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Abstract
Image data augmentation constitutes a critical methodology in modern computer vision 
tasks, since it can facilitate towards enhancing the diversity and quality of training da-
tasets; thereby, improving the performance and robustness of machine learning models 
in downstream tasks. In parallel, augmentation approaches can also be used for edit-
ing/modifying a given image in a context- and semantics-aware way. Diffusion Models 
(DMs), which comprise one of the most recent and highly promising classes of methods 
in the field of generative Artificial Intelligence (AI), have emerged as a powerful tool for 
image data augmentation, capable of generating realistic and diverse images by learning 
the underlying data distribution. The current study realizes a systematic, comprehensive 
and in-depth review of DM-based approaches for image augmentation, covering a wide 
range of strategies, tasks and applications. In particular, a comprehensive analysis of the 
fundamental principles, model architectures and training strategies of DMs is initially 
performed. Subsequently, a taxonomy of the relevant image augmentation methods is in-
troduced, focusing on techniques regarding semantic manipulation, personalization and 
adaptation, and application-specific augmentation tasks. Then, performance assessment 
methodologies and respective evaluation metrics are analyzed. Finally, current challenges 
and future research directions in the field are discussed.

Keywords Image data augmentation · Diffusion models · Generative artificial 
intelligence · Evaluation metrics

1 Introduction

Modern computer vision has been dominated by the so-called Deep Learning (DL) para-
digm, which relies on the use of large-scale on Deep Neural Networks (DNNs) (Chai et 
al. 2021). DNNs have so far exhibited outstanding performance in a wide set of visual 
understanding tasks. However, this eminent visual interpretation and reasoning capability 
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is accompanied by the increased need for ever larger and sufficiently diverse training data-
sets (Shrestha and Mahmood 2019). On the other hand, as image analysis tasks become 
increasingly intricate and demanding, the ability of DNNs to generalize robustly is hin-
dered by limitations in training data quantity, diversity, and potential bias (Mumuni and 
Mumuni 2022). As a result, data requirements has emerged as a rather prominent topic, 
since a sufficient volume of training samples is essential for fully harnessing the capabilities 
of DNNs (Zhang et al. 2022). On the contrary, real-world image datasets, especially regard-
ing specific-targeted application domains, often suffer in these aspects, even to the point of 
containing perfectly correlated training images that are proven to be essentially redundant 
(Yang et al. 2022).

Image augmentation constitutes a common preprocessing step in machine learning work-
flows, designed to increase the visual diversity of the training dataset, without introducing 
additional independent images. The goal is to enhance the learning process, while operat-
ing within a fixed set of data (Shorten and Khoshgoftaar 2019). Augmentation addresses 
limitations in dataset size, by automatically creating additional variants of existing training 
images. These variants are generated by directly modifying the original images, ensuring 
that the transformed images differ in appearance, but retain their semantic content (Xu et al. 
2023a). In contrast, general image generation (or image synthesis) involves sampling from a 
model that approximates the overall data distribution of the dataset, rather than transforming 
individual training images. This approach generates entirely new images that are not directly 
derived from specific originals, but they are instead representative of the underlying charac-
teristics of the whole dataset (Cao et al. 2024). Extending the dataset with such augmented 
images, either synthesized or modified, increases its diversity and improves, in many cases, 
the downstream learning and recognition performance of DNNs that are being trained using 
it Zhou et al. (2023b). This behaviour stems from image augmentation essentially acting as 
an additional regularizing mechanism while training the DNN and, as a result, helping to 
prevent overfitting (Perez and Wang 2017; Shorten and Khoshgoftaar 2019).

Traditional approaches for image augmentation, such as geometric transformations (e.g., 
image rotation, flip, crop, scaling, horizontal/vertical translation, squeezing, etc.) and color 
space adjustments or photometric transforms (e.g., blurring, sharpening, jittering, etc.) are 
still very common (Xu et al. 2023; Shorten and Khoshgoftaar 2019; Yang et al. 2022). 
Multiple transformations of this type can be composed together, so that an even wider set 
of augmented images can be generated from the original dataset. These methods leverage 
domain knowledge to produce synthetic examples similar to the initial ones. More recently 
proposed image augmentation methods in this general vein are a set of strategies for sys-
tematically corrupting the original images, in order to generate augmented variants. This 
category of methods includes, among others: a) ‘Mixup’ (Zhang et al. 2017), which uses 
convex combinations of pairs of training images and their labels, b) ‘Cutout’ (DeVries and 
Taylor 2017), which randomly masks square regions of an input image, c) ‘Cutmix’ (Yun et 
al. 2019), which randomly combines two training images by masking the first with a region 
of the second (and vice versa), d) ‘Patchshuffle’ (Kang et al. 2017), which uses a kernel 
filter to randomly swap the pixel values in a sliding window, e) ‘Copy-Paste’ (Dwibedi et 
al. 2017), which pastes segmented object instances onto random background images, f) 
‘Co-Mixup’ (Kim et al. 2021), which optimizes saliency-guided mixing of multiple inputs 
while encouraging diversity among outputs, g) ‘RandAugment’ (Cubuk et al. 2020), which 
randomly selects N transformations from a predefined set, each applied with magnitude M, 
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eliminating the need for separate policy search, h) ‘GuidedMixup’ (Kang and Kim 2023), 
which uses saliency maps to guide image mixing while preserving salient regions through 
pixel-wise mixing ratios, and i) ‘CAL-AUG’ (Rao et al. 2021), which randomly replaces 
learned attention maps with counterfactual ones.

The effectiveness though of the above-mentioned relatively simple and straightforward 
augmentation methods is being increasingly challenged by the complexity and variability of 
contemporary image analysis demands. Although such strategies can be effective in increas-
ing data diversity for simple tasks, they are mostly unable to capture the underlying struc-
ture and complex relationships present in high-dimensional image data. Additionally, many 
of them require domain-specific knowledge and dataset-specific calibration, in order to be 
applied correctly (Wu et al. 2023d). Moreover, the needs of DNNs for large training datasets 
and effective regularization are ever-growing, rendering image augmentation a critically 
important component of modern machine learning (Zhang et al. 2022).

Unlike traditional methods, which directly manipulate existing images to generate vari-
ants, Diffusion Models (DMs) can be exploited for image augmentation, by learning to syn-
thesize new, realistically-looking and plausible images, given a training dataset (Zhang et al. 
2023f; Xu et al. 2024; Asperti et al. 2023). These are general image generation algorithms, 
aiming to learn a model of the underlying distribution of the selected training dataset and 
then allow its sampling, in order to synthesize novel images. These generated images do not 
have a direct one-to-one correspondence with the original training ones, but instead reflect 
the dataset’s underlying statistical patterns. Generative methods can be used for various 
tasks, such as procedural content generation and simulation, but they can also implement 
dataset expansion, as a specific type of image augmentation at the dataset level. Addi-
tionally, when coupled with a conditioning mechanism, they can replace traditional aug-
mentation approaches and synthesize modified variants of specific given images, through 
conditional generation that allows one-to-one correspondence between an original training 
image and a synthesized variant. DMs are a sophisticated class of generative DNNs that 
excel in implicitly modeling the underlying data generating distribution and the structure of 
complex images. This capability allows them to essentially sample fake novel images from 
their training dataset’s distribution, which are simultaneously diverse, highly realistic and 
representative of unseen data scenarios, as they encompass subtle details and preserve the 
inherent structure of the original dataset (Zhang et al. 2022; Trabucco et al. 2023). Thus, 
they can be utilized for meaningfully augmenting the latter.

The learning paradigm of DMs, which relies on iteratively applying noise to the training 
images and subsequently learning to reverse the process, has shown significant promise 
in image augmentation, when compared against competing generative models (e.g., Gen-
erative Adversarial Networks) (Ho et al. 2020). Additionally, recent advancements in DMs 
enable the conditioning of the image synthesis process via class labels, textual descriptions, 
or input images (Rombach et al. 2022). This level of user control allows for targeted image 
augmentation, generating images that fulfill specific requirements based on the task at hand.

The recent advancement in generative image synthesis through DMs and multimodal 
strategies (e.g., text-conditioned image creation) has been complemented by the use of 
large-scale pretraining on massive datasets, in the vein of the Foundation Model (FM) trend 
(Rombach et al. 2022; Podell et al. 2023; Esser et al. 2024; Saharia et al. 2022b). This 
approach has led to the availability of pretrained DMs that can generate images with natural 
variations in appearance (e.g., changing the design of the graffiti on a truck, as illustrated in 
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Fig. 1) and, hence, can be directly exploited for sophisticated image augmentation without 
significant human effort (Dunlap et al. 2023).

Despite the increasing importance of DMs in image augmentation, there is a gap in the 
relevant literature, since no existing review focuses specifically on this application and its 
particularities. Published surveys on DMs do not focus on image augmentation in a targeted 
manner, given the recent progress and achievements in the field. Existing surveys either 
focus on traditional image augmentation (Yang et al. 2022), or provide a general overview 
of DMs without delving into their specific application for image augmentation (Cao et al. 
2024; Yang et al. 2023b; Song et al. 2024). For instance, the study of Mumuni and Mumuni 
(2022) presents a comprehensive taxonomy of image augmentation approaches, including 
input space transformations, feature space augmentation, data synthesis and meta-learning 
based methods. However, it does not cover the latest advancements concerning the use 
of DMs. In contrast, the work of Croitoru et al. (2023) presents three generic diffusion 
modeling frameworks, which are based on denoising diffusion probabilistic models, noise 
conditioned score networks, and stochastic differential equations, but does not explore their 
potential for image augmentation. Some surveys have touched upon the efficiency aspect 
of DMs (Ulhaq et al. 2022) or their application in specific domains like medical imaging 
(Kazerouni et al. 2023; Kebaili et al. 2023). However, these works do not provide a compre-
hensive overview of DMs for augmentation across various computer vision tasks. Further-
more, a recent survey categorizes augmentation methods based on large learning models, 
including those based on DMs, but does not focus specifically on them (Zhou et al. 2024).

The above-described situation has motivated this study, in an attempt to remedy the iden-
tified gap. Its main contribution is a systematic, comprehensive and in-depth review of 
DM-based approaches specifically for image augmentation, covering a wide range of strate-
gies, tasks and applications. In particular, the current work analyzes fundamental principles, 
introduces a detailed taxonomy of methods, examines evaluation metrics, discusses current 
challenges and provides perspectives on future research directions.

The remainder of this article is structured in the following way. Section 2 outlines the 
foundations and underlying principles of DMs. Section 3 describes the different categories 
of DM-powered image augmentation methods, while Sect. 4 presents and explains these 
categories in depth. Section 5 surveys the various evaluation metrics used to assess the 

Fig. 1 Semantic alteration 
of truck graffiti design using 
diffusion models. Image from 
Trabucco et al. (2023)
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performance of DMs for image augmentation. Section 6 discusses the current challenges 
and limitations associated with the use of DMs for image augmentation. Finally, Sect. 7 
draws insights from the preceding discussion, along with suggestions for future research 
directions.

2 Foundations of diffusion models

Diffusion Models (DMs) are a powerful class of generative models gaining significant trac-
tion in image synthesis. Inspired by non-equilibrium thermodynamics (Sohl-Dickstein et al. 
2015), they operate by incrementally destroying structure in the data, through an iterative 
process of adding Gaussian noise (forward diffusion) that progressively transforms the data 
distribution towards a distribution of pure random noise. Then, a learnable reverse diffusion 
process that restores structure in the data yields a tractable generative model. Thus, DMs are 
trained for gradually transforming random noise patterns into samples of the data generat-
ing distribution. This section details the principles underlying DMs, clarifying why they are 
particularly suited for visual data augmentation.

2.1 Forward diffusion process

The Forward Diffusion (FD) process (Ho et al. 2020) is the cornerstone of DMs, as it cor-
rupts the training dataset by sequentially inserting Gaussian noise. Assume that the initial 
data distribution is q(x0), where subscript ‘0’ denotes the original/unmodified state of the 
dataset and x0 ∼ q(x0) is an image from this dataset. FD proceeds as a sequence q of 
incrementally noised versions, x1, x2 . . . , xT , which are generated by a Markov chain. The 
conditional distribution for each step in this sequence, p(xt|xt−1), is modeled as a Gaussian 
N (xt;

√
1 − βtxt−1, βtI), where t ranges from 1 to T and it denotes the total noise added 

to the input image. T corresponds to the total number of diffusion steps, β1, . . . , βT  is a 
sequence of variance parameters that define the noise level at each step, I is the identity 
matrix matching the dimensionality of input x0 and N(x; µ, σ) denotes the normal distribu-
tion with mean µ and covariance σ.

A key attribute of FD is that xt can be sampled at any arbitrary time step t in closed form, 
using a reparameterization trick:

 

Let at = 1 − βt, āt =
t∏

i=1

ai

Then q(xt|x0) = N (xt|
√

ātx0, (1 − āt)I)
xt =

√
ātx0 +

√
1 − ātϵ,

 (1)

where integer t ∈ [1, N ] and ε ∼ N(0, I). Thus, the noisy version xt can be directly 
obtained through a cumulative variance adjustment βt, determined by sequence ai, where 
at = 1 − βt. This allows one to compute any noisy version xt from the original image x0 
in a single step, without having to iteratively generate the noisy version of all intervening 
time steps.
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2.2 Reverse diffusion process

Following the corruption introduced by FD, the iterative Reverse Diffusion (RD) process 
aims at recovering the original dataset images from their noisy versions. Instead of directly 
generating images from noise patterns, a denoising learning model, which can be a DNN, 
iteratively predicts the noise pattern added to the data at each individual step of the FD 
process, starting from the final FD output, so that it can be removed. Progressive denoising 
gradually refines the image across T consecutive steps. This is the so-called Denoising Dif-
fusion Probabilistic Model (DDPM) formulation (Ho et al. 2020). Alternatively, the model 
can learn the so-called ‘score function’, which is the gradient of the log probability density 
function of the data with respect to the input. Then, the model’s predictions at each time step 
can be used to iteratively sample from the distribution, by following the gradient. Such a 
DM variant is called Score-based Generative Model (SGM) (Song et al. 2020b).

The employed predictive DNN is usually a U-Net CNN (Ronneberger et al. 2015). 
Regarding the mathematical formulation, the RD process is defined as follows:

 
pθ(x0:T ) = p(xT )

T∏
t=1

pθ(xt−1|xt), (2)

where pθ(xt−1|xt) = N (xt−1, µθ(xt, t), Σ(xt, t).
In Ho et al. (2020), the U-Net is trained by the following loss function:

 Lsimple = Et,x0,ϵ[||ϵ − ϵθ(xt, t)||22]. (3)

where ϵ represents the Gaussian noise added to image x0 to obtain the noisy version xt and 
ϵθ(xt, t) denotes the noise predicted by the DNN parameterized by θ, given the noisy image 
xt and the time step t. In the SGM formulation, ϵθ(xt, t) is the predicted score and, thus, 
after training, µθ(xt, t) can be approximated by a function of ϵθ(xt, t). Even though Lsimple 
(3) does not offer a way to learn Σθ(xt, t), it has been shown in Ho et al. (2020) that the best 
results are obtained by fixing the variance to σ2

t I, rather than learning it.
RD is an iterative process of T consecutive time steps, starting from noise pattern xT  and 
gradually recovering the original image x0. At each time step t, µ and Σ are computed and 
a new version of the output image is generated, which subsequently serves as input for the 
next time step t. This need for sequential generation across T consecutive iterations is a sig-
nificant limitation of DMs. One simple improvement is to reduce the number of sampling 
steps, from T to K evenly spaced real numbers between 1 and T (Nichol and Dhariwal 2021). 
Alternatively, the non-Markovian Denoising Diffusion Implicit Models (DDIMs) (Song et 
al. 2020a) sample only across S diffusion steps [t1, . . . , tS ] ⊆ [1, T ] during generation:

 
xt−1 =

√
āt−1

(
xt −

√
1 − atϵθ(xt)√

at

)
+

√
1 − at−1 − σ2

t ϵθ(xt) + σtϵt. (4)
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2.3 Guidance

Classifier Guidance (Dhariwal and Nichol 2021) leverages a pretrained closed-set classifier 
to condition the RD process of a pretrained unconditional DM on a desired class label. The 
classifier model pϕ(y|xt), where ϕ denotes its parameters, supports as many different class 
labels y as the potential conditioning classes. With this approach and given the SGM for-
mulation, the RD process is adjusted at each time step by the gradient of the log-probability 
∇xt log pϕ(y|xt) that steers sampling. Thus, µθ(xt, t) is approximated by:

 ϵθ(xt, t) + s × ∇xt log pϕ(y|xt), (5)

where s is a scaling factor controlling the strength of guidance. This method ensures that the 
generated samples conform to the target class distribution, without any need to retrain the 
unconditionally trained DNN.
Classifier-Free Guidance (Ho and Salimans 2022) eliminates the need for an explicit sepa-
rate classifier model, by conditioning the DM on class labels directly during its training. 
The DM is trained with both conditional θc and unconditional θu objectives, alternating 
between conditioning on labels and generating without labels. At inference time, guidance 
is implemented by interpolating between the conditional and unconditional scores, so that 
µθ(xt, t) is approximated as follows:

 ∇xt log pθ(xt|y) = ∇xt log pθ c(xt|y) + w(∇xt log pθ c(xt|y) − ∇xt log pθ u(xt)), (6)

where w is a weight parameter that controls the strength of the guidance.

2.4 Diffusion models in latent space

Despite the faster RD process of DDIMs, image generation in pixel space and in an arbitrary 
resolution remains a significant bottleneck. To this end, Latent Diffusion Models (LDMs) 
(Rombach et al. 2022) have been introduced that operate in a latent space, in order to sig-
nificantly accelerate the generation process. In particular, an LDM relies on an external 
autoencoder pretrained on a large-scale dataset. Its encoder E  learns to map images x ∈ Dx 
into a special latent code z = E(x) (Van Den Oord et al. 2017; Agustsson et al. 2017). Its 
decoder D learns to map such low-dimensional latent representations back to pixel space, 
so that D(E(x)) ≈ x. Thus, a regular DM or DDIM is trained to generate codes within the 
latent space. The resulting code can be mapped back to a realistic, high-dimensional image 
via the pretrained D.

The LDM can be conditioned on class labels, segmentation masks, or even text, which 
guide the generation process. Let cθ(y) be a model that maps a raw conditioning input y to 
a conditioning vector.1 The LDM loss is then formulated as:

 LLDM = Ez∈E(x),y,ϵ∈N (0,1),t[||ϵ − ϵθ(zt, t, cθ(y))||22], (7)

where t is the time step, zt is the latent representation noised at step t, ϵ is the unscaled noise 
sample, and ϵθ is the denoising network’s prediction. Intuitively, the objective is to correctly 

1 In the case of text prompts, this can be any text encoder.
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remove the noise added to a latent representation of an image. During training, cθ and ϵθ 
are jointly optimized to minimize the LDM loss. At inference time, a random noise tensor is 
sampled and iteratively denoised to produce a new latent image z0.

2.5 Types of conditioning

DMs can be conditioned on various types of information to guide the generation process. 
The most common types of conditioning include:

 ● Text Conditioning: Models like Stable Diffusion (Rombach et al. 2022) use text prompts 
to guide image generation. The text is typically encoded using CLIP (Radford et al. 
2021) or T5 (Raffel et al. 2020) encoders, and the resulting embeddings condition the 
denoising process through cross-attention mechanisms.

 ● Class Label Conditioning: Models can be conditioned on discrete class labels (Dhariwal 
and Nichol 2021), enabling class-specific image generation. This is often implemented 
through class embeddings that are concatenated with or added to the model’s intermedi-
ate features.

 ● Image Conditioning: Reference images can guide the generation process through vari-
ous mechanisms: direct concatenation with model features (Saharia et al. 2022a), CLIP 
image embeddings (Avrahami et al. 2023b), or learned image encoders (Rombach et al. 
2022). This enables tasks like image-to-image translation and style transfer.

 ● Segmentation Map Conditioning: Incorporating segmentation maps allows for control 
over the spatial layout and the structure of the generated images. Methods like (Wang et 
al. 2022a) incorporate segmentation maps through specialized encoders of feature injec-
tion to control the spatial distribution of semantic classes. This enables precise control 
over object placement and scene composition.

 ● Pose and Structure Conditioning: Human pose maps (Zhang et al. 2023b), edge maps, 
or semantic segmentation masks can guide the spatial structure of the generated images. 
These are typically processed through specialized encoders and injected into the model 
via cross-attention or feature concatenation.

 ● Multi-Modal Conditioning: Certain models combine multiple mechanisms simultane-
ously. For example, combining text prompts with segmentation masks (Avrahami et al. 
2023b) or reference images with class labels (Ruiz et al. 2023) for more precise control 
over the generation process.The most suitable type of conditioning depends on the spe-
cific application and the desired degree of control over the generation procedure. Recent 
work has focused on developing more sophisticated approaches to conditioning that 
enable finer-grained control, while maintaining generation quality (Zhang et al. 2023b; 
Zhao et al. 2024).

2.6 Diffusion transformer

The Diffusion Transformer (DiT) (Peebles and Xie 2023) architecture represents a signifi-
cant departure from U-Net-based designs, replacing convolutional neural layers with Trans-
former blocks for processing visual data. DiT maintains the same high-level structure as 
previous DMs, but processes images as sequences of spatial patches in the vein of Vision 
Transformers (ViT) (Dosovitskiy et al. 2020). The architecture consists of: a) A patchifica-
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tion layer that splits images into non-overlapping patches and linearly projects them, b) A 
sequence of Transformer blocks with self-attention mechanisms, c) Time step and condition 
embeddings that are added to the patch embeddings, and d) A final decoder layer that recon-
structs the spatial input image. The key advantages of DiT over U-Net-LDM include better 
scaling properties, improved handling of long-range dependencies through self-attention, 
and more flexible integration of conditioning information (Hatamizadeh et al. 2025; Mo et 
al. 2023). However, DiT typically requires more computational resources for training, due 
to the quadratic complexity of the self-attention operations. Recent work has shown that 
DiT-based models can achieve superior generation quality when scaled to sufficient size, 
leading to their wide adoption (Peebles and Xie 2023; Fei et al. 2024).

2.7 Foundation diffusion models for image generation

The evolution of DMs for image generation has been marked by several key architectural 
innovations and training strategies. These developments have resulted in the proliferation 
of commonly used Foundation Models (FMs) for image synthesis, which are available in a 
pretrained form and can be employed as a basis for more specialized methods. The archi-
tectures can be primarily categorized into U-Net-based (Rombach et al. 2022) and Trans-
former-based (Peebles and Xie 2023) ones, with U-Net-based methods further divided into 
those operating directly in pixel space versus those performing inference in latent spaces. 
All methods operate in the latent space of a pretrained autoencoder, unless those that per-
form directly in the pixel space. Moreover, U-Net-based methods employ a conditional 
LDM as backbone (or DDPM (Ho et al. 2020), if they operate in pixel space), while Trans-
former-based approaches utilize a conditional DiT as their backbone.

Table 1 illustrates key Foundation Diffusion Models (FDMs) presented in the literature, 
emphasizing on the following important characteristics: a) Release date, b) License, c) Con-
ditioning mechanisms, d) Text encoder, e) Training dataset, f) Number of parameters, g) 
Resolution (in pixels), h) Notable features, and i) Indicative/important methods relying on 
them. As can be seen from Table 1, most FDMs operate in latent space and use text/image 
conditioning, while U-Net is the dominant neural architecture before the recent emergence 
of Transformer-based approaches. LAION-5B (Schuhmann et al. 2022) and its variants 
serve as the predominant training dataset for many open-source FDMs, highlighting its 
significance in image generation. There is also an evolution in text encoders from CLIP-
based models towards more sophisticated language models like T5-XXL, suggesting a trend 
toward better text understanding.

3 Taxonomy of diffusion models for image augmentation

In this section, an overview of the landscape of DM-based methods for image augmenta-
tion is provided. In particular, a taxonomy of the various approaches is defined and graphi-
cally illustrated in Fig. 2. More specifically, considering as a criterion the task/goal of each 
method, DM-powered image augmentation approaches can initially be classified in the fol-
lowing main categories (while each class can be further divided into sub-categories, as will 
be discussed later in this section):
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 ● Semantic Manipulation: The goal is to introduce fine-grained context-aware modifica-
tions to an image, while maintaining its main semantic contents (Kawar et al. 2023; Kim 
et al. 2022; Zhang et al. 2023b).

 ● Personalization and Adaptation: The target is to alter the appearance of the image, so as 
to better conform to specific datasets, tasks, requirements or user preferences (Ruiz et 
al. 2023; Gal et al. 2022; Wei et al. 2023).

 ● Application-Specific Augmentation: The goal is to regulate the augmentation process 
using domain specific knowledge, i.e. introducing modifications that are only meaning-
ful for a given application (e.g., medical imaging, facial recognition, etc.) (Chambon et 
al. 2022a; Boutros et al. 2023).Complementarily to the categorization described above, 
Fig. 3 illustrates a timeline representation that contains key recent DM-powered im-
age augmentation methods. Each entry corresponds to a critical milestone work that 
significantly impacted the research field. Naturally, more recent works are associated 
with more complex and advanced DM models/architectures, leading also to superior 
performance. Moreover, Table 2 illustrates key representative methods, belonging to 
each category defined in the taxonomy of Fig. 2.

3.1 Semantic manipulation

Methods belonging to this category aim to induce subtle and context-aware changes to an 
image, altering its interpretation or conveying additional contextual information, while pre-
serving the core semantic content and maintaining a coherent and meaningful visual repre-
sentation (Saharia et al. 2022a; Hertz et al. 2022). Such methods are useful for generating 
realistic and diverse training samples, while maintaining the original image context. More 
fined-grained and detailed sub-classes of this category are:

 ● Concept Manipulation: Concept manipulation involves altering the semantic content of 
an image, by adding, removing or modifying objects, attributes, or even the entire scene 
(Chen et al. 2024e; Song et al. 2022).

 ● Text-Guided Editing: Text-guided editing leverages natural language descriptions to 
directly influence the editing process of images, allowing for precise control over the 
modifications based on textual inputs. This approach combines the strengths of Natu-
ral Language Processing (NLP) and computer vision technologies, enabling a nuanced 
interpretation of text into visual changes (Hertz et al. 2022; Brooks et al. 2023; Kawar 
et al. 2023).

 ● Layout and Region-Based Editing: Layout and region-based editing involves modifying 
specific areas or rearranging elements within an image to alter its composition or focus. 
These methods are crucial for applications that require precise control over spatial ar-
rangements and detailed modifications to image content (Avrahami et al. 2023a, b; Zeng 
et al. 2023).

 ● I2I (Image-to-Image) Translation: Image-to-Image (I2I) translation methods harness 
DMs to transform one source image into a different target one, maintaining the core 
content while altering its style, texture, or modal characteristics. This category is critical 
for applications ranging from artistic style transfer to functional medical imaging trans-
lations (Saharia et al. 2022a; Parmar et al. 2023; Trabucco et al. 2023).

 ● Counterfactual Augmentation: Counterfactual augmentation uses DMs to generate im-
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Fig. 3 Timeline representation of key recent DM-powered image augmentation methods

 

Fig. 2 Taxonomy of DM-based 
image augmentation methods
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Table 2 DM-powered methods for image augmentation
Category Subcategory Methods
Semantic 
Manipulation

Concept 
Manipulation

Chen et al. (2024e), Luo et al. (2023), Zhao et al. (2022), Zhang et 
al. (2024c), Song et al. (2022), Huang et al. (2023a), Brack et al. 
(2022), Rando et al. (2022), Schramowski et al. (2023), Wasserman 
et al. (2024), Gandikota et al. (2023), (2024), Heng and Soh (2024), 
Kim et al. (2023), Kumari et al. (2023a), Ni et al. (2023), Zhang et 
al. (2024b)

Text-Guided 
Editing

Kawar et al. (2023), Yu et al. (2024), Nichol et al. (2021), Hertz 
et al. (2022), Chen et al. (2024b), Lin et al. (2024), Huang et al. 
(2023b), Brooks et al. (2023), Wang et al. (2023a), Yang et al. 
(2024), Jin et al. (2024), Santos et al. (2024), Avrahami et al. 
(2023b), Yang et al. (2023a), Kirstain et al. (2023), Balaji et al. 
(2022), Geng et al. (2024)

Layout and 
Region-Based 
Editing

Zeng et al. (2023), Chen et al. (2023d), Xue et al. (2023), Schnell et 
al. (2024), Lugmayr et al. (2022), Yu et al. (2023a), Ackermann and 
Li (2022), Couairon et al. (2022), Avrahami et al. (2022a, 2023a), 
Sarukkai et al. (2024), Xie et al. (2023b), Xiao et al. (2023), Zhang 
et al. (2023b), Levin and Fried (2023)

I2I (Image-
to-Image) 
Translation

Meng et al. (2021), Xu et al. (2024), Kim et al. (2022), Kwon and 
Ye (2022), Parmar et al. (2023), Su et al. (2022), Tumanyan et al. 
(2023), Wang et al. (2022a), Ma et al. (2023), Trabucco et al. (2023), 
Cao et al. (2023), Saharia et al. (2022a), Michaeli and Fried (2024), 
Rahat et al. (2024), Lingenberg et al. (2024)

Counterfactual 
Augmentation

Sanchez et al. (2022), Sanchez and Tsaftaris (2022), Madaan and 
Bedathur (2023), Yuan et al. (2022), Parihar et al. (2024), Vendrow 
et al. (2023)

Personalization 
and Adaptation

Personalization 
Methods

Ruiz et al. (2023, 2024), Gal et al. (2022), Zhang et al. (2023d), 
Kumari et al. (2023b), Vinker et al. (2023), Sohn et al. (2023), Dong 
et al. (2022), Chen et al. (2024d), Wei et al. (2023), Gal et al. (2023), 
Shi et al. (2024), Tewel et al. (2023), Jia et al. (2023), Chen et al. 
(2023b), Han et al. (2023)

Adaptation 
Methods

Hemati et al. (2023), Wu et al. (2023b), Dunlap et al. (2022), Zang et 
al. (2023), Zhu et al. (2023), Qiu et al. (2023), Islam et al. (2024a, b)

Inversion-Based 
Methods

Zhou et al. (2023a, b), Zhang et al. (2023e), Li et al. (2023b), Wal-
lace et al. (2023), Tang et al. (2024b), Kwon et al. (2022), Mokady 
et al. (2023)

Dataset 
Expansion

Zhang et al. (2022), Li et al. (2023a), Ye et al. (2023), Wang et al. 
(2022b), Bansal and Grover (2023), Yin et al. (2023), Sheynin et al. 
(2022), Blattmann et al. (2022), Chen et al. (2024c)

Applica-
tion- Specific 
Augmentation

Medical Imaging Akrout et al. (2023), Sagers et al. (2022), Ali et al. (2022), Pinaya 
et al. (2022), Hu et al. (2022), Rouzrokh et al. (2022), Wolleb et 
al. (2022), Chambon et al. (2022a, b); Guo et al. (2023), Xia et al. 
(2022), Packhäuser et al. (2023)

Facial Recogni-
tion and Editing

Boutros et al. (2023), Huang et al. (2024)

Fashion Industry Li et al. (2023c), Kong et al. (2023)
Agriculture Deng and Lu (2023), Muhammad et al. (2023), Chen et al. (2023a)
Video Editing 
and Generation

Shin et al. (2024), Wu et al. (2023a)

Cultural Heritage Cioni et al. (2023)
Object Detection Fang et al. (2024), Zhang et al. (2023c), Li et al. (2025), Tang et al. 

(2024c), Ma et al. (2024a)
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ages that represent hypothetical scenarios or what-if analyses, often used for enhancing 
model explainability and robustness. This includes generating counterfactual scenarios, 
where key elements are altered to assess potential outcomes. Such methods are useful in 
fields such as medical imaging and policy-making, where understanding the impact of 
variable changes is crucial (Sanchez and Tsaftaris 2022; Sanchez et al. 2022).

3.2 Personalization and adaptation

Personalization and adaptation methods tailor the augmentation process to better suit spe-
cific datasets, tasks or user preferences (Gal et al. 2022; Ruiz et al. 2023). These methods 
enhance the relevance and effectiveness of augmented data, by finetuning models to align 
with particular requirements.

 ● Personalization Methods: Personalization methods aim at adapting DMs to generate 
content that meets specific user needs or preferences. These approaches often involve 
finetuning models, leveraging textual or visual inputs, and optimizing for personalized 
outputs (Gal et al. 2022; Ruiz et al. 2023; Wei et al. 2023).

 ● Adaptation Methods: Adaptation methods tailor DMs to different domains or tasks, im-
proving their versatility and performance in new or varied contexts. These approaches 
are crucial for ensuring that models can generalize well across different datasets and 
applications (Qiu et al. 2023; Hemati et al. 2023).

 ● Inversion-Based Methods: Inversion-based DM methods leverage the ability to invert 
the diffusion process for enhancing image editing and augmentation capabilities, by 
obtaining the original image from a noisy or perturbed version (Mokady et al. 2023; 
Zhang et al. 2023e).

 ● Dataset Expansion: Dataset expansion methods utilize DMs to synthetically generate 
additional images, given an original input dataset. The goal is to address the limita-
tions of small-scale datasets and to enhance the diversity of training images. This is 
critical for improving the generalization and robustness of machine learning models, 
particularly when the acquisition of extensive labeled datasets is impractical (Zhang et 
al. 2022; Li et al. 2023a).

3.3 Application-specific augmentation

Application-specific augmentation methods tailor the augmentation process so as to meet 
the unique requirements and properties of a given application domain, i.e. they extensively 
rely on using detailed and domain specific knowledge (Chambon et al. 2022a; Boutros et 
al. 2023). Such particular characteristics can be exploited for improving or guiding the aug-
mentation process. Typical domains with unique requirements or properties are medical 
imaging, facial recognition, fashion industry, agriculture, etc.

 ● Medical Imaging: DMs for image augmentation are extensively employed to gener-
ate high-fidelity synthetic medical images, enhance existing datasets, and improve the 
robustness of diagnostic models. These methods address challenges such as data scar-
city, variability in medical conditions, as well as the need for anonymized training data 
(Chung et al. 2022; Ali et al. 2022).
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 ● Other Domain-Specific Applications: DMs have also been effectively applied to a wide 
range of other domain-specific applications, taking into account the specific require-
ments of each field. Examples include facial recognition and editing (Boutros et al. 
2023), fashion industry (Li et al. 2023c), agriculture (Deng and Lu 2023), etc.

4 DM-powered methods for image augmentation

This section details the fundamental principles and mechanisms of DM-based methods for 
image augmentation, based on the taxonomy of approaches discussed in Sect. 3. The main 
benefits of each (sub)category are highlighted; thus, providing key insights regarding their 
practical usage.

4.1 Semantic manipulation

Semantic manipulation transforms the image appearance, while partially preserving its 
semantic content (Brooks et al. 2023), or manipulates the depicted semantic concept, 
potential textual elements, or layout. As discussed in Sect. 3, its subcategories are concept 
manipulation, text-guided editing, layout and region-based editing, image-to-image (I2I) 
translation, and counterfactual augmentation. In many cases the goal is to transform a spe-
cific input ‘reference’ image to an augmented variant, a process generally called ‘editing’.

4.1.1 Concept manipulation

Several methods for concept manipulation specialize in placing objects within images using 
the pretrained SD model, often being themselves training-free (Chen et al. 2024e; Luo et 
al. 2023; Zhao et al. 2022; Zhang et al. 2024c). In particular, they condition SD on new 
objects specified by text prompts, Web-retrieved images or a high-frequency map of the 
target object, stitched with the scene at the desired location (generated from Contrastive 
Language-Image Pre-training (CLIP) (Radford et al. 2021)) for placing them at the back-
ground of an input image. The new objects might be checked for semantic consistency 
via CLIP embedding similarity. For example, the method in Chen et al. (2024e) employs 
identity feature extraction (using a self-supervised DINOv2 model (Oquab et al. 2023)), 
detail feature extraction and feature injection to seamlessly integrate the target object into 
the scene, by feeding the ID tokens and the detail maps into the pretrained SD as guidance 
to generate the final composition. It also supports additional controls, like user-drawn masks 
to indicate the desired shape of the object during inference.

The method in Song et al. (2022) adapts the pretrained SD model for realistic object 
integration into scenes. It uses a content adaptor module that maps visual features from the 
input image object to a text embedding space to condition the SD. It is first pretrained on 
image-text pairs to learn semantics and then finetuned with SD to preserve object appear-
ance. The SD model takes in the background image and the object embedding to generate a 
composite image. An example is depicted in Fig. 4, where various methods are compared on 
object adding at a specific location in the target image. The first column displays the desired 
object, while the second one the target image and the desired location of the object.
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The methods ‘Composer’ (Huang et al. 2023a) and ‘Stable Artist’ (Brack et al. 2022) pro-
vide fine-grained control of the image generation process, by leveraging operations in the 
latent space. The ‘Composer’ decomposes an image into representative factors, such as text 
description, depth map, sketch, color histogram, etc., and trains a DM (Guided Language 
to Image Diffusion for Generation and Editing (GLIDE) (Nichol et al. 2021)) conditioned 
on these factors, allowing customizable content creation by recombining the aforemen-
tioned factors. ‘Stable Artist’ (Brack et al. 2022) uses Semantic Guidance (SEGA) to steer 
the diffusion process along multiple semantic directions corresponding to editing prompts, 
enabling subtle edits as well as changes in composition and style without masks or finetun-
ing. SEGA allows the user to control the latent space representation, by calculating guidance 
vectors between the noise estimates of the original prompt and the editing prompts, and 
applying these to shift the unconditional noise estimate.

Large T2I models like SD can also replicate undesired behavior (Birhane and Prabhu 
2021) or generate inappropriate content, such as copyrighted artworks (Jiang et al. 2023) or 
explicit images (Schramowski et al. 2023). To address these issues, several methods have 
been proposed, which can be organized in four main groups:

Image Post-Processing (Rando et al. 2022): These methods filter out inappropriate con-
tent from the generated images after the generation process.

Inference Guidance (Schramowski et al. 2023): These methods guide the diffusion pro-
cess during inference to avoid generating undesired concepts. For example, Safe Latent 
Diffusion (Schramowski et al. 2023) defines an ‘unsafe’ textual concept and uses it to guide 
the diffusion process away from generating inappropriate content.

Image Inpainting (Yu et al. 2023a; Wasserman et al. 2024): These methods remove unde-
sired objects or regions from images and inpaint the missing parts with appropriate content. 
They often use a mask to specify the region to be inpainted.

Model Finetuning (Gandikota et al. 2023, 2024; Heng and Soh 2024; Kim et al. 2023; 
Kumari et al. 2023a; Ni et al. 2023; Zhang et al. 2024b): These methods finetune the pre-
trained DM to prevent it from generating undesired concepts. They often use approaches 
like concept erasure (Gandikota et al. 2023), self-distillation (Kim et al. 2023), or degen-
eration-tuning (Ni et al. 2023) to remove the unwanted concepts from the model’s learned 
representations.

Fig. 4 Comparison of various semantic manipulation methods: a Desired object (col. 1), b Target image 
and desired object location (col. 2), c Copy-And-Paste (col. 3), d BLIP (Li et al. 2022) (col. 4), e SDEdit 
(Meng et al. 2021) (col. 5), f ObjectStitch (Song et al. 2022) (col. 6). Image from Song et al. (2022)
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4.1.2 Text-guided editing

Unlike text-prompt-based concept manipulation, which directly uses the text prompt to 
guide the editing process, text-guided editing methods first optimize a text embedding to 
reconstruct the input reference image (Kawar et al. 2023; Yu et al. 2024; Nichol et al. 2021). 
The reconstruction is the output of a pretrained conditional LDM, i.e., the outcome of the 
RD process. Additionally, a target text embedding is the CLIP representation of a textual 
prompt, which is given as a condition to the LDM. In the end, these methods interpolate 
between the optimized embedding and the target text embedding, so that conditioning on 
this interpolated vector eventualy generates the desired edited/augmented image. For exam-
ple, Imagic (Kawar et al. 2023) optimizes a text embedding, finetunes the DM to better 
reconstruct the input image, and then linearly interpolates between the optimized embed-
ding and the target text embedding. Subsequently, this interpolated embedding is provided 
as a condition to the finetuned DM, so that it generates the desired edited augmented image.

A different approach to influence how the image is built word-by-word is by incorporat-
ing cross-attention maps within the diffusion process. These maps determine which parts 
of the image (‘pixels’) focus on specific elements (‘tokens’) of the text prompt at different 
stages of image creation, as illustrated in Fig. 5. Methods like (Hertz et al. 2022) and Chen 
et al. (2024b) use cross-attention maps to align textual descriptions with image regions, 
enabling nuanced image alterations. Some methods focus on segmenting images into learn-
able regions that can be individually manipulated, based on text commands. For example, 
the methods of Lin et al. (2024) and Huang et al. (2023b) divide the image into regions, by 
using pretrained models for feature extraction, and then apply text-guided editing to each 
region separately. This enhances the granularity of edits and allows for more precise control 
over specific parts of the image.

Fig. 5 Cross-attention maps of a text-conditioned diffusion image generator. The top row illustrates the 
average attention masks for each word in the prompt that synthesize the image on the left. The bottom 
rows depict the attention maps from different diffusion steps with respect to the words ’bear’ and ’bird’. 
Image from Hertz et al. (2022)
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In general, editing images based on human instructions allows a higher level of control 
over the DM’s actions. These methods typically utilize a Large Language Model (LLM) 
to guide the editing process via human-like instructions (Brooks et al. 2023; Wang et al. 
2023a; Yang et al. 2024; Jin et al. 2024; Santos et al. 2024; Geng et al. 2024). For example, 
InstructPix2Pix (Brooks et al. 2023) makes use of GPT-3 to generate a synthetic dataset of 
editing instructions (e.g., input caption: ‘photograph of a girl riding a horse’, edited caption: 
‘photograph of a girl riding a dragon’) and subsequently a pretrained SD model is utilized 
to generate synthetic images matching the captions before/after. Subsequently, an SD model 
is trained on this generated dataset (by optimizing the LDM loss), so as to learn to perform 
image edits. Classifier-free guidance can also be used along with a text prompt to guide the 
diffusion process and to generate new images that comply better with their conditioning 
(Bansal et al. 2023). This improves the alignment between the generated images and the text 
prompt, without requiring a separate classifier model.

Moving towards a different direction, the method of Avrahami et al. (2023b) introduces 
a ‘spatio-textual representation’ that combines CLIP image embeddings of object segments 
during training and CLIP textual embeddings of local prompts during inference. This rep-
resentation is incorporated into the DM, by concatenating it with the noisy image or latent 
code, and the DM is finetuned accordingly (by minimizing the LDM loss). Multi-condi-
tional classifier-free guidance is employed to control the relative importance of each condi-
tion, involving a fine-grained variant using separate guidance scales and a fast variant using 
a single scale for the joint probability of all conditions.

Paint-by-Example (Yang et al. 2023a) introduces an exemplar-based editing approach, 
where it automatically merges a reference image into a source one. Self-supervised train-
ing utilizes the object’s bounding box as a binary mask and the image patch inside as the 
reference image to reconstruct the source image. An information bottleneck compresses 
the reference image with a CLIP class token and injects the decoded feature into the dif-
fusion process for better content understanding. Strong augmentations reduce train-test 
mismatches and handle irregular mask shapes. Controllability is achieved by training with 
irregular masks and using a classifier-free sampling strategy to adjust similarity between the 
edited and reference images.

X&Fuse (Kirstain et al. 2023) presents a general approach for conditioning on visual 
information in T2I generation: processing a reference and the input image separately, using 
shared ResBlocks, and then concatenating them (before attention blocks) to allow interac-
tion between the two images. eDiff-I (Balaji et al. 2022) introduces an ensemble of expert 
denoisers, each specialized for a particular stage of the generation process, to capture dis-
tinct behaviors and to enhance model capacity without increasing computational cost during 
inference. The study compares T5 textual embeddings (Raffel et al. 2020), CLIP textual 
embeddings and optionally CLIP image embeddings during training. Subsequently, an 
inference approach (Paint-with-words) is presented, where the user can select phrases from 
the text prompt and can create binary masks of objects, which are provided as inputs to the 
model in order to control the spatial location of the objects. This is performed by modifying 
the cross-attention matrix between the image and the text features.
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4.1.3 Layout and region-based editing

Several methods use text prompts to guide the generation and manipulation of images, 
based on layout and region information. For example, the approaches of Zeng et al. (2023) 
and Chen et al. (2023d) enable semantic image synthesis and geometric control using text 
prompts. These methods often utilize a separate layout encoder to model spatial and seman-
tic information into a format suitable for image generation. Indicatively, the latter consists 
of a precision-based mask pyramid that represents region shapes at multiple resolutions 
combined with text embeddings in Zeng et al. (2023). An example of such an approach is 
depicted in Fig. 6. In Chen et al. (2023d), the layout encoder translates geometric layouts 
into text prompts by mapping locations, classes, and conditions into text tokens, in order to 
extract spatial information from the input image’s layout, and then conditions the DM on 
this layout encoding.

ControlNet (Zhang et al. 2023b) is another powerful approach for layout and region-
based editing. It introduces a DNN architecture that adds spatial conditioning controls to 
large, pretrained T2I DMs, like SD. ControlNet creates a trainable copy of the model’s 
encoding layers and connects it to the original model using ‘zero convolutions’. This allows 
for efficient finetuning on small datasets for various conditioning tasks, such as edge detec-
tion, pose estimation, and depth mapping. The architecture can process both text prompts 
and conditioning images (e.g., edge maps, pose maps, depth maps) as inputs, making it 
highly versatile for different types of spatial control in image generation and editing.

Certain methods focus on generating images from coarse layouts or scribbles. For 
instance, the method of Xue et al. (2023) utilizes SD to generate freestyle images, by inte-
grating semantic text embeddings with spatial layouts into SD. It represents each semantic 
class in the input layout using a text concept, which are then encoded into text embeddings. 
A Rectified Cross-Attention (RCA) module is subsequently introduced to inject these text 
semantics into the corresponding layout regions within the diffusion model’s U-Net cross-
attention layers. By finetuning just the U-Net with the integrated RCA on layout-image 

Fig. 6 Indicative layout and region-based editing results with different precision levels. For each input 
layout, the images are progressively modified (starting with same noise), so that the generated images at 
different precision levels can have similar styles. Image from Zeng et al. (2023)
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pairs, the pretrained model can generate images conditioned on both user-specified layouts 
and free-form text prompts, enabling capabilities like binding new attributes to objects and 
generating unseen object classes. The method of Schnell et al. (2024) utilizes ControlNet 
(Zhang et al. 2023b) to generate synthetic images conditioned on scribble labels and text 
prompts. It employs classifier-free guidance (10% of the conditioning scribble inputs are 
randomly dropped and replaced with a learnable embedding) and introduces an encoding 
ratio to adjust the diversity and photorealism of the generated images (by performing fewer 
FD steps), allowing for a trade-off between mode coverage and sample fidelity.

Inpainting methods (Lugmayr et al. 2022; Yu et al. 2023a) make use of DMs to fill-in 
missing regions of an image based on a given mask. They typically condition the DM on the 
masked image and the mask itself, and then generate content to fill-in the masked region. A 
subset of methods (Ackermann and Li 2022; Couairon et al. 2022; Avrahami et al. 2022a, 
2023a) employs a multi-stage diffusion process with mask guidance, in order to achieve 
high-resolution image editing and inpainting.

Collage Diffusion (Sarukkai et al. 2024) is a method that takes a user-defined sequence 
of layers as input, called Collage. It consists of a full-image text string describing the entire 
image to be generated, along with a sequence of layers ordered from back to front; each 
layer consists of an RGBA image (alpha-masked input image) and a text describing it. The 
method modifies the text-image cross-attention in the DM to achieve spatial fidelity, while 
extending ControlNet to preserve appearance fidelity on a per-layer basis. Collage Diffusion 
also allows users to control the harmonization-fidelity trade-off for each layer by specifying 
desired noise levels, enabling layer-by-layer image editing. Similarly, SmartBrush (Xie et 
al. 2023b) utilizes text and shape guidance for object inpainting with DMs, enabling users 
to control the inpainted content based on both text descriptions and object masks. Fast-
Composer (Xiao et al. 2023) is a tuning-free multi-subject image generation method that 
augments text prompts with visual features extracted from input images using an image 
encoder. It models text prompts and input images as embeddings, using pretrained CLIP 
encoders, and then uses an Multilayer Perceptron (MLP) to augment the text embeddings 
with the visual features. The method trains the image encoder, MLP module, and U-Net 
with a denoising loss using a subject-augmented image-text paired dataset, while localizing 
cross-attention maps using the reference subject’s segmentation mask to prevent identity 
blending in multi-subject generation. It also employs delayed subject conditioning in itera-
tive denoising to balance identity preservation and editability.

The method of Levin and Fried (2023) is designed for allowing editing with pixel-level 
control over the amount of applied modification, using a ‘change map’. The latter is a matrix 
of dimensions identical to the spatial resolution of the original input image, describing the 
strength of the edit to be applied at each location. Different approaches can be used to gener-
ate it, such as Segment-Anything (Kirillov et al. 2023), MiDas (Ranftl et al. 2020) or even 
manually drawn change maps. The method can operate in latent space and has been evalu-
ated on SD, SDXL, Arkhipkin et al. (2023) and DeepFloyd IF (at StabilityAI 2023) pre-
trained LDMs, using text prompts (either manually created, or by reversing the input image 
into CLIP and BLIP (Li et al. 2022)) along with change maps to guide the inference process.
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4.1.4 I2I (image-to-image) translation

Several methods make use of conditional DMs for I2I translation (Michaeli and Fried 2024; 
Rahat et al. 2024). For example, SDEdit (Meng et al. 2021) utilizes a conditional DM, 
guided by stochastic differential equations, to perform image editing. CycleNet (Xu et al. 
2024) and DiffusionCLIP (Kim et al. 2022) finetune a conditional DM with a CLIP-based 
loss to ensure that the generated image matches the target image’s text description. Saharia 
et al. (2022a) employ conditional DMs to learn the distribution p(y|x) for various tasks, like 
colorization, inpainting, JPEG restoration, and uncropping. The model incorporates a U-Net 
architecture with self-attention layers, conditioning on the input image through concatena-
tion. During training, it predicts the noise added to the original image, minimizing L2 or L1 
loss between the predicted and the actual noise. Then, the inference process involves itera-
tive denoising over 1000 timesteps, starting from Gaussian noise and progressively refining 
the output. The method’s strength lies in its ability to handle multiple tasks with a single 
architecture, eliminating the need for task-specific customizations (Fig. 7).

A different group of methods focus on disentangling style and content for more targeted 
I2I translation (Kwon and Ye 2022; Lingenberg et al. 2024). For instance, the approach of 
Kwon and Ye (2022) makes use of separate encoders for style and content, and then injects 
these representations into the DM to generate the translated image. Other methods explore 
few-shot or zero-shot I2I translation. For example, pix2pix-zero (Parmar et al. 2023) first 
inverts the input image to obtain a noise map, using DDIM and BLIP. These noise maps 

Fig. 7 Indicative examples of 
an Image-to-Image DM that can 
generate high-fidelity outputs 
across a variety of tasks, without 
incorporating task-specific cus-
tomizations. Image from Saharia 
et al. (2022a)
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are then regularized to improve editability, using an autocorrelation objective. Edit direc-
tions are automatically discovered by generating diverse sentences for the source and target 
domains, and computing the mean difference between their CLIP embeddings. In order 
to preserve image structure during editing, a novel cross-attention guidance technique is 
employed, which matches the edited cross-attention maps with reference maps correspond-
ing to the original structure. The method builds upon the SD model, utilizing its CLIP con-
ditioning and cross-attention layers. On the other hand, Dual Diffusion Implicit Bridges 
(DDIBs) (Su et al. 2022) encompass two independently trained DMs (one for the source 
domain and one for the target one) to perform I2I translation, without requiring joint train-
ing on paired data.

The method of Tumanyan et al. (2023) injects spatial features and self-attention maps 
extracted from the diffusion process of a source image into the generation process of the 
translated image, enabling fine-grained control over the generated structure, while comply-
ing with the target text prompt. Additionally, the method of Wang et al. (2022a) leverages 
a pretrained T2I DM (GLIDE) as a generative prior, consisting of a base model at 64 × 64 
resolution and an upsampling model to 256 × 256. The framework adopts an encoder-
decoder architecture, where a task-specific encoder maps input conditions (e.g., segmenta-
tion masks, sketches) to the semantic latent space of the pretrained diffusion decoder. The 
DM is pretrained on diverse text-image pairs, enabling the latent space to be conditioned 
on highly semantic text embeddings. The pipeline involves pretraining the DM, training a 
task-specific encoder using a two-stage finetuning scheme, finetuning the diffusion upsam-
pler with adversarial training, and sampling the base model and upsampler during inference, 
using the encoded input and normalized classifier-free guidance. Moreover, another relevant 
framework is presented in Ma et al. (2023), aiming at joint subject- and text-conditional 
image generation. The DM (SD) generates high-quality images that align semantically with 
input texts, while preserving input image subjects. It leverages CLIP encoders to map texts 
and images into a unified multi-modal latent space. A fusing sampling strategy balances 
noise predictions between the unified condition and pure text condition to avoid overfitting 
to background information, i.e., the final noise estimate fuses the two predictions using a 
given ratio.

DA-Fusion (Trabucco et al. 2023) is another method that aims to to alter the semantic 
contents of an image. It relies on the pretrained SD and modifies the input reference image 
based on class label guidance. Novel visual concepts outside the DM’s training dataset 
are handled by inserting and finetuning new token embeddings in the text encoder, using 
the textual inversion approach (see Sect. 4.2). Input images are spliced into the diffusion 
process at a random timestep to guide the generation, rather than generating from scratch. 
Randomizing the splice timestep provides diverse augmentation intensities.

MasaCtrl (Cao et al. 2023) introduces a mutual self-attention mechanism within U-Net, 
allowing the model to query correlated local structures and textures from a source image, 
while maintaining consistency with a target editing prompt. The architecture modifies the 
standard U-Net blocks by converting self-attention into mutual self-attention, where query 
features originate from the current denoising process, while key and value features are 
derived from the input image’s diffusion process. In order to prevent confusion between 
foreground and background elements, MasaCtrl employs a mask-guided mutual self-atten-
tion strategy, utilizing masks extracted from cross-attention maps.
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4.1.5 Counterfactual augmentation

A significant number of methods make use of conditional DMs to generate counterfac-
tual images. For instance, the approach of Sanchez et al. (2022) utilizes a conditional DM 
to generate ‘healthy’ counterfactuals of brain MRI images with tumors, by conditioning 
the model on the tumor mask. Diff-SCM (Sanchez and Tsaftaris 2022) employs a condi-
tional DM to estimate the effects of interventions in a causal framework, by conditioning 
the model on the intervention variable do(class), corresponding to ‘how the image should 
change in order to be classified as another class’. For instance, for a given photo of a dog in 
a park, the dog should be replaced by a cat, while leaving the rest of the image unchanged 
if do(cat) holds (Fig. 8).

A great portion of methods focus on generating counterfactuals for specific applications. 
For example, the methods of Madaan and Bedathur (2023) and Yuan et al. (2022) generate 
counterfactual images to explain the model’s behavior and to improve its robustness. On 
the other hand, a different set of approaches utilize counterfactual augmentation to address 
bias and fairness issues in datasets and models. For example, the work of Parihar et al. 
(2024) utilizes a conditional DM to generate counterfactual images that balance the distri-
bution of sensitive attributes (e.g., gender, race) in the dataset. The model is conditioned on 
the desired attribute distribution and generates images that match it, while preserving the 
remaining aspects of the image.

Another set of methods focus on expanding a given dataset with generated counterfac-
tual or Out-of-Distribution (OOD) examples, in order to improve the robustness of a model 
(e.g., classifier) trained on the expanded dataset. For example, the method of Vendrow et al. 
(2023) utilizes a conditional DM to generate counterfactual examples that change specific 
attributes of the input image (e.g., object position, color, texture), while preserving the over-
all scene structure. These counterfactual examples are used to diagnose and mitigate model 
failures on OOD data.

4.2 Personalization and adaptation

Personalization and adaptation constitute very common methodologies in image augmenta-
tion tasks. In the remainder of this subsection, respective DM-based approaches are detailed, 
grouped according to the taxonomy presented in Sect. 3.

Fig. 8 Counterfactuals on ImageNet generated by Diff-SCM. From left to right: a random image sampled 
from the data distribution and its counterfactuals do(class), corresponding to ’how the image should 
change in order to be classified as another class?’. Image from Sanchez and Tsaftaris (2022)
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4.2.1 Personalization methods

Personalization implies that the DM must be adapted to generate content that meets specific 
user needs or preferences. These methods often involve finetuning pretrained models, lever-
aging textual or visual inputs, and optimizing for personalized outputs.

A significant number of methods make use of finetuning to personalize pretrained T2I 
DMs for subject-driven generation. For example, DreamBooth (Ruiz et al. 2023) finetunes 
the DM within a few-shot learning setting, using a small set (3–5) of images of a single 
subject paired with a text prompt containing a unique identifier and the name of the class 
the subject belongs to (e.g., ‘A [V] dog’). These images contain a specific subject and serve 
as the training dataset that the DM needs to learn, while the text prompt simply describes 
the new subject. In particular, the method applies a class preservation loss to ensure that the 
generated images maintain the identity of the subject. Similarly, HyperDreamBooth (Ruiz et 
al. 2024) is a method for efficient personalized DMs that introduces three key components, 
namely Lightweight DreamBooth (LiDB), a HyperNetwork for fast personalization, and 
rank-relaxed fast finetuning. LiDB decomposes the rank-1 LoRA (Hu et al. 2021) weight 
space using a random orthogonal incomplete basis, resulting in smaller personalized mod-
els. Additionally, the HyperNetwork, consisting of a ViT encoder and transformer decoder, 
predicts LiDB residuals from input images, using diffusion denoising and weight-space 
losses. Eventually, rank-relaxed fast finetuning captures fine-level details by relaxing the 
LoRA rank and finetuning with the predicted HyperNetwork weights, improving subject 
fidelity while maintaining fast personalization (Fig. 9).

A different set of methods make use of the so-called ‘textual inversion’ (Gal et al. 2022) 
to personalize T2I generation. This process learns a new text embedding (termed ‘pseudo-
word’) that represents a specific visual concept, using a small set of images depicting that 
concept. This allows the model to generate images of the concept, using natural language 
descriptions that include the pseudo-word. ProSpect (Zhang et al. 2023d) extends this idea 
by learning a collection of pseudo-words (called a ‘prompt spectrum’) that capture different 
visual attributes (e.g., material, style, layout) of the concept.

Fig. 9 Example of personalization-oriented image augmentation, where the given subject’s properties 
need to be modified, while preserving its key visual features that forge its identity. Image from Ruiz et 
al. (2023)
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On a different basis, another group of methods focus on combining multiple concepts for 
personalized generation. For example, the approaches of Kumari et al. (2023b) and Vinker 
et al. (2023) utilize a compositional mechanism, where different concepts are represented by 
separate text embeddings that can be combined to generate novel images. StyleDrop (Sohn 
et al. 2023) and DreamArtist (Dong et al. 2022) adopt a style-based approach, where the 
style of the generated image is controlled by a learned embedding.

Another conceptualization comprises methods that make use of encoder-based 
approaches to personalize T2I generation. For example, ELITE (Wei et al. 2023) utilizes an 
image encoder to map user-provided input images to text embeddings, which are then used 
to condition the pretrained SD. This allows the model to generate personalized images that 
match the style and content of the input. Similarly, the methods of Gal et al. (2023) employs 
a cross-attention mechanism to inject visual features from an image encoder into the DM at 
different layers.

SuTI Chen et al. (2024d) is an apprenticeship learning framework that trains expert DMs 
(Imagen (Saharia et al. 2022b)) for each subject on image-text clusters, where each cluster 
contains 3–10 images-prompts. Then, K expert DMs are fine tuned on K clusters in order 
to learn particular subjects belonging to the clusters. Subsequently, a single DM is trained 
on the outputs of these expert DMs. This approach enables SuTI to compose specialized 
knowledge from numerous expert models into a single, versatile model. During inference, 
it can generate customized images for new subjects, without some kind of optimization.

InstantBooth (Shi et al. 2024) is an alternative approach that enables personalized genera-
tion without requiring deployment-time finetuning of the DM itself. It introduces a learnable 
image encoder to convert input images to a textual embedding and adapter layers to inject 
rich visual features for better identity preservation. The original model weights are frozen 
and only the new components are trained. A unique identifier token V represents the input 
concept in the text prompt, while the input images are cropped and background-masked.

Perfusion (Tewel et al. 2023) is a compact and efficient architecture based on key-locked 
rank-1 editing, which addresses key challenges in personalized generation, such as over-
fitting and maintaining high visual fidelity, while allowing creative control. Key-locked 
rank-1 editing prevents overfitting by locking the keys of a learned concept to those of 
its supercategory in the cross-attention layers, ensuring the concept inherits the generative 
prior without deviating too much. The method maintains high visual fidelity, by learning 
concept-specific values in an extended latent space to capture the concept’s unique appear-
ance. Moreover, the rank-1 update is gated based on the similarity between the current 
encoding and the target concept, allowing fine-grained control over the influence of each 
concept at inference time.

Taming Encoder (Jia et al. 2023) is a method for generating images of customized objects 
specified by users, without the need for lengthy per-object optimization, as required by pre-
vious approaches. In particular, given an input image and a text description of the desired 
output, the image object encoder (CLIP) computes the object embedding, while the text 
encoder computes the text embedding. These two are then passed to Imagen (Saharia et al. 
2022b) for generating the final output in a single forward pass. Training data is prepared 
using a captioning model (PaLI (Chen et al. 2022b)) and binary masks to isolate the object. 
The framework is jointly trained on domain-specific and general-domain datasets, using 
cross-reference regularization and object-embedding dropping. The entire network, except 
from the object encoder, is tuned using the same objective as the pretrained DM.
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DisenBooth (Chen et al. 2023b) is a framework for subject-driven T2I generation that 
utilizes a textual identity-preserving embedding and a visual identity-irrelevant embedding. 
In particular, an identity-preserving branch maps the subject’s identity to a special text token 
using a CLIP text encoder, while an identity-irrelevant branch employs a pretrained CLIP 
image encoder and a learnable mask to extract identity-irrelevant features, which are then 
aligned with the text feature space using an MLP with skip connection (Adapter). Dur-
ing finetuning, DisenBooth utilizes denoising, weak denoising, and contrastive embedding 
objectives, and employs parameter-efficient finetuning using LoRA. After finetuning, Dis-
enBooth enables flexible and controllable generation, by combining the subject’s identity 
token with other text descriptions and optionally inheriting characteristics from a reference 
image.

HiPer (Han et al. 2023) personalizes pretrained SD models for text-driven image manip-
ulation, using a single input image. It decomposes the CLIP text embedding space into 
initial tokens and end tokens for preserving subject identity. In particular, given an input 
image, the input image’s prompt, and the target desired image’s prompt, HiPer optimizes 
the embedding in the DM’s latent space. During inference, the target prompt’s embedding 
is concatenated with the optimized HiPer embedding to condition the pretrained SD model, 
generating a manipulated image that preserves the subject’s identity, while incorporating 
the target prompt’s semantics. HiPer’s main contribution lies on its decomposition of the 
text embedding space for separate control of semantics and identity, requiring only a single 
source image without finetuning the DM.

4.2.2 Adaptation methods

A significant portion of adaptation methods rely on finetuning to adjust pretrained DMs to 
new domains. For example, the method of (Hemati et al. 2023) employs the pretrained SD 
model to generate synthetic images that bridge gaps between domains and reduce non-iid-
ness in training data. It receives an image as input from one domain and a guidance attribute 
(either a text prompt or an image) from another one of the same class, using the LDM to 
create interpolated synthetic images. The approach of Wu et al. (2023b) introduces an opti-
mization method to find the optimal soft combination weights of the input image descrip-
tion and the target image description text embeddings at each denoising step. The weights 
are optimized to match the target attribute using a CLIP-based loss, while preserving other 
content using a perceptual loss. The method of Dunlap et al. (2022) makes use of a domain-
specific CLIP model to guide the diffusion process towards generating images that match 
the target domain (Fig. 10). Moreover, the method of Zang et al. (2023) utilizes a domain-
specific discriminator to filter out low-quality or out-of-domain samples during training.

Another group of approaches focuses on adapting pretrained DMs to specific tasks or 
applications. Indicative examples are the cases of nuclei segmentation (Yu et al. 2023b) or 
knee osteoarthritis severity classification (Chowdary et al. 2023), by finetuning on datasets 
of nuclei images or X-ray images, respectively.

DomainStudio (Zhu et al. 2023) comprises a recent method that adapts pretrained DMs 
to target domains using limited data, by introducing a pairwise similarity loss to maintain 
the relative distances between the generated samples during domain adaptation and design-
ing a high-frequency detail enhancement approach to improve generation quality. Addi-
tionally, Orthogonal Finetuning (OFT) (Qiu et al. 2023), which is a method for adapting 
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DMs to new tasks, injects trainable orthogonal matrices into the model’s attention layers, 
transforming neuron weights multiplicatively. These matrices, initialized as identity and 
kept orthogonal, enable stable finetuning that preserves the model’s semantic knowledge. 
OFT receives subject images or control signals with text prompts as input and generates 
images following the subject identity or control while matching the prompt. The orthogonal 
transformation of neurons maintains their pairwise angles, leading to faster convergence, 
better quality and controllability.

The methods of Islam et al. (2024a) and Islam et al. (2024b) introduce a prompt-guided 
approach that enhances both in- and cross-domain image classification. Specifically, they 
leverage image editing with carefully designed conditional prompts to generate augmented 
images based on concatenation of original and edited content, followed by blending with 
fractal patterns, which reduces overfitting and ensures robust training.

4.2.3 Inversion-based methods

Inversion-based methods typically optimize a latent code, i.e., the latent-space representa-
tion of a user-provided input image that contains an object to be learnt by the DM, so that it 
can reconstruct the image using the DM. Subsequently, the latent code is manipulated so as 
to steer the DM to perform the desired editing or augmentation. Various types of inversion-
based image augmentation approaches are summarized in Fig. 11.

A broad set of methods employ inversion to generate high-quality synthetic data for train-
ing other DNNs. For example, the methods of Zhou et al. (2023b) and Zhou et al. (2023a) 
generate synthetic images, by inverting real images to the latent space, and then sampling 
new latent codes around the inverted ones. This facilitates the production of diverse and 
realistic augmentations of the original dataset, which can significantly improve the perfor-
mance of downstream classification models.

Another group of methods adopt inversion to enable precise image editing and style 
transfer. For example, Null-Text Inversion (Mokady et al. 2023) consists of two main com-
ponents, namely pivotal inversion, which estimates an initial diffusion trajectory using 
DDIM inversion, and ‘null-text’ optimization, which optimizes only the unconditional 
‘null-text’ embeddings for each diffusion timestep. Given an input image and its associated 
text caption, the method inverts the image to obtain a latent code and optimized null-text 

Fig. 10 Example of DM-based domain adaptation for image augmentation, where a model trained on im-
ages from a source domain can be applied to images from a target one. Image from Dunlap et al. (2022)
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embeddings. These can then be used to edit the image intuitively using approaches such as 
P2P (Hertz et al. 2022), by modifying the text prompt, while preserving the model weights 
and conditional embeddings.

Following a similar conceptualization, the method of Zhang et al. (2023e) enables artis-
tic style transfer from a single reference painting to an input image, using a pretrained SD. 
In particular, it introduces an attention-based textual inversion module that learns a style 
representation ("[C]") from the CLIP image embedding of the reference painting, through 
multi-layer cross-attention. This learnt textual embedding is then encoded into a DM cap-
tion conditioning format to guide the generation of new images that combine the content 
of the input image with the artistic style of the reference painting. Specifically, the method 
involves extracting the image embedding of the reference painting, learning the correspond-
ing textual embedding via the inversion module, encoding it into DM conditioning format, 
applying stochastic inversion to the content image to obtain an initial latent noise map, and 
generating the output image conditioned on the textual embedding and an inverted noise 
map (noisy version of the input image).

In a closely related way, the method of Li et al. (2023b) learns to invert the input image 
to value embeddings. while preserving the keys and attention maps from the original model. 
The respective architecture consists of a frozen CLIP image encoder, a learnable mapping 
network, and the SD model. The keys control the output image structure, while the values 
determine the object style. The editing process involves DDIM inversion to generate latent 
codes and attention maps, training the mapping network to reconstruct these while preserv-
ing object-like attention, and using the trained network with target prompt embeddings for 
editing.

Following a different line of research, a particular group of methods focus on improving 
the inversion process itself. For example, EDICT (Wallace et al. 2023) utilizes a coupled 
DM to perform inversion, where one model learns to map the image to the latent space and 
the other learns to map the latent code back to the original image space. This allows for more 
accurate and efficient inversion, compared to optimizing the latent code directly. LocInv 
Tang et al. (2024b) utilizes a localization-aware inversion process that optimizes the latent 
code to match the spatial attention maps of the input image, which facilitates in preserv-

Fig. 11 Various types of inversion-based approaches for diffusion-powered image editing. Image from 
Ju et al. (2023)
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ing the local structure and the details of the image during editing. Moreover, the method 
of Kwon et al. (2022) introduces an asymmetric reverse process (Asyrp) that discovers a 
semantic latent space, called ‘h-space’, in frozen pretrained DMs. It modifies the RD pro-
cess by shifting the predicted noise in the bottleneck feature maps of the U-Net architecture, 
while preserving the direction pointing to the current timestep. This breaks destructive inter-
ference and enables semantic manipulation of the generated images. The h-space exhibits 
desirable properties for editing, such as homogeneity, linearity, composability, robustness, 
and consistency across timesteps.

4.2.4 Dataset expansion

Conditional DMs are often used for generating synthetic images sampled from the underly-
ing distribution of a given dataset. For example, the method of Zhang et al. (2022) trains a 
class-conditional DM on a small dataset and then uses it to generate additional images per 
class. The generated examples are filtered using a classifier to ensure that they are realistic 
and match the target class distribution. Similarly, the approach of Li et al. (2023a) utilizes 
a semantics-guided DM to generate synthetic images that match the semantic layout and 
object categories of the original dataset. The method of Wang et al. (2022b) comprises a 
single-scale pixel-level DDPM that learns the internal patch distribution of a single natural 
image. It employs a U-Net denoising network with a restricted patch-level receptive field, 
enabling it to capture the image patch statistics without memorizing the entire image. The 
model is trained at a single scale, avoiding error accumulation as observed in progressive 
growing approaches. The method of Ye et al. (2023) leverages a time-conditioned, U-Net-
powered LDM and a two-stage training process to generate realistic synthetic images and 
to improve classification performance. The first stage involves large-scale pretraining on 
unlabeled data to learn common features for unconditional image synthesis. The second 
stage finetunes the model on a small labeled dataset, enabling conditional synthesis guided 
by a latent classifier. Similarly, the method of Bansal and Grover (2023) generates synthetic 
examples that are close to the training data in feature space but far away in the image space, 
which facilitates towards improving the model’s ability to generalize to novel visual con-
cepts (Fig. 12).

A different group of methods leverage the ability of DMs to generate high-quality images 
from text descriptions. For example, TTIDA Yin et al. (2023) finetunes a pretrained text-
to-text (T2T) model (GLIDE (Nichol et al. 2021)) to generate diverse text descriptions of 

Fig. 12 Examples of DM-based dataset expansion image augmentation. Image from Bansal and Grover 
(2023)
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objects and scenes, and then uses a T2I DM to generate corresponding images. This allows 
the generation of large-scale synthetic datasets with rich annotations, which can be used to 
train more accurate and robust vision models.

KNN-Diffusion (Sheynin et al. 2022) consists of a multi-modal CLIP encoder, a non-
trainable retrieval index, and a trainable DM conditioned on the retrieved embeddings. Dur-
ing training, the model receives an image as input, while the CLIP image embedding and 
its k nearest neighbors are used to condition the generation. During inference, the model 
receives a text prompt as input, while the CLIP text embedding and its k nearest neighbors 
are used for conditioning. The DM iteratively denoises a noise vector, guided by the input 
embedding and the retrieved neighbors, in order to generate the output image. The retrieved 
neighbors bridge the distribution gap between the image and the text embeddings.

The Retrieval-augmented Diffusion Model (RDM) (Blattmann et al. 2022) combines a 
trainable conditional DM with a fixed external database of diverse visual examples and a 
non-trainable retrieval function. During training, the method retrieves from the database 
the k nearest neighbors for each image, using CLIP embeddings, and encodes them with 
a pretrained encoder. Subsequently, it conditions the generative decoding head on these 
encoded representations to generate the target image. During inference, the database and the 
retrieval function can be flexibly swapped to enable unconditional, class-conditional, text-
conditional sampling, or style transfer, by retrieving neighbors based on different criteria or 
using a database with a different visual style. This approach augments a comparatively small 
generative model with a large external memory, allowing it to compose novel images based 
on relevant retrieved information rather than memorizing the full training data; thereby, 
reducing model size, while enhancing performance and flexibility.

4.3 Application-specific augmentation

This subsection discusses application-specific DM-powered image augmentation 
approaches, i.e., methods that take into account particular facts and characteristics that are 
only present in the examined application domain. Common application fields that have been 
studied so far are medical imaging, facial recognition, object detection and agriculture, to 
name a few.

4.3.1 Medical imaging

In the field of medical imaging, image augmentation methods typically employ conditional 
DMs to generate synthetic medical samples. For example, the methods of Akrout et al. 
(2023) and Sagers et al. (2022) train class-conditional DMs on datasets of skin lesion and 
use them to generate additional examples of each lesion type. The generated images are 
used to augment the training data and to improve the performance of skin disease classifica-
tion models. Similarly, the methods of Ali et al. (2022) and Packhäuser et al. (2023) make 
use of DMs to generate synthetic chest X-ray images, which are exploited to train more 
robust models for detecting thoracic abnormalities.

A particular group of methods focus on generating specific types of medical images, such 
as brain Magnetic Resonance Imaging (MRI) or retinal Optical Coherence Tomography 
(OCT). For example, the approach of Pinaya et al. (2022) trains a DM on a dataset of brain 
MRI images and uses it to generate synthetic images with different neurological conditions. 
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The method of Hu et al. (2022) trains a DM on retinal OCT images and uses it to generate 
denoised and super-resolved versions of the images.

A different set of methods employs DMs for image inpainting and anomaly detection. 
For example, the method of Rouzrokh et al. (2022) trains a DM to inpaint brain MRI images 
with tumors, by conditioning the model on the tumor mask. This allows for the genera-
tion of complete and realistic brain images from partial or corrupted scans. In contrast, the 
approach of Wolleb et al. (2022) employs DDIMs to generate synthetic healthy images 
from diseased individuals. In particular, a U-Net architecture is trained to iteratively denoise 
noisy representations, while a binary classifier guides the denoising process towards the 
healthy class. The method assumes unpaired training data of healthy and diseased images 
with only image-level labels. For an unseen test image, the DDIM noising process encodes 
its anatomical information into a noisy representation, which is then iteratively denoised 
using classifier guidance to generate a corresponding healthy synthetic image. The anomaly 
map is computed as the pixel-wise difference between the input and the synthetic images, 
highlighting the diseased regions. The noise level and classifier gradient scale control the 
trade-off between preserving input details and translating to the healthy class.

Focusing on a different aspect, another group of methods focus on adapting pretrained 
DMs to the medical domain. For example, the method of Chambon et al. (2022b) finetunes 
a pretrained T2I DM on a dataset of chest X-ray images and radiology reports, using textual 
inversion and cross-attention control. This allows for the generation of synthetic chest X-ray 
images with specific abnormalities and attributes, based on natural language descriptions. 
Similarly, the approach of Chambon et al. (2022a) finetunes the pretrained SD on a dataset 
of chest X-rays and radiology reports to adapt it to generate synthetic medical images from 
text prompts. The key components are a frozen Variatonal Auto-Encoder (VAE) encoder for 
compressing inputs, a U-Net denoiser conditioned on text embeddings from a CLIP encoder 
and a VAE decoder. During inference, random noise is encoded and progressively denoised 
by the U-Net guided by the text prompt, ultimately yielding a synthetic chest X-ray reflect-
ing the described imaging findings (Fig. 13).

More recently, several methods have aimed at further advancing the augmentation per-
formance and quality of the generated images, making use of more recent and sophisticated 
DM architectures. The method of Guo et al. (2023) introduces PD-DDPM, an accelerated 
DM for medical image segmentation that uses a pre-segmentation network to generate noisy 
segmentation predictions, which are then denoised in fewer steps compared to a vanilla 
DM. The method of Xia et al. (2022) employs a DDPM that is trained on paired low-dose 
Computed Tomography (CT) and normal-dose CT images. During the FD process, Gauss-
ian noise is gradually added to the normal-dose image based on a time varying schedule, 
resulting in a noisy image following a standard normal distribution. During the RD process, 
the U-Net learns to recover the clean normal-dose image from the noisy one, conditioned on 

Fig. 13 Examples of application-specific DM-based image augmentation (medical imaging), given a spe-
cific textual prompt. Image from Chambon et al. (2022a)
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the corresponding low-dose image, by predicting and removing the noise at each timestep. 
To improve sampling efficiency, a fast ordinary differential equation (ODE) solver, termed 
DPM-Solver (Lu et al. 2022a), is integrated into the RD process, allowing for faster sam-
pling with fewer steps, while maintaining or improving denoising performance compared 
to the original DDPM.

4.3.2 Other domain-specific applications

Apart from medical imaging, DMs have also been successfully applied to a wide range of 
domain-specific applications, as detailed in the followings.

Facial Recognition and Editing: The methods of Boutros et al. (2023) and Huang et al. 
(2024) focus on generating high-fidelity synthetic faces to improve recognition accuracy. 
These approaches typically use conditional DMs trained on large-scale facial datasets and 
generate new faces, by sampling from the learned distribution. Some methods also utilize 
approaches like multi-level text-related augmentation (Wu et al. 2023c) or disentangled 
representations (Ding et al. 2023) to enable more fine-grained control over the generated 
faces, so as to change specific attributes or expressions (Fig. 14).

Fashion Industry: The methods of Li et al. (2023c) and Kong et al. (2023) enable realistic 
virtual try-on experiences, allowing users to visualize clothing items on different body types 
and poses. These approaches typically use conditional DMs trained on datasets of clothing 
images and corresponding body poses, and generate new try-on images, by conditioning on 
the desired clothing item and pose (Fig. 15).

Agriculture: The methods of Deng and Lu (2023), Muhammad et al. (2023) and Chen et 
al. (2023a) focus on enhancing datasets for plant disease detection and weed recognition; 
thereby, improving the accuracy of agricultural models. Such approaches typically employ 
conditional DMs trained on datasets of plant images with different diseases or weed types, 
and generate new examples, by sampling from the learned distribution.

Fig. 14 Examples of application-specific DM-based image augmentation (facial recognition and editing), 
involving different expressions, lighting and poses. Image from Ding et al. (2023)
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Video Editing and Generation: The methods of Shin et al. (2024) and Wu et al. (2023a) 
enable high-quality video manipulation and generation from text prompts. These approaches 
typically rely on the use of 3D or video diffusion models that can generate coherent 
sequences of video frames, based on textual descriptions or input videos.

Cultural Heritage: The method of Cioni et al. (2023) adopts an LDM to generate diverse, 
semantically consistent variations of artworks, conditioned on textual descriptions. In par-
ticular, the LDM performs a conditional denoising diffusion process in the latent space 
learned by a convolutional autoencoder, taking the original artwork image and its encoded 
caption as inputs. By varying the generation seed, the LDM outputs multiple variations 
of the artwork that preserve the content described in the caption. These synthetic image-
caption pairs augment the original art dataset, bridging the domain gap between natural 
images and artworks, while improving visual grounding of artistic concepts. The augmented 
dataset, containing both real and synthetic data, facilitates more effective training of down-
stream vision-language models, like image captioning and cross-modal retrieval ones.

Object Detection: The approaches of Fang et al. (2024), Zhang et al. (2023c), Li et al. 
(2025), Tang et al. (2024c) and Ma et al. (2024a) leverage DMs to generate synthetic data, 
significantly enhancing model training and performance. These methods make use of condi-
tional DMs trained on object detection datasets and generate new samples, by conditioning 
on the desired object categories and bounding boxes.

4.4 Comparison of DM-based methods for image augmentation

Having presented the various methodologies for DM-based image augmentation, this sec-
tion realizes a detailed and in-depth comparison among the most important methods of 
each category, in order to provide further critical insights. In particular, Table 3 analyzes 
several key/important methods, focusing on the following aspects: a) The particular task to 
be performed, b) If/which FDM is used, c) Input requirements, d) Key exhibited innovation, 
e) Notable limitations, and f) Fine-tuning requirements. The considered methods, which 
cover all main categories of the proposed taxonomy (presented in Fig. 2 and Table 2) were 
selected based on the following criteria: a) High citation impact and community adoption, 
b) Introduction of novel technical approaches or architectures, and c) Demonstration of 
significant practical capabilities or limitations that influenced subsequent research works.

From the observation of Table 3, several key insights can be derived. In particular, SD is 
shown to be the most widely used FDM across multiple tasks, mainly due to its open-source 

Fig. 15 Examples of application-specific DM-based image augmentation (fashion industry), using differ-
ent input images. Image from Li et al. (2023c)
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Method Task FDM Input 
requirements

Key 
innovation

Notable limitations Fine-tuning 
requirements

Semantic Manipulation
 Yang 
et al. 
(2023a)

I2I Translation SD Source image + 
reference image 
+ mask

Content 
bottleneck 
prevents 
trivial 
copying

May not preserve 
fine details

Self-
supervised 
training on 
OpenImages

 Kim 
et al. 
(2022)

I2I Translation – Image + text 
prompt

Multi-attri-
bute control 
via noise 
combination

Limited to pretrained 
domains

Reference 
images for 
domain 
finetuning

 Lug-
mayr 
et al. 
(2022)

Inpainting – Image + binary 
mask

Resampling 
strategy 
for mask-
agnostic 
inpainting

Significantly slower 
than GAN-based 
methods

–

 Meng 
et al. 
(2021)

Editing – User strokes or 
patches

No task-spe-
cific training 
needed

Quality depends on 
initial noise level

–

 Kawar 
et al. 
(2023)

Editing Ima-
gen| 
SD

Image + text 
prompt

Linear 
semantic 
embedding 
interpolation

Slow optimization 
(8min/image)

Target text 
embedding 
optimization

 Brooks 
et al. 
(2023)

Instruction-
based Editing

SD 
v1.5

Image + text 
instruction

Direct 
instruction 
followed 
without 
optimization

Cannot handle spatial 
reasoning

Image-
instruction-
output 
triplets 
training

 Avra-
hami 
et al. 
(2022b)

Local Editing – Image + mask + 
text prompt

Spatially 
blended 
noise guid-
ance for 
local editing

30 s generation time 
per image

–

 Chen 
et al. 
(2024e)

Object 
Teleportation

SD 2.1 Target object + 
scene image + 
location box

Zero-shot 
object 
teleportation 
with identity 
preservation

Small detail preser-
vation issues

Light UNet 
decoder 
fine-tuning

 Huang 
et al. 
(2023a)

Multi-
condition 
Generation

– Multiple optional 
conditions (text/
sketch/depth/etc.)

Composable 
condi-
tions with 
exponential 
control 
space

Performance tradeoff 
in single-condition 
scenarios

60 M image 
multi-task 
training

 Zhang 
et al. 
(2023b)

Image Control SD 
1.5/2.1

Image + text 
prompt

Zero 
convolution 
prevents 
catastrophic 
forgetting

Higher GPU memory 
and training time

Train-
able copy 
with zero 
convolution

Personalization and Adaptation
 Ruiz 
et al. 
(2023)

Personalized 
Generation

SD 3–5 concept 
images + text 
prompt

Concept-
specific 
generation 
with few 
shots

Context-appearance 
entanglement issues

Class-spe-
cific prior 
preservation 
loss

Table 3 In-depth comparison of key DM-based augmentation methods
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Method Task FDM Input 
requirements

Key 
innovation

Notable limitations Fine-tuning 
requirements

 Gal 
et al. 
(2022)

Personalized 
Generation

SD 
v1.4

3–5 concept 
images

Single word 
embedding 
for concept 
representa-
tion

Lengthy optimization 
(2 h per concept)

5000 op-
timization 
steps with 
reconstruc-
tion loss

 Qiu 
et al. 
(2023)

Personalized 
Generation

SD 1.5 5–50 concept 
images + text 
prompt

Orthogonal 
transfor-
mation 
preserving 
hyperspheri-
cal energy

Color and detail 
distortions

Orthogonal 
weight 
transforma-
tion with 
energy 
preservation

 Mo-
kady 
et al. 
(2023)

Editing SD v1 Image + source 
caption

Null-text 
optimiza-
tion without 
model 
tuning

Requires editable 
parts in source 
caption

–

 Zhang 
et al. 
(2023e)

Style Transfer SD Content image + 
style image

Single-
image style 
learning via 
attention

Long training time 
(20min/image)

–

 Wu 
et al. 
(2023b)

Style Transfer SD 
v1.4

Image + text 
prompt

Text 
embedding 
optimization 
for attribute 
editing

Struggles with fine-
grained edits

No fine-
tuning, only 
embedding 
optimization

 Bansal 
and 
Grover 
(2023)

Classification SD 1.5 Class labels or 
images

Zero-shot 
data gen-
eration for 
robustness

Limited to ImageNet-
like datasets

–

Zhang 
et al. 
(2022)

Classification SD 1.4, 
DALL-
E2

Small-scale seed 
dataset

Guided 
imagination 
for class-
consistent 
generation

Generated samples 
less informative than 
real ones

Domain 
adaptation 
fine-tuning

Application Specific Augmentation
 San-
chez 
et al. 
(2022)

Brain Lesion 
Detection

– Multi-channel 
MRI scans

Counterfac-
tual healthy 
image 
generation

Limited to brain 
tumor scenarios

Healthy/
unhealthy 
classifica-
tion training

 Pinaya 
et al. 
(2022)

Brain MRI 
Generation

– Age, sex, brain 
metrics

Anatom-
ically-
controlled 
brain MRI 
synthesis

Limited to training 
distribution range

Conditional 
training on 
demograph-
ic variables

 Fang 
et al. 
(2024)

Object 
Detection

SD Visual prior + 
text prompt

Category-
calibrated 
CLIP 
filtering

Performance drops 
with excessive syn-
thetic data

–

Table 3 (continued) 
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characteristic. Additionally, an important trade-off between processing speed and output 
quality is observed, where methods requiring optimization or fine-tuning typically produce 
better results, but at the cost of longer processing times (often ranging from minutes to 
hours per image). Another notable trend is the evolution from the usage of single- to multi-
condition mechanisms, where methods increasingly support various input modalities (i.e., 
text, images, masks, sketches) for more precise control; however, this increased flexibility 
is often accompanied with higher computational requirements and more complex training 
procedures. Investigating category-specific patterns, semantic manipulation methods typi-
cally focus on architectural innovations and generally require less fine-tuning, often imple-
menting zero- or few-shot techniques; these methods also emphasize user control through 
various input modalities. On the other hand, personalization and adaptation methods dem-
onstrate a clear trend towards optimization-heavy approaches, exhibiting notably longer 
processing times (often at the scale of hours) and more complex fine-tuning requirements, 
in order to preserve identity and style characteristics. Moreover, application-specific meth-
ods are characterized by their specialized nature, requiring domain-specific training data 
and often implementing custom architectures or loss functions tailored to their selected 
application fields; these methods typically prioritize task-specific performance metrics over 
general-purpose applicability.

5 Evaluation metrics

Evaluating the performance of DM-powered image augmentation methods is crucial to 
understanding their impact on visual image analysis tasks. This section outlines the method-
ologies used to assess both the efficacy and efficiency of such frameworks, while a detailed 
quantitative comparison of DM-based and traditional image augmentation methods is also 
provided.

5.1 Quantitative evaluation

Quantitative evaluation involves the measurement of the numerical improvements in model 
performance, as well as the perceptual quality and diversity of the augmented images. This 
type of evaluation provides objective metrics that can be directly compared and analyzed.

5.1.1 Improvement in model performance

The primary quantitative evaluation involves the measurement of the (potential) improve-
ment in downstream task performance metrics of learned models (e.g., classifiers), trained 
while incorporating augmented images that have been generated by the DM. The more the 
downstream model’s performance increase, compared to the baseline of realizing training 
using only the original non-augmented dataset, the better the DM that conducted the aug-
mentation is considered to be. The following cases are most commonly met:

 ● Classification Tasks: Metrics such as accuracy, precision, recall, and F1-score are used 
to evaluate the performance of classification models. These metrics provide a com-
prehensive overview regarding how well the model can distinguish between different 
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classes (Trabucco et al. 2023; Chowdary et al. 2023; Packhäuser et al. 2023; Sagers et 
al. 2022; Bansal and Grover 2023).

 ● Segmentation Tasks: Metrics such as Intersection over Union (IoU) and Dice coefficient 
are used for evaluating segmentation models. IoU measures the overlap between the 
predicted segmentation and the ground truth one, while the Dice coefficient assesses the 
similarity between these two (Xie et al. 2023a; Schnell et al. 2024; Sanchez et al. 2022; 
Valvano et al. 2024).

 ● Object Detection Tasks: Metrics such as mean Average Precision (mAP), precision and 
recall are crucial for evaluating object detection models. mAP calculates the average 
precision across different recall levels and is a standard metric for assessing the accu-
racy of object detectors. On the other hand, precision and recall provide insights into 
the detector’s ability to correctly identify objects and to minimize false positives (Fang 
et al. 2024; Zhang et al. 2023c).Analyzing these metrics makes it easier to determine 
the degree of improvement in the downstream DNN’s predictive capabilities, which is 
introduced by training set augmentation.

5.1.2 Perceptual quality and diversity

To evaluate the quality and diversity of augmented images, the following metrics are most 
commonly used:

 ● Fréchet Inception Distance (FID): FID (Heusel et al. 2017) measures the distance be-
tween the distribution of the generated images and the real ones in the feature space of a 
pretrained Inception network (Szegedy et al. 2016). It captures both the quality and the 
diversity of the generated images. Lower FID scores indicate higher quality and more 
diverse generated images (Esser et al. 2024; Ho et al. 2020; Rombach et al. 2022; Xie et 
al. 2023b; Avrahami et al. 2023b; Gandikota et al. 2024; Zhang et al. 2023b; Pinaya et 
al. 2022; Couairon et al. 2022; Fu et al. 2024).

 ● Inception Score (IS): IS (Salimans et al. 2016) evaluates the quality of the generated 
images based on the confidence of the class predictions of a pretrained Inception model. 
High IS values imply that the generated images are diverse and that each image is recog-
nized with high confidence as belonging to a specific class (Blattmann et al. 2022; Gafni 
and Wolf 2020; Luo et al. 2023; Chen et al. 2023a).

 ● Kernel Inception Distance (KID): KID (Bińkowski et al. 2018) comprises an alterna-
tive to the case of FID, while it estimates the maximum mean discrepancy between the 
feature representations of the generated and the real image samples. Lower KID scores 
indicate better quality and similarity to real images (Muhammad et al. 2023; Li et al. 
2023c; Kumari et al. 2023b; Meng et al. 2021).

 ● Perceptual Metrics: Metrics such as Learned Perceptual Image Patch Similarity (LPIPS) 
(Zhang et al. 2018) and Structural Similarity Index Measure (SSIM) (Wang et al. 2004) 
are used to assess the perceptual similarity between generated and real samples, or be-
tween the input and the output of image editing tasks (Kulikov et al. 2023; Wang et al. 
2022b; Li et al. 2023b; Zhang et al. 2024d; Qiu et al. 2023; Chambon et al. 2022b; Xu 
et al. 2024).Often estimating and combining all above metrics together provides a com-
prehensive overview of the augmented images’ quality and variability.
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5.2 Qualitative evaluation

Qualitative evaluation involves subjective assessments of visual realism and relevance of 
the augmented images. Such types of evaluations are crucial for ensuring that the synthetic 
data generated by DMs is not only technically sound, but also perceptually convincing and 
contextually appropriate.

5.2.1 Visual quality of augmented images

Assessing the visual quality of augmented images involves inspection by experts, aiming 
to determine how closely the synthetic images resemble real ones. Expert evaluators are 
requested to analyze the following main, among others, aspects factors:

 ● Realism: Evaluation of whether the augmented images are indistinguishable from 
real ones, focusing on characteristics such as texture, lighting, and color consistency 
(Sanchez and Tsaftaris 2022; Kwon and Ye 2022; Dong et al. 2022).

 ● Detail Preservation: It is essential to ensure that the augmented images retain critical 
details necessary for the task, such as fine-grained textures and structural integrity (Ruiz 
et al. 2023; Kawar et al. 2023; Dong et al. 2022).

 ● Editing Consistency: Experts assess how closely the augmented images maintain se-
mantic coherence with the original input and the editing instructions. This involves the 
evaluation of whether the edits are applied accurately to the intended regions, while 
preserving the overall context and structure of the image (Wang et al. 2023a; Kawar 
et al. 2023; Tang et al. 2024b; Li et al. 2023b).Overall, the above described subjective 
assessment metrics facilitate towards validating the visual authenticity and usability of 
the generated images.

5.2.2 Relevance and contextual appropriateness

Evaluating the relevance and contextual appropriateness of augmented images ensures that 
they maintain semantic coherence and they are suitable for the specific application at hand. 
This involves the following main, among others, aspects:

 ● Contextual Consistency: Experts review whether the augmented images fit well within 
the expected context of the task. For example, in medical imaging, synthetic images 
should accurately reflect the characteristics of the examined disease or the condition be-
ing modeled (Gandikota et al. 2023; Han et al. 2023; Ruiz et al. 2024; Wang et al. 2023a; 
Zhang et al. 2023e; Tewel et al. 2023).

 ● Semantic Accuracy: The augmented images should convey the correct semantic infor-
mation, avoiding any misleading or nonsensical variations. This is critical for applica-
tions where accurate representation of objects and scenes is of paramount importance 
(Huang et al. 2023b; Li et al. 2023a).

 ● Task-Specific Features: The relevance of augmented images is also evaluated based on 
their utility for the specific task at hand. For instance, in object detection, the images 
should contain objects that are correctly annotated and positioned, in order to enhance 
efficient model training (Chambon et al. 2022a; Valvano et al. 2024).The above de-
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scribed qualitative assessment ensures that the augmented images not only look realis-
tic, but also serve their intended purpose in a satisfactory way.

5.3 Quantitative evaluation of DM-based and traditional image augmentation 
methods

Having presented the various quantitative and qualitative evaluation metrics, this subsection 
realizes a comprehensive quantitative comparison among DM-based and traditional image 
augmentation methods. In particular, Table 4 reports the performance merits of traditional 
(namely the approaches of Kang and Kim (2023); Yun et al. (2019); Rao et al. (2021); 
Cubuk et al. (2020); Kim et al. (2021); Dwibedi et al. (2017); Zhang et al. (2017); DeVries 
and Taylor (2017)) and key DM-based augmentation methods, applied separately to com-
mon downstream tasks, namely image classification, object detection and semantic segmen-
tation. The table illustrates the reported improvement that each DM-based augmentation 
method (denoted DM-AUG) induces, compared to the considered traditional one (denoted 
BASIC-AUG).

From the observation of Table 4, it can be seen that almost all DM-based augmentation 
methods demonstrate performance improvements across a wide range of tasks and datasets, 
over conventional augmentation approaches. The improvement level varies across different 
tasks, exhibiting substantial (or outstanding) gains in some cases and more modest enhance-
ments in others. It needs to be highlighted though that this increase in performance is also 
associated with correspondingly significant computational overhead for DM-based meth-
ods. In particular, DM-powered generation time may vary considerably across methods and 
hardware setups, ranging between 0.43 and 6.6 s per image using high-performing GPUs 
(e.g., H800, V100, RTX3090, etc.), while traditional methods (e.g., Cutout, GridMask, etc.) 
operate in approximately 0.008 s per image (Zhang et al. 2022; Fu et al. 2024). Indicatively, 
the total generation time of DM-based methods for whole datasets may vary for relatively 
small datasets from 2 h (e.g., Watebirds (Sagawa et al. 2019)) up to 7 h (e.g., iWildCam 
(Koh et al. 2021)), while certain methods may require up to 10 h to generate 100K images 
(Dunlap et al. 2024; Du et al. 2024). Apart from computational cost, DM-powered methods 
also often require additional storage space for maintaining the generated images, unlike 
traditional augmentation approaches that can be performed on-the-fly (Islam et al. 2024b). 
Moreover, prompt quality dependency is usually a common bottleneck that requires proper 
construction and careful selection; poor prompt selection could lead to unrealistic or unsuit-
able generated images that may degrade performance (Islam et al. 2024a, b).

6 Challenges and future research directions

Image augmentation using DM-powered methodologies constitutes a promising approach 
for enhancing the diversity and quality of training datasets. However, despite the rapid prog-
ress and significant advances that have been observed in the field in the recent period, sev-
eral open challenges, which at the same time comprise future research direction, remain to 
be addressed. These can broadly be divided into general ones, which concern the application 
of DMs in general and regardless of the particular application case, and challenges that are 
particularly important for image augmentation.
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Dataset BASIC-AUG method DM method BA-
SIC-
AUG 
(%)

DM-
AUG 
(%)

Gain 
(%)

Classification-Top-1 Accuracy
 Aircraft (Maji et al. 
2013)

Guided-SR (Kang and Kim 2023) Chen et al. (2024c) 77.38 84.79 + 9.57
Cutmix (Yun et al. 2019) Wang et al. (2024b) 89.44 90.25 + 0.90
CAL-AUG (Rao et al. 2021) Michaeli and (Fried 

2024)
81.90 87.40 + 6.71

GuidedAP (Kang and Kim 2023) Islam et al. (2024b) 84.32 85.84 + 1.80
GuidedAP (Kang and Kim 2023) Islam et al. (2024a) 84.32 85.76 + 1.70

 Caltech101 (Fei-
Fei et al. 2004)

RandAugment (Cubuk et al. 2020) Li et al. (2023a) 58.55 59.17 + 1.05
RandAugment (Cubuk et al. 2020) Fu et al. (2024) 60.10 85.30 + 41.93
RandAugment (Cubuk et al. 2020) Zhang et al. (2022) 57.80 65.10 + 12.61

 Cars (Krause et al. 
2013)

RandAugment (Cubuk et al. 2020) Li et al. (2023a) 86.55 88.53 + 2.28
RandAugment (Cubuk et al. 2020) Fu et al. (2024) 65.80 87.10 + 32.37
RandAugment (Cubuk et al. 2020) Zhang et al. (2022) 43.20 75.70 + 75.23
Guided-SR (Kang and Kim 2023) Chen et al. (2024c) 91.01 93.04 + 2.23
Cutmix (Yun et al. 2019) Wang et al. (2024b) 94.73 95.21 + 0.50
RandAugment (Cubuk et al. 2020) 
+ Cutmix (Yun et al. 2019)

Michaeli and (Fried 
2024)

92.70 93.80 + 1.18

GuidedAP (Kang and Kim 2023) Islam et al. (2024b) 90.27 91.30 + 1.14
GuidedAP (Kang and Kim 2023) Islam et al. (2024a) 90.27 91.26 + 1.09

 CIFAR-100 
(Krizhevsky et al. 
2009)

GuidedAP (Kang and Kim 2023) Islam et al. (2024a) 81.20 82.50 + 1.70
Cutmix (Yun et al. 2019) Li et al. (2023a) 77.56 75.75 − 2.37
GuidedMixup (Kang and Kim 
2023)

Islam et al. (2024b) 81.20 82.58 + 1.69

 Flowers (Nilsback 
and Zisserman 
2008)

RandAugment (Cubuk et al. 2020) Li et al. (2023a) 41.97 45.61 + 8.67
Cutmix (Yun et al. 2019) Zhang et al. (2022) 83.80 88.30 + 5.36
GuidedMixup (Kang and Kim 
2023)

Wang et al. (2024b) 99.40 99.54 + 0.14

 iWildCam (Koh et 
al. 2021)

RandAugment (Cubuk et al. 2020) Rahat et al. (2024) 76.78 85.37 + 11.18
Cutmix (Yun et al. 2019) Dunlap et al. (2023) 77.56 84.87 + 9.42

 CUB (Wah et al. 
2011)

Cutmix (Yun et al. 2019) Rahat et al. (2024) 70.48 73.16 + 3.80
Co-Mixup (Kim et al. 2021) Chen et al. (2024c) 79.41 80.82 + 1.77
Cutmix (Yun et al. 2019) Wang et al. (2024b) 87.23 87.56 + 0.37

 Pets (Parkhi et al. 
2012)

RandAugment (Cubuk et al. 2020) Li et al. (2023a) 57.45 73.71 + 28.39
RandAugment (Cubuk et al. 2020) Fu et al. (2024) 61.50 86.50 + 40.65
RandAugment (Cubuk et al. 2020) Zhang et al. (2022) 48.00 73.40 + 52.91

Few-shot Classification (8 examples per class)-Top-1 Accuracy
 MS COCO (Lin et 
al. 2014)

Std aug Trabucco et al. 
(2023)

42.00 47.00 + 11.90

Std aug Lingenberg et al. 
(2024)

47.00 57.00 + 21.67

Object Detection - mAP
 PASCAL VOC 
(Everingham et al. 
2010)

RandAugment (Cubuk et al. 2020) Li et al. (2025) 78.20 79.10 + 1.15

 DIOR-R (Cheng et 
al. 2022)

CopyPaste + Flip (Dwibedi et al. 
2017)

Tang et al. (2024c) 38.75 41.69 + 7.58

Table 4 Quantitative comparison of DM-based and traditional image augmentation methods. (‘Std aug’ refers 
to standard simple geometric transformations, such as rotation, crop, etc)
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6.1 Computational cost and efficiency

A significant factor associated with the application of any DM-based architecture con-
cerns its very high computational cost. In particular, DM require substantial computational 
resources and can be time-consuming for both training and inference, which may delay their 
development and deployment. On the contrary, a trained Generative Adversarial Network 
(GAN) Generator synthesizes an output image directly, i.e., with just one forward pass. The 
iterative denoising process of DMs renders it relatively difficult to scale such methods to 
real-world applications, large datasets and complex tasks. For example, SD requires more 
than 200,000 GPU hours (Rombach et al. 2022) to be trained on the LAION-5B dataset with 
one A100 40GB GPU. Approaches such as DDIM and DPM-Solver++ (Lu et al. 2022b) 
target to speed up the sampling process and to improve efficiency.

Given this context, a significant avenue for future research comprises the development 
of more efficient DM architectures and optimization methods. Promising directions include 
knowledge distillation approaches (Luo 2023) to create lightweight models (Song et al. 
2024), quantization (Shang et al. 2023) or advanced parallelization strategies (Shih et al. 
2024). Recent work on progressive distillation (Salimans and Ho 2022) and one-step gener-
ation (Yin et al. 2024) shows potentials for dramatically reducing inference time. Moreover, 
research into specialized acceleration (Ma et al. 2024b; Wang et al. 2024a) could facilitate 
towards bridging the efficiency gap between DMs and other generative approaches.

Dataset BASIC-AUG method DM method BA-
SIC-
AUG 
(%)

DM-
AUG 
(%)

Gain 
(%)

Out-of-Distribution Classification - OOD Accuracy
(Sagawa et al. 
2019)

RandAugment (Cubuk et al. 2020) Dunlap et al. (2023) 30.32 46.63 + 53.79
Mixup (Zhang et al. 2017) Chen et al. (2024c) 72.52 76.16 + 5.03
Cutmix (Yun et al. 2019) Wang et al. (2024b) 71.23 72.47 + 1.74

Segmentation - mIoU
 KITTI (Fritsch et 
al. 2013)

Cutout (DeVries and Taylor 2017) Ma et al. (2024a) 78.65 82.20 + 4.51
Cutout (DeVries and Taylor 2017) Ma et al. (2024a) 77.65 78.34 + 0.88
Cutout (DeVries and Taylor 2017) Ma et al. (2024a) 92.35 92.72 + 0.40

 PASCAL VOC 
(Everingham et al. 
2010)

Std aug Schnell et al. (2024) 78.10 78.90 + 1.02

Medical Image Classification-Top-1 Accuracy
 OrganMNIST 
(Yang et al. 2021)

RandAugment (Cubuk et al. 2020) Zhang et al. (2022) 79.60 80.70 + 1.38

 PathMNIST (Yang 
et al. 2021)

RandAugment (Cubuk et al. 2020) Zhang et al. (2022) 79.20 86.90 + 9.72

 BreastMNIST 
(Yang et al. 2021)

RandAugment (Cubuk et al. 2020) Zhang et al. (2022) 68.70 77.40 + 12.66

 Shenzhen TB (Jae-
ger et al. 2014)

RandAugment (Cubuk et al. 2020) Fu et al. (2024) 75.50 83.50 + 10.59

Table 4 (continued) 
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6.2 Lack of fine-grained control and interpretability

Interpretability and controllability of DMs is generally problematic, making it challenging 
to understand how they generate their outputs (e.g., given specific conditions). The users 
have limited ability to precisely control specific attributes, objects, or regions in the gener-
ated images, which can hinder the usefulness of these methods for certain applications.

As a result, it is important for future research to explore advanced conditioning mecha-
nisms and interpretability tools. Research directions may include developing more sophis-
ticated attention-based control mechanisms (Hertz et al. 2022) and creating interactive 
interfaces for fine-grained manipulation (Lee et al. 2024).

6.3 Limited diversity and realism of generated data

One of the most prevalent challenges is the (relatively) constrained diversity and realism of 
the synthetic images generated by DMs. While DMs have shown impressive capabilities in 
generating high-quality images, they often struggle to capture the full diversity and com-
plexity of real-world data distributions. This limitation can lead to a domain gap between 
the synthetic and real data, which can hinder the effectiveness of using the generated data for 
training downstream tasks, like image classification and object detection.

Several methods have been introduced so far that aim to address this issue by incorpo-
rating approaches that improve the diversity and realism of the generated samples, such as 
using language enhancement (Dunlap et al. 2022) and post-filtering (e.g., CLIP-based filter-
ing (Kim et al. 2022)). Further relevant research towards the direction of domain adaptation 
(Chopra et al. 2024) or style transfer (Kwon and Ye 2022) may facilitate towards bridging 
the gap between real and synthetic image distributions.

6.4 Model overfitting and catastrophic forgetting

One of the most common challenges faced by many of the methods covered in this study 
comprises the issue of model overfitting and catastrophic forgetting (Cywi’nski et al. 2024). 
In particular, overfitting occurs when a model learns to fit the training data too closely, at 
the expense of generalization to new, unseen data. This can be especially problematic when 
working with limited training data, as is often the case in domains like medical imaging. 
On the other hand, catastrophic forgetting refers to the tendency of trainable models to 
forget previously learned representations, when being finetuned on new data or tasks. This 
is a major hurdle for approaches that aim to adapt pretrained models to specific domains or 
styles. Directly finetuning large models on limited datasets can lead to a rapid loss of the 
originally learned knowledge structures.

Recent approaches that target to mitigate this Zeng et al. (2024); Zhong et al. (2024); 
Zając et al. (2023) leverage various methodologies, including selective parameter updates, 
dual-stream architectures, and careful management of the denoising process, to maintain 
model generalization while adapting to new tasks or concepts. Future research along the 
promising directions of relevant continual learning (Smith et al. 2023) or metalearning 
(Zhang et al. 2024a) approaches may bear the potentials for further alleviating any remain-
ing issues.
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6.5 Evaluation metrics and benchmarks

Evaluating the effectiveness of DM-powered image augmentation remains a challenge itself. 
Traditional metrics like FID and KID may not fully assess/capture the quality and diversity 
of the generated samples, especially for complex or specialized domains. Additionally, the 
lack of standardized benchmarks and evaluation protocols makes it difficult to compare dif-
ferent methods and to assess their generalization and augmentation abilities.

To this end, developing more comprehensive and both general as well as domain-specific 
evaluation metrics, while also establishing common benchmarks and datasets, comprises 
an important area for future research for enabling more rigorous and consistent evaluation 
(Betzalel et al. 2024).

6.6 Ethical considerations and bias

Large-scale T2I DMs are often trained on Web-scraped datasets, which can contain harmful 
stereotypes, offensive content, and biases related to gender, race, age, and other sensitive 
attributes. These biases can get amplified in the generated images, leading to unfair repre-
sentations and perpetuating societal stereotypes. An additional ethical consideration is the 
use of copyrighted or private data in the training datasets without proper consent or attribu-
tion. This raises significant concerns regarding the ownership and fair use of the generated 
images, as well as the potential for privacy violations.

Such concerns may partially be mitigated by technical measures, which, however, would 
require research on detecting and mitigating biases in both training and generated images. 
Similarly, creating fairness-aware training procedures (Friedrich et al. 2023) and establish-
ing ethical guidelines for data collection and model deployment (Zhang et al. 2023a) are 
potentially worthy avenues for investigation, towards more transparent and trustworthy 
DMs.

7 Conclusion

Image augmentation comprises a fundamental task in modern computer vision, since it 
allows the enhancement of training datasets with realistic synthetic samples, permitting the 
automatic context- and semantics-aware editing of given reference images, etc. Diffusion 
Models (DMs) have shown significant promise in generating realistic and diverse images, 
capturing complex relationships and structures in high-dimensional image data. Moreover, 
the ability to condition the generation process using class labels, textual descriptions, or 
visual prompts allows for targeted augmentation, generating images that fulfill specific 
requirements based on the task at hand.

This study provided a comprehensive overview of the recent advancements in DM-pow-
ered image augmentation, a taxonomy of the main categories of existing methods, insights 
regarding the practical usage of DM-powered techniques for semantic manipulation, per-
sonalization and adaptation, and application-specific image augmentation, and a review of 
the relevant performance evaluation metrics. Promising and significant avenues for future 
research include the improvement of the efficiency of DMs, i.e., reducing computational 
costs and improving scalability, enhancing interpretability and control over generated 
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images, as well as boosting diversity and realism of synthetic data. Finally, developing new, 
robust evaluation metrics and addressing ethical considerations emerges as a critical key to 
the progress and responsible deployment of DMs in image augmentation.
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