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Abstract
The ongoing electrification of the transportation sector requires the deployment of multiple Electric Vehicle (EV)
charging stations across multiple locations. However, the EV charging stations introduce significant cyber-physical
and privacy risks, given the presence of vulnerable communication protocols, such as the Open Charge Point Proto-
col (OCPP). Meanwhile, the Federated Learning (FL) paradigm showcases a novel approach for improved intrusion
detection results that utilize multiple sources of Internet of Things data, while respecting the confidentiality of pri-
vate information. This paper proposes an FL-based intrusion detection system, which leverages OCPP 1.6 network
flows to detect OCPP 1.6 cyberattacks. The evaluation results showcase high detection performance of the proposed
FL-based solution.
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1. INTRODUCTION
Electric Vehicles (EVs) are a driving force towards the electrification of the transportation sector, contributing
to the reduction of the environmental footprint and towards achieving the sustainability goals. In this context,
the EuropeanUnion (EU) plans to ban new non-electric cars starting from the year 2035. At the same time, the
deployment of EV Charging Stations (EVCSs) increases in order to ensure seamless experience for EV users
and reduce the range anxiety [1]. The EV charging is associated with numerous services, includingmanagement
of the EVCSs, handling and billing of charging transactions, metering, roaming of EV charging services as well
as communication with the power grid and the Distribution/Transmission System Operators (DSOs/TSOs).

To realize properly integrated and interoperable EV charging services, a number of protocols and standards are
in force. For example, International Standards Organization (ISO) / International Electro-technical Commis-
sion (IEC) 15118 is proposed for defining the Vehicle-to-Grid interface for bi-directional charging/discharg-
ing of EVs, smart charging and plug & charge. Roaming between Charging Station Operators (CSO) and
e-mobility service providers is accomplished by the Open Charge Point Interface (OCPI) standard, whereas
grid operators can interact with the CSOs through demand response protocols, e.g., the Open Automated
Demand Response (openADR).

While many of the above-mentioned standards and protocols are optional or their development is on-going,
a fundamental interaction within the EV charging ecosystem is the one between EVCSs and the EV Charging
Station Management System (EVCSMS) (operated by the CSO), through the Open Charge Point Protocol
(OCPP). OCPP is an open standard, maintained by the Open Charge Alliance (OCA), for the vendor-neutral
remote management and monitoring of EVCSs. Common operations of OCPP include the authorization and
management of transactions and the maintenance of the EVCSs (e.g., firmware upgrades and system logs
monitoring). Currently, version 1.6 ofOCPP is themost widely deployed version of the protocol; it is supported
by the majority of EVCS and EVCSMS manufacturers as well as the one that is fully certified by the OCA.

Despite its significance, OCPP is associated with notable cybersecurity concerns. For example, Alcaraz et al. [2]
assess the security features of OCPP, potential vulnerabilities and threat scenarios resulting from the proto-
col design and characteristics. The authors investigate the implementation and feasibility of various threats,
including False Data Injections (FDI), Man-in-The-Middle (MiTM), impersonation, data tampering, fraud /
energy theft, and Denial of Service (DoS), by developing a virtual infrastructure based on multiple Virtual
Machines (VMs) to replicate the EVCSs and the OCPP server. For the identified threats, the authors explain
how they could be materialized as well as correspondingmitigationmeasures. The authors extend this analysis
for the newest version of the standard, OCPP 2.0.1, in [3]. A detailed security assessment of the EV charging
ecosystem is performed by Kaur et al. [4]. The authors discuss the attack vector and threat models for multiple
protocols used in the EV charging domain, including ISO-15118, OCPP, OCPI and openADR. For OCPP,
six relevant threat models are identified. In particular, a MiTM is an imminent threat, in which a potential
attacker can be placed between the EVCSMS and the EVCS in order to intercept unencrypted OCPP traffic. A
DoS attack is also feasible by introducing a fuzzer, as highlighted in OCPPStorm [5], by injecting malformed or
unexpected inputs in the OCPP communication, causing unexpected behavior, system dysfunction, crashes
and operational instability. A botnet attack is also feasible, by utilizing multiple compromised EVCS that tar-
get the EVCSMS or other assets of the EV charging network through malware spreading. Finally, through
impersonation, an attacker could intercept and replay sensitive data that is used for authenticating EVCS and
authorizing charging transactions. In this way, a malicious actor could impersonate a legitimate EVCS by using
its unique ID or initiate charging transaction by using the user ID of another legitimate user.

Considering the critical security issues with respect toOCPP, an open challenge remains the dynamic detection
of potential threats and cyberattacks. In this paper, we focus our attention on detecting potential cyberattacks
against OCPP 1.6, by adopting the Federated Learning (FL) approach for analyzingOCPP-based network flows.
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FL is a distributed Artificial Intelligence (AI) system, in which multiple entities train their local AI model and
contribute to the training of a global AI model [6]. Compared to the conventional approach of a single and
central AI model, the FL paradigm is characterized by enhanced performance as well as for respecting data
privacy and data access rights. Considering the private and sensitive data that could be transferred or elicited
by analyzing OCPP traffic (e.g., EV user identity, charging locations, behavioral patterns), the FL architecture
is a suitable solution for privacy-aware security analysis and threat detection, benefiting from the contribution
of multiple clients realized as multiple EV charging hubs.

Based on the aforementioned remarks, the contribution of this paper is summarized as follows:

• We describe four OCPP cyberattacks and provide insights with respect to their implementation and obser-
vations that can be leveraged for their detection.

• We develop the OCPPFlowMeter, a flow-based network analysis tool that generates network flows with
OCPP 1.6 features, enabling the detection of attacks covering not only the network and transmission layers
but also the OCPP 1.6 application layer.

• We propose an FL-based IDS architecture that can be applied to monitor the OCPP 1.6 traffic of multiple
EVCSs, grouped as EV charging hubs at multiple locations. The evaluation results showcase high detection
accuracy, ranging from 98.49% to 99.21%, obtained by comparing the results of six FL aggregationmethods.

• As a result of this work, we have developed and published the Federated OCPP 1.6 Intrusion Detection
Dataset [7], which can also be found on Zenodo1. This dataset includes network traffic samples and the
respective flow statistics of the four OCPP 1.6 cyberattacks developed in this paper.

The rest of this paper is organized as follows. Section 1.1 discusses the existing works on FL-based intrusion
detection and detection of OCPP threats, Section 2 presents the proposed adoption of FL on the EV charging
infrastructure, the OCPP cyberattacks that we consider in this work, and the proposed FL-based IDS. Section
3 presents the evaluation results; Section 4 discusses the results and potential next steps for future research
directions and improvements, and section 5 concludes this work by providing the key takeaways.

1.1 Related work
This section discusses the related work with respect to (a) FL adoption in the context of cybersecurity; and (b)
existing methods for detecting OCPP cyberattacks.

1.1.1 FL for cybersecurity
Mothukuri et al. [8] propose a privacy-focused FL approach for Internet ofThings (IoT). Each IoT device trains
a Gate Recurrent Unit (GRU) model using its local data, and sends the parameters to a central FL server that
aggregates them and sends the updated weights to each IoT device. As a result, the accuracy of each model
increases, while the data of each IoT device remains private. The authors evaluate the performance of their
solution by using a public dataset based on Modbus TCP, which is processed by CICFlowMeter to extract the
features that the AI models can use to classify the attacks. According to the evaluation results, the proposed
FL approach achieves 90.2% accuracy, showcasing 4.1% improvement on accuracy compared to the non FL
approach.

In [9], Rashid et al. introduce a dynamic weighted aggregation federated learning (DAFL), a new aggregation
technique that implements dynamic filtering and weighting strategies for local models. The proposed method
improves the performance of conventional FL-based IDS in terms of communication overhead, while main-
taining high detection accuracy and preserving data privacy.

1https://zenodo.org/records/14887131
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In [10], Idrissi et al. propose the Federated Anomaly-Based Network Intrusion Detection System (Fed-ANIDS),
which employs auto-encoders and FL in a distributed manner. The proposed architecture further employs two
aggregationmethods, FedProx and FedAvg. The proposed system is evaluated using numerous public datasets,
namely the USTC-TFC2016, CIC-IDS2017, and CSE-CIC-IDS2018 datasets, which use an updated
version of CICFlowMeter that improves the construction of network flows. The proposed solution is also
compared with Generative Adversarial Network (GAN) models, and the results indicated a better detection
performance, in terms of higher accuracy and fewer false alarms. In addition, the results showcased that
FedProx delivered better results than FedAvg.

Karunamurthy et al. [11] introduce a deep learning FL-based IDS for IoT environments. In the proposed archi-
tecture, the local models in the remote IoT environments leverage Convolutional Neural Networks (CNNs)
with different parameter settings. Furthermore, an optimal feature selection model resides on the federated
aggregation server, based on the Chimp optimization method. Inspired by the behavior of chimps in their
natural environment, the feature selection model applies a fitness function to select the most optimal features,
which are given as input to the deep learning classifier. The proposed model is evaluated on an MQTT pro-
tocol dataset, which includes five different attacks. The proposed method achieves 93.3% recall, 94% F1 score
and 95.5% accuracy.

Finally, Radoglou-Grammatikis et al. [12] present a multimodal FL-based IDS, called AI4FIDS, which is able
to analyze four different data types, namely system logs, operational data, network flow statistics, and visual
representations, in order to detect potential anomalies or indication of cyberattacks in the critical infrastruc-
ture. Combining the multiple detection methods, AI4FIDS includes a majority voting and a weighted majority
method aggregate the predictions of the multiple underlying models in order to generate a single, combined
prediction.

1.1.2 Detection of OCPP cyberattacks
Moreover, several works have been identified, which describe OCPP threats and try to address their detection.
In more detail, Morosan et al. [13] propose a Back-Propagation Neural Network (BPNN) that is able to classify
EVCSs between the normal and faulted states, based on the OCPP 1.5-J traffic they generate. The three-layered
neural network was able to determine a faulty EVCS based a) on the similarity of consecutive pairs of request-
response, and b) the OCPP message type from the server. In a similar approach in [14], Kabir et al. propose
a BPNN utilized by the EVCSMS to analyze the OCPP requests and detect potential malicious attempts of
coordinated switching attacks, i.e., charging/discharging and back again within a very short time period.

Girdhar et al. [15] aim to predict and mitigate cyberattacks against EVCSs; therefore, they propose a cyberse-
curity framework that predicts and mitigates potential cyberattacks. In particular, the authors employ the
STRIDE thread modeling to predict potential vulnerabilities and attack vectors on EVCSs, then a weighted
attack defense tree is developed to analyze the adversary’s objectives and create attack scenarios. A Hidden
Markov Model is proposed in order to predict the possible attack paths, while a Partially Observable Monte-
Carlo Planning (POMCP) algorithm ensures that the attacker is directed toward the predicted paths, ensuring
that mitigation actions are timely placed to reduce the impact of the attack. While the proposed method can
predict the attacker’s behavior in multi-step attack scenarios, the problem on how to classify the individual
behavior as malicious is not addressed.

Elkashlan et al. [16] utilize the IoT-23 dataset in order to demonstrate the detection of cyberattacks against
EVCSs. The authors employ various machine learning algorithms to detect malicious traffic that could be
associated with threats against EVCSs, including Command andControl server communication, DDoS attacks,
traces of the Okiru botnet, and samples of a horizontal port scan. The authors discussed the features of the
dataset and removed those that presented weak correlation, hence choosing 14 out of 21 features. The authors
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get results in terms of Precision, Accuracy, Recall and F-1 scores, by comparing four classifiers: TheNaive Bayes,
the J48 classifier, the attribute-select classifier, and the filtered classifier. However, the proposed methodology
did not address EVCS-specific attacks, while the authors highlight the necessity of building a dedicated dataset
for EVCSs.

The DataTransfer operation of OCPP is utilized by some works in order to implement custom security
logic, extending the capabilities of OCPP 1.6. In particular, Rubio et al. [17] aim to ensure the confidentiality and
integrity of the energy values exchanged during charging transactions, by using DataTransfer messages
to enable the EVCSMS to exchange secrets with the EVCS. After exchanging secrets, different cryptographic
mechanisms can be applied to securely exchange energy values through meterValue and meterStop
messages. Kim et al. [18] also utilize DataTransfer to provide security services, in particular, for imple-
menting a rollback mechanism on the EVCSs, thus mitigating the impact of potential threats such as replay
attacks, maliciously modified requests and unauthorized activities.

Benfarhat et al. [19] leverage deep learning and propose a temporal convolutional network (TCN) in order to
classify up to 17 different cyberattacks against the ISO-15118 and OCPP protocols, as they are introduced
in the CICEVSE2024 dataset [20]. According to the authors, the proposed model provides benefits in terms of
representing temporal dependencies and spatial characteristics, thus being able to detect complex patterns. The
authors evaluate their solution bymeasuring accuracy, precision, recall and F1-score metrics, while comparing
the results with CNN, DNN, RNN and LSTM models as well as a hybrid CNN-DNN-LSTM model. Three
experiments are conducted, while considering two classes, five classes and 17 classes, respectively. In the
binary and 5-class classification experiments, all metrics reach 100%. On the contrary, when considering 17
classes, the TCN achieves 93% in all metrics. Despite the large number of classes considered by the authors,
it is noteworthy that the attacks considered exhibit common attack vectors of the network and transport layer,
such as network scanning with the nmap tool and TCP/UDP flooding variants, which are already addressed
by other solutions considering IoT-based DDoS attack detection [21].

Rahman et al. [22] evaluate a hybrid architecture of CNN and LSTM networks to detect the attacks of the CI-
CEVSE2024 dataset. To enhance the detection performance as well as to increase the understanding of the
dataset and attack patterns, the authors apply the SHAP explainability method to obtain results on the features
that contributed mostly on the detection outcomes. It is worth mentioning that the selected features are re-
lated solely to transport-layer characteristics, such as the average packet inter-arrival time in network flows.
The evaluation results indicate high performance, achieving accuracy, precision, recall and F1 score at 97.5%
and Area Under Curve (AUC) at 98.5%.

Finally, Purohit et al. [23] propose an FL-based IDS for detecting cyberattacks against the EVCS infrastructure.
Similar to [19] and [22], the authors utilize the CICEVSE2024 dataset in order to evaluate the performance of
their solution, achieving an accuracy of around 97% and superior F1-score compared to centralized AI-based
IDS that use the CICEVSE2024 dataset.

Summarizing, multiple works have been identified that aim to develop AI-based solutions for detecting attacks
in IoT and EVCS setups. However, it is noteworthy thatmost of the existing work [16,19,20,22,23] employs a similar
methodology of detecting OCPP attacks by analyzing network flow features stemming from the network and
transport layers of the TCP/IP stack, for example those generated by CICFlowMeter [24] and NFStream2. How-
ever, this approach is not sufficient for detecting threats that rely on application-layer characteristics, while the
network and transport layers remain agnostic. Moreover, the threat model considered by the aforementioned

2https://www.nfstream.org/
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Figure 1. The FL-based IDS architecture applied on the EV charging infrastructure. Used icons from: https://www.flaticon.com/.

works and the CICEVSE2024 dataset focusmostly on common IoT threats rather than onOCPP-specific attack
scenarios.

2. METHODS
2.1 Case study
In this work, we introduce a novel approach for detecting OCPP cyberattacks, by applying the FL architecture
on the EV charging infrastructure and detecting potential threats by generating and analyzing network flows
with OCPP-related features. Figure 1 depicts the proposed solution applied on the EV charging infrastructure.
The system under study consists of multiple locations, where multiple EV charging stations are deployed and
serve EV users. EVCSs in the same location form an EV charging hub, which could correspond to a shopping
mall or an airport parking area. Each EV charging hub is connected to the interconnected power grid through
a distribution substation. In each EV charging hub, Internet connectivity is provided by a gateway router,
necessary for interconnecting the EVCSs with the EVCSMS. Owned by the CSO, the EVCSMS controls the
EVCSs through the OCPP 1.6 protocol. Finally, on each EV charging hub, an FL client is deployed, which is
connected to the FL server. The FL client receives the raw network traffic from the EV charging hub, containing
OCPP traffic traces of the EVCSs, and analyses the traffic for potential cyberattacks. The local models residing
on the FL clients are updated by the centralized FL server, by considering the updates coming from all the EV
charging hubs.

2.2. OCPP 1.6 cyberattacks
According to the works relevant to OCPP threats mentioned in Section 1, we have considered the implemen-
tation of four cyberattacks grouped into two categories, namely Flooding attacks and FDI attacks. Under the
FDI category, we consider: (a) Charging Profile Manipulation; (b) Denial of Charge, while for the Flooding
attacks, we consider: (c) Unauthorized Access; and (d) Heartbeat Flood. These attacks are summarized and
illustrated in Figure 2.

The main difference between the two categories is that the flooding attacks rely on overwhelming the target

http://dx.doi.org/10.20517/ces.2025.04
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Figure 2. The OCPP cyberattacks considered in this work.

with application-layer network packets, which the target is unable to properly handle. Depending on possi-
ble implementation flaws or weaknesses from the side of the target, these attacks may cause exhaustion of
computing resources and unavailability of services. On the contrary, the FDIs depend on the fact that the
OCPP 1.6 packets are transmitted unencrypted and unsigned. Based on this fact, a malicious insider places
themself between the EVCSMS and the EVCSs through Address Resolution Protocol (ARP) cache poisoning
in order to alter the OCPP 1.6 messages being transmitted. The consequences vary, depending on the modifi-
cation carried out by the adversary. The FDIs considered in this work cause either denial of service or lead to
cyber-physical consequences.

The cyberattacks are described in more detail in the next subsections. For each cyberattack, we describe: (1)
the normal operation, i.e., the respective flow of operations based on the OCPP 1.6 standard; (2) the threat(s)
that we identify based on potential flaws or weaknesses of the normal operation; (3) the cyberattack, which
describes how we materialize the threat; and (4) observations of the cyberattack in terms of traces or abnormal
behavior that could be considered for detecting the cyberattack.

2.2.1 Charging profile manipulation
Normal operation: The SetChargingProfile.req message is an OCPP 1.6 operation that is used by
the EVCSMS to install charging profiles to EVCSs. A charging profile describes the amount of power or current
that an EVCS is allowed to deliver per time interval. According to the OCPP 1.6 specification, this operation
can be issued either in the context of a charging transaction (i.e., at the start or during the transaction) or
outside the context of a transaction, as a separate message [25]. The SetChargingProfile.reqmessage
includes acsChargingProfiles object, which defines the charging schedule. Multiple time intervals are
defined as separate items inside the chargingSchedulePeriod list. The example provided in Figure 3
describes a SetChargingProfile.req that installs a charging profile, which instructs connector 1 of
an EVCS to draw at most 15𝐴 on 2024-05-12, from 13:51:54 to 15:51:54.

As a powerful and flexible operation, SetChargingProfile.req is used to implement smart charging
scenarios and apply complex charging patterns to EVCSs. Moreover, it can also be leveraged by system op-
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Figure 3. Example of a SetChargingProfile.req message.

erators (i.e., DSOs and TSOs), in combination with openADR [26], for ancillary services, e.g., to reduce peak
demands or to avoid a predicted load surge [27].

Threat: Given its criticality for the above-mentioned reasons, an erroneous or maliciously altered charging
profile could have significant cyber-physical impact to the power grid. For example, a CSO may have intro-
duced charging profiles as a safetymeasure to avoid overloading and stressing of legacy electrical infrastructure,
including old electric cables or unmaintained transformers. In that case, false charging profiles may lead to
stressing of the electrical infrastructure and potential malfunctions. More sophisticated attacks are also pos-
sible, e.g., a coordinated oscillatory load attack that could manipulate the load following an on/off pattern,
causing system frequency fluctuations that can threaten the grid stability [27].

Cyberattack: The Charging Profile Manipulation attack we consider in this work assumes that a cyberattacker
performsMiTM, throughARPpoisoning, followed by FDI thatmodifies theSetChargingProfile.req
messages being transmitted from the EVCSMS to the EVCSs. For each incomingSetChargingProfile.req
message, the attacker replaces the value of the limit attribute of all chargingSchedulePeriod objects
with a higher number. As a result, the affected EVCS is able to draw more power than originally configured
by the CSO.

Observation: TheCharging ProfileManipulation FDI could be detected by inspecting thelimit values of the
transmitted charging profiles. Based on the characteristics of the EV charging infrastructure and the targeted
EVCS, there are reasonable values that are expected to be set in this field. By profiling this attribute and getting
the baseline from benign traffic, it would be possible for a CSO to detect an abnormal charging profile.

2.2.2 Denial of charge
Normal operation: Figure 4 describes the procedure to remotely start a transaction and the authorization pro-
cess before starting a charging session. To start a charging transaction, the EV user through themobile app will
trigger EVCSMS to send a RemoteStartTransaction.reqmessage. If theAuthorizeRemoteTx
Requests configuration variable is activated on the EVCS, the EVCS will try to authorize the identity of
the EV user (idTag) via an Authorize.req message. Assuming that the presented identity is valid,
the EVCS will receive a positive Authorize.conf response and will start the transaction procedure by
sending a StartTransaction.req message. The EVCS will start providing power upon receiving a
StartTransaction.

http://dx.doi.org/10.20517/ces.2025.04
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Figure 4. The authorization of charging transactions in OCPP 1.6.

conf with idTagInfo.status = Accepted from the EVCSMS. Similarly, the transaction can be
stopped by the EV user by triggering a RemoteStopTransaction.reqmessage [25].

Threat: By observing the authorization procedure, a denial of service (in particular, a denial of charge) situation
could happen if the authentication information, which is private information, is tamperedwith. In particular, if
theidTag information is altered during transmission, this will lead to failure of authorization, thus preventing
the EVCS from starting the charging transaction.

Cyberattack: We consider a denial of charge attack, in which a cyberattacker performs MiTM, through ARP
poisoning, followed by FDI that replaces the idTag info included in any RemoteStartTransaction
messagewith a randomvalue. If AuthorizeRemoteTxRequests on the EVCS is enabled, the EVCSwill
send anAuthorize.reqmessagewith theidTag injected by the attacker, leading to anAuthorize.conf
response with idTagInfo.status = Invalid. If AuthorizeRemoteTxRequests is not en-
abled on the EVCS, the authorizationwill still fail, since the EVCSMSwill send aStartTransaction.conf

http://dx.doi.org/10.20517/ces.2025.04
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Figure 5. The establishment of an OCPP 1.6-J session over WebSocket.

with idTagInfo.status = Invalid.

Observation: Considering that the CSO prefers to minimize the messages transmitted from/to the EVCS, it is
reasonable to assume that, normally, an EVCSMS will never send a RemoteStartTransaction.req
with an invalid idTag, since the EVCSMS has already the capacity to validate an idTag in the first place.
Hence, observing a RemoteStartTransaction.req followed by a StartTransaction.conf
or an Authorize.confmessage with idTagInfo.status = Invalid, would be an indication of
a malformed RemoteStartTransaction.req.

2.2.3 Heartbeat flood
Normal operation: Figure 5 depicts an overview of the procedure for establishing an OCPP 1.6 session over
WebSocket (OCPP 1.6-J) between an EVCS and the EVCSMS [28]. The procedure is initiated by the CSO engi-
neer, which configures the EVCS through an out-of-band management method, usually via Bluetooth and a
dedicated mobile app provided by the EVCS manufacturer. The engineer specifies the Unique Resource Iden-
tifier (URL) that the EVCS must use to register to the EVCSMS. Upon applying this configuration, the EVCS
sends a HyperText Transport Protocol (HTTP) GET request, incorporating the unique ID of the EVCS at the
end of theURL aswell as the appropriateHTTPheaders that request session upgrade toWebSocket. If the EVC-
SMS accepts the EVCSMS, it will send an HTTP 101 Switching Protocols response, which signals the EVCS to
immediately start sending OCPP 1.6-J messages, starting with the BootNotification.req. Depending
on the value of theHeartbeatInterval configuration variable of the EVCS and theinterval parame-
ter of theBootNotification.conf response of the EVCSMS (which can override theHeartbeatInterval),
the EVCS sends periodic Heartbeat.req messages to the EVCSMS in order to get the current date and
time from the EVCSMS. Moreover, this message is useful for the EVCSMS to ensure that the EVCS is still
online.

http://dx.doi.org/10.20517/ces.2025.04
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Threat: While theHeartbeat interval can be indicated by the EVCSMS via theBootNotification.conf
response, right after the OCPP 1.6-J session establishment, a malicious or misconfigured EVCS might not
respect this interval, thus sending very frequent Heartbeat messages. Alternatively, in a MiTM situation, an
attacker couldmodify theinterval attribute of theBootNotification.confmessages, thus forcing
the EVCSs to send very frequent Heartbeat messages. Regardless of the method, the high volume of Heartbeat
messages may threaten the availability of the EVCSMS.

Cyberattack: In this attack scenario, we assume that the attacker deploys a botnet of multiple virtual EVCSs,
which concurrently attempt to establish OCPP 1.6-J sessions with the targeted EVCSMS. Assuming that the
EVCSMS is not configured to authorize each EVCS or that the bots use valid IDs, all connections are accepted.
After this step, the bots flood the EVCSMS with Heartbeat.req messages, leading to resource exhaus-
tion and service unavailability for the EVCSMS. For example, such flooding could lead to reaching maximum
database connections internally in the EVCSMS, causing unavailability of other critical services provided by
the EVCSMS. Moreover, the computing resources could be overutilized (including Central Processing Unit
(CPU) cycles and network bandwidth), leading to overall system performance degradation.

Observation: In contrast to the FDI attacks, someone could notice the traces of this attack also at the Transmis-
sion Control Protocol (TCP) / Internet Protocol (IP) layer. In particular, an unusually high number of packets
will be noticed per TCP session. Moreover, at the application layer, the CSO would notice an unusually high
number of Heartbeat messages per EVCS.

2.2.4 Unauthorized access
Normal operation: As an alternative flow depicted in Figure 5, and according to the OCPP 1.6-J specifica-
tion [28], if an EVCS session establishment attempt is not accepted, then the EVCSMS should reply with an
”HTTP 404 - Not Found” response.

Threat: If the EVCSMS does not apply any throttling policy, an overwhelming amount of connection attempts
may cause exhaustion of computing resources and degradation of system performance. Moreover, an attacker
could perform an enumeration attack by trying to ”guess” valid EVCS IDs.

Cyberattack: Similarly to the Heartbeat Flood attack, in this attack scenario we assume that the attacker de-
ploys a botnet of multiple virtual EVCSs, which concurrently attempt to establish OCPP 1.6-J sessions with the
targeted EVCSMS. However, in this variation of the attack, the targeted EVCSMS is appropriately configured
in order to reject connection attempts from unknown EVCSs. Hence, the EVCS responds to each bot with an
HTTP 404 message, leading to wastage of computing resources and possible performance degradation due to
over-utilization of computing and network resources.

Observation: At the TCP/IP layer, this attack would generate an unusually high number of short-lived TCP
sessions finished by TCP packets having the FIN flag activated. Moreover, at the application layer, this attack
would generate an unusually high number ofHTTP 404messages, clearly indicating failed connection attempts
fromWebSocket clients.

2.3. Federated learning intrusion detection system
Figure 6 depicts the architecture and implementation details of the proposed FL-based IDS, which is composed
of the following components: (a) the Network Traffic Capturing Module; (b) the Network Flow Extraction
Module; (c) the Local Prediction Engine; and (d) the Response Module. In summary, the FL client receives
network traffic from the EV charging infrastructure and generates a security event for each abnormal network
flow. Finally, the security events are delivered to the preferred Security Information and Event Management
(SIEM) system.
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Figure 6. The architecture of the FL-based IDS.

2.3.1 Network traffic capturing module
First, the Network Traffic Capturing Module is responsible for capturing the network traffic data, using a
Switched Port Analyzer (SPAN) (i.e., port mirroring) of the local network switch. SPAN allows the FL-based
IDS to monitor and capture the traffic data passing through specific ports of the network switch, where the
EVCSs are connected. In the context of SPAN, the monitoring source and destination ports should be defined.
Next, all incoming and outgoing traffic data from the monitoring sources are copied/mirrored to the desti-
nation port. Next, the Network Traffic Capturing Module uses tcpdump in order to capture the mirrored
network traffic data.

2.3.2. Network flow extraction module
The Network Flow Extraction Module is composed of a set of flow statistics/features generators that receive
the network traffic data (i.e., PCAP file) from the previous module and produces bi-directional flow statistic-
s/features. For this purpose, we use two flow generators, namely (a) the CICFlowMeter [24] tool; (b) the
OCPPFlowMeter.

OCPPFlowMeter: It is a custom tool, introduced in this work, that generates additional flow statistics fo-
cusing on the OCPP 1.6 protocol characteristics. The complete list of the OCPPFlowMeter features can be
found in Table 1. Compared to CICFlowMeter, which provides statistics only for the IP and TCP network
layers, OCPPFlowMeter can effectively be used to detect both flooding and FDI attacks. Some of the fea-
tures of the OCPPFlowMeter are influenced by the cyberattack observation described for each cyberattack
in Section 2.2. Adopting the CICFlowMeter approach, the OCPPFlowMeter groups packets based on
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a pre-defined flow timeout of 120 seconds, and calculates statistics by parsing the payload of the OCPP 1.6
messages and the WebSocket and HTTP headers.

2.3.3. Local prediction engine
Upon completing the FL process, each participating client obtains a local copy of the final global model from
the server, during the final FL round. This model is then independently deployed on the client’s infrastructure
(e.g., devices, on-premise servers, virtual machines, or cloud-based systems) to perform real-time inference.
As such, the Local Prediction Engine consists of a set of federated detection models that are generated by the
Training Module. As input, it receives the flow statistics/features from the previous module and applies the
corresponding federated detection models. The Local Prediction Engine model is trained with TCP/IP flow
statistics/features from CICFlowMeter and OCPP 1.6 statistics from the OCPPFlowMeter. In case of a
detected cyberattack, the Response Module generates the corresponding security event.

2.3.4. Response module
Based on the detection results, the Response Module is responsible for generating the corresponding security
events. The security event is delivered to the configured SIEM using the rsyslog protocol.

2.3.5. Training module
TheTrainingModule consists of two components: (a) Federated Server (Fed Server) and (b) FederatedClient(s)
(Fed Clients). On the one hand, the Federated Server is responsible for coordinating the FL process and man-
aging the communication between the Federated Clients. It aggregates the locally trained models from the
Federated Clients and updates the global model. It also handles the management of resources and data privacy.
On the other hand, a Federated Client is responsible for training the AImodels on the local data and communi-
cating the trainedmodels to the Federated Server. It also handles the pre-processing and post-processing of the
data and the management of the local resources. It is placed on the EV charging hubs to enable the use of the
local data for training the models and to ensure the privacy and security of the EV charging data. For the im-
plementation of the Training Module, Flower and FedTree were utilized. Moreover, various aggregation
techniques were investigated, such as FedAvg [29], FedProx [30], FedAdam [31], FedAdagrad [31], FedYogi [31] and
FedTree [32]. Although detailed descriptions of these techniques are available in their respective references, we
outline their main characteristics below. FedAvg is the standard FL aggregation strategy. It works by averaging
the model weights from the clients after each local training round and updating the global model accordingly.
FedProx extends FedAvg by adding a proximal term in the local objective to limit the deviation of local models
from the global model. It is suitable for handling non-independent and identically distributed (non-iid) data
among clients. Moreover, FedAdam applies adaptive learning rates by using first and secondmoment estimates
of gradients, FedAdagrad adjusts learning rates based on historical information, and FedYogi maintains stable
model updates by controlling the growth of second-moment estimates. These methods focus on providing
training stability. Finally, FedTree is designed for decision tree-based models.

3. RESULTS
3.1 Experiment setup
Figure 7 depicts the experimental infrastructure utilized to test and evaluate the proposed solution. In this
setup, we implemented the FL-based system model of Section 2.1 by replicating two EV charging hubs. The
first hub consists of real EV charging stations, namely a Terra Alternating Current (AC) 22kW wallbox type
2 (TAC-W22-T-0) and a Terra 54 Direct Current (DC) 50 kW Fast Charger, both manufactured by ABB. The
first hub is provided by the e-mobility laboratory of the Public Power Corporation (PPC) Innovation Hub3.

3https://innovationhub.dei.gr/en/services/testing/other/e-mobility-laboratory/
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Table 1. Features of the OCPPFlowMeter

Network Layer # Feature Description

TCP/IP

1 flow_id Unique ID of the flow
2 src_ip Source IP of the flow
3 dst_ip Destination IP of the flow
4 src_port Source TCP port
5 dst_port Destination TCP port
6 total_flow_packets Total number of packets contained within the flow
7 total_fw_packets Total flow packets in the forward direction
8 total_bw_packets Total flow packets in the backward direction
9 flow_duration Flow duration in seconds
10 flow_down_up_ratio The fraction between the packets in the backward direction and the packets in the forward direction
11 flow_total_SYN_flag The total number of the TCP SYN packets
12 flow_total_RST_flag The total number of the TCP RST packets
13 flow_total_PSH_flag The total number of the TCP PSH packets
14 flow_total_ACK_flag The total number of the TCP ACK packets
15 flow_total_URG_flag The total number of the TCP URG packets
16 flow_total_CWE_flag The total number of the TCP CWE packets
17 flow_total_ECE_flag The total number of the TCP ECE packets
18 flow_total_FIN_flag The total number of the TCP FIN packets
19 flow_start_timestamp The timestamp of the flow. It is defined with the first relevant packet.
20 flow_end_timestamp The timestamp of the last packet of the flow

HTTP

21 flow_total_http_get_packets The total number of HTTP GET packets
22 flow_total_http_2xx_packets The total number of HTTP 2XX success messages
23 flow_total_http_4xx_packets The total number of HTTP 4XX client error messages
24 flow_total_http_5xx_packets The total number of HTTP 5XX server error messages

WebSocket

25 flow_websocket_packts_per_second The number of WebSocket packets per second
26 fw_websocket_packts_per_second The number of WebSocket packets per second in the forward direction
27 bw_websocket_packts_per_second The number of WebSocket packets per second in the backward direction
28 flow_websocket_bytes_per_second The sum of WebSocket payload lengths per second
29 fw_websocket_bytes_per_second The sum of WebSocket payload lengths per second in the forward direction
30 bw_websocket_bytes_per_second The sum of WebSocket payload lengths per second in the backward direction
31 flow_total_websocket_ping_packets The total number of the WebSocket ping packets (opcode 0x9)
32 flow_total_websocket_pong_packets The total number of the WebSocket pong packets (opcode 0xA)
33 flow_total_websocket_close_packets The total number of the WebSocket close packets (opcode 0x8)
34 flow_total_websocket_data_messages The total number of the WebSocket data frames (opcode 0x1 or 0x2)

OCPP 1.6

35 flow_total_ocpp16_heartbeat_packets The total number of the OCPP 1.6 Heartbeat messages
36 flow_total_ocpp16_resetHard_packets The total number of the OCPP 1.6 HardReset messages
37 flow_total_ocpp16_resetSoft_packets The total number of the OCPP 1.6 SoftReset messages
38 flow_total_ocpp16_unlockconnector_packets The total number of the OCPP 1.6 UnlockConnector messages
39 flow_total_ocpp16_starttransaction_packets The total number of the OCPP 1.6 StartTransaction messages
40 flow_total_ocpp16_remotestarttransaction_packets The total number of the OCPP 1.6 RemoteStartTransaction messages
41 flow_total_ocpp16_authorize_not_accepted_packets The total number of Authorize.conf messages containing an ”Invalid”, ”Blocked” or ”Expired” AuthorizationStatus
42 flow_total_ocpp16_setchargingprofile_packets The total number of the OCPP 1.6 SetChargingProfile messages
43 flow_avg_ocpp16_setchargingprofile_limit Average number of the ”limit” value of SetChargingProfile messages
44 flow_max_ocpp16_setchargingprofile_limit Maximum value of the ”limit” value of SetChargingProfile messages
45 flow_min_ocpp16_setchargingprofile_limit Minimum value of the ”limit” value of SetChargingProfile messages
46 flow_avg_ocpp16_setchargingprofile_minchargingrate Average number of the ”minChargingRate” attribute of SetChargingProfile messages
47 flow_min_ocpp16_setchargingprofile_minchargingrate Minimum value of the ”minChargingRate” attribute of SetChargingProfile messages
48 flow_max_ocpp16_setchargingprofile_minchargingrate Maximum value of the ”minChargingRate” attribute of SetChargingProfile messages
49 flow_total_ocpp16_metervalues The total number of meterValues messages
50 flow_min_ocpp16_metervalues_soc The minimum value of State of Charge attribute of the meterValues messages
51 flow_max_ocpp16_metervalues_soc The maximum value of State of Charge attribute of the meterValues messages
52 flow_avg_ocpp16_metervalues_wh_diff The average of the difference between the ”Energy.Active.Import.Register” attributes of consequentive meterValues messages
53 flow_max_ocpp16_metervalues_wh_diff The maximum difference between the ”Energy.Active.Import.Register” attributes of consequentive meterValues messages
54 flow_min_ocpp16_metervalues_wh_diff The minimum difference between the ”Energy.Active.Import.Register” attributes of consequentive meterValues messages

Other 55 label String that describes the classification result of the flow. It can be normal, unlabelled, or denote a specific cyberattack.

The second EV charging hub is composed of multiple virtual EV charging stations, which are simulated using
the e-mobility charging stations simulator by SAP4. Both hubs are managed by an EVCSMS, which is provided
by the SteVe5 open-source software. On both locations, the attacker utilizes custom scripts written in Python
in order to implement the cyberattacks described in Section 2.2.

For implementing the FDI attacks, the Ettercap6 tool is employed to conduct ARP poisoning. This proce-
dure aims to poison the ARP cache of the EVCSs by giving the false information that the attacker’s machine
is the default gateway that the EVCSs need to route their packets to in order to reach the EVCSMS. Next, the
appropriate iptables rules are inserted into the attacker’s machine, in order to redirect incoming traffic
from the EVCS to a NetFilter queue, allowing access and further manipulation of the packet via external soft-
ware. Then, the NetFilterQueue7 library is utilized by the attacker in order to access the content of the
NetFilter queue and manipulate the packets. For the manipulation process, the attacker utilizes the scapy
library. Finally, the packet is sent back to the network for its original destination.

4https://github.com/sap/e-mobility-charging-stations-simulator
5https://github.com/steve-community/steve
6https://www.ettercap-project.org/
7https://github.com/oremanj/python-netfilterqueue
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Figure 7. The Experimental setup.

Table 2. Detection capabilities and relevant features of CICFlowMeter and OCPPFlowMeter

OCPP cyberattack CICFlowMeter OCPPFlowMeter Relevant OCPPFlowMeter features
Charging profile manipulation ✓ flow_max_ocpp16_setchargingprofile_limit

Denial of charge ✓

flow_total_ocpp16_starttransaction_packets,
flow_total_ocpp16_authorize_not_accepted_packets,
flow_total_ocpp16_remotestarttransaction_packets

Heartbeat flood ✓ ✓

src_ip, dst_ip, total_flow_packets,
total_fw_packets, total_bw_packets, flow_total_PSH_flag,
flow_total_ACK_flag, flow_total_websocket_data_messages,
flow_total_ocpp16_heartbeat_packets

EVCS session establishment flood ✓ ✓
flow_total_FIN_flag, flow_total_http_4xx_packets,
flow_total_http_get_packets

For the flooding attacks, the attacker utilizes the multiprocessing package of Python to spawn multiple
processes that act as separate EVCS bots. Then, each bot launches multiple processing threads, each thread
representing an EVCS. Each thread uses the websockets Python library to initiate a WebSocket session
with the target EVCSMS. If the connection fails, the thread tries again by randomly changing the EVCS ID.
If the connection is accepted, the EVCS thread sends a BootNotification.req and then subsequent
Heartbeat.reqmessages, each 1 second or more frequently.

The evaluation results were calculated by using the data of both theCICFlowMeter and theOCPPFlowMeter.
As discussed in Section 2.3, the OCPPFlowMeter focuses on the OCPP features for generating network
flows, enabling the detection of more attacks against OCPP. Table 2 summarizes the capabilities of each net-
work flow module with respect to the attacks implemented in the evaluation as well as the most prominent
OCPPFlowMeter features for each attack.

Finally, the overall dataset consists of 4,415 samples, with each sample corresponding to a network flow. The
dataset consists of four attack classes, as described above, and one normal, indicating benign traffic. Moreover,
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the dataset is balanced, meaning that all classes are represented by an equal number of samples. We consider
that three clients participate in the FL, with the dataset evenly divided among them to ensure each client
receives an equal number of labels. Each client then splits its local dataset into training, validation, and test
sets, using a ratio of 0.6, 0.1, and 0.3, respectively. Regarding the FL training setting, the local model of each FL
client is a neural network consisting of 3 fully connected hidden layers with 128 neurons and ReLU activation.
The training consisted of 40 rounds with a batch size of 32 and learning rate equal to 0.001.

3.2 Detection results
Before analyzing the detection performance of the proposed FL-based IDS, the relevant evaluation metrics
are introduced first. On the one hand, True Positives (TP) denotes the number of correct classifications with
respect to the presence of the attacks. Similarly, True Negatives (TN) indicates the number of correct classi-
fications regarding the normal network flows. On the other hand, False Negatives (FN) and False Positives
(FP) imply mistaken classifications related to the attacks. Therefore, based on the aforementioned terms, the
following evaluation metrics are used:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(1)

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(2)

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
(3)

𝐹1 =
2 × 𝑇𝑃

2 × 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
(4)

Table 3 and Table 4 summarize the evaluation results of the proposed FL-based IDS, for the two network flow
extraction modules, by trying six different aggregation methods: (a) FedAvg, (b) FedProx, (c) FedAdam, (d)
FedAdagrad, (e) FedYogi, and (f) FedTree.

Based on the evaluation results for the CICFlowMeter module, FedProx achieves the best performance
where 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 99.18%, 𝑇𝑃𝑅 = 99.18%, 𝐹𝑃𝑅 = 0.16% and 𝐹1 = 99.36%. On the contrary, the worst
performance is calculated by FedAdagrad and FedTree where 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 98.26%, 𝑇𝑃𝑅 = 98.26%, 𝐹𝑃𝑅 =
0.21% and 𝐹1 = 99.18%.

For theOCPPFlowMetermodule, FedAvg, FedProx and FedTree achieve the best performancewhere 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
99.21%, 𝑇𝑃𝑅 = 99.21%, 𝐹𝑃𝑅 = 0.20% and 𝐹1 = 99.21%. On the contrary, the worst performance is calcu-
lated by FedAdagrad where 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 79.78%, 𝑇𝑃𝑅 = 79.78%, 𝐹𝑃𝑅 = 5.05% and 𝐹1 = 72.87%.

Finally, for both CICFlowMeter and OCPPFlowMeter, we evaluate the performance of the centralized
method, which represents a scenario where all data are collected at a single node that performs the model
training. Naturally, the centralized method serves as an upper performance bound. However, it is evident that
FL achieves nearly the same performance as the centralized approach, while also inherently ensuring privacy,
a capability the centralized method lacks.

http://dx.doi.org/10.20517/ces.2025.04


Dalamagkas et al. Complex Eng. Syst. 2025, 5, 9 I http://dx.doi.org/10.20517/ces.2025.04 Page 17 of 20

Table 3. Evaluation results of the proposed FL architecture with various aggregation methods - CICFlowMeter

Strategy Accuracy TPR FPR F1
FedAvg 99.36% 99.36% 0.23% 99.08%
FedProx 99.18% 99.18% 0.16% 99.36%
FedAdam 99.18% 99.18% 0.21% 99.18%
FedAdagrad 98.26% 98.26% 0.21% 99.18%
FedYogi 99.45% 99.45% 0.44% 98.25%
FedTree 98.26% 98.26% 0.21% 99.18%
Centralized 99.52% 99.52% 0.15% 99.52%

Table 4. Evaluation results of the proposed FL architecture with various aggregation methods - OCPPFlowMeter

Strategy Accuracy TPR FPR F1
FedAvg 99.21% 99.21% 0.20% 99.21%
FedProx 99.21% 99.21% 0.20% 99.21%
FedAdam 99.14% 99.14% 2.15% 99.14%
FedAdagrad 98.49% 98.49% 4.05% 98.37%
FedYogi 99.07% 99.07% 0.23% 98.07%
FedTree 99.21% 99.21% 0.20% 99.21%
Centralized 99.66% 99.66% 0.08% 99.66%

4. DISCUSSION
In this paper, an FL-based IDS is presented, which aims to detect cyberattacks against the EV charging infras-
tructure based on the OCPP 1.6. The proposed system realizes multiple FL clients on multiple EV charging
hubs, which analyze the local OCPP 1.6 network traffic in terms of network flows and contribute to the training
of a global AI model. Moreover, the FL client integrates the OCPPFlowMeter, a new tool for network flows
that generates network flow statistics relevant to OCPP 1.6, thus assisting in the detection of both flooding and
FDI attacks.

An experimental setup was described, based on both simulated and real EV charging stations, showcasing high
detection performance. By comparing the results from six FL aggregation methods, it is concluded that the
FredProx, FedAvg and FedTree provided better results, especially in terms of FPR and F1 score.

However, it should be noted that a cyberattack is detected only by assuming that the detector is able to capture
the relevant malicious activity. If the attacker is able to avoid the packet capture, or if the attacker leverages
adversarial AI techniques to evade the detection from the AI models, then the attack may remain undetectable.
In these cases, an attack could be detected by observing the state of the system, i.e., the symptoms of a potential
attack. Moreover, while OCPP 1.6 is considered dominant in the market at the time of writing, future versions
of OCPP (e.g., OCPP 2.0.1) may require the revision of the OCPPFlowMeter tool to ensure support. In
addition, the proposed FL architecture assumes that each EV charging hub is equipped with a host machine
and network switch with port mirroring capabilities, thus requiring additional investments from the end user.
Finally, concerning the computational requirements of training the AI models, the employed models do not
result in a resource-intensive task, since they can be considered as lightweight.

Considering the aforementioned remarks, as future work, we plan to extend our detection method by working
on the following points: (a) detecting an attack not only by its traces, but also by assessing the system status
and performance Key Performance Indicators (KPIs) that would indicate the potential impact of a cyberattack,
(b) strengthening the resilience of our AI models against adversarial attacks, (c) extending our threat analysis
and the OCPPFlowMeter tool to OCPP 2.0.1.

5. CONCLUSION
In the present work, we study the detection of cyberattacks against OCPP 1.6 by introducing an FL-based IDS.
The literature review identified several IDS solutions. Some of the existing IDS adopt the FL paradigm while
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others focus on applying deep learning models that are trained in a centralized manner. Moreover, the solu-
tions that detect threats against the EVCS infrastructure, mainly utilize centrally trained models, while their
detection methodology rely on analyzing the network and transport layer attributes of network flows. Further-
more, the threat model considered by these solutions focuses on generic network threats that are applicable to
multiple IoT domains rather than application-specific threat scenarios.

Considering the aforementioned remarks, we developed a privacy-preserving FL-based anomaly detection
method which relies on network flow features, generated by OCPPFlowMeter, that consider not only net-
work and transport layer characteristics, but also features related to the underlying application protocols of
WebSocket, HTTP and OCPP. To assess our methodology, we described four cyberattacks against OCPP,
with two of them being detectable only by observing OCPP-specific features. The AI-based analysis of those
features enables the detection of all four attacks, compared to the conventional analysis of CICFlowMeter
features. Finally, a comparative analysis of six FL aggregation methods is presented, which are compared to
the centralized training approach that serves as the upper performance bound, indicating that our FL-based
method achieves nearly the same performance while retaining the benefit of data confidentiality.
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