
1

AI4FIDS: Multimodal Federated Intrusion Detection
Panagiotis Radoglou-Grammatikis†‡, Pavlos S. Bouzinis§, Ioannis Makris§, Thomas Lagkas¶, Vasileios Argyriou∥,

Georgios Th. Papadopoulos∗∗, Panagiotis Fouliras††, George Seritan‡‡ and Panagiotis Sarigiannidis†

Abstract—The rapid progression of smart technologies creates
several advantages like enhanced connectivity, personalisation
solutions and environmental sustainability. However, this revolu-
tion creates also several cyber risks. In particular, the attackers
have the ability to synthesise and automate advanced attack
scenarios over time, while it is evident that Artificial Intelligence
(AI) allows the composition of intelligent attack vectors that
can adapt in real-time to conventional countermeasures. Despite
the fact that AI can also benefit defensive mechanisms, there
are still functional and privacy issues that need to be resolved.
First, AI requires appropriate datasets that can differ from
environment to environment. In addition, these datasets usually
are not available due to privacy issues. Finally, adversarial attacks
have the ability to target and affect the AI-based decision-
making process. Therefore, in light of the previous remarks,
we provide AI4FIDS, a multimodal Intrusion Detection System
(IDS) for critical infrastructures. AI4FIDS leverages Federated
learning (FL) and combines multiple data sources, thus allowing
cooperative intelligence across multiple domains in a private
manner and minimising the impact of potential adversarial
attacks. In this paper, we present in detail the architectural
design and specifications of AI4FIDS, while the evaluation results
demonstrate their detection performance, taking into account
several datasets and aggregation strategies. Finally, based on the
evaluation results, we discuss how the overall reliability and
detection capabilities (in terms of detecting multi-step attack
scenarios) of AI4FIDS can be improved by combining the
detection outcomes of the components behind AI4FIDS.

Index Terms—Artificial Intelligence, Cybersecurity, Data Het-

∗ This project has received funding from the European Union’s Horizon
Europe research and innovation programme under grant agreement No
101070450 (AI4CYBER). Disclaimer: Funded by the European Union. Views
and opinions expressed are, however, those of the author(s) only and do not
necessarily reflect those of the European Union or European Commission.
Neither the European Union nor the European Commission can be held
responsible for them.

† P. Radoglou-Grammatikis and P. Sarigiannidis are with the De-
partment of Electrical and Computer Engineering, University of Western
Macedonia, Campus ZEP Kozani, 50100, Kozani, Greece - E-Mail:
pradoglou@uowm.gr; psarigiannidis@uowm.gr

‡ P. Radoglou-Grammatikis is also with K3Y Ltd, William Gladstone 31,
1000, Sofia, Bulgaria - E-Mail: pradoglou@k3y.bg
§ P. S. Bouzinis and I. Makris are with MetaMind Innovation P.C., Kila

Kozani, 50100, Kozani, Greece - E-Mail: pbouzinis@metamind.gr;
makris@metamind.gr

¶ T. Lagkas is with the Department of Computer Science, Democritus
University of Thrace, Kavala Campus, 65404, Kavala, Greece - E-Mail:
tlagkas@cs.duth.gr

∥ V. Argyriou is with the Department of Networks and Digital
Media, Kingston University London, Penrhyn Road, Kingston
upon Thames, Surrey KT1 2EE, London, UK - E-Mail:
vasileios.argyriou@kingston.ac.uk

∗∗ G. Th. Papadopoulos is with the Department of Informatics and
Telematics, Harokopio University of Athens, Omirou 9, Tavros, GR17778,
Athens, Greece - E-Mail: g.th.papadopoulos@hua.gr

†† P. Fouliras is with the Department of Applied Informatics, University of
Macedonia, 156 Egnatia Street, GR54-636, Thessaloniki, Greece - E-Mails:
pfoul@uom.edu.gr

‡‡ G. Seritan is with Electrical Engineering Faculty, Politehnica
University of Bucharest, Bucharest, Romania - E-Mail:
george.seritan@upb.ro

erogeneity, Federated Learning, Intrusion Detection

I. INTRODUCTION

D espite the fact that smart technologies, such as the
Internet of Things (IoT) [1], Artificial Intelligence (AI)

[2] and Beyond 5G (B5G) [3] networks offer multiple benefits,
they also raise significant cybersecurity risks. In particular, the
attackers have the ability to create multi-step attack scenarios
that may result in disastrous consequences or even fatal acci-
dents. According to MITRE ATT&CK, characteristic examples
are C0034 - 2022 Ukraine Electric Power Attack, C0004 -
CostaRicto and C0029 - Cutting Edge. These scenarios inte-
grate a sequence of carefully designed steps that may exploit
potential vulnerabilities or weaknesses against various levels
of an organisation’s infrastructure or system architecture. Fur-
thermore, the attackers leverage the power of generative AI in
order to synthesise sophisticated cyberattacks that may adapt
to potential mitigation actions and countermeasures. Usually,
these attacks try to evade or mislead conventional security
mechanisms. Finally, although AI can play a significant role
in the arsenal of cybersecurity, adversarial attacks can impact
the decision-making processes of AI models [4].

Therefore, considering the aforementioned challenges, the
presence of reliable and effective Intrusion Detection Systems
(IDS) is necessary. Typically, IDS rely on predefined rules,
referred to as signatures, that represent particular patterns
of known cyberattacks. These signatures are compared to
network and system activities in order to identify potential
malicious activities and generate relevant security alerts. How-
ever, these signatures require continuous updates in order
to take into account the evolving threat landscape. On the
other hand, AI can play a significant role in the detection
of potential cyberattacks. Both Machine Learning (ML) and
Deep Learning (DL) models have already demonstrated their
efficiency regarding the detection of potential cyberattacks and
operational anomalies [5]. Nevertheless, both ML and DL rely
on labeled datasets that vary from environment to environment.
Moreover, these datasets are not usually available publicly due
to privacy issues. Finally, as noted, adversarial attacks have
the ability to affect their prediction performance. To this end,
Federated Learning (FL) promises one of the new big steps
in the era of AI, allowing knowledge sharing in a private
manner. In particular, FL introduces a federated paradigm of
collective intelligence where multiple FL clients train their
ML/DL models locally while a federated server is responsible
for aggregating the training parameters of the local models
and generating a global federated model.

Driven by the previous discussion, in this paper, we intro-
duce AI4FIDS, a multimodal FL-driven IDS that combines

2

four federated detection systems, namely (a) Network-based
Federated Intrusion Detection System (N-FIDS), (b) Log-
based Federated Intrusion Detection System (L-FIDS), (c)
Operational-based Federated Intrusion Detection System (O-
FIDS) and (d) Vissual-based Federated Intrusion Detection
System (V-FIDS). N-FIDS is responsible for detecting poten-
tial cyberattacks, using network flow statistics. On the other
hand, L-FIDS and O-FIDS rely on system logs and operational
data, respectively. Finally, V-FIDS leverages visual representa-
tions for the detection process. Finally, AI4FIDS integrates the
Training for Federated Intrusion Detection (T4FIDS) module,
which is responsible for the federated training of the detection
systems mentioned above.

• Multimodal FL-driven intrusion detection: A mul-
timodal IDS is provided, leveraging FL for collective
intelligence across collaborative clients and detection
systems. The multimodality of the proposed IDS lies in
the utilization of various types of data within the scope
of intrusion detection, including network flow statistics,
system logs, operational data and visual representations.
Finally, the IDS design specifications and architectural
structure are presented with granular abstraction layers, as
specified by the C4 model [6] to ensure ease of adoption
and potential for future extensions by leveraging this
modular design.

• Comparison study of FL aggregation strategies: A
comparison study of various FL aggregation strategies
is conducted for different data types in the context of
intrusion detection systems. Specifically, well-establised
strategies such as FedAvg, FedProx, FedAdam, FedYogi,
FedAdagrad are tested to assess their effectiveness within
intrusion detection systems.

• Improved Detection Capabilities and Reliability:
Based on the detection outcomes of AI4FIDS, we discuss
how the overall detection reliability and capabilities (in
terms of detecting multistep attack scenarios) of AI4FIDS
can be enhanced by employing majority voting, weighted
majority voting and time window analysis mechanisms.
Majority voting can enhance detection accuracy and
reduce false alarms, while temporal correlation helps
identify multi-step attacks and attack vectors. The analy-
sis includes a mathematical formulation and algorithmic
description of those methods, towards leveraging and
combining the detection outcomes of heterogeneous IDS,
whose decisions rely on various type of data.

Therefore, the rest of this paper is organised as follows. Sec-
tion II discusses similar works in this field, thus drawing the
motivation behind our work and highlighting our contributions.
Section III provides preliminary information regarding FL.
Next, section IV describes the architecture and specifications
of AI4FIDS. Finally, section V focuses on the evaluation
analysis of AI4FIDS, while section VI presents how the overall
reliability and detection capabilities (in terms of detecting
multi-step attack scenarios) of AI4FIDS can be improved.
Finally, section VII concludes this paper.

II. RELATED WORK, MOTIVATION AND CONTRIBUTIONS

Several works have already investigated the impact of FL in
the cybersecurity sector and, more specifically, in the context
of intrusion detection and prevention. Some survey papers in
this field are listed in [7]–[11]. In particular, M. Alazab et
al. [7] discuss the impact and role of FL in cybersecurity,
discussing particular use cases, applications and challenges.
Similarly, in [8], B. Ghimire and B. Rawat present a review
paper regarding the advancements of FL and cybersecurity in
a complementary manner. On the one hand, they discuss the
role of FL in cybersecurity applications (including intrusion
detection), paying special attention to IoT and Cyber-physical
systems (CPS). Second, they investigate the role of cybersecu-
rity in FL. In [9], E. M. Campos et al. provide a comprehensive
survey regarding the use of FL for the IoT, discussing the
role of FL-based intrusion detection and how FL can further
evolve existing ML/DL-driven approaches. Finally, the authors
highlight potential open issues and research directions for
future work. In [10], L. Lavour et al. present a systematic
literature review regarding how FL-driven IDS can be further
evolved. After providing the methodological framework, the
authors analyse existing works based on several criteria, such
as detection mechanisms, mitigation strategies, data sources,
types of federated learning, local models, aggregation meth-
ods, datasets, and communication details (such as overhead
reduction and encryption measures). Based on these criteria,
a relevant taxonomy of FL-driven IDS is introduced, and a
comparison of existing research works is carried out. Lastly,
the authors discuss open issues and research directions. In
[11], S. Arisdakessian et al. introduce a survey for intrusion
detection in the context of IoT, combining and discussing
several technological and research areas, such as FL, game
theory, social psychology and Explainable Artificial Intelli-
gence (XAI). Based on 19 criteria, they study and analyse
several works, thereby identifying research gaps regarding
the aforementioned technological and research areas. On the
other hand, A. Sqib et al. focus their attention on combining
blockchain and FL in order to enhance federated intrusion
detection strategies. After providing the necessary background,
they analyse existing IDS and IPS that combine both FL
and blockchain. According to this analysis, they summarise
research challenges and future steps. To complete our analysis,
subsequently, we focus our attention on some technical works
providing remarkable FL-driven IDS.

In [12], S. I. Popoola et al. introduce an FL-driven detec-
tion system, allowing individual nodes to train Deep Neural
Networks (DNNs) with their respective local network traffic
data. A dedicated server receives the resulting parameters
from each model, aggregates them using the Fed+ aggregation
strategy, and broadcasts the aggregated parameters back to
all nodes. The architecture of the DNNs consists of an input
layer, two fully connected hidden layers, and an output layer.
The simulation results of this proposed system demonstrate
an impressive accuracy of 99.27%, precision of 97.03%,
TPR of 98.06%, and an F1-score of 97.50%. These findings
demonstrate the efficiency of the FL models compared to local
DNNs. To determine the optimal aggregation strategy, the

3

authors conducted several experiments, evaluating Federated
Averaging (FedAvg), Fed+, and Coordinate Median (CM).
According to the evaluation results, it seems that Fed+ exceeds
the other state-of-the-art aggregation strategies.

In [13], O. Friha et al. proposed FELIDS. FELIDS is an
FL-driven IDS that preserves data privacy and security by
training models locally while increasing the detection rate by
aggregating the knowledge which was produced by training the
local models of all participating devices, resulting in a global
model with improved detection. In terms of architecture, the
proposed system relies on a Convolutional Neural Network
(CNN), which consists of pooling and fully connected layers
for the pre-processing of the data, and a Recurrent Neural
Network (RNN), like LSTM, for processing input sequences.
Regarding the evaluation of FELIDS, CSE-CIC-IDS2018,
MQTTset and InSDN datasets are used, while the experimental
results demonstrate the efficiency of FELIDS over centralised
approaches.

In [14], R. Zhao et al. introduce an FL-driven IDS, relying
on Long Short-Term Memory (LSTM) networks. The primary
goal of the authors is to identify high-risk malicious behaviour,
including activities such as directory traversal attacks, bulk
reading and deletion of files, and bulk software uninstallation.
In terms of implementation, a Bidirectional LSTM (BiLSTM)
– a two-way LSTM network is deployed to all clients. The
SEA dataset is utilised for the federated training process.
Each local model receives user commands as input, undergoes
tokenisation during preprocessing, and feeds the results into
the forward and backward LSTMs. Subsequently, a dropout
layer is introduced to randomly deactivate a fraction of neurons
during training, preventing overfitting. The clients send their
training parameters to the server, which aggregates them using
a weighted average method to update the parameters of the
global model. This updated global model is sent back to the
users. The initial comparison between the BiLSTM and a
Convolutional Neural Network (CNN) shows that the former
presents higher accuracy and lower loss. Furthermore, the
comparison analysis between the FL Bi-LSTM (FL-LSTM)
and a Centralised Bi-LSTM (CL-LSTM) demonstrates that the
FL-LSTM model achieves better performance.

In [15], the authors presented Fed-ANIDS for the detec-
tion of network intrusions, which utilizes various type of
autoencoders and leverages the reconstruction error to classify
network traffic as malicious or benign. Regarding the experi-
mental setup of FL, all clients consist of a local discriminator,
a local decoder, and a local encoder, while a server consists
of a global encoder, decoder, and discriminator. Fed-ANIDS
was tested on USTC-TFC2016, CIC-IDS2017, and CSE-CS3-
CIC-IDS2018 datasets, while different aggregation strategies
were also evaluated (FedAvg, FedProx). The results showed
that FedProx achieved better results compared to FedAvg in
the majority of the datasets and metrics.

The authors in [16] evaluate the utilization of FL in
the context of IDS, by testing an artificial neural network
for the identification of network attacks. The datasets that
the proposed method used was ToN IoT and CICIDS2017,
while the performance metrics were accuracy, precision, recall,
and F1-score. Regarding the experimental results, FedAvg,

FedAdam, FedAdagrad, and FedAvgM were tested, and it
showed that FedAvg and FedAvgM performed better than the
two adaptive algorithms, with an exception on CICIDS2017,
where FedAdahtad achieved 90% in all evaluation metrics.

In [17], the authors examined FL in the domain of IoT
for cyber threats identification. In particular, they presented
an experimental evaluation that relied on real-world settings
and utilized a distributed FL-based IDS. Regarding the exper-
imental setup, the TON-Iot dataset was used. Two different
AI models were evaluated, namely a deep belief network and
a DNN, and three different aggregation strategies were tested
(FedAvg, FedProx, FedYogi). The results showcased that the
FL-based IDS, has no significant performance gap from the
centralized IDS performance.

In [18], G. Shingi et al. highlight that due to the different na-
ture of each network’s data, a single model cannot fit all cases.
For this reason, they propose a Segmented FL (Segmented-FL)
framework, in which similar networks are grouped (segmen-
tation) by periodically evaluating local models. The global
model aggregates the local models’ parameters, utilising a
weighted average algorithm based on the size of the dataset in
each network. Regarding the evaluation of Segmented-FL, it
seems that the proposed solution outperforms centralised and
traditional approaches, utilising the CIDDS-001 and CIDDS-
002 datasets.

Undoubtedly, the previous research endeavors provide in-
valuable insights, practical solutions, and methodological
frameworks for integrating the collective intelligence of FL
into IDS. However, it is worth noting that the majority of
current solutions mainly focus on network traffic data with-
out considering other data types and sources. Furthermore,
it is important to highlight that many of these works rely
on outdated datasets, which may not be suitable for smart
environments such as industrial energy settings, the finance
sector, and healthcare ecosystems. In addition, the current
solutions typically adopt FedAvg as their aggregation method
without exploring other or custom aggregation strategies that
may result in better detection efficiency. Finally, it is worth
mentioning that the current implementations do not take into
account the effects of potential adversarial attacks. Therefore,
considering the previous points, in this paper we provide
the first release of AI4FIDS, a multimodal IDS, integrating
multiple FL-driven IDS that process data types from multiple
sources. emphasis is given to the modular design of AI4FIDS,
where the role of each module and the interconnections
between them are outlined to provide insight into the system’s
architectural specifications. It is noted that this approach,
which emphasizes system design, is generally absent from the
existing literature.Regarding the evaluation process, adequate
security datasets are used, while several aggregation methods
are taken into consideration with the goal to tackle data
heterogeneity issues. Additionally, extensions for integrating
the outputs of different types of IDS are proposed, utilizing
majority voting and temporal correlation. On the one hand,
majority voting can improve detection accuracy and mini-
mize false positives, since it relies on multiple heterogeneous
detections. On the other hand, temporal correlation aids in
identifying multi-step attacks and attack vectors. Finally, these

4

methods facilitate the generation of a unified decision, based
on the outputs of different IDS.

III. OVERVIEW OF FEDERATED LEARNING

We consider an FL environment consisting of N clients,
indexed as i ∈ N = {1, 2, ..., N} and a server. Each client
owns a dataset Di = {(xj

i , y
j
i) ∈ RS × C}Di

j=1, where xj
i

is the j-th input sample, Di = |Di| is the number of samples
and S denotes the number of features. Additionally, we denote
C as the set to which the label yji belongs, e.g., it could be
a subset of the real numbers, a set of categorical values for
classification tasks, etc. In this paper, C contains the labels of
cyberattacks and will be described below in this work, along
with the description of the datasets used in the evaluation
experiments.

The overall dataset across all clients is denoted as D =
∪

i∈N
Di and the size of all training data is D =

∑N
n=i Di. The

loss function of client i, is defined as:

Fi(w) ≜
1

Di

Di∑
j=1

ϕ
(
w,xj

i , y
j
i

)
, ∀i ∈ N , (1)

where ϕ(w,xj
i , y

j
i) captures the error of model parameter w

for the input-output pair (xj
i , y

j
i). The ultimate goal of the FL

process is to obtain the global parameter w, which minimises
the loss function on the whole dataset.

F (w) =

N∑
n=1

niFi(w), (2)

where ni =
Di

D is the proportion of data samples owned by
client i relative to the entire dataset. In a nutshell, the FL
process is executed for a specified number of communication
rounds. At the t-th round, the server firstly broadcasts the
global model w(t) to all clients. Each client i updates its local
model w(t)

i via a gradient-based method on the loss function
Fi and uploads it to the server. Finally, the server generates
the global model w(t+1) by using an aggregation strategy of
its preference. The aforementioned process is repeated for the
selected number of rounds until the convergence of the global
model is achieved. As depicted in Fig. 1, the federated training
procedure is conducted as follows.
Step #1 - Federated Model Initialisation: A federated
training starts with the Federated Server initialising the initial
federated model that will be distributed to the participating
Federated Clients that will train these local data. It is important
to note that this step can take place in two different ways. On
the one hand, the Federated Server may know the architecture
and the number of parameters of the federated model. In this
case, the Federated Server does not require any information
from the Federated Clients. On the other hand, the Federated
Server may not have prior knowledge of the architecture and
the parameters of the federated model. Therefore, in this case,
the Federated Server has to ask the Federated Clients about the
architectural schema and parameters of the federated model.
Step #2 - Local Training: The participating clients receive
the federated model and start training a local model with their
own local data. It is worth mentioning that each Federated

Client has the ability to adjust training parameters like batch
size, epochs and optimiser.
Step #3 - Parameter Update: After completing the local
training, the parameters of the local models are transmitted
to the Federated Server. Encryption and anonymisation tech-
niques can be used in order to further protect the identity and
characteristics of the Federated Clients. To further enhance
privacy, differential privacy techniques may be employed for
the transmission of the local models.
Step #4 - Aggregation: After receiving the parameters from
the Federated Clients, the Federated Server is responsible
for aggregating them, thus creating a global model. For this
purpose, various aggregation methods can be applied, with
the default method being FedAvg, which considers clients’
contributions based on the proportion of their datasets.
Step #5 - Federated Model Update: After the parameter
aggregation process, the global federated model is broadcast
to the Federated Clients, who then proceed with the Local
Training step.

IV. AI4FIDS ARCHITECTURE AND SPECIFICATIONS

To define the architecture and specifications of AI4FIDS,
we leverage the abstraction layers of the C4 model [6]. This
framework is usually adopted in software engineering for visu-
alising and documenting the architecture of software systems.
It was created by Simon Brown and stands for (a) Context, (b)
Containers, (c) Components, and (d) Code, that represent the
different levels of abstraction in the model. In this paper, we
focus on the context, containers and components of AI4FIDS,
while an open version of the code will be provided through the
AI4CYBER project. Therefore, Fig. 2 illustrates the Context
level of AI4FIDS, providing the relationship of AI4FIDS with
external and internal entities. First, as a multi-datasource-
based IDS, AI4FIDS retrieves various kinds of data from a
Critical System, such as network traffic, system logs, and
operational data. This data is generated through the interaction
of the Critical System (which is under inspection by AI4FIDS)
with external End Users and External Networks/Systems (such
as the Internet). Next, AI4FIDS is responsible for analysing
this data and detecting potential cyberattacks and anomalies.
Based on the detection outcomes, AI4FIDS then sends the
corresponding security events to another external system called
Security Information and Event Management (SIEM). The
primary purpose of a SIEM system is to enhance an organi-
sation’s security posture by providing real-time visibility into
security incidents and threats, facilitating incident detection
and response, and helping organisations comply with security
regulations and policies. More specifically, a SIEM system
is responsible for normalising, correlating, and prioritising
the AI4FIDS security events. Finally, the System Security
Operator can monitor, analyse and assess the AI4FIDS security
events through the SIEM analysis.

Next, while the Context level provides a high-level overview
of the system’s interactions with external entities, the Con-
tainer level delves deeper into the architecture of AI4FIDS.
In particular, the Container level structures the architecture
of the system (i.e., AI4FIDS) into logical entities that may

5

Global Model

Local Dataset

Global Model

Local Dataset

Global Model

Local Dataset

Step #2: Local Model Training Step #2: Local Model Training

Step #1: Globel

Model Initialisation

Federated Client #1

Local Model

Federated Client #2

Local Model

Federated Client #N

Local Model

Step #2: Local Model Training

Federated Server

Federated Model

Step #3: Parameters

Update
Step #3: Parameters

Update

Step #3: Parameters

Update

Step #4: Aggregation &

Step #5: Global Model Update

Fig. 1. Federated Learning Workflow

communicate with each other and with external entities. There-
fore, as illustrated in Fig. 3, AI4FIDS is composed of five
main containers: (a) L-FIDS, (b) O-FIDS, (c) N-FIDS, (d) V-
FIDS and T4FIDS. First, L-FIDS receives system logs through
an integration bus and is responsible for analysing them and
detecting potential cyberattacks. Similarly, O-FIDS receives
operational data from the integration bus and recognises po-
tential cyberattacks and operational anomalies. On the other
hand, both N-FIDS and V-FIDS capture the network traffic
data of the underlying Critical System and detect potential
cyberattacks through network flow statistics and binary rep-
resentations, respectively. In the first case, L-FIDS and O-
FIDS use an integration bus that may rely on asynchronous
technologies like Apache Kafka. In contrast, both N-FIDS
and V-FIDS use tcpdump to capture the network traffic
data. Depending on the nature, the functional characteristics
and the available data of the Critical System, one or more
of the aforementioned containers could be used, respectively.
More technical information regarding the technologies of each
container is presented in Fig. 4 regarding the Component level
of AI4FIDS. It is worth mentioning that the detection process
of the previous containers relies on pre-trained AI models that

are generated in an offline and federated manner by T4FIDS.
More specifically, in each case, a federated model is generated
by T4FIDS, which is responsible for orchestrating and carrying
out the federated training procedure in a decentralised way
across multiple data sources. Python and Flower framework
are used for this purpose. Finally, based on the detection
results, L-FIDS, O-FIDS, N-FIDS and V-FIDS use the inte-
gration bus to send their security events to SIEM.

Building upon the Context and Container levels, the Com-
ponent level structures further each container, providing their
architectural components and communications. Additionally,
the core technologies for each component are provided, while
L-FIDS, O-FIDS, N-FIDS, and V-FIDS follow a similar ar-
chitectural design.

First, L-FIDS is composed of four components, namely: (a)
Log Collection Module, (b) Data Preprocessing Module, (c)
INF-Detection Engine and (d) Security Event Generation and
Notification Module. The Log Collection Module is respon-
sible for retrieving the system logs from the integration bus.
These logs may include, among others, memory usage, disk
and process-scheduling activities, as well as CPU-related in-
formation. Next, the Data Preprocessing Module receives and

6

System Security Operator
[Person]

The group or individuals responsible for

monitoring alerts and managing the

AI4FIDS.

Critical System
[Software System]

Represents the infrastructure and elements (like

computing systems routers, switches, servers)

monitored by the AI4FIDS.

External Networks/Systems
[Software System]

External networks and systems that interact with

the infrastructure monitored by AI4FIDS

End Users
[Person]

Individuals or systems within the

network who use the network resources.

Use and and interractions

with the critical infrastructure

Use and and interractions

with the critical infrastructure

Data such as network traffic, logs and operational data are

sent to the AI4FIDS for analysis.

Monitor, analyse and audit

the security events and alerts

Detection & Analysis

AI4FIDS
[Software System]

It is responsible for detecting potential intrusions

and anomalies based on avrious data sources

SIEM
[Software System]

Responsible for receiving, normalising and

prioritising the security events generated by

AI4FIDS
Send security events

Fig. 2. AI4FIDS Context Level

preprocesses this data in terms of data cleaning, normalisation,
and label encoding utilising Python packages, such as Numpy
and Pandas. This preprocessing step is essential for ensuring
that the data is in a consistent form and ready for further
analysis. Then, the INF-Detection Engine is responsible for
the online inference task, receiving the preprocessed data with
their formatting complying to that of the Data Preprocessing
Module, loading the pre-trained federated model and identi-
fying potential cyberattacks. Finally, based on the detection
events, the Security Event Generation and Normalisation Mod-
ule creates and publishes the corresponding security events to
the integration bus. The structure of O-FIDS is identical to
L-FIDS. However, in this case, the Data Collection Module of
O-FIDS retrieves operational data instead of system logs.

In what follows, N-FIDS comprises the following com-
ponents: (a) Network Traffic Capturing Module, (b) Flow
Statistics Generation Module, (c) INF-Detection Engine, and
(d) Security Event Generation and Notification Module. It is
noted that the components (c) and (d) serve a role similar
to that of L-FIDS and O-FIDS. In contrast to the previous
container setups, the Network Traffic Capturing Module is
responsible for capturing inbound and outbound traffic of the
network and storing it in pcap files. Subsequently, the Flow
Statistics Generation Module processes the network traffic
data and generates flow statistics (e.g., mean packet inter-
arrival time, total backward and forward packets, etc.) of the
bi-directional traffic captured by the previous module. The
statistics serve as input features for the local FL training phase,

carried out by T4FIDS.

Finally, V-FIDS comprises five components: (a) Network
Traffic Capturing Module, (b) Network Flow Extraction Mod-
ule, (c) Visualisation Module, (d) INF-Detection Engine, and
(e) Security Event Generation and Notification Module. The
roles of the Network Traffic Capturing Module and Security
Event Generation and Notification Module remain identical
to those in the previous containers. However, the Network
Flow Extraction Module is responsible for receiving network
traffic data (i.e., pcap files) from the previous component and
organising them into flows, resulting in multiple pcap files,
which is achieved using the pcap-splitter tool. The Visualisa-
tion Module then takes these pcap files and transforms them
into visual representations. Specifically, each byte from the
pcap files is translated into a pixel, following a colour scheme:
(a) Black: 00, (b) White: FF, (c) Blue: representing printable
characters, and (d) Red: everything else. Consequently, each
pixel is placed on a two-dimensional visual representation,
taking into consideration the proximity of binary elements.
Binary elements that are close within the pcap files are
positioned as closely as possible on the two-dimensional
representation, with the Hilbert Curve employed to arrange the
pixels within the image. The Hilbert Curve is part of the family
of recursive Space-Filling Curves (SFCs), which divide a space
into multiple segments and visit those segments in a specific
order. SFCs, also known as Peano curves, transform data
from one-dimensional space into an n-dimensional space while
preserving the properties of the original data. The scope of

7

Critical System
[Software System]

Represents the infrastructure and elements (like

computing systems routers, switches, servers)

monitored by the AI4FIDS.

External Networks/Systems
[Software System]

External entities that interact with the

infrastructure monitored by AI4FIDS

End Users
[Person]

Individuals or systems within the

network who use the network resources.

Use and and interractions

with the critical infrastructure

Use and and interractions

with the critical infrastructure

Detection & AnalysisSIEM
[Software System]

Responsible for receiving, normalising and

prioritising the security events generated by

AI4FIDS

N-FIDS
[Container: Python, tcpdump, CICFlowMeter,

Scapy, NFStream, Flower, Tensorflow/Keras,

Apache Kafka,]

It is responsible for detecting intrusion and

anomalies based on network traffic data

L-FIDS
[Container: Python, Flower, Tensorflow/Keras,

Apache Kafka]

It is responsible for detecting intrusion and

anomalies based on system logs

O-FIDS
[Container: Python, Flower, Tensorflow/Keras,

Apache Kafka]

It is responsible for detecting intrusion and

anomalies based on operational data

V-FIDS
[Container: Python, tcpdump, pcap-splitter,

Binvis, Flower, Tensorflow/Keras, Apache Kafka]

It is responsible for detecting intrusion and

anomalies based on operational data

AI4CYBER Message Bus
[Container: Apache Kafka]

This container acting as message bus for

the communication of the AI4CYBER

containers

AI4FIDS
[Software System]

Send system logs

[Apache Kafka]

Send operational data

[Apache Kafka]

System Security

Operator
[Person]

The group or individuals responsible for

monitoring alerts and managing the

AI4FIDS.

Monitor, analyse and audit

the security events and alerts

Send security events

[Apache Kafka]

Send system logs and operational data

[Apache Kafka]

Send security events

[Apache Kafka]

Send triaged security events

[Apache Kafka]

Network traffic data

Network traffic data

T4FIDS
[Container: Python, Flower, Tensorflow/Keras]

Responsible for the federated training procedure

Get training data (offline)

Delivery final

federated model

Delivery final

federated model

Fig. 3. AI4FIDS Container Level

SFC encompasses the two-dimensional unit square and, more
generally, an n-dimensional unit hypercube. Therefore, a two-
dimensional unit square corresponds to a visual representation
of n × n pixels, and the Hilbert curve represents a continuous
curve for each unit square (i.e., pixel of the image). The Hilbert
Curve is a space-filling fractal curve that was introduced by
the German mathematician David Hilbert in 1891. It is one
of the earliest examples of a continuous, self-replicating curve
that can fill a two-dimensional space. The Hilbert Curve is
constructed by recursively subdividing a square into smaller
squares and then connecting their corners with a single con-
tinuous curve. The process starts with a single square, and in
each iteration, that square is divided into four smaller squares.
The curve then traverses the smaller squares in a specific

order, creating a path that fills the entire space within the
original square. One of the most remarkable properties of the
Hilbert Curve is that it can completely cover any 2D area,
making it a space-filling curve. In this process, each byte of
the binary pcap file is mapped to a specific colour according
to a colour scheme as described above. Subsequently, the
Hilbert curve is employed to convert the one-dimensional data
into a two-dimensional visual representation. Next, the INF-
Detection Engine takes the responsibility of AI inference,
receiving the visual representations, loading the appropriate
pre-trained federated model, and detecting potential cyberat-
tacks. Finally, through the integration bus, the Security Event
Generation and Notification Module generates and publishes
the corresponding security events.

8

Critical System
[Software System]

Represents the infrastructure and elements (like

computing systems routers, switches, servers)

monitored by the AI4FIDS.

External Networks/Systems
[Software System]

External entities that interact with the

infrastructure monitored by AI4FIDS

End Users
[Person]

Individuals or systems within the

network who use the network resources.

Use and and interractions

with the critical infrastructure

Use and and interractions

with the critical infrastructure

Detection & Analysis

SIEM
[Software System]

Responsible for receiving, normalising and

prioritising the security events generated by

AI4FIDS

AI4CYBER Message Bus
[Container: Apache Kafka]

This container acting as message bus for

the communication of the AI4CYBER

containers

AI4FIDS
[Software System]

System Security

Operator
[Person]

The group or individuals responsible for

monitoring alerts and managing the

AI4FIDS.

Log Collection Module
[Component: Apache Kafka]

It is responsible for collecting the system logs

L-FIDS
[Container]

Data Pre-processing Module
[Component: Python, Pandas, Numpy]

It is responsible for pre-processing the various

logs

INF - Detection Engine
[Component: Python, Flower,

Tensorflow/Keras]

It is responsible for the detection process

Security Event Generation and

Notification Module
[Component: Python, Flower,

Tensorflow/Keras]

It is responsble for generating and

communicating the security events

O-FIDS
[Container]

Data Collection Module
[Component: Apache Kafka]

It is responsible for collecting the various logs

Data Pre-processing Module
[Component: Python, Pandas, Numpy]

It is responsible for pre-processing the systems

logs data

INF - Detection Engine
[Component: Python, Flower,

Tensorflow/Keras]

It is responsible for the detection process

Security Event Generation and

Notification Module
[Component: Python, Flower,

Tensorflow/Keras]

It is responsble for generating and

communicating the security events

Network Traffic Capturing

Module
[Component: Tcpdump]

It is responsible for cpaturing the network traffic

data

Flow Statistics Generation

Module
[Component: CICFlowMeter, Python,

Pandas, Numpy]

It is responsible for generating and pre-

processing flow statistics

INF - Detection Engine
[Component: Python, Flower,

Tensorflow/Keras]

It is responsible for the detection process

Security Event Generation and

Notification Module
[Component: Python, Flower,

Tensorflow/Keras]

It is responsble for generating and

communicating the security events

Network Traffic Capturing

Module
[Component: Tcpdump]

It is responsible for cpaturing the network traffic

data

Network Flow Extraction

Module
[Component: Python, pcap-splitter]

It is responsible for splitting and organising the

network traffic data into network flows

Visualisation Module
[Component: Python, Binvis]

It is responsible for generating visual

representations

INF - Detection Engine
[Component: Python, Flower,

Tensorflow/Keras]

It is responsible for the detection process

System logs

Pre-processed system logs

Detection results

Operational data

Pre-processed operational data

Detection results

Network traffic data

Pre-processed operational dataflow statistics

Detection results

Network traffic data

Network flow traffic data

Binary visualisations

Security Event Generation and

Notification Module
[Component: Python, Flower,

Tensorflow/Keras]

It is responsble for generating and

communicating the security events

Detection resultsN-FIDS
[Container]

V-FIDS
[Container]

Send system logs

[Apache Kafka]

Send operational data

[Apache Kafka]

Send security

events

[Apache Kafka]

Send security

events

[Apache Kafka]

Send security

events

[Apache Kafka]

Send security

events

[Apache Kafka]

System logs and operational data

[Apache Kafka]

Send (through traffic

capturing)

network traffic data

Send (through traffic capturing)

network traffic data

Send the security events

[Apache Kafka]

Monitor analyse and audit the security events and alerts

[e.g. JSON/HTTP]

Send triaged

security events

[Apache Kafka]

Detection & Analysis

T4FIDS
[Container]

Federated Clients(s)
[Component: Python, Flower,

Tensorflow/Keras]

It is responsible for the local training

Federated Server
[Component: Python, Flower,

Tensorflow/Keras]

It is responsible for the aggregation process

Get training data

Initial weights

[Flower]

Local weights

[Flower]

Final federated model

[Flower]

Final federated model

[e.g. JSON/HTTP]

Fig. 4. AI4FIDS Component Level

Finally, T4FIDS is composed of two components: (a) Fed-
erated Server and (b) Federated Client(s) that together carry
out the federated training procedure as illustrated in Fig. 1
and described in section III. It is worth mentioning that
T4FIDS generates the global FL model, which is utilised by
the INF-Detection Engine to detect intrusions in real-time
during inference phase. Finally, it is noted that the model
architecture, which depends on the number of features and
the type of attacks, is also specified in T4FIDS.

V. EVALUATION ANALYSIS

This section aims to showcase and evaluate the detection
efficiency of AI4FIDS. For this purpose, the following sub-
sections summarise the datasets, metrics and the aggregation
strategies used within the scope of the evaluation analysis.

Finally, the evaluation results are presented, including the
respective corresponding confusion matrices.

A. Evaluation Datasets and Metrics

Four security datasets are employed: (a) TON IoT Dataset
[19], (b) CSE CIC IDS 2018 Dataset [20], (c) CIC IoT Dataset
2022 [21] and (d) UOWM Modbus/TCP Intrusion Detection
Dataset. In particular, the TON IoT Dataset is used to evaluate
the detection efficiency of L-FIDS and O-FIDS. Next, the CSE
CIC IDS 2018 Dataset and CIC IoT Dataset 2022 are utilised
for the evaluation process of N-FIDS. Finally, the UOWM
Modbus/TCP Intrusion Detection Dataset (which is under
publication by the authors) is used to validate the effectiveness
of V-FIDS. On the other hand, five evaluation metrics are
used to calculate the detection performance of AI4FIDS. These

9

metrics are provided through the Equations 3-7. True Positive
(TP) indicates the number of malicious samples classified
correctly. Similarly, True Negative (TN) denotes the number of
benign instances that are categorised correctly. On the other
hand, False Negative (FN) implies the number of malicious
data samples that are identified mistakenly as normal cases.
Finally, False Positive (FP) denotes the number of benign
instances classified as cyberattacks or operational anomalies.
Next, the metrics used within our evaluation analysis are
discussed.
Accuracy calculates the ratio between the data samples clas-
sified correctly and the total instances.

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

TPR indicates the ratio of the malicious samples detected
successfully as cyberattacks or anomalies.

TPR =
TP

TP + FN
(4)

FPR expresses the ratio of the normal instances recognised
mistakenly as cyberattacks or operational anomalies.

FPR =
FP

FP + TN
(5)

The F1 score calculates the golden ratio between TPR and
Precision. Precision is measured by dividing TP by the sum
of TP and TN.

F1 =
2× TP

2× TP + FP + FN
(6)

AUC =

∫ b

a

TPR(FPR−1(x))dx = P (X1 > X0) (7)

Where X1 is the score for a positive instance (i.e., malicious
instances) and X0 is the score for a negative instance (i.e., nor-
mal cases). The AUC represents the probability that AI4FIDS
will rank a randomly chosen positive instance higher than a
randomly chosen negative one.

B. Aggregation Strategies

Five aggregation strategies are employed within the scope
of a comparison study. These aggregation strategies are sum-
marised below.
FedAvg [22] represents a generalisation of Federated Stochas-
tic Gradient Descent (FedSGD), which, in turn, is a federated
adaptation of the conventional Stochastic Gradient Descent
(SGD). The primary distinctions between these two fundamen-
tal fusion techniques lie in the number of locally performed
SGD steps on each client and the nature of the data collected
on the aggregation server. In FedSGD, each participating client
executes a single SGD step during each federated training
round. Conversely, with FedAvg, each participating worker
conducts one or more SGD steps in each federated training
round. Once all the SGD steps are completed, each client
transmits the updated parameters (weights and biases) of its
model to the federated server. To elaborate, the federated

server initiates the process by sending its initial model param-
eters to the participating federated clients. These clients then
undertake several steps of SGD to update their local model
parameters. Upon the completion of local model training and
the transmission of resulting parameters to the federated server,
the aggregation of updated models occurs server-side. The
federated server calculates the updated global parameters by
employing a weighted average of the collected parameters.
Finally, the resulting aggregated global model parameters
are transmitted back to the clients. This entire procedure
constitutes a round of training within a FL environment.
FedAvg is influenced by three key parameters: the first being
the fraction c, which represents the proportion of available
clients participating in a federated training round. Notably, if
c equals 1, all clients partake in the federated training round.
The second parameter concerns the number of local epochs,
determining how many epochs each client will perform for
updating its local model parameters. The third parameter is
the batch size (B) utilized for client model updates.
FedProx [23] serves as an extension of FedAvg, aiming
to utilize all available clients—where FedAvg opts for a
subset—while also ensuring convergence, a guarantee not
provided by FedAvg. Clients often exhibit diverse constraints,
such as limited resources in terms of hardware capabilities,
network connection reliability, and battery status. FedProx ac-
commodates varying degrees of local workload across devices
based on their system resources and averages the solutions re-
ceived from each client. To prevent divergence, FedProx intro-
duces a proximal term hi(w;w(t)) = Fi(w)+ µ

2 ∥w−w(t)∥2,
effectively curbing the impact of variable local updates. Rather
than seeking the minimum of the local function Fi, client i
locally employs its chosen solver to approximate the minimum
of hi(w;w(t)). The constant penalty µ influences conver-
gence, with FedProx exhibiting behaviour akin to FedAvg
when µ = 0. By selecting an appropriate µ, hi(w;w(t))
becomes convex if Fi is non-convex; additionally, when Fi

is convex, hi becomes µ-strongly convex.
FedAdam [24] takes advantage of the strengths of Adam and
AdaGrad, the famous adaptive optimizers. Similar to Adam,
FedAdam employs a moving average of squared gradients
to dynamically modify the learning rate, preventing it from
reaching extremes that might destabilize the training process.
Nevertheless, in contrast to Adam, FedAdam incorporates a
second-moving average of gradients to monitor the training
process’s progression. This feature enables FedAdam to make
more assertive adjustments to the learning rate, facilitating
accelerated convergence. Through two decay parameters, con-
trols the importance that the algorithm will give to historical
updates and the importance that will be given to current model
updates.
FedAdagrad [24] represents a tailored iteration of the Ada-
Grad optimizer expressly crafted for FL. It incorporates a per-
parameter learning rate that dynamically adapts in response to
the gradients’ magnitudes. This adaptive adjustment mitigates
the risk of the learning rate becoming excessively large or
small, thereby averting potential instability in the training
process. This strategy performs the aggregation based on the
difference between each client model and the server’s global

10

model.
FedYogi [24] facilitates the famous optimisation algorithm,
Yogi, which is focused on non-convex optimization problems.
FedYogi is a strategy that aggregates the clients’ models using
the distance they have from the server’s model, the direction
of this difference (sign), and a decay parameter.

C. Experimental Setup & Evaluation Results

This subsection describes the evaluation results of AI4FIDS.
In particular, Table I summarises the experimental results of
L-FIDS with the TON IoT Dataset, focusing on the detection
of five cyberattacks, namely (a) Denial of Service (DoS),
(b) Distributed DoS (DDoS), (c) injection, (d) password
brute-forcing and (e) Man-In-The-Middle (MITM). Before
the federated training procedure, typical preprocessing steps
like data cleaning, label encoding, and features’ normalisation
with StandardScaler took place. The aggregation strategies
mentioned above are evaluated in the context of a comparison
study, while it is worth mentioning that for each aggregation
strategy, 20 training rounds with three epochs took place.
Based on the evaluation results, the best detection perfor-
mance is achieved through FedProx with ACC = 82.29%,
TPR = 69.75%, FPR = 12.74%, F1 = 83.79% and
AUC = 95.82%.

TABLE I
EVALUATION RESULTS OF L-FIDS WITH TON IOT DATASET -

COMPARISON OF AGGREGATION STRATEGIES

Strategy ACC TPR FPR F1 AUC

FedAvg 36.65% 32.30% 12.74% 44.72% 71.41%
FedProx 82.29% 69.75% 3.29% 83.79% 95.82%
FedAdam 45.31% 43.90% 10.64% 52.23% 77.75%
FedAdagrad 57.50% 53.13% 8.36% 63.97% 81.12%
FedYogi 43.47% 41.29% 11.75% 52.86% 75.85%

Similarly, Table II summarises the evaluation results of
O-FIDS with the TON IoT Dataset. In this case, seven
cyberattacks are considered: (a) backdoor, (b) injection, (c)
password brute-forcing, (d) DDoS, (e) ransomware, (f) Cross-
Site Scripting (XSS) and (e) scanning. Typically, data cleaning,
label encoding, one-hot encoding, and feature normalisation
took place before starting the federated training procedure
through T4FIDS. All the aggregation strategies mentioned
above are evaluated in the scope of a comparison study, while
it is worth noting in this case that after several experiments,
the best results for all the aggregation strategies are achieved
after ten federated training rounds with five local epochs.
However, the best performance is accomplished by FedAdam
with ACC = 67.22%, TPR = 24.77%, FPR = 4.5%,
F1 = 62.40% and AUC = 83.59%, while the confusion
matrix of this federated model is depicted in Fig. II.

Table III shows the evaluation results of N-FIDS with the
TON IoT Dataset. Nine cyberattacks are considered by this
dataset: (a) DoS, (b) DDoS, (c) injection, (d) password brute-
forcing, (e) scanning, (f) XSS, (g) MITM, (h) ransomware
and (i) backdoor. Data cleaning, one-hot encoding, label en-
coding, StandardScale and Synthetic Minority Over-sampling

TABLE II
EVALUATION RESULTS OF O-FIDS WITH TON IOT DATASET -

COMPARISON OF AGGREGATION STRATEGIES

Strategy ACC TPR FPR F1 AUC

FedAvg 60.47% 24.33% 5.03% 58.92% 83.50%
FedProx 59.87% 23.81% 5.51% 57.02% 81.51%
FedAdam 67.22% 24.77% 4.50% 62.40% 83.59%
FedAdagrad 59.62% 25.13% 4.50% 58.76% 83.50%
FedYogi 67.13% 25.00% 4.40% 61.58% 83.69%

Fig. 5. Confusion matrix of the FL model (trained with TON IoT Dataset
and FedYogi) behind O-FIDS

Technique (SMOTE) are applied before the federated train-
ing process. Ten federated training rounds with five epochs
were carried out for all the aggregation strategies discussed
previously. In this case, the best detection effectiveness is
performed by FevAvg with ACC = 76.53%, TPR = 57.56%,
FPR = 3.78%, F1 = 75.55%, AUC = 95.69%, while
the confusion matrix of the respective federated model is
illustrated in Fig. 6.

TABLE III
EVALUATION RESULTS OF N-FIDS WITH TON IOT DATASET -

COMPARISON OF AGGREGATION STRATEGIES

Strategy ACC TPR FPR F1 AUC

FedAvg 76.53% 57.56% 3.78% 75.55% 95.69%
FedProx 75.93% 58.12% 4.08% 75.35% 94.89%
FedAdam 31.20% 25.44% 7.47% 37.13% 68.69%
FedAdagrad 32.16% 33.33% 6.98% 40.04% 85.66%
FedYogi 19.95% 16.47% 8.08% 29.98% 79.24%

N-FIDS was also evaluated with the CSE CIC IDS 2018
dataset as summarised in Table IV. This dataset includes
13 cyberattacks: (a) DDoS with HOIC, (b) DoS with Hulk,
(c) Bot, (d) File Transport Protocol (FTP) bruteforce, (c)
Secure Shell (SSH) bruteforce, (d) infiltration, (e) DoS with
SlowHTTPTest, (d) DoS with GoldenEyem (e) DoS with
Slowloris, (f) DDoS with LOIC, (g) Web bruteforce, (h)
bruteforce-XSS and (i) SQL injection. Similarly, data cleaning,

11

Fig. 6. Confusion matrix of the FL model (trained with TON IoT Dataset
and FedProx) behind N-FIDS

StandardScaler, SMOTE and label encoding are used before
starting the federated training procedure that includes, in this
case, 30 federated training rounds and two local epochs.
According to the evaluation results, the best performance is
carried out through FedProx with 86.73%, 78.68%, 1.01%,
87.42%, 98.18%, while the confusion matrix of this federated
model is provided by Fig. 7.

TABLE IV
EVALUATION RESULTS OF N-FIDS WITH CSE CIC IDS 2018 DATASET -

COMPARISON OF AGGREGATION STRATEGIES

Strategy ACC TPR FPR F1 AUC

FedAvg 84.97% 80.96% 1.13% 85.80% 98.60%
FedProx 86.73% 78.68% 1.01% 87.42% 98.17%
FedAdam 27.80% 35.66% 5.52% 28.11% 77.83%
FedAdagrad 85.66% 74.28% 1.10% 86.19% 97.86%
FedYogi 74.93% 71.01% 1.86% 77.22% 95.41%

As summarised in Table V, N-FIDS is also evaluated with
the CIC IoT 2022 dataset comprising two cyberattacks: (a)
flood attacks and (b) brute force attacks. Data cleaning and
StandardScaler are employed prior to the federated training
process, which is composed of five training rounds with two
local epochs. Based on the evaluation results, in this case,
FedAvg achieves the best detection performance with ACC =
97.60%, TPR = 97.60%, FPR = 1.19%, F1 = 97.51%,
AUC = 99.47%. The confusion matrix of the respective
federated model is illustrated in Fig. 8.

Finally, Table V provides the evaluation results of V-
FIDS with the UOWM Modbus/TCP Intrusion Detection
Dataset. This dataset involves 14 cyberattacks: (a) mod-
bus/dos/writeSingleCoils, (b) modbus/dos/writeSingleRegister,
(c) modbus/function/readCoils, (d) modbus/function/readCoils
(DoS), (e) modbus/function/readDiscreteInput,
(f) modbus/function/readDiscreteInputs (DoS),
(g) modbus/function/readHoldingRegister, (h)
modbus/function/readHoldingRegister (DoS),

Fig. 7. Confusion matrix of the FL model (trained with CSE CIC IDS 2018
and FedAvg) behind N-FIDS

(i) modbus/function/readInputRegister, (j)
modbus/function/readInputRegister (DoS), (k)
modbus/function/writeSingleCoils, (l) mod-
bus/function/writeSingleRegister, (m) modbus/scanner/getfunc
and (n) modbus/scanner/uid. The federated training procedure,
in this case, includes five training rounds with three local
epochs, while the best detection efficiency is achieved by
FedAvg with ACC = 0.984, TPR = 0.885, FPR = 0.008,
F1 = 0.885 and AUC = 0.923.

TABLE V
EVALUATION RESULTS OF N-FIDS WITH CIC IOT DATASET 2022 -

COMPARISON OF AGGREGATION STRATEGIES

Strategy ACC TPR FPR F1 AUC

FedAvg 97.60% 97.60% 1.19% 97.51% 99.47%
FedProx 97.57% 97.57% 1.20% 97.56% 99.46%
FedAdam 69.83% 69.83% 15.98% 69.22% 77.28%
FedAdagrad 58.34% 58.34% 20.79% 54.53% 87.02%
FedYogi 94.07% 94.07% 2.95% 94.04% 98.90%

TABLE VI
EVALUATION RESULTS OF V-FIDS WITH UOWM MODBUS INTRUSION
DETECTION DATASET - COMPARISON OF AGGREGATION STRATEGIES

Strategy ACC TPR FPR F1 AUC

FedAvg 0.984 0.885 0.008 0.885 0.923
FedProx (µ = 0.01) 0.962 0.697 0.018 0.713 0.779
FedAdam 0.980 0.854 0.010 0.854 0.899
FedAdagrad 0.982 0.865 0.009 0.864 0.910
FedYogi 0.977 0.822 0.011 0.829 0.886

A general observation concerning the evaluation results
across all datasets, is that different aggregation strategies
exhibit varying levels of performance, with no single method
consistently outperforming all others. This phenomenon is
quite common in FL settings, as comprehensively examined
in the experimental study in [25]. Similar observations were

12

Fig. 8. Confusion matrix of the FL model (trained with CIC IoT 2022 Dataset
and FedYogi) behind N-FIDS

made in [16]. For instance, vanilla FedAvg may outperform
other sophisticated aggregation techniques, e.g., in Table III,
since the latter often introduce instabilities during FL training.
However, it is evident that FedProx demonstrates enhanced
performance in most of the experiments, owing this to its de-
sign aimed at mitigating local model drift in heterogeneous and
non-iid data between clients, i.e., label or feature distribution
skew in the local datasets.

VI. DISCUSSION

Based on the evaluation analysis, it is evident that AI4FIDS
has the ability to recognise a wide range of cyberattacks.
However, the reliability and the entire potential of AI4FIDS
can be further enhanced by combining the detection outcomes
of each federated detection system (i.e, N-FIDS, L-FIDS, O-
FIDS and V-FIDS). On the one hand, considering that each
federated detection system of AI4FIDS can detect the same
attack classes, then their outcomes can be combined in order
to enhance the overall reliability of AI4FIDS, utilising statistic
methods such as majority voting and weighted majority voting.
Therefore, the overall detection performance of AI4FIDS can
be improved in terms of the aforementioned evaluation met-
rics. On the other hand, the detection outcomes of AI4FIDS
can be associated with each other over time in order to detect
multi-step attack scenarios. To this end, time window analysis
techniques can be utilised. Subsequently, we further elaborate
on these methods; however, due to the unavailability of the
necessary datasets, detailed experimental results with respect
to these methods will be presented in a future work.

A. AI4FIDS Majority Voting and Weighted Majority Voting

Let S = {S1, S2, . . . , Sk} represent k federated intrusion
detection systems, such as S1: N-FIDS, S2: L-FIDS, S3: V-
FIDS and S4: O-FIDS. In a simplified manner, for an instance
i (based on the nature of each federated detection system), the
prediction can be expressed as:

Pj,i =

{
1 if system Sj detects an attack on instance i,

0 otherwise.
(8)

where Pj,i ∈ {0, 1} for j = 1, 2, . . . , k.
The combined prediction Ci for instance i is calculated by
aggregating the individual predictions Pj,i. Therefore, the vote
sum Vi, for instance i, is given by:

Vi =

k∑
j=1

Pj,i. (9)

A threshold T is also defined to determine the final combined
prediction. In particular, this threshold represents the minimum
number of federated detection systems that have to agree in
order to classify an instance as an attack. Thus, the final
decision Ci, for instance i, is provided by:

Ci =

{
1 if Vi ≥ T,

0 if Vi < T.
(10)

where T = ⌈k/2⌉ for simple majority voting. It is worth
mentioning that the threshold T can be customised based on
sensitivity requirements.
Finally, if the federated intrusion detection systems have
different levels of reliability, weights wj can be assigned to
each system Sj . The weighted vote sum Wi is provided by:

Wi =

k∑
j=1

wj · Pj,i. (11)

Then, the decision rule is given as follows.{
1 if Wi ≥ Tw,

0 if Wi < Tw.
(12)

where Tw is the weighted threshold.
Following the previous analysis, the majority voting and

weighted majority voting algorithms for AI4FIDS are sum-
marized as follows.

Algorithm 1 AI4FIDS Majority Voting
Require: {Pj,i}: Predictions from k systems for n instances

T : Threshold for majority voting (e.g., T = ⌈k/2⌉)
Ensure: C: Combined predictions for n instances

1: C ← [] {Initialize combined predictions}
2: for i = 1 to n do
3: Vi ←

∑k
j=1 Pj,i {Aggregate votes for instance i}

4: if Vi ≥ T then
5: Ci ← 1 {Attack detected}
6: else
7: Ci ← 0 {No attack}
8: end if
9: Append Ci to C

10: end for
11: return C =0

13

Algorithm 2 AI4FIDS Weighted Majority Voting
Require: {Pj,i}: Predictions from k systems for n instances

wj : Weights assigned to each system Sj

Tw: Weighted threshold for decision
Ensure: Ci: Combined predictions for n instances

1: C ← [] {Initialize combined predictions}
2: for i = 1 to n do
3: Wi ←

∑k
j=1 wj ·Pj,i {Compute weighted vote sum for

instance i}
4: if Wi ≥ Tw then
5: Ci ← 1 {Attack detected}
6: else
7: Ci ← 0 {No attack}
8: end if
9: Append Ci to C

10: end for
11: return C =0

The majority voting algorithm for AI4FIDS aims to aggre-
gate the predictions from multiple federated intrusion detection
systems to produce a single, combined prediction for each in-
stance. For n instances and k federated detection systems, the
algorithm iterates through all instances. For each instance i, it
calculates the total votes Vi by summing the binary predictions
(0 or 1) from all k systems. It is noteworthy that a predefined
threshold T set to ⌈k/2⌉ for a simple majority, determines
the final decision. If Vi ≥ T , the combined prediction Ci

for the instance is 1 (attack detected); otherwise, it is 0 (no
attack). This approach ensures that the final prediction reflects
the consensus of the federated intrusion detection systems,
minimising the impact of individual errors. On the other hand,
the weighted majority voting algorithm extends the majority
voting approach by assigning reliability-based weights to each
federated detection system. For n instances and k systems,
this algorithm calculates a weighted vote sum Wi for each
instance i by multiplying the binary predictions of each system
by its corresponding weight wj and summing these weighted
values. A weighted threshold Tw is predefined to decide the
final prediction. If Wi ≥ Tw, the combined prediction Ci for
the instance is 1 (attack detected); otherwise, it is 0 (no attack).

B. AI4FIDS Correlation Over Time Window Analysis

Let’s define:
• ti is the timestamp of a security event detected by

AI4FIDS.
• ai ∈ A is the attack type, and A is the set of possible

attack types.
Supposing that T denotes the time window for correlation
(e.g., T = 5 minutes). The set of the security events detected
by AI4FIDS is ES = {E1, E2, . . . , En}.

C(Ei, Ej) =

{
1 if |ti − tj | ≤ T,

0 otherwise.
(13)

Equation (13) ensures that only events within the time
window T are considered related.

Let’s define a valid attack sequence S = (aN , aL, aO, aV) as
a tuple of attack types, where aN ∈ EN , aL ∈ EL, aO ∈ EO,
and aV ∈ EV . A valid sequence must satisfy: |S ∈ R
where R is the set of predefined rules for multi-step attacks.
Given the sets of events EN , EL, EO, and EV , the detection
algorithm of multi-step attacks is given as follows:

Algorithm 3 Multi-Step Attack Detection with AI4FIDS
Require: EN , EL, EO, EV : Event sets from N-FIDS, L-FIDS,

O-FIDS, and V-FIDS
T : Maximum time window for correlation
R: Set of predefined valid attack sequences

Ensure: A: Detected multi-step attacks
1: A ← [] {Initialize list to store detected attacks}
2: for all EN ∈ EN do
3: tN ← EN .t, aN ← EN .a
4: for all EL ∈ EL do
5: tL ← EL.t, aL ← EL.a
6: if |tN − tL| ≤ T then
7: for all EO ∈ EO do
8: tO ← EO.t, aO ← EO.a
9: if |tL − tO| ≤ T then

10: for all EV ∈ EV do
11: tV ← EV .t, aV ← EV .a
12: if |tO − tV | ≤ T then
13: if (aN , aL, aO, aV) ∈ R then
14: A ← A∪ {(EN , EL, EO, EV)}
15: end if
16: end if
17: end for
18: end if
19: end for
20: end if
21: end for
22: end for
23: return A

=0

The above algorithm has the ability to detect multi-step at-
tacks by correlating events from N-FIDS, L-FIDS, O-FIDS and
V-FIDS based on temporal proximity and predefined attack
rules. More specifically, it iterates through all combinations of
security events from the previous federated detection systems,
ensuring that their timestamps fall within a specified time
window T . For each combination, the algorithm validates
whether the sequence of attack types matches a predefined
multi-step attack pattern in the rule set R. These rules define
valid attack sequences, such as a workflow starting with a
reconnaissance attack and followed by exploitation, privilege
escalation and data exfiltration. If a valid sequence is available,
the corresponding events are recognised as a detected multi-
step attack. The algorithm ensures comprehensive detection of
complex attacks while maintaining logical consistency, with
the computational complexity proportional to the number of
events in each federated detection system. The output of the
algorithm is a list of detected attacks, providing information
on how various attack stages correlate across modalities.

14

VII. CONCLUSIONS

Given the evolving threat landscape, in this paper, we
provide AI4FIDS, a multimodal, FL-driven IDS for critical
domains. AI4FIDS combines four detection systems, namely
L-FIDS, O-FIDS, N-FIDS and V-FIDS, allowing federated
detection through four different data types: system logs, opera-
tional data, network flow statistics and visual representations.
On the other hand, T4FIDS orchestrates and automates the
federated training procedure across different domains, taking
into account multiple FL aggregation strategies. The evaluation
results demonstrate the detection effectiveness of the proposed
IDS. In our future plans, we aim to test and enhance AI4FIDS
in order to improve its overall reliability and how

REFERENCES

[1] P. Radoglou-Grammatikis, “Securecyber: An sdn-enabled siem for
enhanced cybersecurity in the industrial internet of things,” MMTC
Communications-Frontiers, vol. 18, no. 2, pp. 16–21, 2023.

[2] M. Siganos, P. Radoglou-Grammatikis, I. Kotsiuba, E. Markakis,
I. Moscholios, S. Goudos, and P. Sarigiannidis, “Explainable ai-based
intrusion detection in the internet of things,” in Proceedings of the
18th International Conference on Availability, Reliability and Security.
Benevento, Italy: Association for Computing Machinery, 2023.

[3] P. Radoglou-Grammatikis, P. Sarigiannidis, P. Diamantoulakis,
T. Lagkas, T. Saoulidis, E. Fountoukidis, and G. Karagiannidis,
“Strategic honeypot deployment in ultra-dense beyond 5g networks:
A reinforcement learning approach,” IEEE Transactions on Emerging
Topics in Computing, pp. 1–12, 2022.

[4] D. C. Asimopoulos, P. Radoglou-Grammatikis, I. Makris, V. Mladenov,
K. E. Psannis, S. Goudos, and P. Sarigiannidis, “Breaching the defense:
Investigating fgsm and ctgan adversarial attacks on iec 60870-5-104 ai-
enabled intrusion detection systems,” in Proceedings of the 18th Interna-
tional Conference on Availability, Reliability and Security. Benevento,
Italy: Association for Computing Machinery, 2023, pp. 1–8.

[5] P. Radoglou-Grammatikis, P. Sarigiannidis, G. Efstathopoulos,
T. Lagkas, G. Fragulis, and A. Sarigiannidis, “A self-learning approach
for detecting intrusions in healthcare systems,” in ICC 2021-IEEE
International Conference on Communications. Montreal, QC, Canada:
IEEE, 2021, pp. 1–6.

[6] A. Vázquez-Ingelmo, A. Garcı́a-Holgado, and F. J. Garcı́a-Peñalvo, “C4
model in a software engineering subject to ease the comprehension of
uml and the software,” in 2020 IEEE Global Engineering Education
Conference (EDUCON). IEEE, 2020, pp. 919–924.

[7] M. Alazab, S. P. RM, M. Parimala, P. K. R. Maddikunta, T. R.
Gadekallu, and Q.-V. Pham, “Federated learning for cybersecurity:
Concepts, challenges, and future directions,” IEEE Transactions on
Industrial Informatics, vol. 18, no. 5, pp. 3501–3509, 2021.

[8] B. Ghimire and D. B. Rawat, “Recent advances on federated learning
for cybersecurity and cybersecurity for federated learning for internet of
things,” IEEE Internet of Things Journal, vol. 9, no. 11, pp. 8229–8249,
2022.

[9] E. M. Campos, P. F. Saura, A. González-Vidal, J. L. Hernández-Ramos,
J. B. Bernabe, G. Baldini, and A. Skarmeta, “Evaluating federated
learning for intrusion detection in internet of things: Review and
challenges,” Computer Networks, vol. 203, p. 108661, 2022.

[10] L. Lavaur, M.-O. Pahl, Y. Busnel, and F. Autrel, “The evolution of
federated learning-based intrusion detection and mitigation: a survey,”
IEEE Transactions on Network and Service Management, vol. 19, no. 3,
pp. 2309–2332, 2022.

[11] S. Arisdakessian, O. A. Wahab, A. Mourad, H. Otrok, and M. Guizani,
“A survey on iot intrusion detection: Federated learning, game theory,
social psychology, and explainable ai as future directions,” IEEE Internet
of Things Journal, vol. 10, no. 5, pp. 4059–4092, 2022.

[12] S. I. Popoola, G. Gui, B. Adebisi, M. Hammoudeh, and H. Gacanin,
“Federated deep learning for collaborative intrusion detection in hetero-
geneous networks,” in 2021 IEEE 94th Vehicular Technology Conference
(VTC2021-Fall). Norman, OK, USA: IEEE, 2021, pp. 1–6.

[13] O. Friha, M. A. Ferrag, L. Shu, L. Maglaras, K.-K. R. Choo, and
M. Nafaa, “Felids: Federated learning-based intrusion detection system
for agricultural internet of things,” Journal of Parallel and Distributed
Computing, vol. 165, pp. 17–31, 2022.

[14] R. Zhao, Y. Wang, Z. Xue, T. Ohtsuki, B. Adebisi, and G. Gui,
“Semi-supervised federated learning based intrusion detection method
for internet of things,” IEEE Internet of Things Journal, 2022.

[15] M. J. Idrissi, H. Alami, A. El Mahdaouy, A. El Mekki, S. Oualil,
Z. Yartaoui, and I. Berrada, “Fed-anids: Federated learning for anomaly-
based network intrusion detection systems,” Expert Systems with Appli-
cations, vol. 234, p. 121000, 2023.

[16] R. Lazzarini, H. Tianfield, and V. Charissis, “Federated learning for iot
intrusion detection,” Ai, vol. 4, no. 3, pp. 509–530, 2023.

[17] O. Belarbi, T. Spyridopoulos, E. Anthi, I. Mavromatis, P. Carnelli,
and A. Khan, “Federated deep learning for intrusion detection in iot
networks,” in GLOBECOM 2023-2023 IEEE Global Communications
Conference. IEEE, 2023, pp. 237–242.

[18] G. Shingi, H. Saglani, and P. Jain, “Segmented federated learning for
adaptive intrusion detection system,” arXiv preprint arXiv:2107.00881,
2021.

[19] A. Alsaedi, N. Moustafa, Z. Tari, A. Mahmood, and A. Anwar, “Ton iot
telemetry dataset: A new generation dataset of iot and iiot for data-driven
intrusion detection systems,” Ieee Access, vol. 8, pp. 165 130–165 150,
2020.

[20] I. Sharafaldin, A. H. Lashkari, A. A. Ghorbani et al., “Toward generating
a new intrusion detection dataset and intrusion traffic characterization.”
ICISSp, vol. 1, pp. 108–116, 2018.

[21] S. Dadkhah, H. Mahdikhani, P. K. Danso, A. Zohourian, K. A. Truong,
and A. A. Ghorbani, “Towards the development of a realistic multi-
dimensional iot profiling dataset,” in 2022 19th Annual International
Conference on Privacy, Security & Trust (PST). Fredericton, NB,
Canada: IEEE, 2022, pp. 1–11.

[22] L. Collins, H. Hassani, A. Mokhtari, and S. Shakkottai, “Fedavg with
fine tuning: Local updates lead to representation learning,” Advances
in Neural Information Processing Systems, vol. 35, pp. 10 572–10 586,
2022.

[23] X. Yuan and P. Li, “On convergence of fedprox: Local dissimilarity
invariant bounds, non-smoothness and beyond,” Advances in Neural
Information Processing Systems, vol. 35, pp. 10 752–10 765, 2022.

[24] S. Reddi, Z. Charles, M. Zaheer, Z. Garrett, K. Rush, J. Konečnỳ,
S. Kumar, and H. B. McMahan, “Adaptive federated optimization,” arXiv
preprint arXiv:2003.00295, 2020.

[25] Q. Li, Y. Diao, Q. Chen, and B. He, “Federated learning on non-iid
data silos: An experimental study,” in 2022 IEEE 38th international
conference on data engineering (ICDE). IEEE, 2022, pp. 965–978.

Dr. Panagiotis Radoglou-Grammatikis received
Diploma (five years) and PhD from the Dept. of
Electrical and Computer Engineering, University of
Western Macedonia, Greece, in 2016 and 2023,
respectively. His main research interests focus on AI-
driven cybersecurity, intrusion detection and security
games. He has published more than 50 research
papers in international scientific journals, confer-
ences and book chapters, while he has received five
best paper awards. He was included in Stanford
University’s list (shared by Elsevier) of the Top 2%

of Scientists in the World for 2021 and 2022. Currently, he is working as
a research director at K3Y Ltd, while he is also a postdoc researcher at
the ITHACA Lab of the University of Western Macedonia and co-founder of
MetaMind Innovations P.C. He is involved in several national and international
projects. Finally, he is a member of IEEE, ACM and the Technical Chamber
of Greece.

Dr. Pavlos Bouzinis received the Diploma (five
years) and Ph.D. degrees in electrical and computer
engineering from the Aristotle University of Thessa-
loniki, Greece, in 2019 and 2023, respectively, where
he was a member of the Wireless Communications
and Information Processing Group. Currently, he
works as a researcher at MetaMind Innovations P.C.
His main research interests include machine learn-
ing, optimization, and intrusion detection systems.
He has served as a reviewer for several scientific
journals and was an exemplary reviewer of IEEE

WIRELESS COMMUNICATIONS LETTERS, in 2021 (top 3% of reviewers).

15

Ioannis Makris received his BSc in Computer Sci-
ence with specialization in Artificial Intelligence and
Software Engineering from the Aristotle University
of Thessaloniki (AUTh) and his MSc in Business
Analytics from the University of Edinburgh. Further-
more, he is a Certified Associate in Project Man-
agement (CAPM) by the Project Management Insti-
tute (PMI). His interests include privacy-preserving
AI techniques, interpretable machine learning, and
security. He is currently employed by MetaMind
Innovations, working as an AI Engineer/Researcher

in several European-funded projects on cybersecurity, telecommunications,
and energy efficiency.

Dr. Thomas Lagkas is Assistant Professor at the
Department of Computer Science of the Democritus
University of Thrace and Director of the Laboratory
of Industrial and Educational Embedded Systems.
He graduated with honours from the Department of
Informatics, Aristotle University of Thessaloniki and
awarded PhD on Wireless Networks. He also com-
pleted MBA studies at the Hellenic Open University
and received a postgraduate certificate on Teaching
and Learning from The University of Sheffield. He
has been scholar of the Aristotle University Research

Committee and postdoctoral scholar of the National Scholarships Institute
of Greece. His research interests are in the areas of IoT communications
with numerous highly cited publications. Dr. Lagkas is an IEEE Senior
Member, Fellow of the Higher Education Academy in the UK, and member
of the Editorial Board of reputable scientific journals. Moreover, he actively
participates in several EU-funded research projects.

Prof. Vasileios Argyriou received the B.Sc. degree
in computer science from the Aristotle University
of Thessaloniki, Greece, in 2001, and the M.Sc.
and Ph.D. degrees in electrical engineering working
on registration from the University of Surrey, in
2003 and 2006, respectively. From 2001 to 2002, he
held a research position with Aristotle University,
with a focus on image and video watermarking. He
joined the Communications and Signal Processing
Department, Imperial College London, London, in
2007, where he was a Research Fellow working on

3D object reconstruction. He is currently a Professor with Kingston University,
London, working on computer vision and AI for crowd and human behavior
analysis, computer games, entertainment, and medical applications. Also,
research is conducted on educational games and on HCI for augmented and
virtual reality (AR/VR) systems.

Dr. Georgios Th. Papadopoulos is an Assistant
Professor in the area of Computer Graphics and
Computational Vision at the Department of Infor-
matics and Telematics of the Harokopio University
of Athens in Greece. He received the Diploma and
Ph.D. degrees in electrical and computer engineer-
ing from the Aristotle University of Thessaloniki
(AUTH), Thessaloniki, Greece. He has worked as
a Post-doctoral Researcher at the Foundation For
Research And Technology Hellas / Institute of
Computer Science (FORTH/ICS) and the Centre

for Research and Technology Hellas / Information Technologies Institute
(CERTH/ITI). He has published over 70 peer-reviewed research articles
in international journals and conference proceedings. His research interests
include computer vision, artificial intelligence, machine/deep learning, human
action recognition, human-computer interaction and explainable artificial
intelligence. Dr. Papadopoulos is a member of the IEEE and the Technical
Chamber of Greece.

Dr. Panagiotis Fouliras received the B.Sc. degree
in physics from the Aristotle University of Thessa-
loniki, Greece, and the M.Sc. and Ph.D. degrees in
computer science from the University of London,
U.K. (QMW). He is currently a permanent Assis-
tant Professor with the University of Macedonia,
Thessaloniki, Greece. He has participated in sev-
eral national and European-funded (H2020) research
projects and published articles in many international
journals. His research interests include computer net-
works and network security, blockchain, and system

evaluation methods.

Prof. George Seritan has graduated from the “Po-
litehnica” Institute Bucharest in 1997. He is Di-
rector of Laboratory Electrical Energy Quality, His
research experience is in the fields: digital signal
processing, power quality, power systems, automatic
measurements systems and metrology.

Prof. Panagiotis Sarigiannidis is the Director of
ITHACA Lab, Co-Founder of MetaMind Innova-
tions P.C. and Full Professor at the Department of
Electrical and Computer Engineering, University of
Western Macedonia, Kozani, Greece. He received
his B.Sc. and Ph.D. in computer science from the
Aristotle University of Thessaloniki, Thessaloniki,
Greece, in 2001 and 2007, respectively. His research
interests include telecommunication networks, Inter-
net of Things and cybersecurity. He has published
over 270 papers in international journals, confer-

ences and book chapters, while he has also received five best paper awards.
He is involved in several national and international projects. He served as
the project coordinator of three H2020 projects, namely SPEAR, EVIDENT
and TERMINET. Moreover, he has coordinated national and Erasmus+ KA2
projects, while he served as a principal investigator in SDN-microSENSE and
three Erasmus+ KA2: ARRANGE-ICT, JAUNTY and STRONG. Finally, he
participates in several editorial boards of various journals.

