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Abstract—This work studies the problem of modeling Attention
Deficit Disorder (ADD) using a previously reported one dimen-
sional map, but by replacing its two hyperbolic tangent activation
functions, with Soboleva hyperbolic tangent ones. This adds
four new control parameters to the system, which significantly
enhances its modeling freedom. Afterwards, the effect of these
parameters on the model is studied, using tools of nonlinear anal-
ysis, like bifurcation, Lyapunov exponent, and phase diagrams.
The emergence of chaos is prevalent, indicating the sensitivity
of the model to external excitations. Numerous phenomena are
also observed, like crisis, antimonotonicity, and shrimps. This
new model can help delve deeper into the emergence of chaos in
behavioral disorders.

Index Terms—Attention deficit disorder, chaos, Soboleva acti-
vation function, neural network

Chaos theory is one of the great scientific discoveries of
the 20th century. Chaos as a phenomenon appears in many
different areas of science [1]. One area is biology, where var-
ious biological processes are modeled using chaotic systems
[2], [3]. In this area, chaos appears in the models of various
disorders, such as neurodegenerative diseases [4], attention
deficit disorder (ADD) [5]–[9], migraine [10], seizure [11],
epilepsy [12], bipolar disorder [13], coma [14], and more [15].

The rise of chaotic models in these areas results from
chaotic systems being characterized by very complex behavior,
ranging from stable solutions (fixed points, cycles) to unstable
(chaotic) solutions. In addition, an important phenomenon that
occurs in chaotic systems and serves to justify these models
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is intermittency [5]. Intermittency is characterized by the
switching of the system between stable and chaotic behavior.
Such behavior can model the state of a person with behavioral
disorders, the focus of this work.

Chaotic models that describe the issues mentioned, often
reflect a simple neural network with two neurons. These
neurons are activated using a so-called activation function,
with the tanh being the common choice. Such a defined
neural network model is characterized by chaotic phenomena,
including intermittency [5], among others.

From the above short introduction to the topic of chaos
applications in modeling behavioral conditions, it is clear that
this is a current and significant topic. In light of the work [5]
and the chaotic model presented therein for attention deficit
disorder (ADD), this work proposes a significant modification.
This modification is the replacement of the activation function
tanh in the model [5] with its more flexible and controllable
counterpart, the Soboleva hyperbolic tangent function (smht)
[16], [17]. The smht function, with its four control parameters,
offers a level of control over the model’s behavior that was pre-
viously unattainable. This increased fitness control promises a
more precise and accurate model, while also enabling more
complex model dynamics to arise. An extensive analysis of
the new model is performed with respect to the newly intro-
duced parameters. The analysis reveals a plethora of chaotic
phenomena appearing, indicating a higher complexity in the
model. This can be a starting point for a more in depth analysis
of the chaotic dynamics present in the ADD model, as well
as other models of neurological disorders.

The rest of the work is structured as follows: Section I
presents the activation function. Section II presents the modi-
fied dynamical model for ADD. In Section III, the dynamical



analysis is performed. Section IV discusses the results. Section
V concludes with a discussion on future studies.

I. THE SOBOLEVA HYPERBOLIC TANGENT

The Soboleva modified hyperbolic tangent function is de-
scribed as follows [16], [17]:

smht(x) =
eax − e−bx

ecx + e−dx
, (1)

where x ∈ R, and a, b, c, d ∈ R are control parameters, with
a ≤ c, b ≤ d. The control parameters can be appropriately
tuned to control the shape of the function. Clearly, (1) is
equal to the classic tanh function for a = b = c = d = 1.
Thus, (1) is a generalization of the classic hyperbolic tangent.
An example for different parameter values is shown in Fig.
1. When the control parameters are unequal, the function’s
symmetry around the origin is broken.

Fig. 1. The Soboleva activation function (1) for a = b = c = d = 1 (black,
the classic tanh) and a = 2, b = 0.8, c = 3, d = 1 (blue).

II. THE PROPOSED MODEL FOR ATTENTION
DEFICIT DISORDER (ADD)

The ADD model considered in this work is the following,
introduced in [5]. The model consists of two neurons that
process the input information. It is described as follows:

xi = B tanh(w1xi−1)−A tanh(w2xi−1), (2)

where xi is the information signal, and the tanh functions
are the activation functions of two neurons, responsible to
transform the information signal propagating across the brain.
The positive term represents the excitatory brain action and the
negative term the inhibitory action to the information signal.
The parameters A,B, control the magnitude of each activation
function, while w1, w2 control the amplification of the signal
into each activation function. Chaotic behavior was interpreted
here as switches in the attention level over small time intervals.

In the modification proposed here, the activation functions
are replaced by Soboleva modified activation functions:

xi = Bsmht(w1xi−1)−Asmht(w2xi−1), (3)

where each activation function is of the form (1), with control
parameters a, b, c, d. Thus, there are four new control parame-
ters introduced, which bring a significant improvement to the
degrees of freedom of the model.

III. DYNAMICAL ANALYSIS

In this section, the dynamical behavior of the proposed
model is studied. As in [5], the parameter A is of interest,
along with the variations on a, b, c, d. The rest of the param-
eters are set to B = 5.821, w1 = 1.487, w2 = 0.2223, which
were chosen in [5]. Also, the initial condition is x0 = 0.1.

A. Original Model

The model (2) exhibited periodic and chaotic behavior, with
rich transitions in between these two states. A bifurcation
diagram for (2) is shown in Fig. 2 (black). Several phenomena
can be identified. First, a period-doubling route to chaos is
observed, as A increases from 5 to around 8.5. This is followed
by a crisis phenomenon, where the attractor abruptly expands
for A around 9.5. Afterwards, the model exhibits more crisis
phenomena, where it abruptly exits chaotic behavior for A
around 12.5, followed by period doubling route to chaos.
The reverse phenomenon appears near A = 20, where the
attractor’s size reduces, and a transition out of chaos through
period halving route appears, which is followed by another
crisis entering chaos for A around 21.2. Afterwards, another
period halving transition out of chaos is observed.

The transitions in and out of chaos are evident in Fig. 3,
that depicts the values of the Lyapunov exponent (LE) of (2)
for different parameter pairs (A,B). A positive LE indicates
chaotic behavior, while a negative indicates a non-chaotic one.
Here, dense regions of transitioning in and out of chaos appear
(at the boundaries between the black color (periodicity), and
other colors (chaos)), indicating the system’s sensitivity to
parameter changes. Next, it will be seen that the modified
system exhibits similar, but more complex phenomena.

Fig. 2. Bifurcation diagrams of the system (3) with respect to parameter A,
for different values of a, for b = c = d = 1, depicted in the 3d space.

B. Proposed Model

Due to the limited space, focus will be given on parameters
a, b for the proposed model (3).

1) Changes to parameter a: To study the behavior with re-
spect to changing a, several bifurcation diagrams with respect
to parameter A are shown in Fig. 2, for different values of



Fig. 3. Lyapunov exponent values for parameter pairs (A,B) for system (2).

a. Compared to the original model (black), it is evident that
changing the parameter a changes the behavior significantly.

Although a general trend for starting from periodicity for
low values of A and ending again in periodicity for higher
values of A appears in all the graphs, the behavior in-
between varies between graphs. The chaotic and non-chaotic
regions appear in different parametric ranges of A. More
crisis phenomena are observed, especially for a = 0.8, 0.6,
where the attractor abruptly transitions to a different region
in the state space. This phenomenon could be indicative of
possible coexisting attractors present in the system. Coexisting
attractors are also present in the original system, and this was
noted in [18], but this jumping phenomenon is not observed
in the original bifurcation diagram of Fig. 2 (black).

Moreover, as a decreases, the attractor’s size decreases,
and for a = 0.2, chaotic behavior is completely absent
from the diagram. This is indicative that lower a values
can have a suppressive effect on chaotic behavior. Another
notable phenomenon is the emergence of antimonotonicity.
This refers to the phenomenon where the system enters into
chaotic behavior through a period-doubling route as the control
parameter increases, and then exits it following a reverse
period-halving route. This appears for a = 0.8, shown in Fig.
2 (red). Antimonotonicity also appears for a = 0.2 in Fig. 2
(magenta), for a small periodic transition.

2) Changes to parameter b: Fig. 4 depicts several bifur-
cation diagrams with respect to A, for different values of
b. Similar phenomena to when changing a can be observed.
There are crisis phenomena present, where the attractor jumps
on a different position in the state space, for b = 0.8, 0.6, 0.4.
Another fact is that the attractor shrinks in size as b decreases,
although not as strongly as in the case of changing a.

3) Changes to both parameters a and b: In the above
graphs, changes to only a single Soboleva control parameter
was considered, to understand how each individual parameter
can affect the system’s behavior. Naturally, changing multiple
parameters gives rise to more complex dynamical behaviors.
For example, in contrast to the default case shown in Fig. 3,
Fig. 5 depicts the LE values for parameter pairs (A,B) for
a = 2, b = 0.8, c = 3, d = 1. The graph is significantly
different from the previous one. There are multiple wide

Fig. 4. Bifurcation diagrams of the system (3) with respect to parameter A,
for different values of b, for a = c = d = 1, depicted in the 3d space.

regions of non-chaotic behavior present. But more importantly,
the transitions between chaotic and non-chaotic regions are
much more interplexed, indicating that for specific parametric
ranges, the system exhibits a very high sensitivity to changes
in the parameter pairs (A,B). These dense regions between
chaos and order can be interpreted as an inability of the system
to adapt to small changes in its parameters, which is indicative
of poor responsive behavior.

To further explore the effects of changing multiple Soboleva
parameters, Fig. 6 shows LE values for the Soboleva parameter
pairs (a, b), under parameters A = 13, B = 5.821, c = d = 1.
The graph reveals certain symmetries in the parameter pairs
around the region (a, b) ∈ (0.7, 1)× (0.7, 1). The behavior is
intricate, as a complex shape appears with multiple transitions
in and out of chaos. Small shrimp regions also appear here.
As each of the parameters a, b decrease, the LE reduces, until
eventually the system enters into a non-chaotic regime, which
is sustained for all parameter pairs.

Fig. 5. Lyapunov exponent values for parameter pairs (A,B) for the system
(3), for a = 2, b = 0.8, c = 3, d = 1.

IV. DISCUSSION

From the simulations performed, it is evident that the
introduction of four additional parameters from the Soboleva



Fig. 6. Lyapunov exponent values for parameter pairs (a, b) for the system
(3), for A = 13, B = 5.821, c = d = 1.

hyperbolic tangent generalizes the system, making it capable
of exhibiting a richer dynamical behavior. What is notable,
is that for many parametric ranges, the model exhibits dense
transitions in and out of chaos. This was present in the original
system as well, but is more emphasized in the modified model.
This indicates an inability of the system to adapt to small
parameter perturbations. The self similar shrimp shapes also
appear. Crisis phenomena are observed, where the attractor
either expands abruptly, or changes location. The introduction
of four new parameters increases the modeling freedom of the
system, which can expand its adaptability in modeling other
neurological phenomena, like autistic behavior. Of course, an
interesting question is how the changes in the shape of each
activation function can be interpreted neurologically. If this
can be identified, then future control techniques can direct
their effect on changing each of these control parameters, to
improve the model’s behavior.

Although this is a simplified model of theoretical interest,
it is interesting to see that despite its simplicity, its dynamics
are rich. It is evident from the graphs that the model is very
sensitive to parameter changes. This means that robust control
techniques should be applied to control its behavior, especially
considering that these parameters could be time varying.

V. CONCLUSIONS

In this work, a generalization of the attention deficit disorder
model from [5] was proposed, by replacing the traditional tanh
functions with Soboleva hyperbolic tangent functions. This
introduced four new control parameters, which significantly
increases the model’s potential to exhibit more dynamical
phenomena. An extensive analysis with respect to the Soboleva
parameters indeed revealed that the system has rich dynamics.

There are several goals set for future studies. First, a full
scale analysis with respect to all of the four control parameters
must be performed. Secondly, the existence of coexisting at-
tractors should be explored. Thirdly, the effect of an attenuator
feedback, to model imperfect perception of input information
must be considered. Fourth, although this is a theoretical
model, it would be interesting to see if the introduction of

the new control parameters could help in fitting the model to
real measurements. Due to having eight parameters overall,
machine learning techniques could be applied to perform the
fitting to real data. Moreover, different variations of the model
can be considered. Specifically, it is of interest to model
the effect of memory, either through fractional modeling, or
through the use of memristive elements. Overall, the present
work can be the starting point for several new studies.
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