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ABSTRACT15

In the domain of financial cybersecurity, where trust and reliability is paramount, the advent of Artificial
Intelligence is bringing novel tools for network intrusion detection. This paper introduces AI4FIDS,
a novel AI-powered Intrusion Detection System leveraging Federated Learning (FL) to enhance data
privacy while enabling decentralized model training across multiple financial entities. Concurrently, we
present TRUST4AI.XAI, an explainability module designed to render AI decision-making transparent
and interpretable, thereby aligning with the critical need for model accountability in financial applications.
Our experimental results, conducted in the framework of the AI4CYBER project’s financial sector pilot,
demonstrate in detecting network intrusions in financial infrastructure while maintaining user privacy, while
increasing trustworthiness via explainability methods. The integration of these technologies addresses the
dual challenges of effective threat detection and regulatory compliance, offering a scalable solution for
modern financial institutions. This work contributes to the ongoing dialogue on leveraging AI for financial
security and sets a benchmark for the development of privacy-preserving, interpretable AI models in this
sector.

Keywords: Federated Learning; Network Intrusion Detection; Fintech; AI explainability

INTRODUCTION16

Cybersecurity plays a crucial role in protecting sensitive information and assuring the continuity of critical17

sectors’ operations in today’s interconnected world. It is particularly important in sectors such as the18

financial domain and banking services, in which trustworthiness and reliability are essential to preserve19

social trust and economic stability, and which are targeted by a variety of malicious actors [25]. As evolving20

cyber threats target critical sectors with more and more sophisticated attack attempts, investing in advanced21

security measures, often assisted by Artificial Intelligence (AI) capabilities, becomes essential to maintain22

the robustness and reliability of key services. Digitalization of the financial sector, the growth of fintech23

as a whole, as a part of international critical infrastructure [12] and its vulnerability due to the sensitive24

nature of financial data are reasons why the financial sector became one of the prime targets of cyber25

criminals [32]. These are also reasons for increased frequency and impact of malicious attempts targeting26

financial systems over the last years [2].27

At the same time, recent advances in AI and successful applications of machine learning (ML) in28

detecting and classifying intrusions at the network level have made AI widely recognized as a major tool for29

enhancing the cybersecurity of banks. However, the use of AI-assisted cybersecurity poses new challenges,30

such as issues of model transparency and inherent ML/AI vulnerabilities [2].31

In this paper, a trustworthy network intrusion detection pipeline is proposed. It includes AI4FIDS –32

an AI-powered Intrusion Detection System (IDS) which leverages Federated Learning (FL), enabling the33
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training of federated models across multiple decentralized entities or environments. The TRUST4AI.XAI34

tool providing explainability mechanisms for AI models is also introduced. It is used in conjunction35

with AI4FIDS to make cybersecurity decisions proposed by the AI-powered system more transparent and36

interpretable. Both tools are part of a wider architecture, designed, developed and implemented in the37

AI4CYBER [AI4CYBER] project, which is a European Union (EU) project co-funded by the Horizon38

Europe research and innovation programme under the Grant Agreement (GA) No 101021936. AI4FIDS is39

one of the core components of the AI4CYBER project together with tools for root cause analysis, attack40

simulation, fixing and testing, vulnerability analysis and many more. The proposed explainability module is41

included in the framework providing trustworthiness for AI services developed in the project. AI4CYBER42

tools are validated in three real-world pilots. For the purpose of this work, the focus is on the financial43

sector.44

This paper outlines several significant advancements in AI-powered cybersecurity deployments for45

financial systems through a detailed exploration of the CaixaBank pilot. Major contributions include:46

• A novel AI-powered IDS that utilizes Federated Learning to ensure data privacy across multiple47

financial entities while enabling decentralized model training48

• An explainability module that serves an array of xAI methods, giving the user a look at the AI model49

from different perspectives, contributing to the transparency and interpretability of AI decision-50

making, thus meeting the need for model accountability in financial applications51

• Provides the Experimental Validation of the end-user-centric and sector-oriented AI4FIDS and52

TRUST4AI.xAI deployments in the CaixaBank pilot.53

• Sets a precedent for the development of privacy-preserving, interpretable AI models in the financial54

sector55

The paper is organized as follows: Section II provides the current state of the art related to federated56

learning in cybersecurity and to explainable AI (xAI). Section III details the approach and design of57

AI4FIDS and TRUST4AI.XAI solutions and CaixaBank use-case in which we validate the proposed tools.58

Section IV focuses on the experiments and experimental results obtained to prove the effectiveness of the59

proposed suite of tools in the banking pilot. Section V concludes this article.60

STATE-OF-THE-ART AND RELATED WORKS61

Federated Learning for Network Intrusion Detection62

The impact of Federated Learning in cybersecurity has been considered by a variety of research studies,63

with particular focus on its application in intrusion detection and prevention. In the following paragraphs,64

an overview of relevant survey papers in this field will be discussed. More notably, M. Alazab et al. [3]65

evaluated the manner in which FL operates and contributes in the context of cybersecurity, with a targeted66

analysis of selected use case scenarios, applications and confrontations. In the same manner, B. Ghimire67

and B. Rawat [15] explore the progression of FL and cybersecurity in a reciprocal fashion. The authors68

initially investigate the utilization of FL in cybersecurity applications, including but not limited to intrusion69

detection, with peculiar interest on Internet of Things (IoT) and Cyber-Physical Systems (CPS), while they70

subsequently discuss the impact of cybersecurity in FL. In an extensive review paper, E. M. Campos et71

al.[8] investigate the manner in which FL is employed for IoT environments, exploring the effect of FL in72

intrusion detection while also considering the progression of Machine Learning and Deep Learning (DL)73

approaches by reason of FL. Eventually, areas with potentials for additional exploration and avenues for74

future studies are described. A comprehensive survey is provided by L. Lavaur et al. [19] regarding the75

evolution of federated IDS and Intrusion Prevention System (IPS). After establishing their methodological76

approach, the authors conduct a detailed analysis of the existing research, evaluating a range of criteria77

including the following: detection techniques, mitigation tactics, data sources and datasets, variations78

of FL, local models and aggregation methodologies, as well as communication protocols (e.g. overhead79

optimisation and encryption procedures). In light of the aforementioned criteria, a pertinent categorization80

of federated IDS and IPS is proposed, and a comparative analysis of the subject literature is undertaken.81

Subsequently, the authors present a discussion of the open issues and research directions that remain to82

be addressed. S. Arisdakessian et al. [7] conducted a survey regarding intrusion detection with respect83

to IoT applications. The authors combined and discussed a variety of technological and research areas,84

including FL, game theory, social psychology and Explainable Artificial Intelligence. A total of 19 criteria85

were taken into consideration in order to conduct an exhaustive study and analysis of several works which86

allowed the identification of significant research gaps pertaining to the aforementioned technological and87

research areas.88
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A federated DL framework is presented by S. I. Popoola et al. [26] which consists of multiple distinct89

nodes performing the training procedure of Deep Neural Networks (DNNs) based on the data provided90

by their local network traffic. Subsequently, a central server gathers the disparate parameters of each91

trained model and aggregates them using the Fed+ fusion technique, eventually distributing them back to92

the nodes. With respect to the DNNs’ designation, these incorporate the input layer, two fully connected93

hidden layers and the output layer. The results that were attained, based on simulations that were executed,94

provided the authors with an accuracy of 99.27%, precision 97.03%, TPR 98.06%, and an F1-score of95

97.50%. This outcome indicates better performance of the federated DL over the local DNN models. With96

regard to the identification of the optimal fusion technique, a variety of methods were employed, namely97

Federated Averaging (FedAvg), Fed+, and Coordinate Median (CM). The experiments indicated that Fed+98

exceeded the performance of the other state-of-the-art (SOTA) methods, providing evidence for the overall99

superiority of the DNN-Fed+ model using FL for the intrusion detection assignment in heterogeneous100

wireless networks.101

T. Dong et al. [11] proposed a novel intrusion detection system based on a learning-based methodology,102

namely FedForest, encompassing FL and Gradient Boosting Decision Trees (GBDT). The proposed103

technique is implemented by training a local encoder (GBDT classifier) on the distinct clients. The data104

based on which the clients were trained, were distinct private datasets of each client, while the parameters105

that were attained in each case were broadcast to the server. Consequently, the server decides for the finest106

encoders and transmits them to all clients. Eventually, the clients utilize the encoders to encode their data,107

train and deploy the new models. To further enhance data privacy, a random masking algorithm was utilized108

on the data. During the evaluation procedure, an illustration of the superiority of the proposed FedForest109

was performed with a Multi-layer Perceptron (MLP) composed of 3, 5, and 7 layers. The results that were110

attained indicated accuracy levels of 67.03% on the DDoS2019 dataset, 89.63% on MalDroid2020, 86.76%111

on Darknet2020, and 79.6% on DoHBrw2020, signifying the prevalence of the suggested methodology.112

P. H. Mirzaee et al. [22] suggested a Federated Intrusion Detection System (FIDS) methodological113

scheme specifically implemented for 5G environments, the primary goal of which was to establish114

user privacy while simultaneously preserving a high detection rate. More notably, a federated DNN115

implementation was proposed, appropriate for ensuring privacy of the user’s information. The algorithm116

encompassed a dedicated server for the aggregation of the updates from each respective local model, while117

the obtained results were sent back to the end nodes. Regarding the evaluation procedure, it was exhibited118

that the recommended implementation accomplished 99.5% in all metrics, namely accuracy, precision and119

F1-score, on the NSL-KDD dataset.120

W. Schneble and G. Thamilarasu [29] proposed a widely distributed IDS based on ML methodologies,121

and more specifically they employed FL techniques for Medical Cyber-Physical Systems (MCPS), towards122

reducing communication and computation costs while increasing network security. The suggested model123

was evaluated on both real and simulated attacks such as Denial of Service (DoS), Data Modification, and124

Data Injection. The results that were attained showcased that the model under discussion outperformed125

SOTA methodologies by achieving 99% accuracy levels and an FPR of 1%, while simultaneously the126

communication costs were decreased.127

O. Aouedi et al. [5] suggested the FLUIDS which describes a semi-supervised implementation for IDS,128

composed of encoders and trained on each end device with unlabeled data. The local models are afterwards129

aggregated to be trained on labeled data, which is located on a server, in a supervised manner, eventually130

providing an ameliorated classification of attacks. B. Li et al. [20] introduced a federated IDS especially131

trained on detecting DDoS attacks based on prototypical features extracted by GRU layers to eventually132

derive 97% accuracy. On the other hand, R. Zhao et al. [33] implemented an FL architecture based on133

BiLSTM towards identifying high-risk malicious behaviour, which had minor variations from a centralized134

model, to obtain 99.21% accuracy. The IoTDefender was proposed by Y. Fan et al. [13] for 5G IoT through135

a federated transfer learning architecture which surpassed the performance of traditional implementations136

achieving 91.93% accuracy and finer generalization abilities. O. Friha et al. [14] proposed the FELIDS137

framework, which was based on CNN and DNN architectures towards constructing an FL-based IDS138

model, outperforming other centralized architectures in maintaining privacy of the utilized data as well as139

high detection accuracy.140

Explainable AI Methods for Network Intrusion Detection141

Many of the best-performing AI/ML methods function as black boxes, which presents significant ethical142

concerns for their use in various domains. This lack of transparency can undermine trust and become an143

obstacle for numerous potentially beneficial applications [9]. This creates a need for reliable interpretability144

methods, which would facilitate a way for the human operator to understand the decision-making process145

of the model. With this pressing necessity, xAI is now an intense area of research, with numerous emerging146

approaches [24].147
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In this work, the focus is on providing xAI-derived explanations, relying on the representation of AI148

models using methods that are easier to interpret. These methods can be derived from the original AI149

models or built from scratch using the available data. The techniques can be broadly classified into two150

categories: model-agnostic and model-specific methods [27]. The methods that are model-agnostic can be151

used for any ML model. The tool deployed in the project provides a plethora of xAI methods, including152

LIME, SHAP, DiCE and ProtoDash.153

LIME (Local Interpretable Model-Agnostic Explanations) generates locally faithful explanations by154

fitting an interpretable model to the neighborhood of the input data, providing insights into complex models155

by creating simpler, locally interpretable linear models [27].156

SHAP (SHapley Additive exPlanations) assigns a value to each input feature based on its contribution157

to the model’s prediction using Shapley values to fairly allocate the payoff among features [21].158

DiCE (Diverse Counterfactual Explanations) offers counterfactual explanations by synthesizing data159

points by perturbing features of a sample until the label flips, essentially presenting a ’what-if’ scenario [23].160

ProtoDash identifies ’Prototypical Samples’ within a dataset to gain insights into the characteristics161

of a subset or specific class of data through its most representative samples. The samples are found by162

maximising similarity for a concise representation [18].163

The ANCHORS explainer identifies ”anchors,” or rule-based conditions that reliably predict the same164

outcome when met. It reveals key factors influencing a model’s decisions by testing feature combinations165

to find those that consistently lead to the same prediction. ANCHORS is model-agnostic [28].166

PDP (Partial Dependence Plot) is a visualization tool that shows how a feature impacts the predicted167

outcome, on average, across a dataset. It highlights the global effect of a single feature, ignoring interactions168

with others, and helps interpret complex models by offering a clear graphical view of feature influence on169

predictions [17].170

ICE (Individual Conditional Expectation) plots show how predictions change for each individual171

instance as a feature is varied, revealing interactions and variability in the model’s behaviour for specific172

data points [16].173

ALE (Accumulated Local Effects) plots calculate a model’s predictions within intervals of a feature,174

accumulating these effects across the feature range. This offers a realistic view of how changes in the175

feature influence predictions [6].176

Permutation Feature Importance (PFI) is a simple, model-agnostic method that measures the impact of177

each feature on model performance by shuffling its values. By disrupting each feature and observing the178

change in accuracy, PFI provides clear insights into feature relevance, making it broadly applicable and179

easy to interpret, regardless of the model structure [4].180

AI-EMPOWERED ANOMALY DETECTION IN BANKING SCENARIO181

AI4FIDS - Anomaly Detection Tool182

AI4FIDS is illustrated through the C4 model which demonstrates the architecture of the proposed im-183

plementation. In general, the C4 model is a structural representation extensively employed in software184

engineering for conceptualizing and substantiating the architecture of the software systems. Context, Con-185

tainers, Components, and Code are the pillars of this model, proposed by Simon Brown, to substitute the186

distinguishable levels of abstraction in the model, each of which offers a distinct perspective of the system,187

thus making it more feasible to comprehend and explain the architecture to the involved stakeholders, both188

technical and non-technical. More specifically, Fig. 1 depicts the Context level of AI4FIDS, illustrating its189

communication with the other entities, interior and exterior.190

To begin with, as an IDS based on multiple data sources, AI4FIDS gathers its input from captured191

network traffic, system logs and operational data which are captured in the Critical System under inspection192

by AI4FIDS. This data originates from the connections of the Critical System with the End Users and/or193

External Networks/Systems (i.e., the Internet). The purpose of AI4FIDS is to analyse this data and194

identify pertinent cyberattacks and anomalous behaviour. Upon producing its results, AI4FIDS spreads the195

equivalent security events to the Security Information and Event Management (SIEM), which is an external196

system. SIEM is mainly responsible for improving the security posture of an entity by provisioning for197

real-time perceptibility regarding security incidents and threats, hence assisting in the regulations’ and198

policies’ compliance actions of the entity. More notably, the core concept behind a SIEM system is to199

normalize, prioritize and correlate the events provided as input from AI4FIDS, while eventually the System200

Security Operator is able to supervise, evaluate and determine the AI4FIDS security events analysed by201

SIEM.202

Even though the Context level offers a comprehensive examination of the system’s engagement with203

exogenous entities, the Container level provides a more detailed analysis of the architectural underpinnings204

of AI4FIDS. More specifically, in the Container level, the communication of the distinct entities, identified205
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as logical, that comprise AI4FIDS are described, while the interaction with extrinsic components is206

depicted. To that end, the following containers might be identified while constructing the FIDS in AI4FIDS:207

(a) Log-based (L-FIDS), (b) Operational Data-based (O-FIDS), (c) Network Flows-based (N-FIDS), (d)208

Visual-based (V-FIDS) and (f) Training for FIDS (T4FIDS). Then, in the architectural representation of the209

system, on top of the Context and Container levels, the Component level is able to specifically define the210

architecture of the distinct components along with their communications.211

TRUST4AI.XAI - AI Explainer212

For the AI explainability purposes, the modular architecture leveraging microservices is proposed for213

the TRUST4AI.XAI Explainer. The modularity and microservice approach ensures the scalability, main-214

tainability, and flexibility of the solution. The system allows the end user to perform analyses of any215

supervised learning model with minimal setup. This process is based on communication between the216

xAI components of the TRUST4AI.XAI system and the AI models, integrated via REST API or via217

Apache Kafka, depending on use case needs. The entire TRUST4AI.XAI system is an arrangement of218

microservices, as illustrated in Fig. 2. The xAI serving component features a user-friendly, React-based219

front-end. The main function of the component, as it is provided by the frontend, is to easily allow the220

user to perform analyses and visualize the decision-making process undertaken by the AI classification221

tools in graphical/chart form. It is important to note that the AI models are external to the xAI system.222

Another component, as seen in Fig. 2, is API Gateway, written using the Spring framework in Java. It223

serves as a gateway between the frontend and microservices. The API Gateway orchestrates the local224

and global microservices, the preprocessing microservices, and the data sink. The user, using the web225

application/frontend can issue requests to explain particular samples for a particular model, choosing from226

the samples visible on an APACHE Kafka topic. Those samples are the concatenation of the feature vector227

and the classification results coming from the AI4FIDS component, which are pushed to the xAI Kafka228

topic.229

The microservices are responsible for creating respectively both local and global explanation objects230

and visualizing their analysis. The interdependencies of these components have been illustrated in Fig. 2.231

The architecture also includes components such as a service that collects logs from individual microservices,232

and a configuration centre.233

Figure 1. AI4FIDS system context model.

CaixaBank Scenario234

The scenario defined for the validation of the proposed pipeline of AI4FIDS and TRUST4AI.XAI solutions235

is rooted in the AI4CYBER project finance sector cybersecurity use case. The piloting partner is CaixaBank,236

one of the leading financial institutions in Spain, chosen as the ”Best Bank in Western Europe 2024” [Daly].237

CaixaBank employs a set of both proprietary and commercial cybersec solutions. Tools for vulnerability238
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Figure 2. The architecture of the TRUST4AI.XAI subcomponent in AI4CYBER.

management, static and dynamic application security testing or pen-testing analysis are used to protect239

the bank’s infrastructure and for monitoring of security controls in the offered and used applications.240

CaixaBank’s main focus is strengthening its defence mechanisms to be used against sophisticated network241

cyberattacks, as those attacks could result in the exposure of sensitive and personal data. Additionally,242

the bank aims at the detection and management of software vulnerabilities in a dynamic and evolving243

environment.244

At CaixaBank, Identity and Access Management (IAM) is carried out with the suite of AIM/PAM245

(Access Identity Management/Privileged Access Management) tools designed to manage user access to246

different applications and services. From a security perspective, it is also important to note that bank247

applications, systems, and data are accessed not only by the bank’s employees, but some of the environments248

are also accessible by third-party providers. Another important issue related to security is remote work,249

which impacts access control configuration to ensure employees can securely reach internal applications250

from their homes. The bank customizes different layers of IAM depending on the user type. As for251

log collection and monitoring, and incident response mechanisms, the bank utilizes SIEM and SOAR252

solutions. The Security Information and Event Management system provides monitoring and data analytics253

based on the logs collected from network assets (devices, applications), while the Security Orchestration,254

Automation, and Response (SOAR) system is used to automate response after detection and alerting of255

potential attacks.256

For the purposes of the banking cybersecurity scenario, the proposed tools, i.e. AI4FIDS and257

TRUST4AI.XAI are sandboxed using the bank’s Innovation Sandbox. The main source of the infor-258

mation is an interconnected SIEM solution feeding the isolated tools, while the abovementioned corporate259

SOAR solution is used to trigger tailored playbooks. The tools can also access internal development tools260

and repositories to analyse the code and development processes.261

From the end-user viewpoint, CaixaBank adopts AI4CYBER tools for ensuring robust security in critical262

environments like the SWIFT client and the Financial Terminal. AI4FIDS enhanced by xAI capabilities,263

delivers AI services that can detect abnormal actions, identify impersonations of privileged users, and264

prevent intrusions and AI-driven attacks in real-time. In addition, the tools facilitate comprehensive265

monitoring of user behaviours and activities across different bank services. The xAI enhancement, provides266

insight into the model’s output, making cybersecurity-related decisions transparent and understandable for267

the bank’s security staff, saving time and cost of security operations.268

EXPERIMENTS AND RESULTS269

AI4FIDS – Initial Evaluation Results with Existing Cybersecurity Datasets270

In order to demonstrate the efficacy and soundness of the initial version of AI4FIDS in conjunction271

with benchmark cybersecurity datasets, this section describes the system prerequisites and technical272

specifications of AI4FIDS. Multiple datasets were employed for evaluating the proposed implementation,273

yet in the context of this study, the distinct results for the aggregation techniques are provided based on the274

CSE CIC-IDS-2018 Dataset [31].275

To that end, the initial results of the evaluation procedure of the respective containers, namely L-FIDS,276

O-FIDS, N-FIDS and V-FIDS, are presented. More specifically, T4FIDS is responsible for generating the277

federated models that will be utilized by the detection engines of the preceding containers. The testbed278
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Federated Server. In the current study, preliminary results are provided for the N-FIDS container along with280

the CSE CIC-IDS-2018 Dataset [30]. In Table 1, the respective results from the evaluation procedure are281

shown when employing the network flow statistics calculated by the CICFlowMeter. As one may observe, a282

thorough inspection of a variety of aggregation methods is performed in the context of evaluating the initial283

version of AI4FIDS, where the N-FIDS container must detect attacks when the aforementioned features are284

considered. More notably, the detection engine, namely T4FIDS, is trained with the TCP/IP network flow285

statistics, where multiple cyberattacks are considered and five aggregation techniques are scrutinized. The286

attained results indicate that the finest performance was achieved from the FedProx technique. Additionally,287

in Fig. 3 the confusion matrix of the model that uses FedAvg with the TON IoT Dataset is illustrated.288

Table 1. Performance comparison of different aggregation methods.

Aggregation ACC TPR FPR F1 AUC
FedAvg 84.97% 80.96% 1.13% 85.80% 98.60%
FedProx 86.73% 78.68% 1.01% 87.42% 98.17%
FedAdam 27.80% 35.66% 5.52% 28.11% 77.83%
FedAdagrad 85.66% 74.28% 1.10% 86.19% 97.86%
FedYogi 74.93% 71.01% 1.86% 77.22% 95.41%

Figure 3. Confusion Matrix of the FL model that uses FedAvg with the TON IoT Dataset – Network
Flow Statistics.

xAI Interpretation – Experiments and Results with Existing Cybersecurity Datasets289

With the detection model established and evaluated, the experiment proceeded with attempting to gain290

insight into the decision-making process of the classifier. To this end, the xAI methods were employed.291

Following a scenario where a security operative needs to justify a decisive action to ban or not to ban a user292

based on the detection result, the xAI methods aim to provide reasoning as to why the samples in question293

were classified as an attack.294

Fig. 4 demonstrates the application of the LIME technique within the TRUST4AI.XAI component295

of AI4CYBER. It shows how LIME decomposes a cybersecurity model’s decision-making process for296

individual predictions, highlighting the contribution of each feature towards the predicted outcome of297

identifying network threats. Fig. 5 illustrates a decision tree that approximates the complex decision298

boundaries of the explained model, providing a simplified view of how various network statistics influence299

the classification of traffic. Fig. 6 showcases the SHAP explanations, each bar in the visualization represents300

the impact of an individual feature on the model’s prediction, giving insight into which attributes are most301

influential for detecting cybersecurity threats. Fig. 7 shows ICE and PDP plots that analyze the impact of302

specific features on the predictions of the AI4FIDS cybersecurity model. These plots help in understanding303

the relationships between the feature values and the likelihood of an event being flagged as a security threat,304

across a range of values for the selected features.305
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Figure 4. Examples of xAI methods: LIME explanations in the TRUST4AI.XAI component of
AI4CYBER.

Figure 5. Examples of xAI methods: Surrogate Tree Aggregations in the TRUST4AI.XAI component of
AI4CYBER.

Figure 6. Examples of xAI methods: SHAP explanations in the TRUST4AI.XAI component of
AI4CYBER.
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Figure 7. Examples of xAI methods: ICE and PDP plots, explanations in the TRUST4AI.XAI component
of AI4CYBER.

CONCLUSION306

In this paper, AI4FIDS and TRUST4AI.XAI were introduced, two pivotal components of the AI4CYBER307

project aimed at enhancing cybersecurity in the financial sector through the utilization of advanced AI308

techniques and end-user-centric deployment in the CaixaBank pilot. AI4FIDS, empowered by Federated309

Learning, offers a privacy-preserving approach that enables robust intrusion detection across decentralized310

networks without compromising sensitive data. The TRUST4AI.XAI module provides critical explainabil-311

ity, ensuring that AI-driven decisions are transparent and interpretable to end-users. The sector-oriented312

experiments conducted with these systems within the financial pilot of CaixaBank demonstrate their313

efficacy in both detecting a range of cyberthreats and in aligning with requirements for transparency.314

The implementation demonstrated the practical viability and effectiveness of combining Federated315

Learning with advanced explainability to secure financial infrastructures. The success of this integration316

not only confirms the potential of these technologies to improve cybersecurity practices but also sets a317

precedent for the development of privacy-preserving, interpretable AI models in the financial sector.318
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magazine. (Accessed on 09/06/2024).352

[11] Dong, T., Qiu, H., Lu, J., Qiu, M., and Fan, C. (2021). Towards fast network intrusion detection based353

on efficiency-preserving federated learning. In 2021 IEEE Intl Conf on Parallel & Distributed Processing354

with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social355

Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom), pages 468–475. IEEE.356

[12] Familoni, B. T. and Shoetan, P. O. (2024). Cybersecurity in the financial sector: a comparative analysis357

of the usa and nigeria. Computer Science & IT Research Journal, 5(4):850–877.358

[13] Fan, Y., Li, Y., Zhan, M., Cui, H., and Zhang, Y. (2020). Iotdefender: A federated transfer learning359

intrusion detection framework for 5g iot. In 2020 IEEE 14th international conference on big data360

science and engineering (BigDataSE), pages 88–95. IEEE.361

[14] Friha, O., Ferrag, M. A., Shu, L., Maglaras, L., Choo, K.-K. R., and Nafaa, M. (2022). Felids:362

Federated learning-based intrusion detection system for agricultural internet of things. Journal of363

Parallel and Distributed Computing, 165:17–31.364

[15] Ghimire, B. and Rawat, D. B. (2022). Recent advances on federated learning for cybersecurity and365

cybersecurity for federated learning for internet of things. IEEE Internet of Things Journal, 9(11):8229–366

8249.367

[16] Goldstein, A., Kapelner, A., Bleich, J., and Pitkin, E. (2015). Peeking inside the black box: Visualizing368

statistical learning with plots of individual conditional expectation. journal of Computational and369

Graphical Statistics, 24(1):44–65.370

[17] Greenwell, B. M., Boehmke, B. C., and McCarthy, A. J. (2018). A simple and effective model-based371

variable importance measure. arXiv preprint arXiv:1805.04755.372

[18] Gurumoorthy, K. S., Dhurandhar, A., Cecchi, G., and Aggarwal, C. (2019). Efficient data representation373

by selecting prototypes with importance weights. In 2019 IEEE International Conference on Data374

Mining (ICDM), pages 260–269. IEEE.375

[19] Lavaur, L., Pahl, M.-O., Busnel, Y., and Autrel, F. (2022). The evolution of federated learning-based376

intrusion detection and mitigation: a survey. IEEE Transactions on Network and Service Management,377

19(3):2309–2332.378

[20] Li, B., Wu, Y., Song, J., Lu, R., Li, T., and Zhao, L. (2020). Deepfed: Federated deep learning for379

intrusion detection in industrial cyber–physical systems. IEEE Transactions on Industrial Informatics,380

17(8):5615–5624.381

[21] Lundberg, S. M. and Lee, S.-I. (2017). A unified approach to interpreting model predictions. Advances382

in neural information processing systems, 30.383

[22] Mirzaee, P. H., Shojafar, M., Pooranian, Z., Asefy, P., Cruickshank, H., and Tafazolli, R. (2021). Fids:384

A federated intrusion detection system for 5g smart metering network. In 2021 17th International385

Conference on Mobility, Sensing and Networking (MSN), pages 215–222. IEEE.386

[23] Mothilal, R. K., Sharma, A., and Tan, C. (2020). Explaining machine learning classifiers through387

diverse counterfactual explanations. In Proceedings of the 2020 conference on fairness, accountability,388

and transparency, pages 607–617.389

[24] Nauta, M., Trienes, J., Pathak, S., Nguyen, E., Peters, M., Schmitt, Y., Schlötterer, J., Van Keulen,390

M., and Seifert, C. (2023). From anecdotal evidence to quantitative evaluation methods: A systematic391

review on evaluating explainable ai. ACM Computing Surveys, 55(13s):1–42.392
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