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Abstract

The increasing global demand for sustainable and high-quality agricultural products has
driven interest in precision agriculture technologies. This study presents a novel approach
to wild mushroom detection, particularly focusing on Macrolepiota procera as a focal species
for demonstration and benchmarking. The proposed approach utilises unmanned aerial
vehicles (UAVs) equipped with multispectral imaging and the YOLOv5 object detection
algorithm. A custom dataset, the wild mushroom detection dataset (WOES), comprising
907 annotated aerial and ground images, was developed to support model training and
evaluation. Our method integrates low-cost hardware with advanced deep learning and
vegetation index analysis (NDRE) to enable real-time identification of mushrooms in
forested environments. The proposed system achieved an identification accuracy exceeding
90% and completed detection tasks within 30 min per field survey. Although the dataset
is geographically limited to Western Macedonia, Greece, and focused primarily on a
morphologically distinctive species, the methodology is designed to be extendable to
other wild mushroom types. This work contributes a replicable framework for scalable,
cost-effective mushroom monitoring in ecological and agricultural applications.

Keywords: wild mushroom detection; Macrolepiota procera; precision agriculture; machine
learning; unmanned aerial vehicle; multispectral

1. Introduction
The primary production sector has made significant progress in automating and

streamlining manufacturing, harvesting, and processing operations in the current industrial
era. This has led to improvements in efficiency and reductions in expenses. Furthermore,
mushrooms are highly valued for their nutritional properties, including their high levels
of vitamins, dietary fibres, and proteins. These properties have been shown to boost the
immune system and protect against various forms of cancer [1]. Due to these benefits,
there is a growing demand for high-yield, safe harvesting of wild mushrooms. By utilising
wild mushroom cultivation techniques, the primary sector can address the challenges of
producing and harvesting agricultural goods in a more sustainable manner [2,3].

Despite the abundance of food available in modern society, the sustainability of food
production remains a pressing concern. Factors such as limited arable land, inadequate
access to water resources, energy consumption, and the impact of climate change, as well as
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overpopulation, all contribute to this challenge. In particular, the cultivation of mushrooms
requires optimal conditions in terms of temperature and humidity, which can be energy-
intensive to maintain. As a result, many mushroom growers resort to collecting wild
mushrooms from open fields. However, this process can be complex and time-consuming,
as correctly identifying mushrooms in forested areas is challenging. To achieve the desired
rate of production [4] and level of quality for end customers, new techniques and methods
are introduced to implement creative improvements in agricultural practices and reform
conventional operations.

The agricultural sector has made significant advancements in automating and en-
hancing production and processing procedures in the contemporary industrial era. The
primary sector has undergone a significant upgrade to new quality standards as a result of
the ongoing penetration of high-tech technologies [5], such as unmanned aerial vehicles
(UAVs) [6], Robots [7], optimized supply chains, the continuous evolution of computer
vision (CV) [8], and the continuous improvement of artificial intelligence (AI) [9] and
ensemble learning (EL) [10]. As new approaches are necessary to maintain product quality
and sustainability, this problem has grown increasingly widespread in agriculture.

Several cutting-edge AI-enabled technologies and specific implementations based on
machine learning (ML) [11], deep learning (DL) [12], and CV paradigms have impacted
the agricultural business in terms of product quality assurance. It is crucial to use these
modern technologies to identify mushroom cultivations in natural habitats [13].

This study aims to investigate the difficulty of effectively recognising wild mushrooms
in forest environments using CV, a combination of AI-based techniques and UAV platforms
equipped with RGB and multispectral imaging systems. An updated dataset of Macrolepiota
procera mushrooms [14,15] and other wild mushroom species is introduced, along with
AI-trained and CV identification methods. The updated mushroom Macrolepiota procera
detection dataset (OMPES) [16] is now named the wild mushroom detection dataset (WOES)
dataset. The difference between the OMPES dataset and WOES is the increase in ground
photographs of Macrolepiota procera mushrooms and other mushroom species.

This study focuses on the detection of Macrolepiota procera mushrooms. However, it
acknowledges the significance of identifying other wild mushroom species using probabilis-
tic methods to accomplish a more comprehensive approach to wild mushroom detection.
By conducting a thorough examination of the mushrooms’ morphological characteristics,
it is possible to accurately identify the species. The primary goal of this research is to
identify regions with the greatest potential for wild mushroom proliferation, in addition
to detecting individual mushrooms within forested environments. The time and labour
necessary for mushroom foraging can be substantially reduced by a comprehensive com-
prehension of these potential habitats. Furthermore, the proposed methodology facilitates
the probabilistic inference of species presence within a specific region by examining the
spatial and distributional patterns of natural mushrooms.

This research makes three significant contributions to the field of wild mushroom
foraging and detection research.

• Contribution 1: The introduction and use of a structured, multispectral-image dataset
(WOES) that enables the training and benchmarking of object detection models for wild
mushroom identification. While the dataset is not publicly released due to ongoing
data protection and field study constraints, this work demonstrates how tailored
annotations, spectral alignment, and probabilistic spatial mapping techniques can
significantly enhance the detection of Macrolepiota procera in natural environments. The
dataset supports the verifiable development of our UAV-based detection pipeline, and
the design principles (e.g., class distribution, multispectral preprocessing, vegetation
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index integration) are fully described for reproducibility. As neither OMPES nor WOES
are publicly available, access requests should be directed to the corresponding author.

• Contribution 2: The introduction of a cutting-edge approach for locating wild mush-
rooms using UAVs and multispectral cameras. This technique combines real-time UAV
surveillance with multispectral photos, enabling the identification of wild mushroom
cultivation using the WOES dataset.

• Contribution 3: A proposed architecture for real-time monitoring with low-cost equip-
ment. The ML models developed and presented in this work can be applied to images
or videos acquired by either UAVs or mobile devices, enabling the detection of wild
mushrooms from both ground and aerial imagery. These models can be evaluated
in the present study’s evaluation of models to determine the most reliable model
configuration and technique for the dataset.

The subsequent sections of this work are structured as follows: Section 2 presents
a literature overview, emphasising current advancements in deep learning applications
for mushroom detection and smart agriculture. Section 3 defines the suggested method-
ology, specifying the data collection process, annotation strategy, and structure of the
custom-trained YOLOv5 models. Section 4 outlines the experimental set-up, including
training setups, hyperparameter optimisation via evolutionary algorithms, and model
evaluation metrics. Section 5 presents an analysis and discussion of the data, supported by
performance comparisons, confusion matrices, and qualitative insights. The Conclusions
Section ultimately concludes the paper by summarising major findings, highlighting the
contributions of this research, and proposing potential paths for future research in the
domain of precision agriculture.

2. Related Work
Although significant technological progress has been made in multiple areas, the

incorporation of artificial intelligence (AI) techniques in agriculture has faced specific
constraints. The adoption and execution of AI in this field have been notably limited,
leading to a significant disparity in its extensive utilisation. The utilisation of machine
learning (ML) and deep learning (DL) methodologies in mushroom identification can
improve both the volume and quality of harvested mushrooms, while also optimising the
extraction of future wild mushroom resources. However, the intricacy of this task poses
inherent difficulties. Mushrooms frequently develop in natural settings where they are
surrounded by multiple visually analogous components, such as weeds or stones of similar
hues, considerably augmenting the volume and complexity of data requiring processing.

2.1. Related Work on Mushroom Cultivation

Figure 1 depicts various wild mushroom species growing in the forest. Notably, some
noteworthy work has been performed on mushroom detection. Regarding mushroom
detection and recognition, the authors in [17] aimed to build an object recognition algorithm
that could be operated with industrial cameras to detect the development state of edible
mushrooms in real time. This algorithm can be deployed in future autonomous picking
equipment. Moreover, in large resolution, small targets (edible mushrooms) have been
detected with 98% accuracy. However, with the processing power available today and the
rapid expansion of cloud computing, this trade-off of computational power for accuracy is
cost-effective. Their study produced significant results in recognising edible mushrooms.
An inevitable drawback of this method is the impact on the aspect ratio and size of the
image (see Figure 1).

Furthermore, the study in [18] examined the application of deep learning mod-
els—SVM, ResNet50, YOLOv5, and AlexNet—to categorise mushrooms as harmful or
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non-toxic utilising image data. The support vector machine (SVM) achieved the highest
accuracy of 83%. The objective is to assist farmers and exporters by enhancing mushroom
safety and increasing agricultural productivity in India.

Figure 1. Ground-level and aerial imagery of wild mushrooms captured in a natural forest envi-
ronment in Western Macedonia, Greece. The images depict various mushroom growth stages and
environments, showcasing both close-up ground perspectives and drone-acquired aerial views. These
visual samples form part of the WOES dataset and illustrate the diversity in morphology, lighting
conditions, and vegetation context, which are critical for training and validating the YOLOv5-based
object detection models.

Similarly, the work in [19] focused on classifying oyster mushroom spawn quality
using image processing and machine learning methods. Spawn images were analysed
with trivariate colour histograms and evaluated using classifiers like DNN, SVM, KNN,
NCC, and decision trees. DNN achieved the highest accuracy of 98.8%, demonstrating the
potential for automated, non-invasive quality control in mushroom farming.

Moreover, the study in [20] presents “Mushroom-YOLO”, an advanced YOLOv5-based
deep learning model designed for the detection of shiitake mushroom growth in indoor
agricultural settings. The approach tackles issues like background noise and diminutive
object size, attaining a mean average precision of 99.24%. A prototype system, termed
“iMushroom”, was developed for real-time yield monitoring and environmental regulation.

Recently, the research in [21] evaluated classification techniques (Naive Bayes, C4.5,
SVM, Logistic Regression) for distinguishing between edible and harmful mushrooms
utilising datasets from Kaggle. C4.5 exhibited the greatest accuracy (93.34%) and pro-
cessing efficiency. The project highlights secure mushroom consumption via automated
classification utilising WEKA software

Last but not least, the study in [22] offered a thorough examination of the contemporary
applications of computer vision and machine learning technology throughout all phases of
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mushroom production, encompassing cultivation, harvesting, categorisation, and disease
detection. It rigorously evaluated current systems, finds constraints such as inadequate
datasets and scalability issues, and explores prospective future avenues, including real-time
monitoring, robotics, and automated yield forecasting.

2.2. Related Work on the Use of YOLOv5 in Precision Farming

A significant contribution to the field of mushroom detection and identification was
made by [23], in which the authors employed a deep learning-based solution utilising
the attention mechanism, convolution block attention module (CBAM), multi-scale fusion,
and an anchor layer. To improve recognition accuracy, the proposed model incorporated
hyperparameter evolution during its training. Results indicate that this approach classifies
and identifies wild mushrooms more effectively than traditional single-shot detection
(SSD), Faster R-CNN, and YOLO series methods. Specifically, the revised YOLOv5 model
improved the mean average precision (MAP) by 3.7% to 93.2%, accuracy by 1.3%, recall
by 1.0%, and model detection time by 2.0%. Notably, the SSD method lagged behind in
terms of MAP by 14.3%. Additionally, the model was subsequently simplified and made
available on Android mobile devices to enhance its practicality, addressing the issue of
mushroom poisoning caused by difficulties in identifying inedible wild mushrooms.

In a separate study, [24] compared various machine learning algorithms, including
YOLOv5 with ResNet50, YOLOv5, Fast RCNN, and EfficientDet, for the task of discovering
chest anomalies in X-ray images. Utilising VinBigData’s web-based platform, the authors
compiled a dataset containing 14 significant radiographic findings and 18,000 images.
Through the evaluation of the trained models, it was found that the combination of YOLOv5
and Resnet-50 architecture yielded the optimal metric values of Mean Average Precision
(MAP) at 0.6 and precision equal to 0.254 and 0.512.

Numerous related studies [25–31] demonstrate that YOLOv5 remains essential in
smart agriculture and precision farming, underscoring its significance and applicability in
current research. Every study modifies YOLOv5 to tackle distinct agricultural difficulties,
utilising its rapidity, versatility, and precision. In [25], the TIA-YOLOv5 model is intro-
duced for effective crop and weed recognition, utilising transformer encoders and feature
fusion techniques to enhance small object detection and address class imbalance—vital
challenges in real-time agricultural settings. Likewise, the study in [26] employs YOLOv5 in
a sophisticated robotic system tailored for accurate herbicide application in rice cultivation,
minimising chemical consumption and fostering ecologically sustainable practices.

In [28], the authors provide YOLOv5s-pest, a pest detection model augmented with
innovative modules, including the hybrid spatial pyramid pooling fast (HSPPF) and Soft-
NMS, which markedly improves multi-scale feature extraction and detection precision
in densely populated agricultural settings. Additionally, research in [28–31] broadens
the applicability of YOLOv5 to encompass crop health monitoring and leaf classification,
specifically focusing on the detection and classification of cowpea leaves through trans-
fer learning. These works also incorporate approaches like attention modules and data
augmentation to enhance performance in varied and intricate agricultural contexts.

These studies collectively illustrate that, despite the emergence of newer detection
frameworks, YOLOv5 continues to be a competitive, versatile, and highly adaptable al-
gorithm. Its sustained significance is bolstered by ongoing enhancements and its shown
capacity to achieve high precision with minimal computational requirements—elements
that are particularly advantageous in resource-limited agricultural environments. Cur-
rent research continuously demonstrates that YOLOv5 is relevant and continues to be a
fundamental element of smart agricultural technology.
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Table 1 provides a comparative overview of recent and relevant studies related to
mushroom detection, smart agriculture, and YOLOv5-based object detection methods. It
summarises the focus areas, techniques used, key limitations, and the specific research
gaps addressed.

Table 1. Comparison of recent studies in mushroom detection and smart agriculture with our
proposed approach. The table outlines each study’s focus, methods used, key limitations, and the
specific gaps addressed. Our work is distinguished by its integration of UAV-based multispectral
imaging, species-specific detection, and real-time inference in natural environments.

Study Focus Area Techniques Used Limitation or Gap Gap Filled by Our Work

[18]
Toxic vs. non-toxic
classification using
deep learning

SVM, ResNet50,
YOLOv5, AlexNet

No species-specific or
habitat localization

Adds spatial mapping and
species-specific
wild detection

[19] Spawn quality detection in
controlled environments

DNN, SVM, KNN,
NCC, Decision Trees

Not applicable to wild
mushrooms or field detection

Applies real-time object
detection in natural habitats

[20] Growth detection of shiitake
mushrooms indoors

Improved YOLOv5,
Cloud system
(iMushroom)

Limited to indoor,
controlled conditions

Extends YOLOv5 use to
outdoor, wild scenarios

[21]
Classification of edible vs.
poisonous mushrooms
using tabular data

C4.5, Naive Bayes,
SVM, Logistic
Regression (WEKA)

No visual or spatial
recognition, only
dataset-based classification

Utilizes vision-based
detection rather than
tabular data

[22]
Review of CV/ML
applications in
mushroom production

Survey and analysis of
ML/CV methods

Lacks implementation or
model deployment;
broad scope

Implements a
field-deployable, targeted
solution addressing specific
species in wild

[17]

Detection of edible
mushrooms using
high-resolution imaging
and real-time object
recognition

Object detection
algorithm with
industrial cameras;
cloud computing
support

Focuses on edible mushroom
state detection, not species
identification or spatial
mapping in
wild environments

Adds species-specific
identification and geospatial
mapping in natural,
unstructured forest settings

[23]

Wild mushroom
classification using
attention mechanisms and
lightweight deployment

CBAM, multi-scale
fusion, hyperparameter
evolution, enhanced
YOLOv5

Focused on recognition and
mobile deployment; lacks
spatial mapping for in situ
wild mushroom harvesting

Adds geographic probability
mapping and detection
integration for wild
harvesting scenarios

[24]

Medical image analysis
using YOLOv5 for chest
anomaly detection
in X-rays

YOLOv5 with
ResNet50, Fast RCNN,
EfficientDet, evaluation
on VinBigData dataset

Non-agricultural application;
limited to clinical X-ray data
without environmental or
field context

Extends YOLOv5 utility to
outdoor, real-time
agricultural object detection
and habitat analysis

[25–31]

Smart agriculture
applications, including
crop/weed detection, pest
control, and plant health
monitoring

YOLOv5 with attention
modules, transformers,
data augmentation,
transfer learning

Task-specific models; lacks
integrated species-level
detection with
environmental
spatial correlation

Combines YOLOv5 with
spatial mapping to support
wild mushroom detection
and area prediction

3. Materials and Methods
3.1. Data Collection

The WOES (Wild Mushroom Observation and Exploration System) dataset is a com-
prehensive collection of examples of wild mushrooms in various stages of development.
This dataset aims to facilitate the training of machine learning and deep learning techniques
for the identification and classification of wild mushroom species.

A data acquisition system (DAQ) is employed as the primary means of data collection.
The DAQ captures environmental signals and converts them into machine-readable data,
while software is used to process and store the acquired data. It is crucial to collect data
during a specific time window, with the optimal period for the majority of mushroom
species being September and October. During this time, meteorological assessments of
the search area should be conducted periodically. Additionally, it is important to note that
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environmental factors such as temperature and relative humidity play a crucial role in the
development of wild mushrooms. Ideal conditions for mushroom growth are typically
formed when high temperatures are preceded by heavy precipitation in the same region.
This is because mushrooms require a warm, humid habitat for optimal growth.

It is noteworthy that the geographic place of data collection in the OMPES and WOES
datasets is in Western Macedonia, Greece. The location of the study has a latitude of
“40.155903863645534” and a longitude of “21.434814591442194”—these coordinates were
provided by Google Maps, which utilises the World Geodetic System (WGS) 84 format. The
Keyhole Markup Language (KML) file presents the research area in Figure 2.

Figure 2. Geographic location of the study area used for data collection, situated in the western part
of the Macedonia region in Northern Greece. The marked region represents the forested terrain,
where aerial and ground imagery of wild mushrooms was captured using UAV platforms. The
environmental conditions in this area—such as seasonal humidity, vegetation density, and natural
mushroom proliferation—make it a representative site for testing automated detection methods in
real-world forest ecosystems.

3.2. Hardware and Software Setup

In the context of this work, we utilised a multi-copter drone equipped with an RGB
and multispectral camera. Figure 3 demonstrates the creation and assembly of a customised
multi-copter UAV using low-cost materials. The main objective is to gather photographs
and videos of the defined region and analyse them to be embedded in the WOES dataset.
The secondary goal is to participate in a scenario that involves detecting wild mushroom
cultivations in a large forest. For the purpose of this study, a mid-to-high-end testbed was
utilised for training the detection model. Specifically, a Linux workstation running Ubuntu
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20.04, equipped with an Intel Core i7 processor, 64 GB of RAM, and an NVIDIA RTX 3080
GPU with 10 GB of GPU memory, was employed.

Figure 3. Assembly process of a custom-built unmanned aerial vehicle (UAV) used for aerial data
acquisition in the study. The drone was constructed using low-cost, off-the-shelf components and
3D-printed structural parts to ensure affordability and replicability. Key hardware includes a Parrot
Sequoia+ multispectral camera, Raspberry Pi Zero 2 for onboard processing and video streaming,
OpenPilot CC3D flight controller, GPS module, and 2300 KV brushless motors. This platform enables
high-resolution image capture and real-time monitoring, forming the backbone of the mushroom
detection pipeline presented in this research.

The essential components of the drone are the OpenPilot CC3D Revolution (Revo)
flight controller, four BR2205 2300 KV motors, a BN-880 GPS Module U8 with a Flash
HMC5883 compass, MPL3115A2-I2C Barometric Pressure/Altitude/Temperature sensor
board, a WiFi antenna 2.4 GHz 5 dBi 190 mm, Parrot Sequoia+, and the Tattu FunFly
1800 mAh 14.8 V Lipo battery pack.

Moreover, the flight controller is configured using Cleanflight, an open-source program
that supports a range of current flight boards. In addition, the 2.4 GHz FlySky FS-i6 is used
to transmit the control signal. We utilise a Raspberry Pi Zero 2 with an RPi camera board
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version 2 that supports 8 MP image resolution and FHD quality for video as the central
processing unit for streaming to the base station.

It is worth noting that the primary function of the U.FL connector is to mount ex-
ternal antennas on boards. Furthermore, the Raspberry Pi Zero 2 does not have a U.FL
connector on its board. The connector must be manually installed on the board, as it is not
commercially available as a pre-integrated component.

In this work, the proposed solution employs a field-based base station in proximity to
the drone’s operational area. The base station utilised in this study is a laptop computer
that communicates with the Raspberry Pi on the drone via WiFi. It is well-known within the
research community that WiFi technology offers a high packet transmission rate, but has a
limited communication range. To mitigate this limitation, the drone is equipped with a live
footage broadcasting capability, which can be enhanced through the deployment of external
antennas on both the drone and the base station. Specifically, an Alfa AWUS036ACH
external antenna is utilised on the base station to extend the WiFi range.

3.3. Data Preprocessing and Annotation

Upon concluding image acquisition, our proposed system advances through five
primary stages to process and analyse the multispectral data.

• Stage 1: The collected band pictures are geometrically aligned to a common reference
spectrum, specifically the REDEDGE band, to achieve precise spatial matching.

• Stage 2: The Normalised Difference Red Edge Index (NDRE) is then computed to
emphasise regions with elevated chlorophyll concentration, potentially signifying
favourable conditions for wild mushroom growth.

• Stage 3: The technique finds possible mushroom locations within the studied area
based on NDRE values.

• Stage 4: A probability score is assigned to each identified location, assessing the
possibility of mushroom existence.

• Stage 5: The processed RGB image, featuring bounding boxes and corresponding
probability scores, is delivered as a PNG file over WiFi to the ground-based control
station for visualisation and decision-making.

The WOES dataset comprises annotated images of mushrooms, each labelled with its
respective class. The files comprise a single class and include aerial and ground images.
The OMPES dataset has 535 photos, while WOES has 907. It is worth noting that two
machine learning models will be trained from the WOES dataset, of which the first utilises
all the photos in the dataset while the second uses only 44.55% (404 photos). In summary,
the WOES dataset consists of the following:

• Images of mixed-pixel resolutions (907, regular cameras).
• Mushroom class, with 543 labels.
• Annotations were initially performed manually until a high level of accuracy was

achieved, after which the preliminary results were used to assist the remaining anno-
tation process.

The proposed methodology’s most innovative part is aerial multispectral imagery.
Using the Parrot Sequoia+ camera, multispectral pictures are obtained. This camera has five
spectral bands: RED, REDEDGE, GREEN, Near-InfraRed (NIR), and RGB. The wavelength
of each spectrum, except RGB, is 660 nm (RED), 735 nm (REDEDGE), 550 nm (GREEN),
and 790 nm (NIR).

These spectra are depicted in Figure 4, which shows a part of the study area. Each
region of interest (ROI) consists of four corners corresponding to the image’s Cartesian
coordinates. For instance, if the height and width of an image are 100 pixels (100 × 100),
the ROI may contain 25 pixels for height and 40 pixels for width (25 × 40). It may have a
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lower left corner at (10, 10), an upper left corner at (35, 10), a lower right corner at (10, 50),
and an upper right corner at (35, 50).

Figure 4. Visualisation of the five spectral bands captured by the Parrot Sequoia+ multispectral
camera used in this study. (a) GREEN (550 nm), (b) Near-Infrared (NIR, 790 nm), (c) RED (660 nm),
(d) Red Edge (REDEDGE, 735 nm), and (e) RGB (standard visible light composite). Each band
captures different reflectance characteristics of vegetation and ground surfaces, which are critical
for identifying spectral signatures of wild mushrooms. These bands are individually processed and
aligned to enable vegetation index calculations (e.g., NDVI, NDRE) and support accurate detection
using the YOLOv5 object detection framework.

Notably, the RED, REDEDGE, GREEN, and NIR spectra have pixel sizes of 1200 by 960.
Figure 5 illustrates a typical difference between the RED and NIR bands. In this scenario,
an ROI of 140 pixels in height and 200 pixels in width (140 × 200) was selected, in which
the red line is tangent to the mushroom in the NIR spectrum and the green line is tangent
to the mushroom in the RED spectrum. Therefore, the difference between the two bands
is noticeable along the horizontal axis. Variations on the vertical and horizontal axes are
also found in the remaining spectra. Therefore, it is imperative to modify all the spectra, as
their proper processing will require a one-to-one matching of all the spectra.

Consequently, all multispectral images must be suitably adjusted. The bands must
initially be adjusted to the desired band. In this work, the RED, GREEN, RGB, and NIR
bands were adjusted in reference to the REDEDGE band. Python 3.13 libraries for computer
vision were used throughout the transformation procedure.

The most important libraries are PIL, NumPy, and OpenCV (Open Computer Vision).
Before developing the script, the proper parameters must be determined. Geographic
Information System (GIS) applications may be used to locate these variables. Essentially,
the RED, NIR, REDEGE, and GREEN bands are rotated to the right by ninety degrees,
while the RGB spectrum is rotated to the left by ninety degrees.
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Figure 5. Comparison of two unprocessed spectral bands captured by the UAV-mounted multispectral
camera: (a) Near-Infrared (NIR) and (b) RED. The images illustrate differences in spectral reflectance
that are critical for vegetation and mushroom detection. In this example, the mushroom target is
tangent to the red line in the NIR band and to the green line in the RED band, highlighting positional
discrepancies that require spectral alignment. Accurate band registration is essential for calculating
vegetation indices (e.g., NDRE) and ensuring pixel-level correspondence in multispectral analysis for
object detection.

Furthermore, the dimensions of the RGB band image should be changed from
3456 × 4608 to 960 × 1280. Table 2 depicts the transformations for each spectrum
concerning the REDEDGE band. The final step is to crop all multispectral images to
925 × 1165 pixels. Notably, a deviation of two pixels was observed when the above method
was used on a hundred multispectral images. Conclusively, the imagery conversion process
is described as challenging yet vital for its utilisation.

As previously stated, the drone utilised in this study was equipped with a multispec-
tral camera. The multispectral camera captures data based on the reflection frequencies
of objects when taking photos. Furthermore, at a low altitude of 3 to 15 m above the
ground, several bands in multispectral images reveal the presence of wild mushrooms. The
frequency range of mushrooms can be determined using GIS applications.

Table 2. Calibration parameters used for aligning multispectral image bands to a common reference
(REDEDGE) during preprocessing. The values represent pixel offsets applied to the top-left corner
of each band (NIR, RED, GREEN, RGB) in order to ensure accurate spatial alignment across all
spectral layers. This alignment is critical for generating consistent vegetation indices and enabling
pixel-accurate object detection in multispectral imagery.

Band Left Up

NIR 16 24
RED 35 15

GREEN 29 2
RGB 21 20

In this project, the GIS tool employed was QGIS 3.40, a free software. This manual
process applies to all species and regions of wild mushrooms. Table 3 depicts the optimal
frequencies in multispectral images for identifying wild mushrooms. Additionally, Figure 6
illustrates the application of the thresholds from Table 3 to the multispectral images of
each spectrum.
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Figure 6. Multispectral band processing workflow for wild mushroom detection. (a–d) Raw spectral
band images captured by the Parrot Sequoia+ camera: (a) GREEN (550 nm), (b) Near-Infrared (NIR,
790 nm), (c) RED (660 nm), and (d) Red Edge (REDEDGE, 735 nm). These unprocessed bands exhibit mis-
alignments and varying reflectance values. (f–i) Corresponding band images after geometric alignment
to the REDEDGE reference, cropping to a common region of interest, and application of band-specific
frequency thresholds (see Table 3) to highlight high-reflectance regions indicative of mushroom presence.
(e) RGB composite image manually annotated by researchers (orange bounding boxes) to provide
ground-truth labels of wild mushrooms for training and validation. This figure demonstrates the critical
preprocessing steps—alignment, thresholding, and annotation—that underpin accurate vegetation index
calculation and YOLOv5-based object detection in heterogeneous forest scenes.

Table 3. Optimal frequency threshold ranges (in kilohertz) for each spectral band used in multispectral
image analysis to identify potential wild mushroom regions. These thresholds were empirically
determined using QGIS tools and highlight reflectance values associated with chlorophyll-rich
vegetation, where mushrooms are likely to grow. Applying these thresholds enables more accurate
segmentation of candidate areas in NDRE, NDVI, and related vegetation indices.

Band Lower Threshold (kHz) Upper Threshold (kHz)

NIR 38 40
RED 37 39

GREEN 38 40
RGB 16 18

3.4. Calculation of the Normalised Difference Red Edge Index

Vegetation indices (VIs) derived from remote sensing-based canopies are simple and
practical methods for quantitative and qualitative assessments of vegetation cover, vigour,
and growth dynamics, among other uses. These indices have been extensively utilised in
remote-sensing applications via various satellites and UAVs [32].

NDRE measures the chlorophyll content in plants. The optimal period to apply NDRE
is between the middle and end of the growing season when plants are fully developed
and ready to be harvested. At this time, it would be less beneficial to employ alternative
indexes. NDRE is a remote-sensing vegetation indicator that measures the chlorophyll
content of plants [33]. The NDRE equation, as showcased in [34], is:

NDRE =
NIR − REDEDGE
NIR + REDEDGE

(1)

The normalised difference vegetation index (NDVI) evaluates the greenness and
density of vegetation in satellite and UAV imagery in the simplest terms possible. The
healthy plants’ spectral reflectance curve determines the difference between the visible
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RED and NIR bands. This difference is represented numerically by the NDVI, which ranges
from −1 to 1.

Consistently calculating the NDVI of a crop or plant over time may disclose a great
deal about environmental changes. In other words, the NDVI may be used to evaluate
plant health remotely [35]. The NDVI equation, as showcased in [32], is:

NDVI =
NIR − RED
NIR + RED

(2)

The optimisation of soil adjusted vegetation index (OSAVI) considers reflectance in the
NIR and RED bands. The fundamental difference between the two indices is that OSAVI
considers the traditional value of the canopy backdrop adjustment factor (0.16) [36]. The
OSAVI equation, as showcased in [32], is:

OSAVI =
NIR − RED
NIR + RED

+ 0.16 (3)

This research used vegetation indices to detect locations yielding wild mushrooms.
Considered vegetation indicators included NDVI, OSAVI, and NDRE. Figure 7 illustrates
the vegetation indices that were generated using the QGIS application.

It is essential to understand that the QGIS software exports the vegetation indices as
TIF files to be utilised in other applications. Moreover, Figure 7 reveals that the NDRE
vegetation index has a more satisfactory result than NDVI and OSAVI because there are
areas with elevated value changes compared to the overall image.

3.5. Model Architecture and Training Setup

In this work, an architecture will be followed, which includes a drone, a base station,
and a drone operator. WiFi Direct is used for communication between the drone and the
base station, while a 2.4 GHz transmitter handles the drone’s telemetry. The architecture is
depicted in Figure 8.

As a first step, the pilot operates the drone at a high altitude of 40 to 100 m over an
area devoid of thick tree cover. The pilot establishes a connection with the multispectral
camera Parrot Sequoia+. The base station connects to the camera’s hotspot, allowing it to
access its IP address.

Correspondingly, the operator establishes a connection between the Raspberry Pi and
the multispectral camera. The Raspberry Pi transmits live video with the RPi camera board
to the base station through the camera hotspot. The transmission is conducted with the
libcamera library. In more detail, the libcamera library is a new software library designed to
provide direct support for complicated camera systems from the Linux operating system.

Furthermore, the operator establishes a wireless connection between the Parrot Se-
quoia+ camera and the base station before executing the command to capture a multispec-
tral image. Capturing a multispectral image takes approximately five seconds, making it
crucial for the drone to maintain a constant posture throughout this period. The camera
archives the picture locally. After the completion of picture capture, the processing of band
images described in Section 3.3 and the calculation of the normalised difference red edge
(NDRE) vegetation index described in Section 3.4, follows the identification of potential
locations with wild mushrooms.
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Figure 7. Example of vegetation index maps derived from multispectral UAV imagery captured
at an altitude of 60 m over a forested area. (a) NDVI index: highlights general vegetation density
and greenness, using reflectance in the RED and NIR bands. (b) OSAVI index: similar to NDVI but
adjusted to minimise the influence of bare soil, making it suitable for sparse vegetation environments.
(c) NDRE index: sensitive to chlorophyll content in mid-to-late growth stages, and particularly
effective for identifying wild mushroom habitats beneath vegetation cover. (d) RGB spectrum image:
standard visible light image used for reference and annotation. These vegetation indices enable
spatial inference of potential mushroom-rich areas by detecting subtle variations in canopy reflectance
patterns, which guide the object detection algorithm.

In the premise of this task, computer vision is used for locating mushroom patches
within the NDRE vegetation index. Initially, the script utilises the NDRE and the PIL library
to analyse the TIF file. Then, a new image is constructed with a white background. This is
followed by two FOR loops that access every pixel in the imported image. Those pixels
with a value higher than or equal to 0.7 are then colored red (255, 0, 0); otherwise, they are
colored black (0, 0, 0). The resulting image is depicted in Figure 9a; it will be referred to as
HighValueSpots, and will be a PIL image object.

The HighValueSpots image is then blurred using the cv.filter2D function with argu-
ments (a) the image, (b) −1, and (c) a kernel. The initial value of the first parameter is
the HighValueSpots image, while the required depth of the target image is specified by
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parameter −1. The number −1 indicates that the resultant image’s depth will be the same
as the source image’s.

Figure 8. System architecture for the proposed wild mushroom detection framework using UAV-
based multispectral imaging and real-time data processing. (a) Phase One: aerial survey initiated
by the UAV equipped with a Parrot Sequoia+ multispectral camera and Raspberry Pi unit; the
drone captures raw spectral data while maintaining stable flight over forested terrain. (b) Phase
Two: onboard preprocessing begins, including band alignment and vegetation index computation
(e.g., NDRE), followed by wireless transmission of processed data to the base station. (c) Base Station:
a field-deployed laptop receives data via extended WiFi, visualises potential mushroom zones, and
manages the detection pipeline. (d) Drone Operator: responsible for piloting the UAV, initiating
imaging protocols, and coordinating live data feedback loops.

The kernel is a short, two-dimensional table holding values that indicate how much
of the surrounding pixel values should be used to determine the intensity value of the
current pixel. Kernels are typically odd-length square arrays, such as 3 × 3, 5 × 5, and
7 × 7. The 80 × 80 matrix recommended for this study is constructed with the function
np.ones((80,80),np.float32)/25.

Choosing large values, such as 80, is primarily motivated by the need to prevent minor
gaps between the groups. Figure 9b displays the result, the BlurredHighValueSpots image,
and a PIL image object with the name BlurredHighValueSpots. Furthermore, the K-means
algorithm divides the BlurredHighValueSpots image into two colour groups, the background
and the red colour. K-means clustering is initially a method for categorising data points or
vectors based on their proximity to their respective mean points. This leads to dividing
the data points or vectors into cells. When applied to an image, the K-means clustering
algorithm considers each pixel as a vector point and generates k-clusters of pixels [37].

The K-means algorithm is directly called using the function cv.kmeans, which requires
five parameters:

• Samples: The data type should be np.float32, and each feature should be placed in
a separate column.

• Nclusters (K): Number of clusters required.
• Criteria: The condition for terminating an iteration. When these conditions are met,

the algorithm stops iterating.
• Attempts: Specifies the number of times the algorithm is conducted with different

beginning labellings. The method returns the labels that result in the highest degree
of compactness. This density is returned as the output.

• Flags: This flag specifies how initial centres are obtained.
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Figure 9. Image processing pipeline for identifying probable wild mushroom zones from NDRE
vegetation index maps. (a) HighValueSpots: binary thresholded image highlighting pixels with NDRE
values larger than 0.7, representing areas with high chlorophyll content, potentially indicating mush-
room presence. (b) BlurredHighValueSpots: image smoothed using an 80 × 80 kernel convolution to
merge nearby high-value pixels, reducing noise and enhancing region continuity. (c) GroupedBlurred-
HighValueSpots: result of applying K-means clustering (K = 2) to segment red-highlighted vegetation
clusters from background pixels. (d) ContourGroupedBlurredHighValueSpots: application of contour
detection (via OpenCV’s findContours and drawContours) to delineate distinct clusters identified
in (c), enabling spatial grouping. (e) MushroomLocations: final annotated map showing inferred
mushroom patch locations, used to guide YOLOv5 object detection and validate multispectral cues.
This stepwise visual pipeline demonstrates how vegetation indices are transformed into actionable
spatial predictions for autonomous mushroom detection.

Therefore, the cv.kmeans function is executed with the following parameters: np.float32(),
2, cv.TERM_CRITERIA_EPS + cv.TERM_CRITERIA_MAX_ITER, 10, and cv.KMEANS
_RANDOM_CENTERS.

The cv.TERM_CRITERIA_EPS criterion refers to stopping the algorithm iteration
when a given level of accuracy is achieved, while the cv.TERM_CRITERIA_MAX_ITER
criterion refers to stopping the algorithm after the specified number of iterations. Figure 9c
displays the result, the modified BlurredHighValueSpots image, as a PIL image object named
GroupedBlurredHighValueSpots.

Using the cv.findContours and drawContours functions, each red region of the Grouped-
BlurredHighValueSpots image is accessible. Initially, explanations for contours may be
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as simple as a line connecting all continuous points (along the border) with the same
colour or intensity. Contours are a valuable tool for form analysis and item identification
and detection.

The cv.findContours function locates the red regions in the GroupedBlurredHighVal-
ueSpots picture using three parameters: cv2.Canny (image, 140, 210);, cv2.RETR LIST; and
cv2.CHAIN APPROX NONE.

The image parameter accepts the image GroupBlurredHighValueSpots as its value. In
addition, the cv2.RETR LIST argument returns all contours without establishing any parent–
child connection. Under this concept, parents and children are equal and serve as a
guideline—lastly, the cv2.CHAIN APPROX NONE argument eliminates all unnecessary
points and compresses the contour.

The drawThe contours function is responsible for drawing contours on an image. This
function has as parameters: (a) the image to draw the contours on; (b) the contours in
tabular form; (c) the colour of the contour line; and (d) the thickness of the line. The
program has been given as follows: image;, contours;, (0, 255, 0); and 5.

Figure 9d portrays the outcome, the modified GroupBlurredHighValueSpots image, as a
PIL image object documented as ContourGroupedBlurredHighValueSpots.

The last stage is calculating the probability of finding wild mushrooms in each area.
A formula that calculates this probability will need to be created to attain this purpose.
Initially, two successive FOR iterations will access all pixels of each contour in the TIF
image file of the NDRE vegetation index. Simultaneously, each contour’s average of the
NDRE values (avg) and the maximum NDRE value (max) will be determined.

At the completion of the entire access to all pixels in each area, the probability of
finding mushrooms is computed using the following formula:

Probability =
max − avg
max + avg

× 100 (4)

Notably, the probability and contours are rendered in the RGB spectrum, as shown
in Figure 9e, and the picture (MushroomLocations) is sent to the base station using the
socket library.

3.6. Training and Evaluation

After evaluating the MushroomLocations image with the potential locations, as depicted
in Figure 9e, the drone operator subsequently flies the drone at a lower altitude to the
targeted areas to verify the presence of wild mushrooms, as seen in Figure 8b.

It is important to note that the drone includes an altimeter sensor, which helps measure
the drone’s altitude. In real-time, the drone sends its location (longitude and latitude) and
altitude (meters) relative to the ground to the base station. This allows the base station to
execute machine-learning models for mushroom identification through the live broadcast
outlined in subsection Phase One. In this study, the YOLOv5 algorithm is applied for object
identification, capable of live stream recognition.

For this purpose, two distinct machine learning models were developed: one for
the general recognition of mushroom entities and another specifically for identifying a
morphological feature unique to Macrolepiota procera. The latter model is designed to
accurately distinguish Macrolepiota procera from Agaricus campestris, a commonly occurring
species in the Grevena region. The annotation of the dataset was conducted using an online
platform [38], with the resulting labels exported in YOLOv5-compatible text format.

The data were then segregated into training and validation sets and batches. The
training data was utilised to feed the model, while the validation set, comprising unrevealed
data, was used for the self-evaluation of the trained model. The distribution of labels in the
OMPES and WOES datasets is depicted in Figure 10.
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Figure 10. Statistical visualisation of the annotated data in the OMPES and WOES datasets used
for training the mushroom detection models. (a) Bar chart showing the distribution of labelled
objects (i.e., mushroom instances) across different classes within the datasets, highlighting the
predominance of Macrolepiota procera. (b) Normalised target location map illustrating the spatial
distribution of annotated objects in image frames using a Cartesian coordinate system; this helps
assess positional bias in annotation. (c) Normalised target size map displaying the relative scale of
annotated mushrooms, revealing the concentration of object sizes, which informs model sensitivity
to scale variance. These insights support dataset quality assessment and model training strategy.

The first WOES model is referred to as “Wild mushrooms” and the second one, which
detects one of the main characteristics of the mushrooms, Macrolepiota procera, will be
referred to as the “’Macrolepiota procera characteristic”. The reduced abundance of the
“Macrolepiota procera characteristic” model is due to the fact that the dataset does not include
only mushrooms of Macrolepiota procera.

In addition, the number of labels used to train the AI models is depicted in the upper-
left corner of Figure 10. The lower-left corner of Figure 10b serves as the origin for the
normalised target location map, which is generated using a right-angle coordinate system.
The relative values of the horizontal and vertical coordinates x and y are used to determine
the relative locations of the targets. Furthermore, the target size distribution is relatively
concentrated, as seen by the normalised target size map in Figure 10c.

The following command provides a sample example: python detect.py –source url_stream.
The base station begins detecting wild mushrooms in the live stream as soon as the drone
descends below 20 m in altitude. In addition, if the drone operator is uncertain about
the existence of wild mushrooms, he may take a picture with the multispectral camera to
determine whether or not mushrooms are present. Section 3.3 provides a comprehensive
examination of multispectral image processing.

As illustrated in Figure 6c, the RED band outperforms the other bands. After acquiring
and processing the multispectral image, the Raspberry Pi onboard the drone transmits the
processed RED band image to the Base Station over WiFi.

Two YOLOv5 ML models are applied at the base station for mushroom detection. The
first model identifies wild mushroom specimens, while the second recognises a feature of
Macrolepiota procera mushrooms. The algorithm generates an ROI containing the recognised
objects for each spotted mushroom. The system then performs a second detection at each
ROI to identify wild mushroom species.

If it identifies an object inside the ROI, the wild mushroom is a member of the Macrole-
piota procera species. Alternately, it may be Agaricus Campestris if it does not distinguish any
objects inside the ROI. Figure 11 depicts the pipeline of the training and evaluation process.
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Additionally, after running the first model for the broader search for wild mushrooms,
the ROIs are saved as jpg files. These images can be saved by adding the –crop-img flag to
the detection command. OnlyWildMushrooms refers to the images subjected to machine vi-
sion processing to effectively highlight the characteristics of Macrolepiota procera mushrooms.
The script adjusts the brightness and contrast of the mushroom images in order to highlight
the dark mottling in the centres of the mushrooms. The libraries OpenCV, NumPy, and PIL
are used for image processing. The function ImageEnhance.Brightness(image).enhance(factor)
modifies the image’s brightness, while the ImageEnhance.Contrast(image).enhance(factor)
modifies the image’s contrast.

Figure 11. Pipeline of the training and evaluation process, illustrating the logic executed after initial
drone deployment. The pipeline begins by checking the current UAV altitude: If the altitude is greater
than 20 m, the system directly executes the YOLOv5 model to detect potential wild mushrooms
in wide-area multispectral imagery. If the altitude is 20 m or lower, the UAV captures localised
images which are then (a) cropped into regions of interest (ROIs), (b) processed through contrast and
brightness adjustments, and (c) analysed using a specialised YOLOv5 model to detect distinguishing
features of Macrolepiota procera. This tiered decision structure enables efficient detection by balancing
high-level scanning with low-altitude precision analysis based on drone altitude and image quality.

Image and factor are the two parameters for each of these functions. The Image
argument initially contains the OnlyWildMushrooms images, while the factor parameter is
a floating point number that controls the augmentation. Furthermore, the value 1.0 always
returns a duplicate of the original image; lower numbers indicate less colour (brightness,
contrast, etc.), while higher values indicate more. This value is not restricted in any way.
In this study, the factor value for adjusting brightness is 0.1, while the factor parameter for
adjusting contrast is 10. These images will be named ProcessedOnlyWildMushrooms and
saved in jpg files. The second model will then be executed to detect the distinctive feature
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of the wild mushroom Macrolepiota procera in the photos of ProcessedOnlyWildMushrooms.
Figure 11 depicts the proposed pipeline’s outcome and operational procedures.

For the evaluation of the proposed approach, two machine learning models, “Wild
Mushrooms” and “Characteristic Procera”, were trained using the YOLOv5 library.

The training dataset characteristics are visually summarised in Figure 10, which offers
an overview of image annotations and class distributions critical for model development.
The training utilised the pre-trained YOLOv5 architecture from the official YOLOv5 library
as a basis for transfer learning. Initial trials, however, indicated that the default training
parameters were insufficient for the particular task of mushroom detection. The built-in hy-
perparameter evolution algorithm of the YOLOv5 library was employed to improve model
performance. This program utilises a genetic algorithm (GA), a subset of evolutionary
algorithms (EAs) derived from natural selection, to iteratively enhance training parameters.

Genetic algorithms are esteemed for their efficacy in addressing complex optimisa-
tion and search challenges, and in this regard, they were important in identifying im-
proved hyperparameter configurations that enhanced detection precision and training
efficiency. It is important to note that machine learning hyperparameters can affect various
training elements, and determining their optimal values can be challenging. Traditional
methods such as grid searches may become infeasible due to (a) the high dimensionality
of the search space, (b) the unknown correlations between the dimensions, and (c) the
costly nature of evaluating the fitness at each point, making GA a suitable candidate for
hyperparameter searches.

In this study, both customised YOLOv5 models underwent hyperparameter evolution
for 1000 iterations, much beyond the minimum of 300 iterations advised by the YOLOv5
developers to guarantee a comprehensive exploration of the hyperparameter space. Table 4
compares the standard YOLOv5 hyperparameter configurations with the refined values
derived from the evolutionary method. This comparison underscores significant alterations
that enhanced the models’ performance.

The table highlights the initial five hyperparameters, commonly considered the most
impactful in determining model behaviour. The “lr0” parameter establishes the initial
learning rate, determining the speed of parameter updates at the beginning of training,
whilst the “lrf” parameter signifies the final learning rate, affecting the conclusion of the
learning process. The “momentum” parameter, which regulates the degree to which prior
gradients affect the current update, requires careful calibration, especially in intricate tasks
like mushroom detection, to ensure stability in the learning process.

Additionally, “weight decay” functions as a regularisation technique, mitigating over-
fitting by imposing penalties on excessive weights. The parameters “warmup epochs”
and “warmup momentum” are essential in the initial phases of training, since they incre-
mentally elevate the learning rate and stabilise initial updates, thus reducing error spikes.
All models were trained with these optimised parameters for 1200 epochs and a batch
size of 8, ensuring enough learning depth while preserving computational efficiency. The
hyperparameter evolution procedure, as demonstrated by the variations in Table 4, was
crucial in improving model convergence and overall accuracy.

The study involved training four models: two with the default YOLOv5 hyperparame-
ters and two with optimised parameters obtained from the Evolve script. The performance
of these models is comprehensively summarised in Table 5, which outlines the outcomes of
four principal evaluation metrics employed to evaluate and contrast model performance:
precision, mean average precision (mAP), recall, and F1 score. These measures were
chosen for their capacity to deliver a comprehensive and balanced assessment of object
detection accuracy.
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Precision quantifies the model’s accuracy in accurately identifying and classifying
mushroom instances in the input photos, hence reducing false positives. Recall assesses
the model’s capacity to identify any relevant items, maximising true positives and min-
imising false negatives. The F1 score integrates these two measurements into a singular
harmonic mean, providing a balanced evaluation that considers both false positives and
false negatives. Mean average precision (mAP) functions as a holistic metric by averaging
precision across all classes at several intersection over union (IoU) criteria. In this study,
average precision (AP) was computed for each class separately and subsequently combined
to derive the overall mean average precision (mAP) value.

Table 4. Summary of training hyperparameters used for YOLOv5 model development. Parameters
include learning rate, batch size, image dimensions, number of epochs, and optimiser settings. These
configurations were applied to both the general wild mushroom detection model and the Macrolepiota
procera-specific model.

Hyperparameter Default Evolve (Wild
Mushrooms)

Evolve (Characteristic
Procera)

lr0 0.01 0.01048 0.01451
lrf 0.01 0.01503 0.01
momentum 0.937 0.93603 0.90295
weight_decay 0.0005 0.00048 0.00042
warmup_epochs 3.0 4.1597 3.9362
warmup_momentum 0.8 0.95 0.54134
warmup_bias_lr 0.1 0.12656 0.10064
box 0.05 0.03872 0.04636
cls 0.5 0.37151 0.4517
cls_pw 1.0 1.0625 1.0195
obj 1.0 1.0087 0.97986
obj_pw 1.0 2.0 2.0
iou_t 0.20 0.2 0.2
anchor_t 4.0 5.5727 2.879
fl_gamma 0.0 0.0 0.0
hsv_h 0.015 0.02162 0.01234
hsv_s 0.7 0.70183 0.9
hsv_v 0.4 0.33002 0.43276
degrees 0.0 0.0 0.0
translate 0.1 0.03293 0.11176
scale 0.5 0.42495 0.43276
shear 0.0 0.42495 0.0
perspective 0.0 0.0 0.0
flipud 0.0 0.0 0.0
fliplr 0.5 0.5 0.5
mosaic 1.0 0.61121 0.43276
mixup 0.0 0.0 0.0
copy_paste 0.0 0.0 0.0

These AP scores are added together to form the measure mAP, and thus, the mean
AP score across all classes. The F1 score may be seen as the harmonic mean of accuracy
and recall, with the highest score being one and the worst score being zero. Precision and
recall contribute the same proportion to the F1 score. Equation (5) depicts the F1 scoring
formula [39]. Several hyperparameters must be modified for the CNN to classify objects
inside images accurately. Notably, the enhanced script developed in the context of this
research was applied to the Wild Mushrooms model and demonstrated a 2% improvement
over the original model, while the Characteristic Procera model showed a 5% improvement.
Despite the tiny percentages, the improvement is considerable .
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F1 Score = 2 × Precision × Recall
Precision + Recall

(5)

Table 5 indicates that although all four models provide satisfactory performance, those
trained with the optimised hyperparameters show significant enhancements, especially in
recall and F1 score. These enhancements illustrate the effectiveness of the hyperparameter
optimisation procedure. The findings indicate that although differences in precision among
the models are minimal, the enhanced models attain a superior balance between precision
and recall, essential for reliable, real-world mushroom identification. This assessment high-
lights the significance of quantitative measurements and meticulous model optimisation in
choosing the most resilient architecture for implementation.

The confusion matrix, depicted in Figure 12, offers a comprehensive visual representa-
tion of the classification performance of the two trained models when assessed against a
dataset with established ground truth labels. The confusion matrix serves as a fundamental
diagnostic tool in machine learning, facilitating a precise evaluation of the accuracy of class
predictions by comparing actual class labels (indicated by the matrix rows) with predicted
class labels (denoted by the columns). In these normalised matrices, each column sums to
one, and the cell values indicate the percentage of forecasts for a specific class.

Figure 12 especially illustrates the confusion matrices of the models trained with
evolved and default hyperparameters, emphasising the comparative accuracy of their pre-
dictions. Increased diagonal values signify strong agreement between actual and predicted
classifications, demonstrating high model precision and recall.

Table 5. Performance metrics (precision, recall, F1-score, mAP) for wild mushroom detection models,
comparing default and evolved hyperparameter settings for both general and Macrolepiota procera-
specific detection tasks.

Model Hyperparameters mAP P R F1

Wild Mushrooms Default 0.95 0.97 0.91 0.94
Wild Mushrooms Evolved 0.98 0.98 0.94 0.96
Characteristic Procera Default 0.75 0.91 0.72 0.80
Characteristic Procera Evolved 0.83 0.89 0.82 0.85

Key performance metrics extracted from the confusion matrix encompass true posi-
tives (TPs), indicating instances where the model accurately classified an object as belonging
to a certain class, and true negatives (TNs), where the model properly excluded an object
from a class. Conversely, false positives (FPs) happen when the model erroneously gives a
class label to an item that is not a member, whilst false negatives (FN) denote situations
where the model fails to recognise an object that is a member of a class.

The matrices in Figure 12 demonstrate that the bulk of predictions align with the
diagonal, signifying that most classifications were accurate, and misclassifications were
negligible. This validates the models’ effectiveness in identifying mushroom categories,
with the optimised hyperparameter configuration demonstrating a marginal advantage
in predictive confidence and class distinction. The examination of the confusion matrix
confirms the accuracy of the training technique and validates the dependability of the
models in practical mushroom detection applications.
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Figure 12. Confusion matrices illustrating the classification performance of four YOLOv5-based object
detection models used in this study for wild mushroom detection and species-specific identification.
(a) Wild Mushroom Model (default hyperparameters): baseline performance of the general mush-
room detection model using YOLOv5 with unmodified default settings. (b) WildHyperparameters
Model (evolved hyperparameters): optimised version of the general mushroom detection model,
utilising evolutionary algorithms to fine-tune hyperparameters for improved accuracy. (c) Char-
acteristic Macrolepiota procera Model (default hyperparameters): a focused model trained to detect
morphological traits specific to Macrolepiota procera using default YOLOv5 settings. (d) Characteristic
Macrolepiota procera Model (evolved hyperparameters): enhanced version of the Procera-specific
model incorporating evolved hyperparameters for improved precision and recall. Each confusion
matrix shows true positive, false positive, false negative, and true negative counts, providing insight
into model accuracy, generalisation, and misclassification trends.

4. Results and Discussion
The results obtained from the experimental process highlight the effectiveness and

reliability of the proposed YOLOv5-based approach for wild mushroom detection, specifi-
cally targeting Macrolepiota procera. The systematic development and assessment of two
customised models, one for general mushroom identification and the other for distinguish-
ing Macrolepiota procera from Agaricus campestris, illustrate that both precision and recall
can be significantly enhanced through strategic hyperparameter optimisation employing
evolutionary algorithms. The performance measurements, supported by confusion matrix
analyses and comparative assessments, demonstrate that the optimised models possess
strong generalisation abilities and minimal mistake rates in practical scenarios.

In particular, the primary innovation of our methodology is the integration of vege-
tation index-based spatial inference (NDRE) with deep learning to direct and limit item
detection to areas of high probability. This integration significantly diminishes redun-
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dant inference on extraneous terrain, thus enhancing computational efficiency while
maintaining accuracy.

In contrast to prior research in mushroom detection, which frequently depended on
handheld imaging or RGB-only datasets, our methodology is among the few that employs
airborne multispectral data and implements real-time analysis on embedded systems. In
the research conducted in [23], mushroom detection was executed utilising deep neural
networks in a controlled setting with little variability and without spectral augmentation.
Likewise, other plant classification studies utilising YOLOv5 or YOLOv4, as referenced
in [25,28], attained commendable accuracy, although they failed to tackle spatial inference or
implement models on lightweight hardware in practical settings. Conversely, our advanced
YOLOv5 models attained mAP scores over 90% for Macrolepiota procera, with end-to-end
inference durations appropriate for real-time application (under 30 min from image capture
to result visualisation).

This performance entails trade-offs. The enhanced YOLOv5 model increases accuracy
and resilience but also necessitates greater training duration and computing expense during
development. Furthermore, the highly optimised system, although rapid and efficient in its
intended setting, is presently designed for a specific species emphasis and may necessitate
modification to apply broadly across several ecosystems or mushroom varieties. In addition,
despite the introduction of recent versions of the YOLO architecture, such as YOLOv7
and YOLOv8, we opted for YOLOv5 due to its stability, established open-source support,
and widespread utilisation in embedded and resource-constrained applications. YOLOv5
provides comprehensive hyperparameter tuning capabilities, which were essential for our
evolutionary optimisation approach. Moreover, its interoperability with PyTorch and edge
devices rendered it more appropriate for real-time, field-based inference within our system
limitations. This compromise between state-of-the-art precision and operational efficiency
corresponds with the practical objectives of our research.

The superior performance of the Characteristic Procera model underscores the ben-
efits of species-specific training in terms of accuracy and generalisability. Nonetheless,
this accuracy incurs a sacrifice in wider applicability. The algorithm excels at identify-
ing Macrolepiota procera, a morphologically unique species, but would likely necessitate
retraining or fine-tuning to recognise similarly analogous or less distinctive mushrooms.

Moreover, our approach exhibits efficient end-to-end processing by integrating NDRE-
based region filtering with streamlined YOLOv5 inference. This segmented methodology
minimises computational requirements and facilitates real-time feedback. Consequently,
precise spectrum preprocessing is essential, necessitating calibration for novel settings or
camera configurations.

Notwithstanding these accomplishments, some restrictions require attention. Regard-
ing geographical bias, it is a fact that the WOES dataset is limited to the Western Macedonia
region of Greece. The vegetation traits, spectral reflectance, and biological circumstances
are not indicative of other places, potentially impacting model transferability.

In addition, the dataset primarily concentrates on Macrolepiota procera, which enhances
accuracy for this specific target but restricts broader applicability. Extending research
to other species, especially those with analogous morphology (both consumable and
poisonous), is crucial for future endeavours.

A significant practical and ethical issue relates to the possible misidentification of
toxic species, such as Amanita phalloides, as safe edible counterparts. This is not solely
a technological constraint but a matter of public safety. Macrolepiota procera, although
physically distinct in certain circumstances, may exhibit characteristics similar to certain
immature or degraded specimens of dangerous species. Our approach currently lacks the
capability for toxic/non-toxic classification and does not do species verification at either the
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biochemical or genetic level. This model should be regarded as a supplementary detection
instrument rather than a conclusive identification method. Human expertise and ecological
understanding must remain crucial to any practical foraging or decision-making process
reliant on this technology.

Furthermore, the WOES dataset is not available for public release due to privacy
concerns, ecological protection, and continuing field research limitations. Although the
publication offers detailed accounts of the dataset architecture, preparation methodology,
and model configuration for reproducibility, the absence of free access constrains external
evaluation. Restricted access may be contemplated within research agreements.

Last but not least, another key advantage of our work is that the total estimated
expense of the proposed system, comprising a custom-built UAV platform, a Parrot Se-
quoia+ multispectral sensor, a Raspberry Pi Zero 2 W for onboard processing, and requisite
communication modules, varies from EUR 712 to EUR 1038. This estimate is based on
the pricing of open-source, commercially available, and recycled components accessible
within academic and maker communities. Commercial UAV multispectral systems, such as
the DJI Matrice 300 RTK paired with a MicaSense RedEdge-MX sensor, typically retail in
the range of EUR 11,000–16,000, according to official manufacturer listings and confirmed
by academic implementations in precision agriculture research [40]. On the other hand,
custom UAVs designed for real-time AI processing using Nvidia Jetson TX2 have been
built for approximately EUR 2600, indicating a more budget-friendly alternative in the EUR
2300–3700 range [41]. The significant decrease in costs is attained by utilising 3D-printed
frames, lightweight microcontrollers, and complimentary, open-source software libraries
(YOLOv5 v7.0, PyTorch 2.7.1, QGIS 3.40, OpenCV 4.11.0), thereby removing license costs
and minimising infrastructure needs. The system’s cost-efficiency renders it accessible to
research laboratories, conservation projects, and resource-limited agricultural applications,
substantiating its designation as a low-cost and scalable solution for real-time mushroom
identification in natural settings.

Overall our study presents several significant advancements: (1) it broadens YOLOv5’s
applicability to species-specific mushroom detection in natural forest settings, (2) it incor-
porates an evolutionary training strategy to optimise model parameters beyond default
configurations, and (3) it highlights the importance of spatial and morphological differ-
entiation in enhancing classification accuracy. These findings collectively underscore the
model’s potential as an efficient tool for precision foraging and ecological monitoring,
while also providing a transferable framework for similar applications in agricultural and
environmental object detection tasks.

5. Conclusions
This study emphasises the necessity of implementing a cohesive and strategic ap-

proach to tackle the emerging difficulties in the agricultural sector. The implementation of
deep learning (DL) solutions has been demonstrated to be an essential tool for improving
production and sustaining product quality, especially in precision agriculture. The experi-
mental results of this study clearly indicate that the proposed method can efficiently locate
wild mushrooms and precisely identify Macrolepiota procera, with an excellent accuracy rate
over 90%. The identification procedure is highly efficient, taking only 30 min to complete,
hence validating the viability of the method for real-world applications.

This research’s contributions present numerous interesting opportunities for future
advancement. One method is expanding the WOES dataset to include additional wild
mushroom species and their distinct morphological characteristics, hence enhancing the
versatility and resilience of the detection models. A complementary dataset has recently
been released by our team, derived from similar research endeavours, as outlined in [42].
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Moreover, the adaptability of the WOES dataset for implementation on mobile platforms
and unmanned aerial vehicles (UAVs) amplifies its capacity for extensive, automated
surveillance. Integrating with cloud computing services could enhance this process, fa-
cilitating remote operation and real-time decision-making without necessitating human
presence in the field.

This discovery signifies a substantial advancement in the utilisation of deep learning-
based techniques for environmental and agricultural monitoring. It underscores the rev-
olutionary impact of artificial intelligence in modernising conventional processes and
establishes the basis for more autonomous, precise, and sustainable methodologies in
precision agriculture.
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