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Motivation 

Real-World Challenges affecting dental video quality during procedures: 

 Microcameras attached to handpieces to obtain continuous, close-up views of the operative 
field, which is crucial for precision and safety.

 The small cameras introduce issues:

 Handpiece vibration leads to visible frame shake.

 Light changes, saliva, and water cause blur, noise, and distortion.

 Depth and camera proximity leads to non-uniform motion.

 These issues compromise video clarity and increase surgeon discomfort.

 Existing solutions are either costly, inefficient, or not tailored to real-time use.

 Our work aims to provide an effective, real-time solution to enhance video quality during dental 
procedures.
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Introduction

 Multi-Task Learning (MTL) improves efficiency by handling multiple tasks at once in a single 
network pass.

 Existing MTL models are limited to static image input without temporal modeling.

 Most works combine high-level  tasks like semantic segmentation, object detection, depth 
estimation, which are at the same level of understanding.

 These setups often ignore low-level tasks like video enhancement or denoising, which are 
crucial for clear and stable video.

 Our approach integrates optical flow to capture motion and temporal information between 
frames.

 This allows our system to enhance and understand intra-oral surgical videos in real time, 
combining low-level and high-level tasks efficiently.
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Contributions

 We introduce MOSTNET+, the first multi-task network for video enhancement, segmentation, and 

optical flow

 Our model is built with multi-scale and motion-aware components, allowing it to effectively 

learn both spatial and temporal dependencies.

 Achieves competitive accuracy across tasks compared to state-of-the-art single-task networks

 Offers a better performance-efficiency trade-off, running up to 2× faster than combining single-

task models

 Reaches real-time inference at ~25 FPS with low latency using TensorRT in half-precision, making 

it a strong candidate for clinical use.
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Related Work
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UberNet [8] (Kokkinos et al.)

One of the first to tackle multiple 
tasks (segmentation, detection, 
etc.) with shared CNNs and 
diverse datasets.

MTAN [9] (Liu et al.)

Combines shared backbone 
with task-specific attention for 
better feature allocation.

PAPNet [10] (Zhang et al.)

Uses affinity matrices for joint 
prediction of depth, normals, 
and semantics.

ATRC [11] (Bruggeman et al.)

Uses Neural Architecture Search 
for learning optimal cross-task 
attention.

 MTL for Scene Understanding

 MTL for Scene Enhancement

MTFFNet [12] (Cui et al.) 

Dual-stream network for 
deblurring and super-resolution 
of face images with limited 
interaction between tasks.

RIRGAN [13] (Yu et al.)

GAN-based MTL for medical 
denoising and super-resolution, 
tailored to specific domains and 
input types.

LEDNet [14] (Zhou et al.)

Tackled low-light enhancement 
and deblurring jointly, but 
without explicit task separation.

DP3DF [15] (Xu et al.)

Proposed DP3DF for joint 
denoising, enhancement, and 
super-resolution using local 
spatiotemporal cues.



Proposed MOST-NET+ Architecture
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 MOST-NET+ (Multi-Output, Multi-Scale, Multi-Task), is a general deep learning framework for 

multi-task prediction.

 The encoder is composed of two main components: a feature extractor and a feature 

alignment module. 

 The Feature Extractor enriches representations at each scale by integrating both deep features and 

image-level features. 

 The Feature Alignment module is responsible for aligning features from the previous frame with those 

of the current frame and fusing their information using channel-wise attention. 

 The Decoder produces dense outputs by branching out scale-wise, with each branch 

generating task specific predictions for its corresponding scale. 

 These scale-wise decoders are also shared with the optical flow modules, which estimate and 

iteratively refine flow fields in a bottom-up cascading manner.



Proposed MOST-NET+ Architecture
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Fig. 1: The proposed architecture of MOST-NET+, which stands for Multi-Output, Multi-Scale, Multi-Task Network. It’s a versatile deep 
learning framework we designed to handle multiple tasks at the same time within a single model.



Proposed MOST-NET+ Architecture
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 Enhancement Module: Performs color correction, denoising, and deblurring at the pixel level 
to improve frame quality.

 Optical Flow Module: Tracks pixel motion between frames to stabilize the video.

 Tooth Segmentation Module: Provides reference points to reinitialize stabilization when 
tracking is lost.

 MOSTNET+ leverages positive interactions between these tasks: 

 Enhancement  Optical Flow: Cleaner frames improve motion estimation accuracy.

 Optical Flow  Enhancement: Accurate motion cues enhance frame alignment and deblurring.

 Segmentation  Stabilization: Tooth segmentation anchors enable reliable reinitialization of 
stabilization.

 This synergy between tasks is what makes MOSTNET+ effective in stabilizing and enhancing 
video sequences.



Dataset

 We conducted our experiments on the Vident-real Clinical Dataset [7], which contains 100 real 

intra-oral surgical video sequences. 

 The dataset is well-suited for multi-task learning and supports three tasks: 

 Video Restoration, 

 Teeth Segmentation, 

 and Optical Flow Estimation. 

 Each frame in these video sequences is paired with a high-quality reference frame, a 

segmentation mask for the teeth, and optical flow labels extracted using the RAFT model.

 To ensure faster experimentation cycles, we limited each video sequence to 100 frames. 

 We split the dataset into 65 training, 10 validation, and 25 test sequences.
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Performance Evaluation

Optical Flow Estimation

Baseline Models Used for Comparison

 RAFT [3], FlowNet [4]: strong performance across datasets

Evaluation Metrics

 EPE (End-Point Error): Measures flow accuracy — lower is better        

 

        

   Where: 

        = number of pixels

             ,        = predicted and ground truth flow vectors

  ∥⋅∥2  = Euclidean norm
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Performance Evaluation

Video Enhancement

Baseline Models Used for Comparison

 ESTRNN [1], MIMO-Unet [2]: lightweight, efficient architectures

Evaluation Metrics

 PSNR (Peak Signal-to-Noise Ratio): Measures image pixel-level fidelity — higher is better

               

     Where:
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= maximum pixel value(e.g., 255)



Performance Evaluation

Video Enhancement

Evaluation Metrics                

 SSIM (Structural Similarity Index): Assesses structural similarity — higher is better

 It takes into account luminance, contrast, and texture, providing a more perceptual measure 

of quality.

     Where:
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Performance Evaluation

Semantic Segmentation

Baseline Models Used for Comparison

 UNet++ [5], DeepLabv3+ (ResNet-50 encoder) [6]: well-established in medical and general 

segmentation

Evaluation Metrics

 IoU (Intersection over Union): Segmentation quality — higher is better      

                    

     Where: 

         = pixel-wise intersection

         = pixel-wise union of masks
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Performance Evaluation

 We evaluate our method across three tasks: 

 Video Enhancement, 

 Optical Flow Estimation, 

 Semantic Segmentation. 

 We compare two versions of our model, MOSTNET+SW and MOSTNET+DW:

 MOSTNET+SW: Optical flow predicted at a single (lowest) scale

 MOSTNET+DW: Optical flow predicted at both lowest and medium scales

 Both variants consistently demonstrate competitive or superior performance across all tasks  in a 

single, unified multi-task, multiscale architecture.
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Evaluation results PSNR, SSIM, EPE, IoU 
Vident-real clinical dataset
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Methods PSNR ↑ SSIM ↑ EPE ↓ IoU ↑

BASELINE 17.80/18.77 0.829/ 0.855 9.24/8.52 0.270/0.214

FLOWNet [4] - - 2.63/2.11 -

RAFT [3] - - 1.81/1.43 -

MIMO-UNET [2] 25.83/26.37 0.967/0.966 - -

ESTRNN [1] 28.65/28.39 0.977/0.973 - -

UNET++ [5] - - - 0.730/0.788

DLV3+ [6] - - - 0.746/0.765

ESTRNN+RAFT+DLV3+ 28.65/28.39 0.977/0.973 1.81/1.43 0.746/0.765

MOSTNET+(SW) 29.96/29.27 0.972/0.965 3.51/2.81 0.685/0.723

MOSTNET+(DW) 29.97/28.99 0.969/0.963 2.13/1.70 0.716/0.739

TABLE I: Performance over PSNR, SSIM, EPE and IoU on the test/validation set

Optical Flow 

Estimation

Video 

Enhancement

Semantic 

Segmentation

Proposed

Method

Combined 

Single-taskers



Evaluation results P(M), FPS 
Vident-real clinical dataset
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Methods #P(M) FPS

BASELINE - -

FLOWNet [4] 38.7 52.7

RAFT [3] 5.3 5.1

MIMO-UNET [2] 6.8 4.6

ESTRNN [1] 2.3 10.6

UNET++ [5] 50.0 7.9

DLV3+ [6] 26.7 25.5

ESTRNN+RAFT+DLV3+ 34.3 3.0

MOSTNET+(SW) 13.2 6.4

MOSTNET+(DW) 29.8 5.2

TABLE I: Performance over P(M) and FPS.

Optical Flow 

Estimation

Video 

Enhancement

Semantic 

Segmentation

Proposed

Method

Combined 

Single-taskers

 MOSTNET+SW (13.2M) is very lightweight, much smaller 

than large single-task models like UNet++ (50M).

 Even MOSTNET+DW (29.8M), the larger version, is more 
compact than running separate models for each task 

(34.3M). 

 In terms of speed:

 MOSTNET+SW runs at ~ 6.4 FPS

 MOSTNET+DW runs at ~ 5.2 FPS — about twice as fast as 

separate models like ESTRNN, RAFT, and DLV3+ all 

together (3.0 FPS).

 With TensorRT and half precision, MOSTNET+DW exceeds 

25 FPS for real-time use

 Because of this efficiency and speed, MOSTNET+ is well-
suited for next-generation IoT e-health systems.



Qualitative Performance   
Vident-real clinical dataset
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Conclusions

 Proposed MOSTNET+: a unified, multitask, multi-scale architecture designed for real-time intra-

oral video processing. 

 It jointly tackles video enhancement, optical flow estimation, and teeth segmentation—all 

within a single, efficient model.

 Designed for real-time clinical use with efficient, low-latency performance (~25 FPS)

 Utilizes task synergies and scale-specific modeling for improved robustness and generalization

 Variants MOSTNET+SW and MOSTNET+DW:

 Outperform or match state-of-the-art single-task models

 Maintain lower computational complexity and runtime overhead

 Demonstrates the potential of multi-task learning in real-time medical video applications
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Thank You!
 Multi-task Learning for Video Processing: 

Going with the Flow

George Kalitsios

K3Y LTD

gkalitsios@k3y.bg
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