, where each client participates
in all phases of the training procedure, Kairouz et al.
(2021); Huang, Huang and Liu (2022). Each of these
devices has its own computational and storage re-
sources, either limited or high-performance, as well
as its own local and private dataset with a fixed parti-
tioning, making the data most likely non-independent
and identically distributed (non-IID) since different
participating organizations tend to collect different
types of data and/or perform different data engineering
before storing the collected data.

The main drawback of Cross-silo FL is its significantly
smaller scaling capabilities since large organizations can not
scale as well as cross-device FL, which consists of plenty of
edge devices. Also, when a participating computing device
loses its connection to the network, an appropriate handling
mechanism must exist to resolve any synchronization and
exchange issues. Moreover, the fact that data is characterized
by non-IID introduces additional challenges in data handling,
Li, Wen, Wu, Hu, Wang, Li, Liu and He (2021c). On the
other hand, each client is almost always available and can
continuously perform both computation and communication
tasks during the whole training procedure. This guarantees
higher overall training stability. An abstract comparison be-
tween the two aforementioned model-centric FL approaches
is presented in Figure 5.

4.3. Horizontal FL vs Vertical FL

Depending on the difference between datasets of distinct
parties participating in the FL procedure, classification can
be extended in two different FL settings using the following
distinctive terms:

1. Horizontal FL. (HFL): HFL or sample-based FL,
describes cases in which different datasets use the same
number of features but differ in the number and value
of samples, Yang, Liu, Chen and Tong (2019). For
instance, two different banks in the same area operate
the same business, so the feature spaces are the same,
although each one has its own clients, some of which
may be common. This FL setting mostly applies to
cross-device FL.

Cross-device Cross-silo

Organization Organization

Aggregation Server

,/ [ ;- 1I\ H I f - Ht i H\Link

éé@.-

Clients - Devices

Organization

Figure 5: Cross-device vs Cross-silo Federated Learning
Kholod et al. (2020b).

2. Vertical FL (VFL): VFL or feature-based FL, de-
scribes cases in which distinct datasets share the same
sample IDs (e.g. users) but differ in the number of
features that they use, Yang et al. (2019). For instance,
a bank and a hospital in the same local area are likely
to have most of the area’s residents as clients, thus
they have a large user space intersection. However,
since their business models are completely dissimilar,
the data of the bank’s business model are most likely
different from the hospital’s data, which means that
their feature spaces are distinguishable. Vertical FL.
collaboratively performs the aggregation of different
features from all parties, and preserves privacy during
the computation of each model’s gradients.

In cases where separate datasets differ both in the number
of features and the number of instances/samples, Federated
Transfer Learning (FTL) is used, Pan and Yang (2010).
In this scenario, a model is trained on the limited common
representation between the two feature spaces, followed by
transfer learning to the training result, to obtain predictions
for samples with features from each feature side separately.
FTL is an important addition to the techniques of FL because
it deals with problems that exceed the scope of current
FL techniques. An abstract comparison among the three
aforementioned federated learning settings is presented in
Figure 6.
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Figure 6: Horizontal Federated Learning vs Vertical Federated
Learning vs Federated Transfer Learning Asad et al. (2020b).

4.4. Security and Privacy

Two additional major issues FL has to deal with are
security during gradients/parameters transmission between
participating devices and data leaks which can occur from
applying reverse engineering to a model. However, since
FL can take place even in IoT environments and networks,
where devices have limited computational resources and
battery capacity matters, all these need to be accompanied
by techniques that are able to reduce the number of bytes
that are being transmitted as well as the total time required
for the whole federated training to be completed. To that
end, numerous studies have been carried out and a variety of
techniques have been proposed.

Updated model parameters are transferred from the
participating worker to the aggregation server. These model
parameters may contain private information, such that even
individual data points that the model was trained on can be
reconstructed. In order to overcome concerns about models
memorizing sensitive user data, leading to data leaks, the
implementation of a Differential Privacy (DP) mechanism
into FL has been proposed, Dwork, McSherry, Nissim and
Smith (2006b); Dwork, Kenthapadi, McSherry, Mironov and
Naor (2006a).

Moreover, due to the updated model parameters being
transferred between participants, an additional concern that
arises is the parameters’ security, meaning that a third
party can not access these local models. This is where
parameter encryption comes into play. However, since the
training procedure may consist of hundreds of low-resource
participating devices, an efficient encryption algorithm is
mandatory. Towards this goal, a variety of techniques have
been proposed, with the most famous being the Additively
Homomorphic Encryption, as presented in Figure 7, Phong,
Aono, Hayashi, Wang and Moriai (2017).

Finally, since modern NN models consist of a huge
number of parameters, which significantly increases the
model sizes to hundreds of MBs or even GBs, to avoid
encrypting and transmitting all of these parameters, different
data compression techniques have been proposed, like those
presented in Deng, Chen, Zhang, Gong and Zhu (2019). In
any event, all of the aforementioned complications are still
under active research.

4.5. Federated Learning Aggregation Strategies
An aggregation strategy in federated learning refers to

the method used to combine the local models from various

clients to update the global model. This strategy is crucial for

X+Y
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HE
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Encrypted data Encrypted data
X
Ency(X) ?ﬂ ?ﬂ Ency(Y)
FL
Workers Raw data Raw data

X Y
= =
Figure 7: Additively Homomorphic Encryption Roth et al.
(2021).

ensuring that the global model benefits from the diverse data
distributions of the clients, while an effective aggregation
can significantly improve the performance and robustness of
the global model.

4.5.1. Federated Averaging - FedAvg & FedSGD
Federated Averaging (FedAvg) is a generalization of
Federated Stochastic Gradient Descend (FedSGD), which
is a parallel/federated version of the classic SGD, McMahan,
Moore, Ramage, Hampson and y Arcas (2017); Robbins
and Monro (1951). The main differences between these two
baseline fusion techniques are situated in the number of SGD
steps performed locally in each client and in the type of
data that is collected on the aggregation server. Regarding
FedSGD, every participating worker performs a single SGD
step in each federated training round, Stich (2018). On the
other hand, in FedAvg, every participating worker performs
more than one SGD steps in each training round. After
completing all the steps of SGD, each client transmits its
updated model’s parameters (weights and biases) to the
aggregation server. Figures 8 and 9 provide a schematic
overview of these two techniques and their differences.
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Figure 8: FedSGD Conceptual Figure.
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With regard to each method’s advantages, FedAvg is
characterized by a low communication cost as most of
the computation is performed locally, additionally to its
robustness to imbalanced and non-IID data. On the other
hand, convergence is not guaranteed when FedAvg is used.
FedSGD superiority is identified in guaranteeing convergence
and efficiency in terms of computation. However, the nu-
merous communication rounds that are demanded to reach
convergence significantly increase the communication cost.
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Server
Updated Parameters

Multiple steps of RAI
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Multiple steps of N I
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.. Local Model's Parameters
Multiple steps of kj -
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Updated Parameters

Average of Local Parameters
Local Model's Parameters
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Figure 9: FedAvg Conceptual Figure.

4.5.2. FedProx

FedProx is thought to be a generalization of FedAvg, Li,
Sahu, Zaheer, Sanjabi, Talwalkar and Smith (2020b). Its goal
is to use all available clients/worker devices, whereas FedAvg
selects a subset of these, while guaranteeing convergence.
Distinct worker devices in FL systems often have different
constraints related to their limited resources in terms of the
capabilities of the available hardware, network connection
reliability, and current battery status. FedProx tolerates
different amounts of work to be held locally across devices
based on their available system resources and then averages
the solutions sent from each client (worker). However, a high
number of local updates may still cause these solutions to
diverge due to the heterogeneity of the data.

Towards avoiding divergence, FedProx adds a proximal
term u to effectively limit the impact of variable local updates.
This proximal term has the two following advantages:

o It deals with the issue of statistical heterogeneity by
setting certain restrictions on the local updates in order
to keep them closer to the initial (global) model without
the need to manually tune the number of local training
epochs.

e [t tolerates the incorporation of variable amounts of
local work originating from systems’ heterogeneity.

Figure 10 provides a schematic overview of the FedProx
technique.

With regard to the parameter y it may be considered as
a constant penalty which affects convergence. Apparently,
when y = 0 FedProx has the same behaviour as FedAvg.

The convergence rate is calculated using the statisti-
cal heterogeneity/device dissimilarity in the network, so
convergence is achieved under a bounded assumption on
dissimilarity between the local functions.
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Figure 10: FedProx Conceptual Figure.

4.5.3. FedDANE

FedDANE adopts a similar approach to FedProx, while
drawing inspiration from inexact-DANE, Shamir, Srebro and
Zhang (2014), a variant of DANE, Shamir et al. (2014);
Reddi, Konecny, Richtarik, Pocz6s and Smola (2016), that
allows for local updating and is useful when the device
communication is characterized by a bottleneck, Li, Sahu,
Zaheer, Sanjabi, Talwalkar and Smithy (2019). Compared to
FedAvg, DANE, and inexact-DANE algorithms try to solve
a different local problem which uses two additional terms -
a gradient correction term and a proximal term. Due to data
being characterized by statistical heterogeneity in federated
environments, the convergence can be potentially improved
by forcing each client to train and update its model while
keeping it as close as possible to the current global model,
increasing the stability and the amenability of the method
to theoretical analysis. Taking advantage of the gradient
correction term, DANE allows the model update to become
an approximate Newton-type method, leading to improved
convergence, which can be proven when it has to deal with
well-behaved objectives, Reddi et al. (2016). Identical to
inexact DANE, FedDANE inexactly solves an approximate
Newton-type subproblem, with the difference that it only
aggregates updates from a specific number of devices at each
round (Figure 11).
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Figure 11: FedDANE Conceptual Figure.
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4.5.4. FedOpt

Each one of the aforementioned federated learning tech-
niques suffers from certain drawbacks which need to be
addressed. Towards this goal, FedOpt, Asad, Moustafa and
Ito (2020a), was proposed which aims at the following:

e Communication overhead reduction,
e Efficient and secure gradient aggregation,
e Privacy preservation.

Since hundreds of MBs need to be transferred among de-
vices for model parameter updates, tackling communication
overhead should be a priority for achieving an efficient fed-
erated training procedure. FedOpt proposes an optimization
based on Distributed Stochastic Gradient Descent (DSGD)
by introducing temporal sparsity into DSGD to reduce the
total communication delay, Dean, Corrado, Monga, Chen,
Devin, Mao, Ranzato, Senior, Tucker, Yang et al. (2012). This
temporal sparsity leads to the design of a Sparse Compression
Algorithm (SCA) for FedOpt, which reduces the number of
transferred parameter bits during the federated training by
up to 3 times, meaning that an x3 better communication
performance can be achieved. Not only that, but SCA, also,
allows each participating device to perform multiple epochs
of SGD to locally train its model in each round.

Additionally, as previously mentioned, there exists the
need for FedOpt to identify malicious nodes in the network
as well as a dishonest centralized cloud aggregator which
may be interested in inferring private user data from the
received local models. To enforce model and data security,
locally trained models’ parameters should be encrypted
prior to transmission. Simultaneously, the cloud server, after
receiving the encrypted parameters, should be the only
one able to aggregate them without being able to decrypt
any of the received models, to avoid private and sensitive
information leaks. This can be achieved through the use
of Additively Homomorphic Encryption. Ultimately, for
additional data privacy protection, Differential Privacy is
employed through the use of a Laplacian mechanism, Dwork,
McSherry, Nissim and Smith (2006¢). This mechanism adds
random noise to the parameters of the local models’ gradients.

Another advantage of FedOpt is its tolerance against
devices unexpectedly dropping out of the federated training
procedure while suffering negligible accuracy loss. Further-
more, because of the use of gradient compression, the desired
level of convergence is achieved in much fewer training
epochs than it would normally require. However, the authors
do not mention any convergence guarantees of FedOpt,
although studies like Meng, Chen, Wang, Ma and Liu (2017)
and Swenson, Murray, Kar and Poor (2020) have showcased
the conditions under which DSGD converges.

A more technical FedOpt implementation is presented in
Reddi, Charles, Zaheer, Garrett, Rush, Kone¢ny, Kumar and
McMahan (2020) where the authors utilized known and effec-
tive optimization algorithms, such as ADAM, ADAGRAD,
and YOGI for the federated aggregation strategy. In particular,
they used a set of parameters that control various aspects of

the optimization of model parameters, and they introduced
the following strategies:

1. FedAdam that incorporates a pair of decay parameters,
which regulate the significance that the aggregation
gives to past updates and the significance assigned to
updates of the current model within the algorithm,

2. FedAdagrad that aggregates client models based on
the distance between each client’s model and the global
model held by the server, and

3. FedYogi that utilizes both the distance of nodes’
models from the global model, the direction of it, and,
also, the aforementioned decay parameters.

In general, all of the above aggregation techniques aim to
minimize the communication overhead, while providing a
high level of adaptability in cases where the data are non-
IID, partial node participation is observed, and data sizes
significantly differ across the participating nodes.

S. Analysis of Federated Intrusion Detection
and Prevention Systems

Toward gathering existing knowledge regarding the IDS
techniques encompassing the FL approach, a thorough anal-
ysis of SOTA implementations is presented in this survey
paper. More specifically, the literature that will be discussed
henceforth is incorporated in Table 1. For each study that
we will elaborate on, all the distinct characteristics that are
required for a comprehensive demonstration are provided. In
that manner, the reader is equipped with an easy-to-compare
representation of this study.

First and foremost, due to the fact that Deep Neural
Networks (DNNs) require a huge amount of data in order
to have a high detection accuracy of intrusion attacks in a
network, Z. Tang et al. proposed an FL approach, in which
different Internet Service Providers (ISPs) need to share their
collected network traffic data, but they will also collaborate
with each other, in order to train a global model, Tang,
Hu and Xu (2022). More precisely, each ISP (federated
client) performs a small number of training iterations for its
Gated Recurrent Unit (GRU) network and sends the resulting
network parameters back to the server. Subsequently, the
server will compute the average of the clients’ parameters
and will send the result back to the ISPs, Ansari, Barto$ and
Lee (2022). The dataset that the proposed solution was eval-
uated on, was CIC-IDS2017, Gharib, Sharafaldin, Lashkari
and Ghorbani (2016); Sharafaldin, Gharib, Lashkari and
Ghorbani (2018a,b), in which Accuracy, Precision, Recall,
and F1-Score were measured, when identifying a variety of
attacks. The simulation took place using PySyft, Ziller, Trask,
Lopardo, Szymkow, Wagner, Bluemke, Nounahon, Passerat-
Palmbach, Prakash, Rose et al. (2021a), for the Federated
Learning part, and PyTorch, Paszke, Gross, Chintala, Chanan,
Yang, DeVito, Lin, Desmaison, Antiga and Lerer (2017),
for the GRU implementation, while FedAvg was utilized
as the fusion method when exploiting the Internet Protocol
(IP) and Transmission Control Protocol (TCP). Regarding
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GRU, the hidden layer consisted of 256 units, and the output
layer was a fully connected layer of 15-dimensional tensors
(equal to the number of different network traffic types). The
results indicated that the accuracy of each ISP’s detection
mechanism was higher when they joined the federation
learning, compared to when they trained their models using
only local data, reaching an accuracy level of 97.2% on the
task that was developed. An overview of the GRU architecture
is displayed in Figure 12.
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Figure 12: Gated recurrent unit Vasilev et al. (2019).

R. Zhao et al. in Zhao, Yin, Shi and Xue (2020) proposed
an intelligent IDS using Long Short-Term Memory (LSTM)
running through an FL approach in order to preserve privacy,
Kundu, Yu, Wynter and Lim (2022); Althubiti, Jones and
Roy (2018); Imrana, Xiang, Ali and Abdul-Rauf (2021);
Alaeddine (2020). An overview of the LSTM architecture
is presented in Figure 13. More specifically, their proposed
model focuses on the identification of high-risk malicious
behaviour, such as directory traversal attacks, a large number
of reads, taking access and erasing files in bulk, and getting rid
of software in bulk, among others. The target system of this
study is Unix-like OS, whereas the protocol that is exploited
is Shell commands which are stored in the bash history file. In
terms of implementation, a Bidirectional LSTM (BiLSTM) is
transmitted to all participating users by the server. BILSTM
is a two-way LSTM (it consists of a forward LSTM and
a backward LSTM) and it is utilized for modeling the bi-
directional connection between command input before and
after preprocessing. This model was trained on the open-
source SEA dataset, which is the most popular intrusion
detection command record dataset produced by the AT&T
Shannon Lab. Each local model receives user commands
as input, and uses a tokenizer for the preprocessing, in
order for the results to be fed into the forward and the
backward LSTM. Following, there exists a dropout layer
which randomly ignores a fraction of neurons during training
in order to avoid overfitting. Each user sends its results to
the server, which aggregates them using a weighted average
method in order to update the parameters of the global model
and send them back to the users. For this implementation
the authors employed the TensorFlow framework, Abadi,
Agarwal, Barham, Brevdo, Chen, Citro, Corrado, Davis,
Dean, Devin, Ghemawat, Goodfellow, Harp, Irving, Isard,
Jia, Jozefowicz, Kaiser, Kudlur, Levenberg, Mané, Monga,
Moore, Murray, Olah, Schuster, Shlens, Steiner, Sutskever,

Talwar, Tucker, Vanhoucke, Vasudevan, Viégas, Vinyals,
Warden, Wattenberg, Wicke, Yu and Zheng (2015), along
with the scikit-learn library, while the fusion technique
that was utilized was FedAvg. At first, the Bi-LSTM was
compared with a Convolutional Neural Network (CNN) and
the results indicated that the former produced higher accuracy
and lower loss. Finally, a comparison between the Federated
Learning Bi-LSTM (FL-LSTM) with a Centralized Bi-LSTM
(CL-LSTM) showcased that the accuracy of the FL-LSTM
model was 99.21%, the recall was 99.23%, and the F1 value
was 99.21%. Regarding the CL-LSTM, its accuracy was
99.51%, having a 0.3% difference compared to the FL-LSTM.
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Figure 13: Long short-term memory neural networks architec-
ture Dobilas (2022).

Y. Zhao et al. proposed a multi-task DNN which si-
multaneously performs network anomaly detection, VPN
traffic recognition tasks, and traffic classification tasks, and is
implemented using Federated Learning to reduce training
time and achieve better results, Zhao, Chen, Wu, Teng
and Yu (2019). The DNN model which was developed
consists of fully connected layers using Leaky Rectified
Linear Unit (LeakyReLU) as their activation function for the
implementation of which the PyTorch library was utilized. In
terms of the FL architecture, there exists an input layer, certain
layers that are shared, and task layers. The external layers are
connected with the input layers of the NN. The shared layers’
goal is the extraction of features from the input layer. Last but
not least, the task layers consist of smaller networks connected
with the shared layers, and every subnetwork is responsible
for a specific job. It is worth noting that this architecture is
more efficient because shared layers can decrease the number
of parameters in the network. The fusion technique that was
employed was FedAvg, whereas the protocols on which it
focused were IP, TCP, Virtual Private Network (VPN) and
Tor. Three datasets were employed for the evaluation of
the proposed model. Firstly, the CIC-IDS2017 dataset was
used, Sharafaldin et al. (2018b). This dataset provides real-
world labelled network traffic, including benign and malicious
traffic in PCAP format. Next, the ISCXVPN2016 dataset
was used, which contains 7 categories of encrypted network
traffic in browsing, chat, streaming, mail, VoIP, P2P and File
Transfer, Draper-Gil, Lashkari, Mamun and Ghorbani (2016).
For each instance, the regular and the VPN sessions are stored
in PCAP format. The last dataset used is the ISCXtor2016,
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which expresses instances in Tor forms, Lashkari, Draper-
Gil, Mamun, Ghorbani et al. (2017). The evaluation was
performed using Accuracy, Precision, and Recall metrics.
MT-DNN-FL was compared to certain centralized methods,
like K-NN, DTs, and RF, and the results indicated that the
proposed method achieved an accuracy of 98.14%, which is
higher than the aforementioned centralized methods.

In an IoT environment, the ML models that are used for
the detection of anomalies and attacks cannot be trained using
a centralized dataset due to privacy and security reasons, and,
thus, their training takes place using only local data collected
on the devices, making them less accurate. In order to increase
anomaly detection accuracy, V. Mothukuri et al. in Mothukuri,
Khare, Parizi, Pouriyeh, Dehghantanha and Srivastava (2021)
proposed an FL approach, in which each IoT device, placed
in an IIoT environment or not, will train a model using only
its local data. Then, the parameters of all trained models
are sent to the FL server, which aggregates them and sends
back the updated weights to each IoT device. By adopting
an FL approach, the data of each IoT device are kept private,
and the accuracy of each model is expected to increase.
In terms of architecture, four GRU models are employed
which are trained in a Federated Learning scheme, followed
by a Random Forest Decision Tree Ensembler (presented
in Figure 14). The fusion technique that is applied in this
paper is FedAvg, while the attack scenarios on to which it
elaborates are Man In The Middle (MITM), Ping ICMP)
flood Distributed Denial of Service (DDoS) Flood, Modbus
Query Flood and SYN flood DDoS. The protocols which
were employed for the evaluation procedure include Modbus,
Remote Terminal Unit (RTU), IP, TCP and Message Queuing
Telemetry Transport (MQTT). Even though the datasets that
it was validated on are not explicitly mentioned, the libraries
that the authors utilized were PySyft and PyTorch. Regarding
the performance of the proposed approach, it was found that
it outperformed the accuracy of a centralized approach in
detecting attacks, while, simultaneously, securing the privacy
of users’ data and reaching 90.25%.

Along with the rapid growth of infrastructures imple-
menting intelligent networking and computing technologies,
such as 5G, an increase in the number of attacks against
Cyber-Physical Systems (CPSs) is observed. A CPS consists
of multiple and different systems, which can be described as
a physical system controlled in combination with embedded
software, as displayed in Figure 15. Due to the fact that
there are no sufficient high-quality examples to train ML
models in order to detect intrusions, B. Li et al. in Li, Wu,
Song, Lu, Li and Zhao (2021a) proposed a novel approach
called DeepFed mainly concentrating on Industrial CPS and
Supervisory Control and Data Acquisition (SCADA) systems.
The protocol that the authors take into account is Modbus,
while they consider numerous attacks to be identified by their
model, namely reconnaissance, response injection, command
injection, Denial of Service (DoS) and eavesdropping of
data resources and/or model parameters. With regard to their
model, DeepFed, as shown in Figure 16, consists of a CNN,
O’Shea and Nash (2015); Albawi, Mohammed and Al-Zawi

(2017); Li, Liu, Yang, Peng and Zhou (2022); Vinayakumar,
Soman and Poornachandran (2017); Mohammadpour, Ling,
Liew and Chong (2018), in parallel with a GRU, the outputs of
which are given to an MLP, and finally to a softmax layer for
the classification the attacks. Furthermore, they adopted an FL
approach, so that different CPSs can collaboratively build a
global intrusion detection model without sharing their private
data. Additionally, a Paillier cryptosystem was implemented
for the secure transmission of model parameters of each
CPS during the training phase, Paillier (1999). Regarding the
performance of DeepFed, a high effectiveness in detecting
attacks was observed, with the accuracy levels exceeding 99%,
along with overall better performance compared to SOTA
schemes. For their implementation, authors employed the
Keras backend as well as the Flask framework.

B. Cetin et al. tried to address the problem of vulner-
abilities that exist in wireless networks by exploiting the
802.11 protocol, Nicopolitidis, Obaidat, Papadimitriou and
Pomportsis (2003); Kavitha and Sridharan (2010); Mitchell
and Chen (2014); Alrajeh, Khan and Shams (2013), and by
proposing ML and DL methods for the identification and
mitigation of various types of intrusion attacks (injection,
impersonation and flood), Cetin, Lazar, Kim, Sim and Wu
(2019). The major problem with training a global centralized
model is the limited amount of data available due to security
reasons. In this sense, this paper adopts an FL approach,
which preserves privacy and addresses some security con-
cerns while employing the Fed Avg fusion technique. In terms
of implementation, edge devices are trained locally, and then
a global model is constructed by aggregating each model’s
parameters and averaging them using LEAF, Caldas, Duddu,
Wu, Li, Kone¢ny, McMahan, Smith and Talwalkar (2018).
More precisely, Stacked AutoEncoders (SAEs), Farahnakian
and Heikkonen (2018); Kingma and Welling (2013a), are
used for the detection of anomalies/attacks, which are de-
signed to provide a compressed illustration of anomalous
observations. A schematic overview of an Autoencoder
(AE) is presented in Figure 17 and of an SAE in Figure
18. Regarding the performance of the proposed model, it
was evaluated on the AWID Dataset, Kolias, Kambourakis,
Stavrou and Gritzalis (2015), and it was found that it increased
the classification accuracy, reaching approximately 83%,
while decreasing both computation and communication costs.

For implementing IoT in the transportation sector, the
Internet of Vehicles (IoV) plays an important role in the
design of Smart Transportation Systems (STSs), Fangchun,
Wang, Li, Liu and Sun (2014); Contreras-Castillo, Zeadally
and Guerrero-Ibafez (2018). The interconnected vehicles and
the transportation infrastructures, which comprise an STS, are
vulnerable to a variety of cyber intrusions. M. Abdel-Basset
et al. in Abdel-Basset, Moustafa, Hawash, Razzak, Sallam
and Elkomy (2021) proposed a Federated Deep Learning
(FDL) intrusion detection framework called FED-IDS. This
framework can accurately identify attacks by implementing a
context-aware transformer network to learn how traffic flow
is represented in vehicles, and identify attacks in IoT, loV
and STS systems. The protocol which the authors exploited
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Figure 14: Random Forest Decision Tree Ensembler architecture Gao et al. (2021).
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was MQTT. In this manner, FED-IDS was designed using
three main modules: the Encoder, the Decoder, and the
Classification module. Furthermore, a blockchain approach
is adopted in the training part in order to let the different
edge nodes be part of the training in a secure and reliable
manner, Monrat, Schelén and Andersson (2019); Nakamoto
(2009); Meng, Tischhauser, Wang, Wang and Han (2018).
For this FDL implementation, the PySyft library was utilized.
FED-IDS was evaluated using two different datasets, namely
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Figure 16: CNN-GRU architecture, which consists of a CNN in
parallel with a GRU, followed by an MLP Wu et al. (2020).

the Car-Hacking dataset, Song, Woo and Kim (2020); Seo,
Song and Kim (2018), for which the attacks that were taken
into account were IoT traffic including normal, scanning, DoS,
DDoS, ransomware, backdoor, injection, Cross-Site Scripting
(XSS), Password Cracking Attack (PWA), MITM attack and
the TON_IoT dataset, Moustafa (2021a), which includes
spoofing of the drive gear and spoofing the RPM gauge, fuzzy
attack and DoS attack, Moustafa (2021a); Booij, Chiscop,
Meeuwissen, Moustafa and den Hartog (2021); Alsaedi,
Moustafa, Tari, Mahmood and Anwar (2020); Moustafa,
Keshky, Debiez and Janicke (2020b); Moustafa, Ahmed and
Ahmed (2020a); Moustafa (2019, 2021b); Ashraf, Keshk,
Moustafa, Abdel-Basset, Khurshid, Bakhshi and Mostafa
(2021). The results indicated its superiority over existing
SOTA approaches, reaching a mean accuracy of 92.5%
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and 97.2% in the TON_IoT and the Car-Hacking dataset,
respectively.
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Figure 17: AutoEncoder Song et al. (2021a).

In order to ensure security in IoT, as well as in Wireless
Edge Networks (WENSs), Z. Chen et al. in Chen, Lv, Liu,
Fang, Chen and Pan (2020) developed an intrusion detection
algorithm called Fed AGRU. FedAGRU stands for Federated
Learning-based Attention GRU, and its main difference from
centralized learning methods is that it updates universal
learning models without the need to share raw data between
edge devices and a server. The Attention mechanism is used as
a penalizing method for devices that have poor performance
in order to avoid unnecessary parameters transfer to the
server, Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez,
Kaiser and Polosukhin (2017); Niu, Zhong and Yu (2021).
In other words, Attention can be treated as a rewarding
mechanism for the devices, improving the model’s accuracy.
When evaluating FedAGRU on the KDDCup99, University
of California, CIC-IDS2017 and WSN-DS, Almomani, Al-
Kasasbeh and Al-Akhras (2016), datasets, it was found that
its detection accuracy was increased by almost 8%, while
simultaneously decreasing communication cost by almost
70%, compared to centralized methods. More specifically, the
accuracy levels that FedAGRU achieved were 99.28% and
98.82% on 11D and non-IID, respectively. More importantly,
the accuracy that was reported encompassed the distinct
and various data that were included in the three datasets
that the authors utilized. Additionally, It was found that
FedAGRU is robust against poisoning attacks. Finally, for
this implementation, the PySyft library was employed.

Due to the increasing popularity of IoT architectures,
many loT-specific, as well as IIoT-specific attacks have been
developed, making interconnected devices vulnerable in
terms of security and user data privacy. In this regard, D. C.
Attota et al. in Attota, Mothukuri, Parizi and Pouriyeh (2021)
tried to take advantage of the Multi-view learning, Xu, Tao
and Xu (2013); Sun (2013), in which the training of an ML
model takes place using different data views and combines it
with a Federated Learning-based IDS which will be trained
using different IoT devices in a decentralized approach, with
its main goal being to detect, classify, and mitigate the strong

majority of these attacks. More specifically, the authors of
this study focused on scanning and brute force attacks by
exploiting the MQTT protocol as it provides the session layer
for communication among devices. With regard to Multi-
view Federated Learning Intrusion Detection (MV-FLID), as
it is called, the multi-view learning technique will be used
in order to predict as accurately and efficiently as possible
different types of attacks, while the FL aspect will keep each
device’s data private and will perform the aggregation taking
advantage of peer learning. Concerning the evaluation of the
proposed method, it was found that MV-FLID had a higher
accuracy compared to centralized approaches, while reporting
98% accuracy on the MQTT-1oT-IDS2020 dataset, Hindy,
Bayne, Bures, Atkinson, Tachtatzis and Bellekens (2021).
The fusion technique that was employed included the FedAvg
method while exploiting the PySyft and PyTorch libraries.

The technology used in Beyond 5G networks has signifi-
cantly decreased the latency between different applications
and devices. However, several cyber-security issues have
been raised due to the fact that real-time applications transfer
data continuously from edge devices to dedicated computing
servers, increasing the risk of data leakage. To address this
issue, K. S. Kumar et al. in Kumar, Nair, Roy, Rajalingam
and Kumar (2021) proposed a federated ML mechanism,
which implements Paillier Homomorphic Encryption and
Differential Privacy, Dong, Roth and Su (2019). Additionally,
they designed an Artificial Immune IDS in order to identify
and classify any anomalies and attacks in the network flow,
such as DoS attacks, User to Root (U2R), Root to Local (R2L)
and probe attacks. Their implementation was based on the
PySyft library, exploiting the MQTT protocol, while targeting
Multi-access Edge Computing (MEC) devices. In terms of
performance, the results indicated that the proposed system
is better than existing edge approaches, while simultaneously
providing more secure communication between edge nodes,
which is depicted in an accuracy level of 92.7% derived on the
CIFAR-10, Krizhevsky, Hinton et al. (2009), and KDDCup99
datasets.

The vulnerability of interconnected vehicles and trans-
portation infrastructures to cyber intrusion attacks due to
the wide usage of software and wireless interfaces, raises
the need for high-performance IDSs. These IDSs need to,
subsequently, be integrated into high computational network
devices due to the continuous training and updating of models,
yet in most cases, the resources in these devices are restricted.
H. Liu et al. in Liu, Zhang, Zhang, Zhou, Shao, Pu and Zhang
(2021) proposed a cooperative IDS between the edge devices,
like vehicles, and roadside units (RSUs), targeting systems
like IoV and Vehicle-to-Everything (V2X). This FL approach,
encompassing the averaging method as the fusion technique,
which was, also, based on the PySyft and PyTorch libraries,
reduces the number of required resources while assuring the
privacy and security of data. In order to avoid any data leakage
and preserve security in the aggregation phase, blockchain
mechanisms were used, such as the Ethereum protocol, for
broadcasting the trained models, Alkadi, Moustafa, Turnbull
and Choo (2021); Alexopoulos, Vasilomanolakis, Ivanko
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Figure 18: Stacked AutoEncoder Liu et al. (2018).

and Miihlhduser (2018); Liang, Shanmugam, Azam, Karim,
Islam, Zamani, Kavianpour and Idris (2020). As it was found,
the proposed method achieved high accuracy, and more
specifically higher than 90%, in known attacks included in
the KDDCup99 dataset, such as DoS attacks, URL, R2L and
probe attacks, while preserving privacy through blockchain
mechanisms.

The resource-constrained IoT devices, which are widely
used due to the development of 5G and MEC architectures,
are highly vulnerable to attacks. As Y. Fan et al. in Fan, Li,
Zhan, Cui and Zhang (2020) described, there are three major
challenges that need to be addressed so that 5G technology
can provide secure and private communication. The first one
is focused on the level of difficulty that exists in designing
and training a unified intrusion detection model due to how
heterogeneous, diverse, and personalized IoT networks are.
Secondly, there are many privacy issues which do not allow
raw data to be shared. Finally, the amount of data that
certain IoT networks produce is small, making it impossible
to train an accurate model. To overcome these challenges,
the authors proposed an IDS for 5G IoT, Li, Xu and Zhao
(2018); Wang, Chen, Song, Guizani, Yu and Du (2018), based
on FTL, West, Ventura and Warnick (2007); Zhuang, Qi,
Duan, Xi, Zhu, Zhu, Xiong and He (2021); Pan and Yang
(2010), called IoTDefender. This framework performs the
aggregation using a federated learning mechanism, builds
detection models using transfer learning, Wu, Guo and
Buckland (2019); Mathew, Mathew, Govind and Mooppan
(2017), and employs the averaging fusion method to allow all
IoT devices to exchange information and preserve privacy by
exploiting the 6LowPAN protocol. As a result, IoTDefender
can detect a wide variety of unknown attacks included in
the CIC-IDS2017, NSL-KDD, Tavallaee, Bagheri, Lu and
Ghorbani (2009), and IoT Datasets, Mirsky, Doitshman,
Elovici and Shabtai (2018a), due to its generalization ability.

Regarding the evaluation of this framework, it was found
that it achieved an accuracy of 92.81%, making it more
effective than traditional methods. Finally, an important
aspect of IoTDefender is that it produced a lower FP rate
than a centralized model, proving its ability to generalize.

Despite the success of implementing FL. mechanisms
in detecting and identifying malicious traffic patterns in
network systems, Y. Sun et al. in Sun, Esaki and Ochiai
(2021) noted that no single global model exists which can
detect all types of attacks, due to the fact that some networks
have dissimilarities in terms of data distribution. For this
specific reason, they propose Segmented-Federated Learning
(Segmented-FL) which tries to group networks based on
specific characteristics (segmentation). More precisely, the
main goal of the proposed method is to build multiple global
models (one per group) in order to cover as many distinct
attacks as possible. The evaluation of the Segmented-FL with
the averaging technique as the fusion method was performed
on a custom dataset to detect malicious network events in
Local Area Networks (LANs) using a variety of metrics
such as weighted precision, recall, and Fl-score. It was
found that it achieved F1-scores up to 96.4%, 80.3%, and
91.2% when it was tested in three different types of intrusion
detection tasks, namely server message block (SMB), TCP
SYN flood and User Datagram Protocol (UDP) unicast
attacks, while exploiting the following protocols: IP, Address
Resolution Protocol (ARP), TCP, HTTP, HTTPS, UDP,
multicast Domain Name System (mDNS), Dynamic Host
Configuration Protocol (DHCP), among others. For each task,
Segmented-FL improved the traditional FL system by 0.1%,
4.0%, and 1.1%, respectively.

While MEC can overcome the limitations of cloud
computing in order to support IoT systems, careful attention
must be paid to network instabilities and vulnerabilities to
cyberattacks. For this reason, D. Man et al. in Man, Zeng,
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Yang, Yu, Lv and Wang (2021) proposed an Intrusion Detec-
tion Federated-based Learning system, called FedACNN,
which performs intrusion detection tasks using federated
learning with CNNs on IoT, IIoT and MEC architectures,
against attacks such as DoS, U2R, R2L and probing, O’Shea
and Nash (2015); Albawi et al. (2017); Li et al. (2022);
Vinayakumar et al. (2017); Mohammadpour et al. (2018).
More specifically, the CNN, implemented with the PyTorch
library, mainly consisted of Convolutional layers, Pooling
layers, and a fully connected layer. Also, the Rectified
Linear Unit (ReLLU) activation function is used in order to
increase the convergence speed during training. In addition,
the communication delay is reduced using an attention
mechanism. Regarding the performance of FedACNN, it was
found that it outperformed traditional ML methods in terms
of accuracy, reaching 99.76% on the NSL-KDD dataset, with
a reduction of half in the number of required communication
rounds.

Nowadays, patterns of cyberattacks tend to change fre-
quently, making them more unpredictable. While centralized
ML models improve the detection of attacks, they face some
security and privacy issues, and, simultaneously, they do not
generalize well enough to identify a variety of distinct types
of attacks. On this rationale, Y. Sun et al. in Sun, Ochiai
and Esaki (2020) proposed a Segmented federated learning
system, which does not train a single global model, yet it
holds multiple global models, each referring to a group of
similar attacks on the LAN. The segmentation of participant
networks is performed dynamically, while the training of
each segment’s model takes place using only the segment’s
participant. Furthermore, in order to increase the adaptability
of the system, each global model interacts and communicates
with all the other global models to update its parameters,
while it exploits the averaging fusion technique. Additionally,
the protocol information that is utilized in this study includes
protocols such as ARP, IP, TCP, UDP, HTTPS, HTTPS,
mDNS, DHCP, among others. The proposed method attained
accuracies of 92.3%, 81.3%, and 87.7%, when employing a
CNN on a custom dataset.

Due to the increased importance of network security, an
accurate IDS has become an essential component of every
modern network, with its main goal being the detection and
identification of malicious attacks. Y. Cheng et al. in Cheng,
Lu, Niyato, Lyu, Kang and Zhu (2022) proposed an FTL sys-
tem that uses extreme learning to increase its performance in
terms of identifying attacks in MEC architectures. FLTrELM,
as it is called, initially builds a model through extreme
learning to generate additional training samples, due to the
insufficient number of samples in the original dataset, and
then implements the federated learning mechanism to let the
model learn how to preserve data privacy during the training
phase. Finally, an intrusion detection model is produced by
exploiting the PySyft and PyTorch libraries. Regarding the
evaluation of FLTrELM, experiments on popular datasets,
like NSL-KDD and UNSW-NB15, Moustafa and Slay (2015),
proved that the proposed framework achieved high accuracy
(73%) in predicting attacks, especially in cases where the

number of samples was restricted, as well as when new types
of attacks were introduced, while, simultaneously, protecting
data privacy. To be more specific, their implementation
proved its efficiency in detecting numerous attacks such
as DoS, U2R, R2L, probing, fuzzers, analysis, backdoor,
exploits, generic, reconnaissance, shellcode and worms
attacks.

Even though modern Federated Learning systems using
DNN are successful in detecting and identifying cyberattacks
and intrusions, G. Shingi et al. in Shingi, Saglani and Jain
(2021) note that due to the different nature of each network’s
data, a single global model cannot fit all cases. For this reason,
they propose a Segmented-FL framework, in which similar
networks are grouped by periodically evaluating local models.
The global models aggregate the local models’ parameters
using a weighted average algorithm based on the size of the
dataset each network holds. In terms of architecture, local
models consist of an NN with 3 layers; an input layer, a
hidden layer, and the output layer, while the federated learning
mechanisms are implemented using a server which stores all
global models (one global model per group). Regarding the
evaluation of Segmented-FL, it was found that the proposed
method outperformed both the centralized and the traditional
FL approach, producing an F1-score of 92% in predicting
attackers, and 92% in predicting victims, using the CIDDS-
001, Ring, Wunderlich, Griidl, Landes and Hotho (2017b),
and CIDDS-002, Ring, Wunderlich, Griidl, Landes and
Hotho (2017a), datasets and encompassing DoS, brute force
and PortScan attacks, while exploiting the Internet Control
Message Protocol (ICMP), IP, TCP and UDP protocols.

In order to address the heterogeneity of networks, S.
I. Popoola et al. in Popoola, Gui, Adebisi, Hammoudeh
and Gacanin (2021) proposed an FDL system, in which
each node trains a DNN using local network traffic data
from IoT, IIoT and IoV devices. In addition, there exists
a dedicated server that receives every model’s resulting
parameters, aggregates them using the Fed+ fusion technique,
and then broadcasts them to every node, Kundu et al. (2022).
In terms of DNN architecture, the models consist of an
input layer, two fully connected hidden layers, and an output
layer. Simulation results of the proposed system attained
an accuracy of 99.27%, a precision of 97.03%, a recall of
98.06%, and an F1-score of 97.50%, proving the superiority
of FDL to local DNN models, while employing the NF-TON-
IoT-v2, Sarhan, Layeghy, Moustafa and Portmann (2021c),
NF-UNSW-NB15-v2, Sarhan et al. (2021c¢), and NF-CSE-
CIC-IDS2018-v2, Sarhan et al. (2021c), datasets. Also, in
order to choose the best fusion technique, they ran the same
experiments using FedAvg, Fed+, and Coordinate Median
(CM). The results indicated that Fed+ outperformed the other
two SOTA fusion techniques, making the DNN-Fed+ the
preferable way to detect intrusions (backdoor, DoS, DDoS,
SQL injection, MITM, password, ransomware, scanning and
XSS) in heterogeneous wireless networks for a variety of
protocols such as IP, ARP, TCP, HTTPS, HTTPS, UDP,
mDNS, DHCP, among others.
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Modern NN that are used for the detection of network
intrusions and attacks depend on the quality and the quantity
of the data, while their interpretation is not clear. T. Dong
et al. in Dong, Li, Qiu and Lu (2022) proposed FedForest, a
novel learning-based IDS which employs Gradient Boosting
Decision Trees (GBDTs) and FLL mechanisms, Friedman
(2001). More precisely, each client trains a local encoder
(GBDT classifier) using their private data and sends the
resulting parameters to the server. Then, the server chooses
the most appropriate encoders and sends them to all clients.
Subsequently, the clients encode their data using the encoders
sent by the server, and the final step is the training and de-
ployment of the models. In addition, a random data masking
algorithm is implemented in order to preserve data privacy.
The attacks that this implementation endeavored to identify
were DoS and DDoS, while the communication protocols that
were exploited were IP, TCP, HTTPS and DNS. Regarding the
evaluation of FedForest, it was compared with a Multi-Layer
Perceptron (MLP) with 3, 5, and 7 layers, and it was found that
it achieved higher accuracy in all four experiments conducted,
achieving an accuracy of 67.03% on the CIC-DDo0s2019,
Sharafaldin, Lashkari, Hakak and Ghorbani (2019), dataset,
89.63% on the MalDroid2020 Mahdavifar, Kadir, Fatemi,
Alhadidi and Ghorbani (2020), 86.76% on the Darknet2020,
Hristov, Nenova, Iliev and Avresky (2021), and 79.63% on
the DoHBrw2020, MontazeriShatoori, Davidson, Kaur and
Lashkari (2020a), dataset.

T. Markovic et al. in Markovic, Leon, Buffoni and
Punnekkat (2022) proposed an RF algorithm for identifying
and detecting attacks in an FL environment in order to avoid
data leakage and keep the data of each network private,
Resende and Drummond (2018); Farnaaz and Jabbar (2016).
Regarding the FL aspect, each client trains an RF, Zhang,
Zulkernine and Haque (2008); Zhang and Zulkernine (2006),
locally and transmits the resulting parameters for aggregation
to the server. In terms of performance, the proposed method
was evaluated on four intrusion detection datasets (KDD,
NSL-KDD, UNSW-NBI15, Moustafa and Slay (2015, 2016);
Moustafa, Slay and Creech (2017b); Moustafa, Creech and
Slay (2017a); Sarhan, Layeghy, Moustafa and Portmann
(2021b), and CIC-IDS-2017, Sharafaldin, Lashkari and Ghor-
bani (2018c¢)), regarding several kinds of attacks and utilizing
various communication protocols. The results indicated that
the global RF, which was collaboratively trained, on the server
produced higher accuracy than the max accuracy that the
individual RFs on clients managed to achieve in most of the
datasets, achieving 71.82% in the IDS2017 dataset.

Nowadays, the increased popularity of IoT devices in peo-
ple’s everyday lives revealed their vulnerability to intrusion
attacks the main reasons being their design, implementation,
and configuration. As aresult, there is a high chance a network
has vulnerable IoT devices which can compromise sensitive
data. Based on T. D. Nguyen et al. in Nguyen, Marchal,
Miettinen, Fereidooni, Asokan and Sadeghi (2019), existing
IDSs cannot detect IoT devices that compromise the whole
network due to the different fundamentals on which IoT
devices have been built. In their paper, they propose DIoT, an

autonomous self-learning distributed system for the detection
of compromised IoT devices, Mohammadi and Amiri (2019);
Shone, Ngoc, Phai and Shi (2018). More precisely, DioT
tries to identify communication anomalies based on com-
munication profiles that have been built internally on each
device, such as IP, TCP and WiFi protocols. The process of
building a communication profile does not require any human
involvement or data to be labelled. Furthermore, in order to
increase the efficiency of communication profiles and the
accuracy in detecting anomalies, T. D. Nguyen et al. (2019)
implemented a federated learning approach encompassing
the FedAvg fusion technique. In terms of architecture, DIoT
uses GRU models for anomaly detection and Flask for the
implementation of federated learning, Grinberg (2018a);
Copperwaite and Leifer (2015). Regarding the performance
of DIGT, it was evaluated using 30 IoT devices compromised
by the famous Mirai malware, Antonakakis, April, Bai-
ley, Bernhard, Bursztein, Cochran, Durumeric, Halderman,
Invernizzi, Kallitsis et al. (2017), including pre-infection,
infection, scanning and DoS attacks, and it was found that the
proposed system detected on average 95.6% of compromised
IoT devices in 257ms, Antonakakis et al. (2017). Finally, it
is worth noting that DIoT did not report any false alarms.

In order to increase the agricultural-IoT infrastructures,
O. Friha et al. in Friha, Ferrag, Shu, Maglaras, Choo and
Nafaa (2022) proposed FELIDS, targeting not only IoT,
but MEC, SDN and Cyber-Physical Production Systems
(CPPS) systems. FELIDS is a federated learning-based IDS
that preserves data privacy and security by training models
locally while increasing the detection rate by aggregating the
knowledge which was gained by training the local models of
all participating devices, resulting in a global model with
improved detection capabilities. In terms of architecture,
the proposed system implements a CNN, which consists of
pooling, and fully connected layers, for the pre-processing
of the data, and a Recurrent Neural Network (RNN), like
LSTM for processing input sequences, Hopfield (1982);
Yin, Zhu, Fei and He (2017). For this implementation, the
TensorFlow and Sherpa.Al frameworks were utilized, while
enclosing the FedAvg fusion technique, towards addressing
numerous kinds of attacks and exploiting the IP, TCP, HTTP,
Secure Shell (SSH) and MQTT protocols. The evaluation of
FELIDS took place using CSE-CIC-IDS2018, Sharafaldin
et al. (2018b), MQTTset, Vaccari, Chiola, Aiello, Mongelli
and Cambiaso (2020), and InSDN datasets, Elsayed, Le-Khac
and Jurcut (2020), and the results indicated that the proposed
method outperformed the classic centralized methods in
detecting attacks, while achieving approximately 94% and
99% accuracy on the IDS2018 and the InSDN datasets,
respectively, along with maintaining data privacy.

The increased popularity of IoT networks brought an
increase in the number of intrusion attacks aimed at Medical
environments, with their main goal being the access to
confidential data and the disruption of services. In order
to mitigate this danger, I. Siniosoglou et al. in Siniosoglou,
Sarigiannidis, Argyriou, Lagkas, Goudos and Poveda (2021)
proposed a Federated Layered Architecture for the Medical
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Cyber-Physical Systems (MCPS) Networks which was used
for increasing the security of the network during the model’s
training phase by implementing several aggregation layers,
while employing the FedAvg fusion technique, Lee, Sokolsky,
Chen, Hatcliff, Jee, Kim, King, Mullen-Fortino, Park, Roed-
erer et al. (2011); Lee and Sokolsky (2010); Dey, Ashour, Shi,
Fong and Tavares (2018). In terms of architecture, two Deep
Generative Adversarial Networks (GANs) are implemented.
More precisely, the Generator of each GAN consists of a
Dense layer with the hyperbolic tangent (tanh) activation
function, another Dense layer with a batch normalization
layer and the ReLU activation function, a third Dense Layer,
and a final Dense layer with the tanh activation function.
The Discriminator of each GAN consisted of a Dense layer
with the LeakyReL.U activation function, another Dense
layer with a batch normalization layer as well as the ReLU
activation function, and a final Dense layer. The target systems
of the authors’ implementation were IoT and MCPS while
exploiting IP, TCP, ICMP, UDP among other communication
protocols. Regarding the evaluation of the proposed method,
it was found that the detection rate increased compared to the
commonly trained models, reaching 78.37% accuracy on the
CHARIS, Kim, Krasner, Kosinski, Wininger, Qadri, Kappus,
Danish and Craelius (2016), and UNSW-NB15 datasets, in
an effort to identify fuzzers, analysis, backdoor, DoS, exploit,
generic, reconnaissance, shellcode and worms attacks.

Due to the fact that it is challenging for Smart Grid
(SG) architectures to provide secure and resilient systems,
developers are implementing ML algorithms for the detection
of intrusions by monitoring the traffic flow of the network,
Fang, Misra, Xue and Yang (2011); Ma, Chen, Huang and
Meng (2013); Tuballa and Abundo (2016). While this ap-
proach may increase the detection rate of attacks, it threatens
consumers’ privacy because it needs access to user data to
train such models. P. H. Mirzaee et al. in Mirzaee, Shojafar,
Pooranian, Asefy, Cruickshank and Tafazolli (2021) proposed
an FIDS architecture in a 5G environment with the main goal
being the preservation of users’ privacy while keeping the
detection rate high. Towards achieving this, the protocols that
they exploited included IP, TCP, ICMP, UDP, SMTP, SSH,
HTTPS, and FTP, among others, and targeted SG, Advanced
Metering Infrastructure (AMI), Demand Response (DR),
Real-Time Pricing (RTP) and Smart Manufacturing (SM)
systems. More specifically, they designed a Federated Deep
Neural Network (FDNN) model that keeps users’” information
private and a server that aggregates the updated local models
and broadcasts the produced model back to the network
devices, while utilizing the FedAvg fusion method. In terms
of evaluation, the proposed method achieved 99.5% accuracy,
99.5% precision/recall, and 99.5% F1-score when it was
evaluated on the NSL-KDD dataset, against attacks such
as DoS, probing, R2L and U2R.

Even though ML methods produce a high detection
rate in identifying attacks in an IoT environment, their
need for labelled data to train a model is challenging due
to privacy reasons. In order to address this challenge, K.
Yadav et al. in Yadav, Gupta, Hsu and Chui (2021) designed

and proposed an unsupervised deep learning system that
implements AEs to learn from unlabelled data, Choi, Kim,
Lee and Kim (2019); Song, Hyun and Cheong (2021b). In
addition, they implemented an FL approach in order to let
different IoT devices train their models locally without the
need to share their private data with a server. More precisely,
the proposed method consists of a global server model with
random initial weights which is distributed to all edge devices.
Then, each device trains a model copy locally and sends
its updates to the server for averaging (the FedAvg fusion
technique is employed). The averaging result is sent back
to edge devices again for the next round of training. In
terms of architecture, edge devices use an AE to label the
unlabelled data and an NN for detecting intrusions, Kingma
and Welling (2013b). For the evaluation, the CIC-IDS2017
dataset was used, including various attack types and while
exploiting distinct communication protocols such as IP, TCP,
ICMP, UDP, SMTP, SSH, HTTP, FTP, among others. The
proposed method achieved an accuracy of 97.75% in detecting
intrusions.

With regard to IoV networks, an increased number of
communication interfaces exist, making the whole network
vulnerable to intrusion attacks. These attacks can take control
of a vehicle remotely, and, also, invade any neighboring
vehicle that is part of the same IoV network. In order to
increase the protection of vehicles in IoV networks, T. Yu et al.
in Yu, Hua, Wang, Yang and Hu (2022) proposed a federated
LSTM NN-based IDS, Lin, Clark, Birke, Schonborn, Trigoni
and Roberts (2020). More precisely, based on the message
sequence of the In-Vehicle Network (IVN), an LSTM NN will
be used to identify any intrusions in the incoming messages.
However, other target systems are employed as well, including
Intelligent Connected Vehicle (ICV), Electronic Control Unit
(ECU) and On-Board Unit (OBU). Furthermore, a federated
learning approach is implemented to increase the security and
the efficiency of the LSTM NN training, with interconnected
vehicles working as clients that train a model locally, and base
stations that work as servers for the aggregation of clients’
resulting models, encompassing the FedAvg fusion method.
Regarding the architecture of the LSTM NN, it consists of 6
layers using tanh as the activation function in all layers except
for the final layer, where the activation function employed
was softmax. In terms of performance, it was found that
the proposed method attained an accuracy of over 90% on
the OTIDS, Lee, Jeong and Kim (2017), dataset, towards
detecting DoS, spoofing, replay and drop attacks.

AMI systems play an important role in SG architecture,
but they are exposed to cyberattacks, Mohassel, Fung, Mo-
hammadi and Raahemifar (2014a,b). The current methods
of intrusion detection in AMI systems require gathering all
data in a single node or a data center, making this approach
almost infeasible due to privacy and security reasons. To
address this problem, H. Liang et al. in Liang, Liu, Zeng
and Ye (2022) proposed a federated learning-based intrusion
detection framework for AMI systems. In this method, the
training does not take place in a computing node, or a data
center, but it is performed in the data concentrators, and only
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the resulting weights of each concentrator’s local model have
to be sent to the data center. Furthermore, the data center
aggregates the resulting weights of the concentrators’ trained
models, in order to increase the detection accuracy in a collab-
orative learning manner, while employing the FedAvg fusion
technique. In terms of architecture, a DNN was implemented,
consisting of an input linear layer with the ReLU activation
function, 3 linear layers with the ReL.U activation function, a
dropout layer in the hidden layer and an output linear layer
with softmax as the activation function. Regarding the results,
the proposed method produced 99.32% accuracy, higher than
the 98.94% accuracy of the centralized approach on the NSL-
KDD dataset, including the identification of DoS, probe, R2L
and U2R attacks, while exploiting a variety of communication
protocols. Additionally, the proposed method, which was
implemented using the PyTorch library, reduced computation
and communication costs, while preserving data privacy.

R. Zhao et al. in Zhao, Wang, Xue, Ohtsuki, Adebisi
and Gui (2022) tried to address three important challenges
that influence the performance of IDSs in an FL framework.
More precisely, as it is noted, the first challenge involves
the security of data due to the fact that private data can
be extracted from the transmitted parameters, while the
second challenge focuses on non-IID data and the level of
effect this has on federated training. The third challenge is
relevant to the communication overhead caused by the large
size of DNN models which makes the actual deployment
difficult. In order to address these limitations, they designed
an IDS in a semi-supervised FL framework using knowledge
distillation, during which the PyTorch library was utilized,
Zhu and Goldberg (2009); Chen, Gong and Tian (2008).
Initially, the proposed method utilized unlabelled data by
implementing distillation methods in order to increase the
classifier’s accuracy. Then, a CNN, which consists of an
input layer, 4 convolutional layers, a fully connected linear
layer, and an output layer, is implemented with its main
goal being the extraction of features from the network
traffic. Finally, they designed a discriminator to improve each
client’s predictions on intrusions, and, simultaneously, to
avoid any failures caused by non-IID data. To reduce the
communication overhead even further, they implemented
a hard-label strategy and voting mechanisms. The systems
that were targeted during this implementation included
IoT devices, while utilizing the IP, TCP, ICMP and UDP
protocols, among others. Regarding the evaluation of the
proposed method, it outperformed SOTA methods on real-
world traffic dataset, namely the N-BaloT, Meidan, Bohadana,
Mathov, Mirsky, Shabtai, Breitenbacher and Elovici (2018),
dataset, while achieving distinct accuracy levels with three
non-IID scenarios.

Attacks and intrusions on MCPSs can lead to data leakage
of very sensitive and private information on patients and hos-
pitals, as mentioned before. Also, the level of heterogeneity of
devices participating in an MCPS network makes the network
vulnerable to a variety of attacks. In order to address these
security issues, W. Schneble and G. Thamilarasu in Schneble
and Thamilarasu (2019) designed a massively distributed

ML IDS in a federated learning scheme for MCPS, while
encompassing the FedAvg fusion technique. As they state,
they used an FL approach to decrease communication and
computation costs and increase the security of the network.
The proposed method was implemented using the scikit-
learn library, and was evaluated using real-world data and
attacks such as DoS, Data Modification, and Data Injection.
Simultaneously, the targeting system was MCPS and the
communication protocols that were utilized were Bluetooth,
Zighee and 802.11. The results indicated that the proposed
model achieved an accuracy of 99% and an FP Rate of 1% on
the MIMIC dataset, while reducing communication costs.

Even though DL methods can accurately predict different
types of cyberattacks, their need to gather all the data in
a centralized entity is raising security and privacy issues
while increasing communication costs and latency. Moreover,
it is inefficient and requires many resources to label all
the data generated in IoT devices due to their volume. In
order to address these issues, O. Aouedi et al. in Aouedi, Pi-
amrat, Muller and Singh (2022a) proposed a semi-supervised
learning approach, for IoT and IIoT systems, in a federated
learning framework, which benefits from both labelled and
unlabelled data the fusion method of which was chosen
to be FedAvg. More precisely, an AE is implemented on
every device in the network to discover and extract low-
dimensional features using only local data. Then, a server
receives the parameters of all AE from the devices and
aggregates them into a global AE. Finally, the server builds
a supervised NN, by adding a dense layer to the global
AE and trains it using labelled data which are publicly
available, namely the Gas pipeline SCADA, Morris and
Gao (2014a), dataset. For this implementation, the widely
utilized library PyTorch was utilized. In terms of performance,
the results indicated that the proposed method preserved
data privacy and identified 95.84% of the attacks, while
reducing communication overhead by 50% for the Modbus,
Simple Network Management Protocol (SNMP) and C37.118
communication protocols.

New requirements regarding the reliability and security
of the network domain are the result of the current digital
transformation of the world. Even though ML algorithms
can successfully detect intrusions in a network, there are
concerns about the generalization ability of these approaches
to detect attacks between different contexts. In order to
address this issue, G. d. C. Bertoli et al. in Bertoli, Junior,
Santos and Saotome (2022) proposed a stacked-unsupervised
FL framework with the main goal being the generalization
in detection intrusions in a cross-silo configuration. In terms
of the architecture, it uses a Deep AutoEncoder combined
with an energy flow classifier, while for the federated learning
configuration, they used a server for the aggregation of the
resulting parameters of each silo using FedAvg, FedOpt,
Asad et al. (2020a), and FedAvgM as fusion techniques.
Regarding the evaluation of the proposed method, the authors
used a variety of datasets, namely UNSW-NB15, CSE-CIC-
IDS-2018, Sharafaldin et al. (2018c), Bot-IoT, Koronio-
tis, Moustafa, Sitnikova and Turnbull (2019); Koroniotis,
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Moustafa, Sitnikova and Slay (2018); Koroniotis, Moustafa
and Sitnikova (2020b); Koroniotis and Moustafa (2020);
Koroniotis, Moustafa, Schiliro, Gauravaram and Janicke
(2020a); Koroniotis (2020), and TON_IoT dataset. The results
indicated that it outperformed the traditional local learning
and cross-evaluation methods, achieving an accuracy of 97%,
98%, 93%, and 74%, respectively.

Due to the rapid growth in the amount of network data,
IDSs have lost part of their efficiency and accuracy in
predicting attacks. Moreover, most of the network data is
currently generated in mobile phones, smart devices, and
wearables, while their privacy is important as they store
sensitive information concerning individuals. In order to
increase the detection accuracy, and, simultaneously, preserve
the privacy of data, J. Shi et al. in Shi, Ge, Liu, Yan and
Li (2021) proposed a Federated Learning-based IDS. In
terms of architecture, they used a CNN which consists of
an Input Layer, 2 Convolutional Layers, a MaxPooling Layer,
a Flatten Layer, a Dense Layer, a Dropout Layer and, finally,
an Output Layer. Regarding the evaluation of the proposed
method, they conducted experiments using the UNSW-NB15
dataset, which contains 9 different attack types and 49-
dimensional feature data, and the CSE-CIC-IDS2018 dataset
which contains 80 features per attack scenario. The results
indicated that the proposed method achieved a lower accuracy
of 81.19% compared to the 83.46% of a centralized CNN for
the first dataset, and 78.46% compared to 98.77% for the
second dataset while preserving the privacy of the data.

O. Aouedi et al. in Aouedi, Piamrat, Muller and Singh
(2022b) proposed an FL with a semi-supervised approach for
IDSs, named FLUIDS. More precisely, their work consists of
a number of devices that train locally an AE using unlabelled
data in order to find representations of low-dimensional
features (unsupervised learning) and the resulting parameters
are sent to an FL server for aggregation, the fusion method of
which was FedAvg, using the PyTorch library. In addition, the
server does not only build a global AE but also uses an amount
of labelled data to perform supervised learning using a Fully
Connected Neural Network (FCNN) for the classification of
the attacks (supervised learning). Finally, the server sends
back the updated global AE, and the supervised model to
perform the IDS task to the devices. Their implementation
was tested on IoT devices while exploiting IP, TCP, ICMP, and
UDP protocols, among others. For the evaluation of FLUIDS,
experiments were conducted using the UNSW-NB15 dataset,
which consists of 175,341 training and 82,332 testing samples.
The results showed that when FLUIDS was combined with
MLP, RF, SVM, and DT classifiers, the F1-score increased by
3.68%, 5.46%, 6.21%, and 7.55% respectively, compared to
when these classifiers were employed on their own, reaching
an F1 score ranging among 80% and 90%.

Although DNNs achieve a high efficiency in cyberse-
curity monitoring, in a resource-constrained environment,
like the IoT, DNNs are almost impossible to be trained
due to the high computational resources they need. More
precisely, in an FL environment, the devices are forced to
train a computationally heavy model in order to keep their

data private, making it eminently hard for the device both in
terms of time and accuracy. 1. Zakariyya et al. in Zakariyya,
Kalutarage and Al-Kadri (2021) proposed a memory-efficient
method of training an FCNN for IoT to detect intrusions and
attacks such as BASHLITE, Mirai and DDoS incidents, in
FL settings, while employing the Fed Avg fusion technique.
Additionally, the communication protocols onto which they
tested their implementation included Bluetooth, Zighee,
XBee and 6LoWPAN. In terms of architecture, the proposed
FCNN consists of an input layer, three hidden layers, and an
output layer, implemented using PySyft and PyTorch libraries.
The number of neurons varied in every experiment that was
conducted. Specifically, eleven experiments were performed
using eleven distinct datasets including the N-BaloT, the
Kitsume, IoT-DDoS and WUSTL, Teixeira, Salman, Zolan-
vari, Jain, Meskin and Samaka (2018) datasets. The results
indicated that the proposed method may decrease memory
requirements by up to 99.46% while maintaining the same
accuracy - reaching a maximum level of 97% - as well as the
F1-score.

SGs are becoming a necessity due to the increasing power
demands. Advanced networking capabilities, which are intro-
duced with the 5G networks, can enable smart meters in the
AMI of the SG core. However, these networks are vulnerable
to a wide range of cyberattacks. Towards their protection,
a transformer-based hierarchical Federated Learning-based
Intrusion Detection System (FL-IDS) is proposed in Sun,
Tang, Du, Deng, Lin, Chen, Qi and Zheng (2022) by X.
Sun et al. which is able to preserve client data protection
and privacy while simultaneously reducing communication
costs in the IP, TCP, ICMP and UDP protocols, among
others, Han, Xiao, Wu, Guo, Xu and Wang (2021). The
proposed Transformer Intrusion Detection Model consists
of a feature extraction layer, a column embedding layer,
a stack of N Transformer layers, and an MLP, using a
custom fusion technique, implemented with TensorFlow. The
model’s performance was evaluated on the NSL-KDD dataset,
using two feature extraction layers and two transformer layers
while reaching an accuracy of 99% in detecting DoS, Probe,
R2L and U2R attacks. Through the evaluation, it was shown
that the proposed Transformer-IDM model can act as an
IDS in FL while maintaining only a small number of NN
parameters reducing the communication cost in FL.

In an IoT environment, FL for IDS can reduce the
required network resources and bandwidth needs, while
simultaneously maintaining a higher battery charge for all
IoT devices. The authors in Saadat, Aboumadi, Mohamed,
Erbad and Guizani (2021) explore and demonstrate the
superiority of Hierarchical FL over classic FL, alongside
its advantages in the case of an IoT environment with an
edge infrastructure and for the ZigBee, Bluetooth and RFID
communication protocols. They constructed an NN with 122
neurons for the input, 80 neurons for the first hidden layer,
40 neurons for the second hidden layer, and 5 neurons for
the output layer, which they evaluated on the NSL-KDD
dataset, reaching approximately 78% accuracy in detecting
DoS, Probe, R2L and U2R attacks. More specifically, they
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tested a scenario with 8 edge clients which in the HFL
scenario were organized in two edge clusters with 4 clients per
cluster, where each cluster uses FedAvg, and the data between
different clients was non-IID. The HFL model proved to have
faster convergence and overall better training statistics, with
the edge layer possibly absorbing some of the effects of the
non-IID of data before the aggregated models are forwarded
to the centralized cloud.

In a similar manner to classic ML, the features chosen
for training the model are of utmost importance for the
whole ML pipeline. The authors in Qin and Kondo (2021)
have demonstrated that the feature selection can significantly
increase the detection accuracy of an IDS, by differentiating
the feature selection between different attack types, Li, Cheng,
Wang, Morstatter, Trevino, Tang and Liu (2017); Kira and
Rendell (1992); Di Mauro, Galatro, Fortino and Liotta (2021);
Alazab, Hobbs, Abawajy and Alazab (2012). They propose
a greedy feature selection algorithm, which they evaluate
on the NSL-KDD dataset using the ONLAD NN, Tsukada,
Kondo and Matsutani (2020), having a significantly different
output when the input is an anomaly. The proposed algorithm
referred to IoT environments, implementing the FedAvg
fusion method. To deal with decreasing accuracy in detecting
attacks such as DoS, Probe, R2L and U2R attacks, multiple
global detection models are trained using FL. The evaluation
showcased an accuracy increase from 2.2% up to 29%,
reaching approximately 70%.

The IoT-based Transactive Energy System (IcTES) which
enables innovative services with independent distributed
systems in SGs is often susceptible to False Data Injection
Attacks (FDIA), which not only are hard to detect in [oTES but
can also lead to privacy violations during detection. To cope
with these problems, a decentralized-based FDIA detection
model has been proposed in Tahir, Jolfaei and Tariq (2021),
which is based on deep federated learning using attentive
aggregation (DeepFed-AA) with a GRU module, while using
Differential Privacy through randomization before sending
the client models to the centralized server. The attentive
aggregation process considers the significance of each client
while optimizing the central model during aggregation.
The model made use of the PyTorch and MATPOWER
libraries and was evaluated on the National Renewable Energy
Laboratory dataset while outperforming all other SOTA
models, achieving 96% detection accuracy on a large-scale
model, requiring less training and detection time.

All NN-based NIDS suffer from the need for variety and
diversity in data as well as the lack of interpretability, while
some of them are also limited regarding multi-class attack
classification. To overcome these limitations, a GBDT has
been proposed in Dong, Qiu, Lu, Qiu and Fan (2021) as
a NIDS, which is based on DTs but generates a distinct
prediction score for each class and classifies a sample to
the class with the highest prediction score. Towards training
this classifier, partial data masking is used for client privacy,
then the server decides upon small bins of predefined width
based on the unique values of client data, and finally, clients
transform their data into bin numbers which are sent to the

server for model training. This approach was evaluated on the
CIC-DD0S2019 DDoS attack dataset and was compared to a
5-layer MLP using FedAvg and to a centralized GBDT model
trained on the full data, taking advantage of the IP, TCP,
HTTPS and DNS communication protocols. The Federated
GBDT performed much better than the MLP model but worse
than the local GBDT model due to the masking procedure,
achieving approximately 65% accuracy.

Federated Learning-based Network Intrusion and Detec-
tion Systems (FL-NIDSs) have been shown to be vulnerable
to poisoning attacks launched by malicious clients. In these
attacks, poisoned traffic is injected into the local training
dataset, impairing the NIDS protection capabilities. Current
SOTA FL-NIDS first uses model-level defense with an offline
intrusion detection model on the server side to detect and
reject the models that have been poisoned in the global
model aggregation, then the data-level defense is applied,
which cleans the data from poisonous traffic. However, the
huge number of NN model parameters, combined with the
heterogeneous and time-varying nature of IoT traffic data,
makes these solutions far from usable. To overcome these
restrictions, SecFedNIDS is proposed in Zhang, Zhang, Guo,
Yao and Li (2022), replacing the offline detection model
with a gradient-based important model parameter selection
method for the poisoned model detection, alongside an online
unsupervised poisoned model detection method based on
SOS. The proposed model, implemented with PyTorch and
exploiting the IP, TCP, ICMP, UDP and other communication
protocols, was evaluated on the NSW-NB15 and CSE-CIC-
IDS2018 datasets and was compared to other SOTA defense
mechanisms, like Krum, Blanchard, E1 Mhamdi, Guerraoui
and Stainer (2017), Geomed, Chen, Su and Xu (2017), and a
baseline FedAvg FL-NIDS, managing to achieve an overall
significant improvement and better detection and defense
against most attacks. More specifically, in the task of detect-
ing the label flipping and clean label attacks SecFedNIDS
achieved approximately 99% and 95% accuracy levels on the
NSW-NB15 and CSE-CIC-IDS2018 dataset, respectively.

Controller area networks (CANs) are usually used for
managing in-vehicle communication systems and broadcast
packets to their buses, so all nodes and Electronic Control
Units (ECU) attached to the bus can receive transmitted pack-
ets, Farsi, Ratcliff and Barbosa (1999); HPL (2002); Foster
and Koscher (2015). However, packet authentication is impos-
sible, making CANs vulnerable to attacks, like steering and
braking, or speedometer display information manipulation.
Furthermore, FL-IDS requires a central aggregation server
which adds latency and is also vulnerable to a single point of
failure. To overcome these limitations, the use of blockchain
with Federated Learning (BC-FL) has been proposed in
Aliyu, Feliciano, Van Engelenburg, Kim and Lim (2021), in
which local models are stored in the blockchain for local and
independent aggregation, Zheng, Xie, Dai, Chen and Wang
(2018). To address the problem of sharing sensitive CAN
data, a Blockchain-based Federated Forest SDN-enabled
Intrusion Detection System (BFF-IDS) for an IVN has been
proposed, in which every vehicle is treated as a client with
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generated data that can be used to train IDS models, Sultana,
Chilamkurti, Peng and Alhadad (2019). These models are
exchanged using a blockchain approach, implemented with
scikit-learn, Ethereum and Mininet frameworks, managed
by the SDN, which dynamically routes packets and model
exchanges from InterPlanetary File Systems (IPFS) through
the blockchain. IPFS is used to upload the model while
its location’s (unique client ID) hash is exchanged over the
blockchain, reducing the network requirements and cost, for
which the On Board Diagnostics II (OBD-II) and Bluetooth
communication protocols are utilized. This solution was
evaluated on the OTIDS dataset, Lee et al. (2017), against
other detectors and related IDS, using the scheme of 10-fold
cross-validation, displaying a higher classification accuracy
than every other competing model reaching 95% in detecting
fuzzy, SoS, impersonation and attack-free state attacks.

The increase in network complexity makes networks
vulnerable to a variety of attacks, which IDS tries to mitigate.
Developing reliable IDS is crucial for defending networks,
so adding IDS to FL enables ML to deliver fine-tuned
protection mechanisms for various networks and Internet of
Medical Things (IoMT) devices, Vishnu, Ramson and Jegan
(2020); Thamilarasu, Odesile and Hoang (2020); Zachos,
Essop, Mantas, Porfyrakis, Ribeiro and Rodriguez (2021).
However, the FL improvements of IDS resulted in more
sophisticated attacks, which signifies that the performance
of IDSs needs continuous improvements. Furthermore, the
question “which IDS is the best one?” is still difficult to
answer, considering that there is no agreement on which
criteria are the most suitable in evaluating IDS classifiers, as
most of the current ones depend on a single incomplete aspect.
Authors in Alamleh, Albahri, Zaidan, Albahri, Alamoodi,
Zaidan, Qahtan, Alsatar, Al-Samarraay and Jasim (2022) try
to standardize and propose a benchmarking framework for
IDS towards detecting DDoS attacks using the integration
of direct rating, entropy weighing and Vlsekriterijumska
Optimizcija I Kaompromisno Resenje (VIKOR) methods,
while for the evaluation purposes they employ the NSL-KDD
dataset.

It is a common procedure for IoT devices to produce
distinct data types or describe the same information with
different sets of data attributes. An example of such infras-
tructure is an industrial facility that consists of multiple
collaborating sensors, each one of which is in charge of
different steps of a process, where data from all sensors
are required simultaneously for the monitoring and analysis
of the state of such processes. In literature, this is called
vertically partitioned data. While several FL-IDS exist when
dealing with horizontally partitioned data, very few exist for
dealing with vertically partitioned data. Authors in Novikova,
Doynikova and Golubev (2022) propose an FL-IDS for
dealing with vertically partitioned data, using the model
of the SWaT water treatment facility, which consists of the
number of basic processes corresponding to the physical
and control components of a water treatment plant, with the
SecureBoost model algorithm which implements GBDT and
is also preserving privacy through appropriate mechanisms to

protect inputs while not limiting the number of clients, Goh,
Adepu, Junejo and Mathur (2017). Both technological and
network data are collected by the hub of each process, which
differs between distinct processes. Due to the differences in
the sets of data attributes, each client has the part of the model
that corresponds to its data. Hence, to make an assumption
on a new input sample, all clients need to be available and
work together during the inference process, which requires
additional privacy-preserving mechanisms. While the identi-
fication accuracy was very high, yielding approximately 97%,
the inference time for new input samples was unacceptably
high, possibly due to the use of homomorphic encryption and
the way it is implemented in the selected framework, namely
the PyTorch and TensorFlow.

FL models can be vulnerable to Backdoor attacks (BDA),
in which an attacker performs an attack against the model in
order to make it produce inaccurate predictions. BDAs exist
in image classification and word prediction. The authors in
Nguyen, Rieger, Miettinen and Sadeghi (2020) present BDAs
on Federated Learning-based Internet of Things Network
Intrusion Detection System (FL-IoT-NIDS). The introduced
attack makes IoT devices gradually inject malicious traf-
fic, without requiring the attacker to compromise clients.
This attack was evaluated on DIoT-Benign, Nguyen et al.
(2019), DIoT-Attack, Nguyen et al. (2019), and UNSW-
Benign, Sivanathan, Gharakheili, Loi, Radford, Wijenayake,
Vishwanath and Sivaraman (2018), three real-world datasets
generated by 46 commodity IoT devices, and IoT malware
Mirai, which showed that the attacker can successfully launch
poison attacks undetected with a poisoned data rate lower
than 20%. Moreover, with their approach, an accuracy of
100% was attained in detecting infection, scanning, SYN
flood and HTTPS flood, among various others. The authors
also propose defense mechanisms, including server-side FL.
defenses on the aggregator, which is implemented using
FedAvg, client-side filtering or poisoned data tolerating, and
malicious traffic injection identification and discard.

IoT devices are constantly increasing in number, use
cases, and popularity, resulting in a fast production and
distribution phase by several different companies. As a result,
they differ in the communication protocols and standards they
use, which makes them vulnerable to attacks. ML, RL, FL,
functional virtualization and blockchain have been proposed
as IoT and IIoT security solutions. However, a bridge between
IoT healthcare devices and healthcare informatics must be
developed, in order for better intrusion detection to be
achieved. Towards this goal, the authors in Otoum, Guizani
and Mouftah (2021) propose a Federated Reinforcement
Learning, Sutton and Barto (2018); Thrun and Littman
(2000); Li (2017), structure utilizing the Q-learning, Servin
and Kudenko (2005); Lopez-Martin, Carro and Sanchez-
Esguevillas (2020b); Watkins (1989), technique to preserve
the security and the optimization of the data that is required
in all IoT devices in a healthcare based IoT network topology.
Their model was evaluated on the CIC-IDS2017 dataset,
against an SVM-IDS model, Mukkamala, Janoski and Sung
(2002); Tao, Sun and Sun (2018), by exploiting Simulink.
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The proposed model accomplished an accuracy of about 98%
and a detection rate of about 97%, surpassing the SVM-IDS
model in both metrics in the task of detecting DoS, DDoS,
PortScan and brute force attacks, among others, when the
communication protocols which were utilized were WiFi,
Bluetooth and LAN, among others.

Traditional NIDS are not effective enough as cyberattacks
become more sophisticated. For example, dictionary and
signature matching strategies are not able to effectively
detect modern DDoS attacks. Although FL-NIDS have been
proven to be effective defense mechanisms, training data
are often shared between clients with imbalanced non-IID
features, making it hard to identify large-scale joint or
distributed intrusion attacks, Zhang, Wang, Sun, Green II
and Alam (2011). Traditional FL. methods, like FedAvg,
lack sensitivity in differentiating among the distributions
between sub-datasets. The authors in Li, Zhang, Li, Guo
and Li (2021b) propose an FL methodology for defending
against DDoS, among other attacks, by identifying data
characteristics that can establish an efficient IDS, considering
the prototypical features of each worker, to represent how
local data spaces are correlated to global data space. With
this approach, feature spaces are expanded while data privacy
is preserved. The FIDS model that was developed consists
of two identical GRU layers followed by two fully connected
layers, and was evaluated on the CIC-DDo0S2019 against a
baseline FedAvg-based model without prototypical features
and an LSTM-based model with 2 LSTM layers followed by
2 fully connected layers with prototypical features. Both the
FIDS and the LSTM-based models outperformed the baseline
model, while the proposed FIDS model achieved an accuracy
of 97% in a PyTorch implementation.

In an IoT infrastructure, traffic from multiple devices
may not contain the same features. This is where model
personalisation comes into play. On the contrary, the dataset
labeling process costs a lot both in money and time. Active
Learning (AL) solutions have emerged so that the learner can
choose the samples to learn from, making it a perfect fit for
model personalisation, Settles (2012, 2009); Almgren and
Jonsson (2004); Gornitz, Kloft, Rieck and Brefeld (2009).
AL is a semi-supervised ML approach that tries to solve
the issues of manually adding labels to unlabelled samples,
by dynamically selecting samples and making a query at
an oracle database to provide the labels. With regard to a
combination of FL with AL, the authors in Kelli, Argyriou,
Lagkas, Fragulis, Grigoriou and Sarigiannidis (2021) propose
an IDS model which initially performs FL global model
training and then performs model personalisation using
AL, while for the fusion technique the FedAvg method is
employed. The developed model is a 6-layer FCNN, which
was evaluated on an undisclosed dataset and achieved up to
about 85% accuracy on the DNP3 communication protocol.

IoT devices are limited in storage capacity and computing
power and cannot improve their local training towards a better
FL-IDS, Wang, Zhu, Hei, Kong, Ji and Zhu (2019). Moreover,
network limitations forbid uploading a large number of NN
parameters to the server. To overcome these limitations, the

authors in Hei, Yin, Wang, Ren and Zhu (2020) propose a
Blockchained FL cloud IDS (BFL-CIDS), which consists of
4 distinct layers, alongside a Regional Service Party Alert
Filter Identification (RSP-AFI). This architecture sets up an
RSP to collect the detection and alert sets of IoT devices
in its region and filter the false alert information since it
accounts for about 90% of the unfiltered alerts which means
it can reduce the accuracy of FL models, and then initiate
local model training. Its training results are stored on the
blockchain, ensuring that they are unaltered and permanently
saved. The proposed blockchain model adopts Hyperledger
Fabric, which is a permission blockchain scheme in which
the Fabric’s blockchain network identification and approval
are required, while also using erasure code-based low storage,
which makes every node require less storage effort, allowing
low storage devices to participate in the blockchain so that
they contribute to keeping the decentralized characteristic
of the blockchain and reduce network load on each node
by calculating the product of the number of nodes, Antwi,
Adnane, Ahmad, Hussain, ur Rehman and Kerrache (2021).
The proposed blockchain solution was evaluated on the
DARPA1999, Keogh, Lin and Fu (2005a), dataset against the
Ethereum, Zhu, Wang, Hei, Ji and Zhang (2018), blockchain
and the proposed RSP-AFI alert solution was evaluated on
the KDDCup99 dataset using MLP and DTs against RF and
SVM. The RSP-AFI (MLP) is a semi-supervised learning
algorithm, which is more suitable for real-world scenarios
since it achieves a performance score similar to the supervised
learning algorithm although being trained with 20% of the
total labelled data. The accuracy levels that were reached for
the distinct attacks’ identification, namely the DoS, probe,
R2L and U2R attacks, reached from about 80% to 97%
based on the scenario tested. On the other hand, the Fabric
blockchain achieved a much smaller sample uploading time
and a much higher number of transactions per second.
Modern industrial control systems (ICS) are equipped
with IIoT devices to improve the facilities” functionalities.
However, this growth in the number of IIoT devices exposes
ICSs to several cybersecurity threats, since all ICSs are
connected to the Internet. Thus, protecting IloT-based ICSs
against threats that are becoming increasingly more complex
requires an IDS which can be both effective enough and
light on resources to run on IIoT devices that have limited
computing power and resources. Towards this goal, the
authors in Huong, Bac, Long, Luong, Dan, Thang, Tran et al.
(2021) propose an SM, Davis, Edgar, Graybill, Korambath,
Schott, Swink, Wang and Wetzel (2015); Ren, Wu, Zhang,
Terpenny and Liu (2017), architecture which performs the
anomaly detection task at the edge using a hybrid model
of Variational AutoEncoder (VAE), Li, Cheng, Wang, Liu
and Chen (2020a), and LSTM NN using time-series data,
and then employs FL to only transmit the trained model
of every edge client to the centralized cloud for the server
model aggregation. VAE helps with capturing the structural
characteristics of the time series over time windows, whereas
LSTM estimates how the long-term in the time series is
correlated to the features inferred by VAE. This makes
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this model able to detect new anomalies over multiple
time scales even if they have never occurred before. The
hybrid model is built with an ideal threshold using Kernel
Quantile Estimator (KQE), Sheather and Marron (1990), to
achieve a high detection accuracy and was evaluated against
a competing VAE-LSTM solution with heuristics proposed
by Lin et al., Lin et al. (2020), using the SCADA systems,
Turnipseed (2015), and other time-series data sets collected
in several different fields such as ECGs, Keogh et al. (2005a),
respiration data, power demand, gesture and space shuttle,
and NYC taxi, Tlc (2017). For the designated architecture,
Tensorflow and FedML were utilized, while FedAvg was
employed as the fusion technique when exploiting the MQTT
protocol. Additionally, the proposed solution achieved better
Precision and F1-score than the competing model even when
the competing model was trained in a completely centralized
manner.

The increasing number of connected IoT smart devices
offers innovative smart system infrastructures like smart
homes, cities, etc. However, to keep such infrastructures
safe and functional, adaptive threat and malicious activity
detectors must be implemented. FL is suitable for developing
such systems since it combines the advantages of modern ML
and DL technologies with privacy protection techniques. The
authors in Tian, Chen, Yu and Liao (2021) propose the Delay
Compensated Adam (DC-Adam) for distributed anomaly
detection with DL for IoT systems as well as for CPS, in which
the cloud server will aggregate partial weights updates as it
receives them from each local client independently, global
parameters are initialized to guarantee convergence and the
post-training process is appended to each client independently.
Each client implements a five-layer Deep Autoencoder (DAE)
DNN model. The proposed architecture was evaluated on
the MNIST dataset, Deng (2012), the CIC-IDS2017, and
the IoT-23 dataset, Garcia, Parmisano and Erquiaga (2020),
against three baseline models - variations of DC-Adam -
Asynchronous Adam (Asyn-Adam), Asynchronous SGD
(Asyn-SGD) and Synchronous Adam (Syn-Adam). DC-
Adam achieved convergence and overall higher Accuracy,
Precision, Recall, and F1-Score compared to all other baseline
models. More specifically, it attained 91% accuracy and 92%
F1 score on the MNIST dataset, 88% accuracy and 93% F1
score on the IDS2017 dataset and 90% accuracy and 90%
F1 score on the 1oT-23 dataset. The attacks that it attempted
to identify were brute force, DDoS and Web-based, while
the communication protocols that it exploited were WiFi,
Bluetooth and LAN, among others.

While data collection and analysis in IoT networks is
essential in building innovative operations and services,
FL models in some occurrences exhibit lower performance
compared to centralized ML models due to the limited
available data on every participating worker device and device
heterogeneity. For example, Anomaly Detection performance
degrades compared to centralized ML using the TON_IoT
dataset. To solve this issue, the authors in Weinger, Kim, Sim,
Nakashima, Moustafa and Wu (2022) propose the use of data
augmentation for dataset rebalancing, experimenting with

various techniques like random sampling, Synthetic Minority
Over-sampling Technique (SMOTE), Chawla, Bowyer, Hall
and Kegelmeyer (2002), and Adaptive Synthetic Sampling
(ADASYN), He, Bai, Garcia and Li (2008). The proposed
methods were evaluated on the Modbus, Frazao, Abreu, Cruz,
Aratjo and Simdes (2019), dataset against a centralized
ML baseline model, towards identifying PortScan, DoS and
backdoor attacks. Although the FL. model showcases lower
performance (78% - 95% accuracy with the implementation of
a custom fusion technique) and higher training time compared
to the centralized model, dataset rebalancing through random
oversampling significantly improves detection performance
with manageable complexity when training over a large num-
ber of workers, while it also converges within significantly
fewer rounds compared to the centralized model.

IoT applications also include the Maritime Transportation
System (MTS), through which information exchange offers
improvements in maritime transportation like intelligent
navigation, avoiding obstacles, traffic monitoring, and vessel
collision. However, such critical operations networks must
be protected against cybersecurity threats using IDSs. FL has
been proposed for developing adaptive IDS while maintaining
data privacy. However, due to the lack of stability in the
communication environment in the ocean and hardware
heterogeneity, FL workers occasionally may not be able to
upload their locally trained model parameters on time for
aggregation. This is called “the straggler problem” and results
in higher model variance. To deal with this problem, as
well as with similar instances in Automatic Identification
Systems (AIS) and IoT in general, the authors in Liu,
Xu, Wu, Qi, Jolfaei, Ding and Khosravi (2022) propose a
CNN-MLP-based IDS, in which the CNN performs feature
extraction from the data and the MLP implements the actual
classification. The proposed architecture is implemented
using TensorFlow Federated to detecting DoS, backdoor and
various other attacks, while utilizing the WiFi communication
protocol. The model is trained through an adaptive batch
federated aggregation, named FedBatch, which adjusts the
reservation of the global model dynamically. The model was
evaluated on the NSL-KDD dataset against an MLP, a CNN
and a Bidirectional Gated Recurrent Unit (BGRU) model and
against CNN-MLP with FedAvg. CNN-MLP had comparable
and sometimes better performance than the other NN models,
while FedBatch showcased a higher and more stable accuracy
than FedAvg with non-IID client data distribution as well
as faster convergence. Eventually testing the derived model
yielded an accuracy among 83% and 94%.

In most FL-NIDS scenarios, each client is treated as
an independent worker with its own data and hardware
capabilities, only responsible for training its local model
and uploading its parameters to some centralized node
for aggregation. However, the authors in Sarhan, Layeghy,
Moustafa and Portmann (2021a) propose a different FL
approach, where each local client is observed as a single entity
with a unique network of highly heterogeneous endpoints,
thus allowing multiple organizations to share Cyber-Threat
Intelligence (CTI) to work together in order to design and
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build an effective ML-based NIDS, suitable for real-world
deployment. In many cases, such a smart model does not
produce a high rate of false alarms in cases of variations
in the benign traffic distribution caused by a modification
of the organization environment. In this configuration, the
authors used the FedBatch fusion technique in a PyTorch
implementation to detect DoS, probe, R2L and U2R attacks.
The proposed architecture, using an MLP and an LSTM
separately as a NIDS, was evaluated on the NF-UNSW-NB15-
v2 and NF-BoT-IoT-v2 datasets, Sarhan et al. (2021c¢), against
a centralized and localized approach. The FL architecture
always achieved better performance than the localized one
(approximately 80% accuracy), while having somewhat worse
performance than the centralized one. Moreover, MLP and
LSTM were trading blows since their performance was very
close.

For NIDS, multiple classifiers of different types can be
combined to classify network traffic as benign or malignant.
The authors in Chatterjee and Hanawal (2021) proposed using
a Noise-Tolerant Probabilistic Hybrid Ensemble Classifica-
tion (PHEC) model, which is suitable for detecting threats in
IoT environments (in centralized settings), and adapting it to
an FL setting. This model considers the confidence values
in the predicted labels rather than the true labels of each
individual classifier. While simultaneously achieving a high
FP Rate (FPR) and a high True Positive Rate (TPR) may not
be feasible, the model allows tuning a single hyperparameter
y to achieve the desired trade-off between TPR and FPR. In
this architecture, each node is responsible for the detection
of only a particular type of intrusion, so instead of averaging
out models, they are stacked, preventing the high influence
of majority samples on the global model, whilst utilizing
the FedAvg fusion technique. The use of weighted convex
surrogate loss functions, like Biased SVM and Weighted
Logistic Regression make the model Noise Robust, Maalouf
and Siddiqi (2014). The proposed architecture, implemented
using TensorFlow Federated, was evaluated on the NSL-
KDD, DS20S, Aubet and Pahl (2018), and SCADA datasets,
Morris and Gao (20144a,b), for the IP, TCP, ICMP, UDP
and other communication protocols. For the model archi-
tecture, an MLP NN was considered, while for the baseline
centralized models, KNN and RF algorithms were utilized.
Even though performance in FL. PHEC was lower than in
centralized PHEC, it yet achieved very high TPR along with a
decent accuracy level, reaching 92% when detecting a variety
of attacks.

Traditional NIDS methods, like Deep packet inspection
and stateful protocol analysis, tend to be insufficient due
to the huge amount of high-dimensional modern network
traffic data, Bremler-Barr, Harchol, Hay and Koral (2014).
The authors in Toldinas, Venckauskas, Liutkevic¢ius and
Morkevicius (2022) propose transforming network traffic
features (NTF) data into images, by collecting NTF data in
a frame and then transforming each frame into an image, to
get a limited but sufficient image dataset for model training
and evaluation. The model’s architecture is a 12-layer FL.
DNN using Stochastic GD with momentum (SGDM) and a

custom training loop along with a custom fusion technique.
The model’s implementation was achieved with Simulink and
its performance was evaluated on the BOUN-DDoS Dataset,
Erhan and Anarim (2020), against a centralized Transfer
Learning ResNet50 model and a 13-layer FTL DNN model.
The performance of the FL. and FTL models was close to
the centralized model in some cases, reaching about 93%
accuracy in detecting DDoS attacks, which is good enough,
but also showcases that further research is required.

While FL-IDSs have displayed promising improvements,
handling heterogeneous data distribution across multiple
organizations is still a major challenge. The authors in
Vucovich, Tarcar, Rebelo, Gade, Porwal, Rahman, Redino,
Choi, Nandakumar, Schiller et al. (2022) propose the use of
an under-complete AE with a Root Mean Square Propagation
(RMSProp) optimizer and MSE loss function, paired with
a sequential binary classifier. The AE was trained using FL.
on each client’s private data separately, subsequently, the
aggregated (global) AE was used by each client independently
to create new local training data for the binary classifier and
finally produce an aggregated (global) classifier using FL. To
handle clients with different data distributions, the authors
introduce the FedSam min-max scaler algorithm as well as a
new sampling technique which is a combination of the Mini-
Batch and Multi-Epoch FedAvg strategy and is suitable for
equally weighting updates from all client nodes. The proposed
solution was evaluated on the CIC-IDS2017, CSE-CIC-
IDS2018, and NCC-DC, University of Southern California-
Information Sciences Institute, datasets, against centrally
trained AEs, classifiers and Federated Multi-Mini-Batch (Fed-
MMB), Nasirigerdeh, Bakhtiari, Torkzadehmahani, Bayat,
List, Blumenthal and Baumbach (2020). The proposed model
achieved an F1-score of 91% and even outperformed the rival
FedMMB model for the task of detecting DDoS attacks.

The authors in Verma, Breslin and O’Shea (2022) pro-
posed the FLDID - FL-enabled hybrid model composed
of a CNN, an LSTM and an MLP - as an IDS in SM
environments, which utilizes a Paillier-based encryption
during model parameters exchange. More specifically, the
CNN extracts high-level feature representations, while the
LSTM identifies the time-series patterns. The reason behind
the use of encryption is the model’s capability of allowing
collaborative learning between different SM industries, using
FL through secure communication, while exploiting the
MQTT, CoAP and WebSocker protocols. The model was
implemented using TensorFlow and was designed so that
it can detect membership inference attacks, unwanted data
leakage and reconstruction through inference, as well as
GANs-based inference attacks. The proposed solution was
evaluated on the X-IIoTID, Al-Hawawreh, Sitnikova and
Aboutorab (2021), dataset, which takes into account the
heterogeneity of IIoT network traffic as well as system
procedures produced by a variety of IIoT devices, against
a centralized IDS model, an isolated IDS model, and 3 SOTA
models. Compared to the SOTA models, FLDID achieved
higher accuracy (approximately 99%) and F1-score. It also
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outperformed the isolated model while having a negligibly
worse performance than the centralized model.

GANS solve the problem of limited, missing and im-
balanced malicious IoT network traffic data by generating
synthetic data, while FL allows different IoT devices to
contribute to implementing a reliable IDS. The authors in
Tabassum, Erbad, Lebda, Mohamed and Guizani (2022)
proposed FEDGAN-IDS as a Privacy-preserving IDS using
GANSs and FL, where each IoT device has two NN models,
a Generator and a Discriminator which are CNNs. Both the
original local traffic data and the synthetic local data created
by the local Generator are used in training the local Discrim-
inator. A global Generator and a global Discriminator are
produced through FL. The proposed solution was evaluated
on the KDDCup99, the NSL-KDD, and the NSW-NB15
datasets, against several SOTA models, outperforming all
of them with all three datasets, encompassing a variety of
communication protocols, achieving an accuracy score of
more than 99%.

Having a single central server makes FL susceptible to
several risks, including hardware failures and security issues.
Furthermore, it is difficult for some devices participating in
the FL procedure to create direct links to the central server. To
overcome these problems, the authors in Lian and Su (2022)
propose Peer-to-Peer Orthogonal-Search Training for Edge-
based FL (POSTER) as a decentralized FL architecture for IoT
anomaly detection, in which the server performs worker man-
agement and model initialization for all workers before the
training starts. Thereafter, all workers perform the training in
acompletely decentralized Peer-to-Peer (P2P) mode. For each
worker C, if another randomly selected peer C’ has a more
recently trained model, then C receives the weights of C” and
keeps them in a list. Finally, it performs weight averaging over
its local model and all received peer models. The proposed
architecture was evaluated on the 10123, Sebastian Garcia
(2020), dataset against a non-federated model version and
a centralized model version, outperforming both of them
while achieving an accuracy score of approximately 84%, in
a TensorFlow implementation for detecting PortScan, botnet
and DDoS attacks and exploiting various communication
protocols.

Cyberattacks in IoMT could endanger patients’ lives
and expose healthcare organizations to legal actions against
them. Towards [oMT defense, the authors in Singh, Gaba,
Kaur, Hedabou and Gurtov (2022) proposed a Dew-Cloud,
Ray (2017), IoMT framework with edge cloud computing to
securely monitor patients’ health. The result which occurs
when decentralized systems are combined with centralized
systems is a hierarchical architecture that can be trained
using hierarchical FL. The Dew Intelligent Service (DIS) is
embedded into the Dew-Cloud architecture to identify anoma-
lies in the network traffic, through an HFL-HLSTM model.
The global model is distributed to Dew servers deployed
in various health institutions. The proposed architecture
was evaluated on the NSL-KDD and TON_IoT datasets,
against three SOTA models, outperforming all three of them
while attaining an accuracy score of more than 99%. The

designed implementation was performed with scikit-learn
and TensorFlow libraries, in an effort to detect PortScan,
XSS, ransomware, DDoS, password, injection and backdoor
attacks, while exploiting the IP, TCP, MQTT, HTTP and DNS
protocols.

6. Discussion, Lessons Learnt and Future
Directions

The survey in the previous section on FL-based IDSs
has shed light on the potential benefits of FL-IDS compared
to traditional centralized IDS. One of the main advantages
of FL-IDS is its decentralized and distributed approach,
which eliminates the risk of a single point of failure. An-
other great advantage of FL-IDS is that it maintains data
isolation and perpetuates privacy and confidentiality while
enforcing limited and secure information exchange between
participating parties. This decentralization allows multiple
nodes in the network to participate and contribute to the
learning process and model improvement, resulting in a more
robust and accurate final Al model which benefits every
node and organization. Finally, FL-IDS constitutes a scalable
ML solution, since it offloads the training and evaluation
procedure across multiple independent nodes.

However, it is crucial to keep in mind that the survey has
some limitations that should not be overlooked. To begin
with, it is based on a wide yet limited number of recently
published studies and may not accurately reflect the current
SOTA in this field, as it is constantly and actively evolving.
Additionally, it may not have considered all the potential
challenges and limitations of FL-IDS, such as the difficulties
in implementing such systems in real-world scenarios. For
instance, towards implementing Horizontal FL there is a
necessity for the existence of multiple subnets providing the
same features for FL to be applied, creating a prerequisite
for such applications. Moreover, it may also have not fully
evaluated the trade-offs between privacy, security, and model
performance in FL-IDS. Therefore, while it provides valuable
insights into the potential of FL-IDS in intrusion detection,
it is important to acknowledge its limitations and take them
into account when interpreting the results. Moving forward,
continuous research and development in this field can help
address these limitations and improve the accuracy and
efficiency of FL-IDS. Furthermore, considering the trade-
offs between privacy, security, and model performance can
ensure that FL-IDS is implemented in the most effective and
secure manner possible.

Based on the reviewed literature, it was more than
obvious that although FL is a great conceptualization for
applications like IDS, a significant number of limitations and
unresolved issues nonetheless persist, making it laborious
to apply in practice. As was encountered in the reviewed
articles, different model aggregation strategies can result in
completely different produced models, which may or may
not have converged to a global minimum loss. No globally
accepted aggregation strategy exists and is unlikely to exist
due to different network infrastructures and participating
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nodes’ hardware. Also, the size of data that needs to be
shared in each training round is enormous and needs to be
significantly reduced, either through data compression or
other innovative techniques. Additionally, with regard to the
data there exists an overall lack of balanced datasets including
the newly evolved attacks in the cybersecurity domain, posing
a barrier to utilizing the data-centric approach, even if it
is thought of as a finer approach. Another aspect is the
encryption algorithm utilized for securing the data being
transferred between participating devices, which needs to be
fast both in encryption and decryption, to reduce the FL time
and required hardware resources.

Another major factor in the slow adoption of FL-IDS
is the lack of fully-featured and suitable FL frameworks
which are suitable towards this goal. Most FL frameworks
are very new and recently initiated projects and thus are
being actively maintained with daily development activity.
However, although they are advancing fast, a lot of useful
features are still missing. Furthermore, given the immense
number of new studies and approaches proposed in FL,
extracting the best ideas and properly implementing them
within existing frameworks requires a lot of development
time and resources. On the other hand, in expectation of
standardized and globally accepted FL features as well as a
number of feature-complete FL frameworks which implement
said features, FL-IDS will not be ready for mass deployment.

In conclusion, FL-IDS has the potential to offer a more
accurate and efficient way to detect intrusions compared to
traditional centralized systems. However, it’s important to
keep in mind the limitations of the current SOTA and there-
fore of the current survey and continue wandering in the field
further. With additional research and development, and by
taking into account the trade-offs between privacy, security,
and model performance, FL-IDS can be implemented in the
best and most secure way possible.

7. Conclusions

To conclude, after conducting a thorough analysis of
several research papers on Federated IDPS, this survey has
provided valuable insights into the techniques, challenges,
and solutions related to this topic. The research indicates
that these systems have several advantages, such as privacy
and resilience against potential cyberattacks. However, the
analysis also revealed several challenges that need to be
addressed, including scalability, the difficulty of ensuring
data privacy without degrading accuracy, and the importance
of having proper communication and collaboration between
the participating clients. Overall, this survey intends to
serve as a helpful guide for researchers in the field of
IDPS. The classification of the reviewed papers provides a
comprehensive overview of the current SOTA and can guide
future research. The challenges identified in this document
offer valuable insights into the key issues that need to be
addressed to develop effective federated IDPS.
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Table 1:

Summary of Federated Intrusion Detection Systems

Literature work Target System Fus‘fm Protocols Attacks Performance Dataset Software
Technique
1. Begin
2. DoS Hulk
3. PortScan
4. DDoS
5. DoS GoldenEye 1. PySyft
6. FTP-Patator Ziller, Trask, Lopardo, Szymkow,
7. SSH-Patator Wagner, Bluemke, Nounahon,
EEE o j} (2022) N/A FedAvg ; ITPCP 8. DoS Slowloris Ace: 972% gtllfrjglsdzlg lez al.2018b) | Passerat-Palmbach,  Prakash,
’ 9. DoS SlowHTTPTest ’ Rose et al. (2021b)
10. Bot 2. PyTorch
11. Brute Force Paszke et al. (2017)
12. XSS
13. Infiltration
14. SQL Injection
15. Heartbleed
1. TensorFlow Abadi et al.
(2015)
I Directory Traverssl Varoguas, Grarfort, Michel
Zhao et al. Unix-like OS | FedAvg Shell 2. Large Reads Acc: 99.23% SEA by AT&T Thirion,  Grisel,  Blondel,
Zhao et al. (2020) 3. File Deletions Shannon Lab i ,’ ’
4. Batch Uninstalls Prettenhofer, Weiss, Dubourg,
Vanderplas, Passos, Cournapeau,
Brucher, Perrot and Duchesnay
(2011)
1. Begin
2. DoS Hulk
3. PortScan
4. DDoS
2’ FD%§ S oldenEye 1. CIC-IDS2017
. -Patator .
1.1P Sharafaldin et al. (2018b)
Zhao et al. 2. TCP 7. SSH-Patator 2. ISCXVPN2016
N/A FedAvg 8. DoS Slowloris Acc: 98.14% : . PyTorch Paszke et al. (2017)
Zhao et al. (2019) 3. VPN 9 DoS SlowHTTPTest Draper-Gil et al. (2016)
3. Tor 16‘ Bot 3. ISCXtor2016 Lashkari
11. Brute Force etal. (2017)
12. XSS
13. Infiltration
14. SQL Injection
15. Heartbleed
Mothukuri et al 1. IoT ; g{?gbus é g'HTI\I/;D S Flood 1. PySyft Zill 1. (2021b)
othukuri et al. Io . Ping DDoS Floo ) . PySyft Ziller et al.
Mothukuri et al. (2021)| 2. TloT FedAve i' ITPCP 3. Modbus Query Flood | ¢ 90-25% N/A 2. PyTorch Paszke et al. (2017)
5. MQTT 4. SYN DDoS
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1. Reconnaissance
2. Response Injection
B.Lietal 1. Industrial CPS| Modbus i‘ gg‘snma“d Injection Ace: 599% N/A 1. Keras Chollet et al. (2015)
Lietal. (2021a) 2. SCADA 5' Eaveasdropping of ’ 2. Flask Grinberg (2018b)
data resources /
model parameters
. 1. Injection .
Cetin et al. Wi-Fi FedAvg 802.11 2. Impersonation Acc: ~ 83% AWID Dataset Kolias etal. | 1 g AR Caldas et al. (2018)
Cetin et al. (2019) 3 Flood (2015)
1.S i
s E 1. TON_I6T Moustafa
3. DDoS (202.1. 2,
4. Ransomware Booij et al. (2021),
5. Backdoor Alsaedi et al. (2020),
Abdel-Basset et al. 1. IoT 6. Iniection Acc: Moustafa et al. (2020b),
Abdel-Basset et al. 2. IoV N/A MQTT 7' XJSS ~92.5% (mean) @ TON_IoT Moustafa et al. (2020a), PySyft Ziller et al. (2021b)
(2021) 3. STS STS 8‘ Password Cracking ~97.2% (mean) @ Car-Hack Moustafa (2019),
9' MITM Moustafa (2021b),
1 0 Fuzzy Ashraf et al. (2021)
11. Spoofing Drive Gear 2. Car-Hacking Song et al.
12. Spoofind RPM gauze| (2020)
1. Begin
2. DoS Hulk
3. PortScan
4. DDoS
5. DoS GoldenE
6 F"?P—P;tatzls ye 1. KDDCup99 University
Chen et al 1. 1aT 7. SSH-Patator Acc: gf Cahformz(x:I C-IDS2017
’ ' FedAGRU LEACH 8. DoS Slowloris 99.28% (IID) : . - PySyft Ziller et al. (2021b)
Chen et al. (2020) 2. WEN Sharafaldin et al. (2018b)
’ ' 9. DoS SlowHTTPTest | 98.82% (non-IID) : g
10. Bot 3. WSN-DS Almomani
11. Brute Force etal. (2016)
12. XSS
13. Infiltration
14. SQL Injection
15. Heartbleed
Attota et al. 1. IoT 1. Scanning . MQTT-IoT-IDS2020 1. PySyft Ziller et al. (2021b)
Attota et al. (2021) 2. 1loT FedAve MQTT 2. Brute Force Acc: 98% Hindy et al. (2021) 2. PyTorch Paszke et al. (2017)
1. DoS 1. CIFAR-10 Krizhevsky
Kumar et al. 2. U2R . et al. (2009) . .
Kumar et al. (2021) MEC N/A MQTT 3 ROL 121 Acc: 92.7% 2. KDDCup99 University PySyft Ziller et al. (2021b)
4. Probe of California
1. DoS
Liu et al. 1. IoV . 2. U2R Acc: >90% (depends on KDDCup99 University of 1. PySyft Ziller et al. (2021b)
Liu et al. (2021) 2. V2X Averaging Ethereum 3.R2L epochs & data size) California 2. PyTorch Paszke et al. (2017)
4. Probe
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1. PortScan
2. DDoS
3. FTP-Patator
4. SSH-Patator
5. Bot
6. Heartbleed 1. CIC-IDS2017
7. ARP Spoofing Sharafaldin et al. (2018b)
8. DoS 2. NSL-KDD Tavallaee
Y. Fan et al. 1. IoT . 9. Scanning . et al. (2009)
Fan et al. (2020) 2. MEC Averaging 6LowPAN 10. Mirai Ace: 92.81% 3. 1T Datasets Mirsky | U
11. ARP MITM et al. (2018a),
12. DoS Kang, Ahn, Lee, Yoo,
13. Fuzzing Park and Kim (2019)
14. OS Scan
15. DoS
16. Probe
17.R2L
18. U2R
1.1P
2. ARP
3. TCP
Sun et al. . 4. HTTP 1. Server Message Block
Sun et al. (2021) LAN Averaging 5. HTTPS 2. TCP SYN Flood F1: 89.3% (mean) Custom dataset N/A
' 7. UDP 3. UDP Unicast
8. mDNS
9. DHCP
10. Others
M 1 1. ToT é 3(2)182 NSL-KDD Tavall 1
an et al. . - avallaee et al.
Man et al, (2021) g &(gc FedACNN N/A 3 ROL Acc: 99.76% (2009) PyTorch Paszke et al. (2017)
) 4. Probing
1.1P
2. ARP
3. TCP
Sun et al 4 HTTP
' LAN Averaging 5. HTTPS N/A Acc: 87.1% Custom dataset N/A
Sun et al. (2020) 7 UDP
8. mDNS
9. DHCP
10. Others
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1. DoS
2. U2R
3.R2L 1. NSL-KDD Tavallace
4. Probing et al. (2009)
5. Fuzzers 2. UNSW-NB15
Cheng et al. 6. Analysis ) Moustafa and Slay (2015), 1. PySyft Ziller et al. (2021b)
Cheng et al. (2022) MEC N/A N/A 7. Backdoor Ace: 73% Moustafa and Slay (2016), 2. PyTorch Paszke et al. (2017)
8. DoS Moustafa et al. (2017b),
9. Exploits Moustafa et al. (2017a),
10. Generic Sarhan et al. (2021b)
11. Reconnaissance
12. shellcode & Worms
1. ICMP 1. DoS 1. CIDDS-001 Ring et al.
Shingi et al. Custom 2.1P ’ . (2017b)
Shingi et al. (2021) N/A Technique 3. TCP § E;‘;:Seci‘r’f“ F1:92% 2. CIDDS-002 Ring etal. | VA
4. UDP : (2017a)
1. 1P 1. Backdoor 1. NF-TON-IoT-v2
2. ARP 2. DoS Sarhan et al. (2021c¢)
3. TCP 3. DDoS 2. NF-UNSW-NBI15-
P . | 1. IoT 4. HTTP 4. SQL Injection v2 Sarhan et al. (2021c)
opoola et a. 2. 1IoT Fed+ 5. HTTPS 5. MITM Acc: 99.27% 3. NE-BoT-IoT-v2 N/A
Popoolaetal. G021 1 3 1oy 6. UDP 6. Password Sarhan et al. (2021c)
7. mDNS 7. Ransomware 4. NF-CSE-CIC-
8. DHCP 8. Scanning IDS2018-v2 Sarhan et al.
9. Others 9. XSS (2021¢)
1. CIC-DD0S2019
Sharafaldin et al. (2019)
2. CICMalDroid2020
Mahdavifar et al. (2020),
1. 1P Acc: Mahdavifar, Alhadidi and
Dong et al. N/A N/A 2. TCP 1. DoS 94.60% @ DDo0S2019 Ghorbani (2022) N/A
Dong et al. (2022) 3. HTTPS 2. DDoS 88.59% @ MalDroid2020 3. CIC-Darknet2020
4. DNS 99.54% @ Darknet2020 Al-Hawawreh et al. (2021)

4. CIRA-CIC-
DoHBrw-2020 Montazer-
iShatoori, Davidson, Kaur
and Lashkari (2020b)
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1. Begin
2. DoS Hulk
3. PortScan
1.1P 4. DDoS . .
2. TCP 5. DoS GoldenEye 1. KDDCup99 University
3. ICMP 6. FTP-Patator of California_—
Markovic et al 4. HTTP 7. SSH-Patator gt all\]?ZLO_(g]))D fluee
Markovic ot al' 2022) N/A N/A 5. DNS 8. DoS Slowloris Acc: 71.82% @ IDS2017 3 UNSW—NBIS N/A
’ 6. FTP 9. DoS SlowHTTPTest ) .
7 FTP-DATA 10. Bot Moustafa and Slay (2015)
8. SMTP 11. Brute Force 4. CIC-IDS2017 Gharib
9. Others 12. XSS etal- (2016)
13. Infiltration
14. SQL Injection
15. Heartbleed
LIp 1. Pre-In.fection
Neuyen et al. IoT FedAvg 2. TCP 2. Infection Acc: 96.6% Custom Flask Grinberg (2018b)
Nguyen et al. (2019) 3 WiFi 3. Scanning
’ 4. DoS
1. DoS
2. DDoS
3. Brute Force
1.1P g: Xgﬁrzﬁiff 1. CSE-CIC-IDS2018 zimT;nsorFlow Abudl et el
1. IoT 2. TCP 6. Botnet Acc: Sharafaldin et al. (2018b) 2 ‘ Sherpa.Al Rodriguez-
Friha et al. 2. MEC FedA 3' HTTP 7’ Flood 4;7 IDS201 2. MQTTset Vaccari et al. ' pa-AL g :
Friha et al. (2022) 3 SDN edAvg . . Floo . ~94% @ IDS2018 (2020) Bz/irroso, ‘SIlp(?lC/h, Jlme}neL—
4 CPPS 4. SSH 8. MQTT Publish Flood | ~99% @ InSDN 3. InSDN Elsaved et al Lépez, Ruiz-Millan, Martinez-
’ 5. MQTT 9. SlowITe (2'020) say ’ Camara, Gonzalez-Seco, Luzon,
10. Malformed data Veganzones and Herrera (2020)
11. Brute Force
12. Probe
13. U2R
; i“zzer? 1. CHARIS Kim et al.
. Analysis 2016)
T e s
iniosoglou et al. Io . . oustafa and Slay R
Siniosoglou et al. (2021} 2. MCPS FedAve i: {%‘;ﬂp Z: g’;ﬁ:;‘ltc Ace: 78.37% Moustafa and Slay (2016), | VA
5. Others 7. Reconnaissance Moustafa et al. (2017b),
§ Moustafa et al. (2017a),
2 i{l](e)lrl;l(;de Sarhan et al. (2021b)
1. 1P
2. TCP
1.SG 3. ICMP
1. DoS
Mirzace et al. g 311\{/[1 FedAvg g: gl\?lgp 2. Probing Acc: 99.5% NSL-KDD Tavallace etal. | /5
Mirzaee et al. (2021) 3.R2L (2009)
4. RTP 6. SSH 4 U2R
5.SM 7. HTTP :
8. FTP
9. Others
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1. Begin
2. DoS Hulk
3. PortScan
1. 1P 4. DDoS
2. TCP 5. DoS GoldenEye
3. ICMP 6. FTP-Patator
4. UDP 7. SSH-Patator .
;{233: Zt j} ool 16T FedAvg 5. SMTP 8. DoS Slowloris Acc: 97.75% ((,;10(:1-({1))52017 Gharibetal. 1 \/A
’ 6. SSH 9. DoS SlowHTTPTest
7. HTTP 10. Bot
8. FTP 11. Brute Force
9. Others 12. XSS
13. Infiltration
14. SQL Injection
15. Heartbleed
1. oV 1. DoS
Yu et al. 2. 1cv 2. Spoofing
3.ECU FedAvg N/A Acc: ~92% - ~99% OTIDS Lee et al. (2017) N/A
Yu et al. (2022) 3. Replay
4.0BU 4. Drop
5.IVN :
1. 1P
2. TCP
Ezgi : i 0022) ;: ’S*gﬂ FedAvg 2. glsvgp g: EYZ"]E’G Acc: ~99% gf)'a;)(DD Tavallace etal. | pororch Pagzke et al. (2017)
7. HTTP 4. UR
8. FTP
9. Others
1. 1P
Zhao et al. Custom 2. TCP .
IoT . 3. ICMP N/A Acc: ~80% - ~85% N-BaloT Meidan et al. (2018) PyTorch Paszke et al. (2017)
Zhao et al. (2022) Technique
4. UDP
5. Others
1. DoS MIMIC Johnson, Pollard,
Schneble et al. 1. Bluetooth 2 Data Modification Shen, Lehman, Feng, iKit.1 Ped )
Schneble and Thami- MCPS FedAvg 2. Zigbee 3‘ D L. Acc: ~99% Ghassemi, Moody, scikit-Jearn cdregosa
. Data Injection . . etal. (2011)
larasu (2019) 3.802.11 4. Eavesdropping Szolovits, Anthony Celi
and Mark (2016)
. 1. Modbus Gas pipeline
Aoucdi et al. I ToT FedAvg 2. SNMP N/A Acc: ~90% SCAI]))E)A Morris and Gao | PyTorch Paszke et al. (2017)
Aouedi et al. (2022a) 2. IloT
3.C37.118 (2014a)
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1. 1P
2. TCP 1. UNSW-NB15
3. ICMP Moustafa and Slay (2015),
4. UDP Moustafa and Slay (2016),
Shi et al. 5. ARP . Moustafa et al. (2017b),
Shi et al. (2021) N/A N/A 6. HTTP N/A Ace: ~81% Moustafa et al. (2017a), | VA
6. HTTPS Sarhan et al. (2021b)
7. UDP 2. CSE-CIC-IDS2018
8. DHCP Sharafaldin et al. (2018b)
9. Others
L1p UNSW-NBI15 Moustafa
' 2 TCP and Sla}f (2015),
fouedietal comby | 10T FedAvg 310Mp N/A F1: ~80% - ~90% Vpoustata and ;ldzz(g?;g; PyTorch Paszke et al. (2017)
5: Others Moustafa et al. (2017a),
Sarhan et al. (2021b)
1. N-BaloT Meidan et al.
(2018)
1. Bluetooth 2. Kitsune Mi-rsky, Doit-
Zakariyya et al. 2. Zigbee 1. BASHLITE shman, Elovici and Shab- | 1 ‘pogyf Ziller et al. (2021b)
Zakariyya et al. (2021) loT FedAve 3. XBee 2. Mirai Ace: ~83% - ~97% tai (2018b) 2. PyTorch Paszke et al. (2017)
4 6LoWPAN 3. DDoS 3. IoT-DDoS Siddharth
(2020)
4. WUSTL Teixeira et al.
(2018)
S 1 C ; ITPCP ; PDO?) NSL-KDD Tavall 1
un et al. ustom . Probe - avallaee et al. .
Sun et al. (2022) AMI Technique 3. ICMP 3.R2L Ace: ~99% (2009) TensorFlow Abadi et al. (2015)
4. UDP 4. U2R
5. Others ’
1. DoS
1. ZigBee
Saadat et al. 2. Probe NSL-KDD Tavallaee et al.
Saadatetal. 2021) | 1T FedAve § ﬁ;‘}%"mh 3.R2L Acc: ~78% (2009) NIA
: 4. U2R
1. DoS
Yang Qin and
Masga aki Kondo IoT FedAvg N/A 2. Probe Ace: ~70% NSL-KDD Tavallaee et al. N/A
Qin and Kondo (2021) 3. RaL (2009)
4. U2R
1. MATPOWER Zimmer-
Tahir et al. Tahir et al, man and Murillo-Sinchez
IoTES DeepFed-AA N/A FDIA Acc: ~96% N/A (2016)
(2021 2. PyTorch Paszke et al.
(2017)
1.1P
Dong et al. 2. TCP . CIC-DDo0S2019
Dong et al. (2021) IoT N/A 3. HTTPS DDoS Ace: ~65% Sharafaldin et al. (2019) N/A
4. DNS
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1. UNSW-NB15
L 1P Moustafa and Slay (2015),
2' TCP Ace: Moustafa and Slay (2016),
Zhang et al. I6T N/A 3. ICMP 1. Label flipping ~99% @ UNSW-NB15 Moustafa et al. (2017b), PyTorch Paszke et al. (2017)
Zhang et al. (2022) 2. Clean label Moustafa et al. (2017a),
4, UDP ~95% @ 1DS2018
5. Others Sarhan et al. (2021b)
’ 2. CSE-CIC-IDS2018
Sharafaldin et al. (2018b)
1. scikit-learn Pedregosa
1. Fuzzy etal. (2011)
Aliyu et al. 1. CAN Custom 1. OBD-1I 2. DoS . 2. Ethereum Zhu et al.
Aliyu et al. (2021) 2. ECU Technique 2. Bluetooth 3. Impersonation Ace: ~95% OTIDS Lee et al. (2017) (2018)
4. Attack-free state 3. Mininet Wang, Hu, Que
and Gong (2012)
Alamleh et al. 1. NSL-KDD Tavallace
Alamleh et al. (2022) ToMT N/A N/A DDos N/A et al. (2009) N/A
Novikova et al. . 1. PyTorch Paszke et al. (2017)
Novikova et al. (2022) IoT N/A N/A N/A Ace: ~97% SWaT Goh etal. (2017) 2. TensorFlow Abadi et al. (2015)
1. Infection 1. DIoT-Benign Nguyen
. et al. (2019)
Neuven et al 2. Scanning 2 DIoT-Aftack N
suy : IoT FedAvg N/A 3. SYN flood Acc: 100% - Dlol-Attack Neuyen | pyrorch Paszke et al. (2017)
Nguyen et al. (2020) 4. HTTP flood et al. (2019)
5. various 3. UNSW-Benign
i Sivanathan et al. (2018)
1. WiFi ; BODS()S
Otoum et al. 2. Bluetooth ’ . CIC-IDS2017 Sharafaldin P .
Otoum et al. (2021) ToT N/A 3 LAN 3. PortScan Acc: ~97% ctal. (2018b Simulink Documentation (2020)
4. Brute Force ( )
4. Others T
5. various.
1. NTP
2. DNS
3. LDAP
4. MSSQL
5. NetBIOS
L 6. SNMP
Jingyi Li et al. CIC-DD0S2019
. N/A N/A N/A 7. SSDP Acc: ~97 PyTorch Paszke et al. (2017
Hetal (20210) : / / 8. UDP e 9T Sharafaldin et al. (2019) yToreh Paszke etal. (2017)
9. UDP-Lag
10. WebDDoS
11. SYN
12. TFTPDDoS
13. PortScan
Kelli et al.
Kelli et al. (2021) ToT FedAvg DNP3 N/A N/A N/A N/A
1. DoS 1. DARPA1999 Keogh
Hei et al. 2. Probe . et al. (2005a) 1. Ethereum Zhu et al. (2018)
Hei et al. (2020) loT N/A Ethereum 3.R2L Ace: ~80% - ~97% 2. KDDCup99 University | 2. Fabric Antwi et al. (2021)
4. U2R of California
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1. SCADA Turnipseed

1. TensorFlow Abadi et al.
(2015)

1.SM
Huong et al. (2015) 2. FedML He, Li, So,
Huong et al. (2021) g g?l’ FedAve MQTT N/A N/A 2. Time-series Keogh, Lin Zeng, Zhang, Wang,
' and Fu (2005b) Wang, Vepakomma,
Singh, Qiu et al. (2020)
Acc:
| WiFi ~91% @ MNIST 1. MNIST Deng (2012)
. WiFi ~88% @ IDS2017
Tian et al. 1. IoT Custom 2. Bluetooth 1. Brute Force ~90% @ 10T-23 2. . CIC-IDS2017
Tian et al. (2021) 2.CPS Technique 3.LAN 2. DDoS Fl: Sharafaldin et al. (2018b) | N/A
3. Web-based 3. IoT-23 Garcia et al.
4. Others ~92% @ MNIST 2020)
~93% @ IDS2017
~90% @ 10T-23
TON_IoT Moustafa
(2021a),
Booij et al. (2021),
Weinger et al. Custom 1. PortScan Alsaedi et al. (2020),
Weinger et al. (2022) IoT Technique Modbus 2. DoS Acc: ~78% - ~95% Moustafa et al. (2020b), N/A
3. Backdoor Moustafa et al. (2020a),
Moustafa (2019),
Moustafa (2021b),
Ashraf et al. (2021)
Xiaolong Xu and 1. IoT 1. DoS TensorFlow
Lianyong Qi 2. MTS FedAvg WiFi 2. Backdoor Acc: ~83% - ~94% Modbus Frazao et al. (2019) Fe d;arate d Abadi et al. (2015)
Liu et al. (2022) 3. AIS 3. various '
1. DoS
22‘;322 “ ii cort | VA FedBatch N/A g: Erz"]i’e Acc: ~80% ggg;)(DD Tavallaee etal. | poporeh Paszke et al. (2017)
4. U2R
1. DoS
Sayan Chatterjee and 1.IP 2. Exploits 1. NE-UNSW-NBI5-
Manjesh Hanawal o FedA § ITgI\I,JIP i' g“mfs Ace: ~90% - 0% v2 Sarhan et al. (2021c) TensorFlow
Chatterjee and | 0 eanve 4 UDP < Renert® € I = e 2. NF-BoT-IoT-v2 Federated Abadi et al. (2015)
Hanawal (2021) < Others 2 challonde Sarhan et al. (2021c)
7. Worms
Toldinas et al. Custom BOUN-DDoS Erhan and S .
Toldinas et al. (2022) N/A Technique N/A DDoS Acc: ~93% Anarim (2020) Simulink Documentation (2020)
1. CIC-IDS2017 Gharib
et al. (2016)
Vucovich et al. 2. CSE-CIC-IDS2018
N/A FedSam N/A DDoS F1: ~91% Sharafaldin et al. (2018b) N/A

Vucovich et al. (2022)

3. MAWI Fontugne,
Borgnat, Abry and
Fukuda (2010)
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1. DoS
2. DDoS
3. Reconnaissance
1. MQTT 4. Exploitation
xg:]lz Z: zi (2022) ; 1811:)/”[1" N/A 2. CoAP 5. Weaponization Acc: ~99% i_goggz l)A I-Hawawreh TensorFlow Abadi et al. (2015)
’ ’ 3. WebSocket 6. RDoS ’
7. Ransomware
8. Injection
9. various
1. Analysis
LIp 2. shellcode
2 TCP 3. Worms
4. Backdoor 1. KDDCup99 University
3. ICMP . A
Tabassum et al 4. HTTP 2 CR;:::lsrrlfaissance gf CI\"IﬂSlIonrIr(lgD Tavallaee
Tabassum et al, (2022) | 1°MT N/A 2‘ FD,}‘IPS 7. Exploits Ace: ~99% et al. (2009) N/A
7' FTP-DATA 8. Fuzzers 3. UNSW-NB15
: 9. DoS Moustafa and Slay (2015)
8. SMTP
9. Others 10. U2R
11. R2L
12. PROBE
1. HTTP
Zhuotao Lian and g gggp 1. PortScan
Chunhua Su IoT N/A ’ 2. Botnet Acc: ~84% 10T-23 Garcia et al. (2020) TensorFlow Abadi et al. (2015)
Lian and Su (2022) 4. Telnet 3. DDoS
5.SSL
6. IRC
1. NSL-KDD Tavallace
et al. (2009)
1. PortScan 2. TON_IoT Moustafa
I.IP 2. XSS (2021a), 1. scikit-learn Pedregosa
Sineh 2. TCP 3. Ransomware Booij et al. (2021), ) £
ingh et al. Custom . . etal. (2011)
Singh et al. (2022) [oMT Technique 3. MQTT 4. DDoS Ace: ~99% Alsaedi et al. (2020), | 'm0 plow Abadi et al
' 4. HTTP 5. Password Moustafa et al. (2020b), (2'01 5) '
5. DNS 6. Injection Moustafa et al. (2020a),
7. Backdoor Moustafa (2019),
Moustafa (2021b),

Ashraf et al. (2021)
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