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Abstract—With the ongoing integration of machine learning
models into critical infrastructure, the resilience of these systems
against adversarial attacks is important for all domains. This
paper introduces an adversarial attack generator framework
against a network dataset that is part of OCPP Dataset using CI-
CFlowMeter parser . We conduct a comprehensive evaluation of
various prominent adversarial attacks, including FGSMA, JSMA,
PGD, C&W, and more to assess their efficacy on the OCCP
dataset. The Adversarial Generator is meticulously evaluated,
demonstrating a significant impact in the models performance to
detect potential perturbations. The results showcased the impact
of the different type of adversarial attacks, contributing to a
critical advancement in future defense strategies that need to be
utilised in order to protect industrial control systems.

Index Terms—Adversarial attacks, white-box, Black-box, eva-
sion

I. INTRODUCTION

In recent years, the introduction and evolution of Artificial
Intelligence (AI) brought huge advances across many applica-
tions, such as image recognition, natural language processing,
and autonomous systems. However, every advantage comes
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with a throwback. These kind of systems are threatened by
multiple types of AI attacks, with one of them being adver-
sarial attacks. Adversarial attacks, insert intentionally crafted
perturbations to mislead model predictions and underscore a
critical vulnerability in machine learning algorithms. This vul-
nerability compromises the reliability of AI systems and more
specifically creates security risks in sensitive applications such
as cybersecurity, healthcare, and autonomous systems in many
domains for example energy sector [1]. In particular, multi-
step attack scenarios and Advanced Persistent Threats (APTs)
against critical infrastructures (such as the smart electrical
grid) can result in various cascading effects with widespread
service outages, financial losses, or even fatal accidents. AI
has the potential to significantly improve defense systems by
enabling the detection of unknown anomalies and zero-day
cyberattacks [2]. However, AI-powered detection systems are
vulnerable to hostile attempts that try to compromise their
security and are prone to false alarms. This phenomenon has
created the need to defend against this kind of attacks, by
using more robust models.

In order to defend against cyberattacks that target the
network systems protocol, first its important to have a bet-
ter understanding of the adversarial attacks by creating an
Adversarial Attack Generator (AG). Despite being widely
used in Industrial IoT (IIoT) applications, particularly in the
energy sector, network systems are characterized by serious
security issues because it lacks authentication and access
control mechanisms, making them possible for potential cyber-
attacker(s) to carry out unauthorized and Man-In-the-Middle
(MITM) activities [9]. In terms of Machine Learning (ML)
and Deep Learning (DL) models, different AI techniques are
utilized for this goal, Random Forest for black-box attack, and
Multi-Layer Perceptron (MLP) for white-box attacks. More
specifically, we use multiple adversarial attacks to test our
system. Therefore, based on the aforementioned remarks, the
contributions of this paper are summarized as follows.

• Adversarial Attack Generator(AAG) against OCPP
dataset: An Adversarial Attack Generator is provided to
train the models and test the impact of various attacks. For
this purpose, two ML/DL models are used and compared
with each other.
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• Investigation of various adversarial attacks (FGSM,
BIM, PGD, C& W, JSMA, ZOO): We investigate
how various adversarial attacks affect the detection per-
formance of the previous ML/DL models.

The rest of the paper is organized as follows. Section II
presents a background and similar works in this field. In
section III, our Adversarial Generator against CICFlow Meter
parser is described. Next section IV provide an overview of the
different type of adversarial attacks used in this study. Finally,
section VI focuses on the evaluation analysis and experimental
results, while VII concludes this paper.

II. RELATED WORK

Adversarial attacks target machine learning (ML) and deep
learning (DL) models by subtly altering input data to induce
errors in predictions. These attacks are categorized based on
the attacker’s knowledge into white-box (full system knowl-
edge), black-box (access only to input/output), and grey-box
(limited model knowledge) approaches. White-box attacks
leverage model gradients for optimized perturbations, while
black-box attacks explore input-output relationships through
queries. Grey-box attacks utilize partial knowledge, often ex-
ploiting transferability from other models. Adversarial tactics
also include poisoning (corrupting the training data to impair
learning) and evasion (altering inputs to cause misclassification
without detection by humans), both aiming to exploit model
vulnerabilities for manipulation. Understanding these strate-
gies is crucial for developing robust defenses against such
malicious interventions. In [3], Yihua Zhang et al, introduce an
adversarial training method utilizing bi-level optimization to
enhance deep neural network robustness against adversarial
attacks. This approach sidesteps the limitations of conven-
tional methods by avoiding gradient sign-based generation,
leading to significant robustness improvements without ex-
plicit robust regularization. This method demonstrates supe-
rior performance across various models and datasets. In [4],
Narmin Ghaffari Laleh et al, investigate the vulnerability of
AI models, specifically convolutional neural networks (CNNs),
to adversarial attacks in oncology diagnostic workflows. They
highlight the susceptibility of CNNs to both white- and black-
box attacks in weakly-supervised classification tasks. Explor-
ing mitigation strategies like adversarially robust training and
dual batch normalization, they find their effectiveness limited
without precise attack knowledge, and demonstrate that vision
transformers (ViTs) offer superior robustness to these attacks,
attributed to more resilient latent representations of clinical
categories. Their recommendation aligns with theoretical in-
sights, advocating for ViTs over CNNs for enhancing model
security in clinical applications. In [[5]] Jiacheng Huang and
Long Chen introduce a defense against word-level adversarial
attacks in natural language processing by leveraging a seman-
tic associative field for textual embedding. Recognizing the
necessity for a relation between original and perturbed words.
This approach enhances word embeddings through related
word vectors and weighted sampling, simulating semantic
interconnections. Extensive experiments show that this method

outperforms traditional defenses, offering universality and
maintaining training efficiency without depending on model
architecture. In [6] Tao Bai et al explore the advancements in
adversarial training to enhance the robustness of deep learning
models against adversarial attacks. With a taxonomy, they
review recent progress, address generalization issues from
multiple perspectives, and highlight unresolved challenges.
This comprehensive analysis identifies potential future direc-
tions for research in making models inherently resistant to
adversarial threats.

In their survey, N. Martins et al. examine adversarial threats
against intrusion and malware detection outlined in [7]. The
study assesses attack techniques like L-BFGS, FGSM, JSMA,
DeepFool, C&W, GAN-based methods, and ZOO, then re-
views defenses including adversarial training, gradient mask-
ing, defensive distillation, feature squeezing, and universal
perturbation defenses. Additionally, it explores how adversarial
attacks are utilized in intrusion and malware detection systems,
highlighting the need for future research in this area. In [8]
Aleksander Madry et al introduce enhancing the adversarial
robustness of neural networks via robust optimization, offering
a comprehensive perspective on existing efforts to combat
adversarial attacks. This principled approach facilitates the
development of reliable, universally applicable methods for
training and defending against adversaries, providing concrete
security guarantees. By focusing on resistance against first-
order adversaries, they pave the way for deep learning models
that are inherently more secure and robust. In [9] Afnan
Alotaibi and Murad A. Rassam survey the intersection of
adversarial machine learning and intrusion detection systems
(IDS), highlighting the dual challenge of detecting malicious
activities while mitigating the risk of misclassification due to
novel attacks. They explore the potential of machine learning
to enhance IDS accuracy, acknowledging the vulnerability of
these systems to adversarial perturbations that can disrupt
threat detection. By examining various adversarial attacks and
defense mechanisms, they provide insights into reducing their
impact on IDS. The survey also identifies existing research
gaps and proposes directions for future investigation, empha-
sizing the need for robust defense strategies in the evolving
cybersecurity landscape.

III. ADVERSARIAL GENERATOR

As depicted in Fig 1, the architecture of the proposed
Adversarial Attack Generator consists of four three modules:
a) Adversarial Attack Engine, b) Attack Evaluation Module,
and c) Testing and Notification Module. The first module
generates adversarial examples to add perturbations to the
dataset using adversarial attacks. These attacks are listed in a
library named Strategy Library. It contains various adversarial
attack algorithms (FGSM, PGD, JSMA, BIM, ZOO, C& W)
to test against the model.

The second module is responsible for assessing the effec-
tiveness of the adversarial attacks, generated by the adversarial
attack engine, by using various ML/DL models from an eval-
uation model library. More specifically, there are two different



Fig. 1: Adversarial Generator

scenarios tested: a) White-Box attacks where the attacker has
knowledge of the model used and b) Black-Box attack where
the only knowledge the attacker has is the dataset. The final
module is responsible for testing the models after their training
in the Adversarial Attack Engine by comparing the results and
communicating the results of the attacks.

IV. OVERVIEW OF THE ADVERSARIAL ATTACKS

This section explores different adversarial attacks, for recog-
nizing vulnerabilities in deep learning models. The attacks that
were investigated are the Gast Gradient Sign Method (FGSM);
Basic Iterative Method (BIM), which progressively refines ad-
versarial perturbations; the Projected Gradient Descent (PGD),
esteemed for its efficiency and labeled as the ”universal
adversary”; the Jacobian-based Saliency Map Attack (JSMA),
focusing on exploiting model sensitivity to input features; the
Zeroth Order Optimization (ZOO) attack, facilitating black-
box attacks without gradient information; and the Carlini &
Wagner (C& W) attack, noted for its complexity and capability
to evade defensive measures. These attacks are analyzed and
investigated as to how they mislead deep learning models, and
finally, the need for defense mechanisms is investigated.

A. Fast Gradient Sign Method (FGSM)

The Fast Gradient Sign Method (FGSM) is a widely recog-
nized adversarial attack technique used to generate adversarial
examples by exploiting the vulnerabilities of machine learn-
ing models. Developed by Goodfellow et al., FGSM works
by adding a perturbation to the input data that maximizes
the model’s prediction error. This perturbation is crafted by
computing the gradient of the loss function with respect to
the input data and then applying a small, scaled step in the
direction of the gradient sign. The process is mathematically
represented as

xadv = x+ ϵ · sign(∇

x J(θ,x,y)), where xadv is the adversarial example, x
is the original input, ϵ is a small constant determining the
perturbation size, J is the loss function, ` represents the model
parameters, and y is the true label. FGSM is effective due to its

simplicity and efficiency, making it a fundamental method for
evaluating the robustness of machine learning models against
adversarial attacks.

B. Jacobian-based Saliency Map Attack (JSMA)

The Jacobian-based Saliency Map Attack (JSMA) focuses
on the manipulation of inputs to deceive deep learning models
[[10]]. JSMA is a greedy algorithm that utilizes the saliency
map concept, a method that aims to identify and modify
pixels that have the most significant input on the output. In
this way, misclassification is achieved and the perturbations
are few and precise making the attack difficult in detection.
The saliency map in JSMA is calculated using the gradient
of the model’s output with respect to its input, aimed at
identifying the most impact changes to the input that would
result in misclassification. The calculation of the saliency map
is detailed through the following steps.

The first step involves computing the Jacobian matrix of
the model’s output with respect to its input. For a given input
vector X and a model F that outputs a probability distribution
over classes, the Jacobian matrix Jf(X) is defined as:

JF (X) =

[
∂Fj(X)

∂Xi

]
i,j

(1)

where i indexes the input features and j indexes the output
classes. This matrix captures how changes in each input feature
influence the predictions for each class.

Second step is to decide which features to modify. In order
to do that JSMA calculates a saliency map based on the
Jacobian matrix. The saliency score Smap(i, θ) for modifying
feature i towards changing the class to a target class θ is
defined as:

Smap(i, θ) =

0 if ∂Fθ(X)
∂Xi

< 0 or
∑

j ̸=θ

∂Fj(X)

∂Xi
> 0,(

∂Fθ(X)
∂Xi

)2

−
(∑

j ̸=θ

∂Fj(X)

∂Xi

)2

otherwise.
(2)

This formula ensures that feature i is only considered for
perturbation if its modification increases the probability of the
target class θ (positive gradient) and does not increase the sum
of probabilities for other classes (negative sum of gradients for
non-target classes).

Based on the saliency map, features with the highest
saliency scores are selected for perturbation. The adversarial
example X is then crafted by applying a perturbation δ to the
selected features of the original input X, aiming to mislead the
model into classifying X as the target class θ. By iteratively
applying these steps, JSMA generates an adversarial example
that is visually similar to the original input but is classified
differently by the target model, demonstrating the effectiveness
of this attack in exploiting model vulnerabilities.

C. Project Gradient Descent (PGD)

The Projected Gradient Descent (PGD) is a white-box
adversarial attack, wherein its main operation is to apply
a small perturbation to the input data at every iteration.



The perturbation is generated by multiplying the sign of the
gradient of the loss function with respect to the input data and
the direction it faces, guiding the input towards the direction
that maximizes the loss. These steps are repeated for a fixed
number of iterations or until the input is misclassified. [[11]]

PGD can be considered as executing the Fast Gradient
Sign Method (FGSM) multiple times with small steps, while
projecting the adversarial samples back onto the ℓ∞ ball
containing perturbations after each step. This ensures that
the perturbations do not become overly large and remain
undetectable.

The algorithm is initialized by setting the perturbation δ
to small random values. At each step of the algorithm, the
gradient of the loss function ∇xJ(θ, x, y) with respect to the
input x is computed. The perturbation δ is then updated in
the direction of this gradient, scaled by a small factor α, and
the result is clipped to ensure it remains within the specified
ϵ-bounded ℓ∞ ball:

δnew = Clipϵ (δ + α · sign(∇xJ(θ, x, y))) ,

x′ = x+ δnew,

where Clipϵ ensures that ||δnew||∞≤ ϵ, thereby keeping
the adversarial perturbations within the allowable range. This
iterative process is repeated until the adversarial example x′ is
misclassified or the maximum number of iterations is reached.

D. Basic Interative Method (BIM)

The Basic Iterative Method (BIM), an evolution of the Fast
Gradient Sign Method (FGSM), stands as a sophisticated tech-
nique designed to test the robustness of deep learning models
[[12]]. BIM iteratively applies small but targeted perturbations
to the input data, with each step calculated to maximally
increase the loss function with respect to the model’s current
prediction, thus steering the model towards misclassification.
The iterative nature of BIM allows for more precise control
over the perturbation process compared to FGSM, enabling the
generation of adversarial examples that are both effective in
deceiving models and subtle to human observers. The update
formula for an adversarial example at iteration n is given by:

X(n+1) = ClipX,ε

{
X(n) + α · sign

(
∇XJ(θ,X(n), Ytrue)

)}
(3)

where X(n+1) is the adversarial example at iteration n + 1,
X(n) is the adversarial example from the previous iteration,
α is the step size, ClipX,ε is a clipping function that ensures
the perturbed image does not go beyond an ε-neighbourhood
of the original image, ∇X denotes the gradient with respect
to X , J is the loss function, θ represents the model pa-
rameters, and Ytrue is the true label. This methodical adjust-
ment of the input exemplifies the calculated exploitation of
model vulnerabilities, highlighting the critical importance of
incorporating adversarial robustness in the development and
evaluation of machine learning models. By crafting inputs
that lead to consistent misclassification, BIM not only exposes
potential weaknesses in model architectures but also serves as

a benchmark for enhancing their defensive capabilities against
adversarial threats.

E. Carlini and Wagner (C&W)

Developed by Nicholas Carlini and David Wagner, the
C&W attack is a sophisticated method designed to generate
adversarial examples with minimal perturbation, aiming to
fool neural network classifiers. Unlike earlier attacks, the
C&W method focuses on crafting adversarial samples that are
almost indistinguishable from original samples, highlighting
vulnerabilities in deep learning models. The core of the C&W
attack is an optimization problem designed to find the smallest
change to the input data that results in a misclassification. It
can be formulated in terms of different norms (L0, L2, and
L∞), each representing a different measure of perturbation
size:
• L0 norm focuses on altering the least number of components

in the input vector.
• L2 norm minimizes the Euclidean distance between the

original and the adversarial example.
• L∞ norm limits the maximum change to any component

of the input vector.
The attack uses gradient descent to minimize a loss function

that combines the misclassification objective with a term
controlling the size of the perturbation, effectively balancing
between imperceptibility and misclassification rate. The main
idea of classifiers is the optimization:

minimize ∥x− x0∥22 + c · l(x), (4)

l9(x) =

{
0, if maxj ̸=t{gj(x)} − gt(x) ≤ 0,

+∞, otherwise.

C&W’s objective is to minimize the first equation, where
x − x0 ensures the adversarial example x is close to the
original example x0, making this way the perturbation more
undetectable, and l2(x) ensures that the adversarial example is
misclassified into a specific class. By solving this optimization
problem, we find an adversarial example that is both close to
the original image and misclassified as desired, fulfilling the
objectives of the C&W adversarial attack. The result is a pow-
erful method to test and potentially exploit the vulnerabilities
of machine learning classifiers.

F. Zeroth Order Optimization (ZOO)

Zeroth Order Optimization is an adversarial attack on ma-
chine learning models which unlike the Carlini & Wagner
(C&W) attack uses gradient descent and requires access to
the model’s gradients. The ZOO attack is a black-box attack
method that does not require such access. Instead, it estimates
the gradients using only function evaluations, hence the term
”zeroth order,” which refers to using zeroth order (or direct)
optimization techniques. The ZOO attack aims to create adver-
sarial examples without needing to know the internal workings
of the model. The attacker only has access to the output of



the model, such as the final classification scores. It uses a
technique known as finite differences to estimate the gradient
of the model’s loss function concerning the input. This is done
by slightly perturbing the input and observing the change in
output. The process begins with the attacker perturbing the
input slightly and observing the corresponding changes in the
output. By employing different methods, the gradient of the
model’s loss function concerning the input is estimated. These
estimations are then used to adjust the input incrementally, to
maximize the loss function. Through iterative optimization,
the ZOO attack carefully crafts an adversarial example that
misleads the model into a false classification. This gradient
estimation and optimization approach allows the ZOO attack
to sidestep the need for internal model details, making it a
potent tool for assessing the robustness of machine learning
classifiers in situations where an adversary is limited to only
query access to the model.

V. EXPERIMENT SETUP

The experimental results were carried out with Windows 11
Pro, Intel Core i9-10980XE CPU @ 3.00 GHz, Nvidia, 64GB
Random Access Memory (RAM) and 1TB Solid Disk Drive
(SSD). Notably, to handle the intensive computations inherent
in ML/DL tasks, a GeForce 3080 Ti GPU was employed.
The preferred deep learning framework for this experiment
was TensorFlow, chosen for its adaptability and seamless
integration with the chosen hardware setup.

A. Dataset

The dataset utilized in this study is part of the OCPP
(Open Charge Point Protocol) Dataset, which was parsed using
CICFlowMeter to extract network flow statistics. This dataset
comprises various network flow features recorded in PCAP
CSV format, providing detailed insights into network behav-
ior. Key input features include flow duration, total forward
and backward packets, total length of forward and backward
packets, packet length statistics, and various inter-arrival times,
among others. These features are crucial for detecting network
anomalies and potential cyberattacks. The dataset includes
both normal/benign traffic and multiple types of cyberattacks
such as FDI Charging Profile, DOC ID Tag, DOS Flooding
Heartbeat, and DOS Flooding EVCS Rejected attacks. Pre-
processing steps involved feature engineering to drop non-
predictive features, identifying and handling null values, label
encoding of target values, and standard scaling of the features
to ensure they are on a common scale. This comprehensive
dataset was then used to create an adversarial dataset using as
mentioned above the Adversarial Attack Generator in order to
compare the results between different type of attacks.

B. Evaluation Metrics

The metric of accuracy (Equation 5) measures the propor-
tion of correct classifications in relation to the total instances.
This evaluation metric is considered appropriate when the
training dataset is balanced, meaning it contains an equal
number of instances for all classes.

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

where:

TP → True Positives
TN → True Negatives
FP → False Positives
FN → False Negatives

TPR (Equation 6) represents the fraction of actual intrusion
instances that were correctly identified as intrusions.

TPR =
TP

TP + FN
(6)

FPR (Equation 7) indicates the proportion of normal in-
stances that were incorrectly classified as cyberattacks, reflect-
ing the balance between the accurate identification of normal
instances and the occurrence of false alarms.

FPR =
FP

FP + FN
(7)

The F1 score (Equation 8) is a metric that captures the
balance between true positive rate (TPR) and precision. Pre-
cision is defined as the ratio of true positives to the sum of
true positives and false positives.

F1 =
2× TP

2× TP + FP + FN
(8)

VI. EXPERIMENTAL RESULTS

The experimental results were conducted in two steps. First
step, as shown in the architecture design of Adversarial Attack
Generator, is to evaluate the models using the clean test dataset
before using the adversarial attacks to craft the original dataset.
For the evaluation two models where used: Random Forest and
a custom MLP. The MLP is a Sequential neural network model
implemented using Keras to perform multi-class classification.
The architecture of the model consists of seven fully connected
(Dense) layers. The first layer includes 32 neurons with ReLU
activation, followed by a second layer with 64 neurons and
Tanh activation. The subsequent layers alternate between 32
and 64 neurons, all utilizing ReLU activation, to effectively
capture non-linear relationships within the data. The final
layer comprises 5 neurons with a softmax activation function,
designed to output a probability distribution across the 5
target classes. This model, with a total of 14,309 trainable
parameters, was selected for its capacity to learn complex
patterns and provide accurate classifications. The combination
of varying neuron counts and activation functions across layers
ensures a robust representation of the input features, facilitat-
ing improved model performance on the classification task.
The results as shown in Table I are good since the Random
Forest model achieved Accuracy = 0.9909, TPR = 0.9909,
FPR = 0.0130 and F1 = 0.9909 the MLP model achieved



TABLE I: Evaluation Metrics in original dataset

Random Forest MLP
Accuracy 0.9909 0.9890

TPR 0.9909 0.9890
FPR 0.0130 0.0212

F1 score 0.9909 0.9890

TABLE II: Evaluation Metrics in adversarial dataset

White Box Black Box
FGSM PGD BIM JSMA C&W ZOO

Accuracy 0.5109 0.3434 0.3434 0.5659 0.7417 0.7307
TPR 0.5116 0.3433 0.3433 0.5660 0.7413 0.7304
FPR 0.1219 0.1641 0.1641 0.1082 0.0646 0.0672

F1 score 0.4310 0.2712 0.2712 0.5232 0.7013 0.7024

Accuracy = 0.9890, TPR = 0.9890, FPR = 0.0212 and
F1 = 0.0.9890.

The second step of the evaluation process is to use MLP
to compare the impact of the different white-box attacks
used to the original dataset and Random Forest to compare
the results of the black-box attack. The results highlight the
varying effectiveness of different adversarial attack techniques.
Among the white-box attacks, PGD and BIM stand out as the
most effective, achieving the lowest accuracy and TPR with
the highest FPR, making them the most potent methods for
degrading the model’s classification performance. FGSM and
JSMA have a moderate impact, while the C&W attack is the
least effective, maintaining the highest accuracy and TPR with
the lowest FPR.

In the black-box scenario, the ZOO attack proves to be less
effective, nearly matching the performance of the least impact-
ful white-box attack (C&W). This underscores the resilience
of models against black-box attacks compared to white-box
attacks. Overall, these metrics provide critical insights into
the strengths and weaknesses of each attack method, guiding
the development of more robust defenses against adversarial
attacks in machine learning models.

VII. CONCLUSION & FUTURE WORK

In conclusion, this study explored the efficacy of various
adversarial attacks on machine learning models used for in-
trusion detection using the OCPP dataset. On the one hand,
the results showcased that machine learning models can detect
multiple anomalies in different sectors, and more specifically
in the network section as mentioned and studied. However,
in the digital era of AI there are many techniques used to
bypass intrusion detector leading to devastating consequences.
In particular, first the paper studied the detection accuracy
of ML/DL models such as a custom MLP and Random
Forest against the original OCPP dataset. The results showed
that both models performed excellent in detecting anomalies.
Next, adversarial attacks were implemented in order to test
there impact against ML/DL models. The attacks utilised
were devided into white-box and black-box attacks. White-
box attacks used the custom MLP model and the FGSM, PGD,
BIM, JSMA, and C&W attacks, while black-box attacks used
ZOO attack and Random Forest as a classification model. The

results proved that adversarial attacks are capable to evade and
craft the datasets in order to mislead the classification models.
Based on the results our future plan aim to investigate the
different type of defences against adversarial attacks in order to
improve the resilience of the AI security models and contribute
to the protection of industrial control systems.

ACKNOWLEDGMENT

This project has received funding from the European
Union’s Horizon 2020 research and innovation programme
under grant agreement No 101070450.

REFERENCES

[1] P. R. Grammatikis, P. Sarigiannidis, A. Sarigiannidis, D. Margounakis,
A. Tsiakalos, and G. Efstathopoulos, “An anomaly detection mechanism
for iec 60870-5-104,” in 2020 9th International Conference on Modern
Circuits and Systems Technologies (MOCAST). Bremen, Germany:
IEEE, 2020, pp. 1–4.

[2] V. Kumar and D. Sinha, “A robust intelligent zero-day cyber-attack
detection technique,” Complex & Intelligent Systems, vol. 7, no. 5, pp.
2211–2234, 2021.

[3] Y. Zhang, G. Zhang, P. Khanduri, M. Hong, S. Chang, and S. Liu,
“Revisiting and advancing fast adversarial training through the lens of bi-
level optimization,” in International Conference on Machine Learning.
PMLR, 2022, pp. 26 693–26 712.

[4] N. Ghaffari Laleh, D. Truhn, G. P. Veldhuizen, T. Han, M. van Treeck,
R. D. Buelow, R. Langer, B. Dislich, P. Boor, V. Schulz et al., “Adver-
sarial attacks and adversarial robustness in computational pathology,”
Nature communications, vol. 13, no. 1, p. 5711, 2022.

[5] J. Huang and L. Chen, “Defense against adversarial attacks via textual
embeddings based on semantic associative field,” Neural Computing and
Applications, vol. 36, no. 1, pp. 289–301, 2024.

[6] T. Bai, J. Luo, J. Zhao, B. Wen, and Q. Wang, “Recent advances
in adversarial training for adversarial robustness,” arXiv preprint
arXiv:2102.01356, 2021.

[7] N. Martins, J. M. Cruz, T. Cruz, and P. H. Abreu, “Adversarial machine
learning applied to intrusion and malware scenarios: a systematic
review,” IEEE Access, vol. 8, pp. 35 403–35 419, 2020.

[8] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards
deep learning models resistant to adversarial attacks,” arXiv preprint
arXiv:1706.06083, 2017.

[9] A. Alotaibi and M. A. Rassam, “Adversarial machine learning attacks
against intrusion detection systems: A survey on strategies and defense,”
Future Internet, vol. 15, no. 2, p. 62, 2023.

[10] W. Zhang, X. Zhang, K. Hao, J. Wang, and S. Zhang, “Optimized
jacobian-based saliency maps attacks,” International Journal of Network
Security, vol. 24, no. 6, pp. 1020–1030, 2022.

[11] W. Villegas-Ch, A. Jaramillo-Alcázar, and S. Luján-Mora, “Evaluating
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