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Abstract—Multi-task learning constitutes the prevalent
paradigm in numerous vision applications that cast an eye on
runtime efficiency. At present however, deep multi-task networks
are limited in single-image processing. While various motion
descriptors have been proposed to estimate motion across frames
in the video processing literature, the problem of incorporating
motion compensation in multi-task learning is yet understudied.
Moreover, the type of tasks typically integrated within multi-
task architectures constitute only visual scene understanding
tasks, i.e. tasks at the same level of hierarchy. In this work, we
address multi-task video scene enhancement in combination with
understanding for intra-oral scenes. Our work proposes a novel
architecture derived from the multi-output, multi-scale, multi-
task (MOST) family of models, that further incorporates optical
flow into its design. We showcase that our work yields a) on-par
performance with state-of-the-art convolutional networks across
multiple tasks and architectures b) improved performance-vs-
efficiency trade-off than combining single-task methods, i.e. up to
2× faster runtimes. and c) low-latency and real-time processing at
25 FPS, when compiled with TensorRT at half precision, allowing
for commercial outcomes.

Index Terms—multi-task learning, video processing, optical
flow, dental interventions

I. INTRODUCTION

Recent years have seen tremendous progress in the applica-
tion of machine learning models to the real world. As models
grew more mature, the efforts to utilize them in real-life
followed. In that context, Multi-task Learning (MTL) attracted
significant research interest. MTL architectures are designed to
exploit synergies among tasks, boosting overall performance
while accelerating inference by reducing the need for separate
forward passes through individual task-specific networks.

Numerous studies have explored how to exploit inter-task
relationships and improve performance. For example, MTAN
[18] constructed a shared feature space and utilized soft
attention to dynamically extract task-relevant features for each
decoder. PAD-Net [28] generated initial predictions for all
tasks and improved them through attention-guided message
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passing for distillation. ATRC [2] facilitated interaction be-
tween tasks by learning various attention types, tailored to
each task combination. Similarly, MTI-Net [25] supported
feature propagation across tasks, enabling richer task-to-task
information flow.

The aforementioned approaches are not suitable for quality
enhancement because they are specifically tailored for scene
understanding datasets and tasks like semantic segmentation,
object detection, depth estimation, or surface normal estima-
tion [11, 7, 5, 22]. These tasks operate within a similar level
hierarchy, where information exchangeability is profound. In
such cases, the output for each task can complement and im-
prove the performance of the other. Furthermore, existing MTL
solutions generally operate on single, static images, failing to
exploit the potential benefits of information aggregation across
successive video frames within the temporal domain.

In [14], the authors proposed the first video multi-task net-
work for simultaneous visual scene enhancement and under-
standing. The work focused on a dental use case, showcasing
a novel setup in which a microcamera is integrated into an
adapter attached to a dental handpiece near the bur. This
configuration enables real-time monitoring of the treatment
area during drilling procedures. However, the compact nature
of the camera leads to visual distortions, and the inherent hand
movements of the dentist necessitate robust video stabilization.
To address these challenges, the study proposed an algorithmic
framework to compensate for degraded video quality, thereby
facilitating the adoption of affordable microcameras in digital
dentistry for improved intraoral visualization. While the model
outperforms state-of-the-art single-taskers in the laboratory-
acquired dataset [12], training the network on real intra-oral
scenes [27] unveils further challenges. First, the data from
patients exhibit substantially different artifact; motion blur is
lesser while defocus blur is frequently present. Second, com-
puting motion descriptors and aligning the frames becomes
more intricate because the scenes in real-world interventions
demonstrate variable depth.

To remedy those issues, we propose MOST-NET+, an
architecture that extends MOST-NET to pixel-wise motion
estimation via means of optical flow to enable more degrees
of freedom for post-processing the video feeds. Our proposed
network is the first to tackle video enhancement, semantic
segmentation and optical flow estimation jointly. Thereafter,
we validate our approach on the Vident-real dataset [27], a
publicly available clinical dataset with real intra-oral surgeries.
Our contributions are summarized as follows:
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• Our network achieves on-par performance with state-of-
the-art convolutional methods across multiple tasks and
architectures.

• The proposed MOST-NET+ shows improved
performance-vs-efficiency trade-off than combining
single-task methods.

• When compiled with TensorRT at half precision, our
network achieves low-latency and real-time processing at
approximately 25 FPS, allowing for immediate commer-
cialization.

II. RELATED WORK

Multi-task learning has been widely explored for visual
scene understanding, particularly in the context of autonomous
driving. A seminal work is UberNet by Kokkinos et al. [16], a
convolutional network that jointly addressed seven vision tasks
in a single architecture, including but not limited to boundary
detection, human parts segmentation, semantic segmentation,
and object detection. A key innovation of this work was the
ability to train a deep network using diverse datasets for each
task group, under a limited memory budget. Liu et al. [18]
introduced the Multi-Task Attention Network (MTAN), which
combines a shared feature extractor with task-specific attention
modules. These modules selectively aggregate task-relevant
features from a global feature pool, improving task-specific
predictions while leveraging shared representations. Zhang et
al. [32] proposed the Pattern-Affinitive Propagation Network
(PAPNet) to jointly predict depth, surface normals, and seman-
tics. Their approach models task relationships using an affinity
matrix, enabling refined predictions through a learned feature
diffusion process. Similarly, Vandenhende et al. [24] argued
that task affinities vary with scale, and designed a multi-
scale architecture that uses spatial attention to enhance feature
sharing across both tasks and resolutions. The authors argued
that this design addresses the limitations of convolutional
receptive fields at high resolutions by incorporating lower-
scale context. More recently, Bruggemann et al. [2] introduced
ATRC, a multi-task model that learns task-specific attention
mechanisms to enable adaptive cross-task communication.
Instead of manually designing attention types, their method
uses a search-based strategy inspired by Neural Architecture
Search (NAS) to discover effective interactions based on task
demands.

While multi-task learning has been extensively studied for
scene understanding, its application to visual scene enhance-
ment remains relatively underexplored. Only a limited number
of studies have investigated how enhancement tasks can benefit
from joint modeling. For example, Cui et al. [8] proposed
a dual-network approach to address low-resolution and mo-
tion blur in face images. Their system employed separate
yet concurrent networks, enhanced with multi-scale fusion
and attention mechanisms. Although designed to mitigate
error propagation between tasks, the networks shared only
gradients, which may lead to inefficiencies in both training
and inference. Yu et al. [30] focused on medical image
enhancement, proposing a multi-task GAN-based framework

for simultaneous super-resolution and denoising of MRI scans.
Their approach demonstrated potential in leveraging shared
generation features, but remained limited in scope due to its
domain specificity. Katsaros et al. [13] proposed to address
video deblurring and denoising in dynamic scenes with a pure
multi-task architecture. Therein, the authors learnt deformable
offsets to align consecutive frames and restore the degraded
frames with visually enhanced counterparts. In a separate di-
rection, some works attempted to tackle multiple enhancement
objectives using single-task architectures. Zhou et al. [34]
addressed low-light enhancement and video deblurring, but
treated the two tasks as a unified dense prediction problem
without explicit task disentanglement or multi-task design.
Similarly, Xu et al. [29] proposed Deep Parametric 3D Filters
(DP3DF), a representation that integrates local spatiotemporal
cues to simultaneously perform denoising, illumination en-
hancement, and super-resolution.

In contrast to aforementioned works, our method targets
both visual scene enhancement and understanding tasks. More-
over, it targets the video domain instead of operating on the
basis of single images. Leveraging the temporal domains offers
informative visual cues for both enhancement and understand-
ing tasks. Similarly, we argue that incorporating a model for
the temporal domain within a multi-task architecture should
be beneficial. In prior work, targeting dental interventions in
lab conditions, Katsaros et al. [14] proposed the MOST-NET
architecture and addressed video deblurring, denoising, color
mapping, tooth segmentation and homography estimation. The
study proposed a multi-task, decoder-focused model [24] for
video processing, dubbed multi-output, multi-scale, multi-
task, and applied it to video enhancement of dental scenes
in laboratory settings. Specifically, the model framed color
correction [31], denoising, and deblurring [26, 33, 13] as
a unified dense prediction task. Additionally, it incorporated
auxiliary tasks such as homography estimation [17] to stabilize
the video stream [1], and tooth segmentation [4, 35], which
was leveraged to reinitialize stabilization when needed. The
architecture owes multiple scale-specific heads for each task,
enabling a hierarchical processing scheme where predictions
were propagated from coarser to finer resolution levels. It
propagates the outputs bottom-up, from the lowest to the
highest scale level. This formulation yields a two-fold benefit.
First, it enables task synergy by loop-like modeling of task
interactions in the encoder and decoder across scales. Second,
it allows for refinement of predictions across scales and
provides model insights by assessing which scales contribute
to which task’s performance improvement. Our work takes a
step further and replaces homography with dense, pixel-wise
optical flow estimation as a richer motion descriptor, refines
the architecture and experiments with a clinical dataset of real
life interventions.

III. PROPOSED METHOD

A. Problem Formulation

We revisit MOST (Multi-Output, Multi-Scale, Multi-Task),
a general deep learning formulation for multi-task prediction.



Fig. 1: The proposed architecture. MOST-NET+ extracts features from consecutive frames at different scales. Subsequently, it
performs feature alignment and fusion at the fusion blocks to compensate the motion and filter out irrelevant context. Decoders
follow at each scale to process the features and task-specific heads (TSD) predict outputs for all tasks at all scales. The outputs
are propagated bottoms-up to enable information exchange and task refinement.

MOST facilitates the propagation of task outputs in two key
ways: (i) across scale levels within the encoder and decoder to
exploit cross-task interactions, and (ii) in a bottom-up manner
to enable progressive refinement of predictions. We assume
that the network produces T task-specific outputs at each
scale, denoted as {Os

i }
T,S
i,s=1 , where s = 1 corresponds to the

original input resolution. These task outputs are propagated not
only within the same scale (innerscale propagation), but also
upsampled from coarser scales and passed forward to both the
encoder layers and the task-specific branches in the decoder at
finer scales. To guide this propagation, we define the following
task-specific relationship:

ui(Os+1
i ) ≈ Os

i , (1)

where ui denotes some operator, for instance, the upsampling
operator for segmentation or the scaling operator for homog-
raphy estimation.

In our setting, all tasks share training samples in
D={{B}j , {Os

i }j}
T,S,N
i,s,j=1, where {Os

i }j is a label related to
task i at scale s for the j-th training sample {B}j , while
N denotes number of samples in training data. We omit the
sample subscript for notational brevity. In the context of deep
learning, the optimal set of parameters θ for some network
Fθ under the MOST formulation is derived by minimizing a
penalization criterion:

L(θ) =
T∑
i

S∑
s

λiLi

(
Os

i , Ôs
i (θ)

)
, (2)

where λi is a scalar weighting value, Ôs
i (θ) is an estimate of

Os
i for j-th sample in D and Li is a distance measure.

B. Architecture

We present MOST-NET+, a novel instantiation of the MOST
model introduced earlier. As shown in Fig. 1, the encoder is
composed of two main components: a feature extractor and
a feature alignment module. The feature extractor enriches
representations at each scale by integrating both deep features
and image-level features. The feature alignment module is
responsible for aligning features from the previous frame with
those of the current frame and fusing their information using
channel-wise attention. The decoder produces dense outputs
by branching out scale-wise, with each branch generating task-
specific predictions for its corresponding scale. These scale-
wise decoders are also shared with the optical flow modules,
which estimate and iteratively refine flow fields in a bottom-up
cascading manner.

C. Encoders

Feature Extraction: At each time step, MOST-NET+ in-
dependently extracts features fs

t−1 and fs
t from two input

frames Bt−1 and Bt across three scales. To implement the
U-shaped downsampling architecture [21], deep features are
obtained using 3× 3 convolutions with strides of 1, 2, and 2
for scales s = 1, 2, and 3, respectively. Each convolution
is followed by a ReLU activation. At the coarser scales
(s = 2, 3), the downsampling process typically leads to some
loss of spatial detail. To address this, we enhance the scale-
specific representations in two ways. First, we concatenate
the deep features with image-level features—that is, features
derived from the downsampled version of the input image
itself, following the approach of MIMO-UNET [6]. This
concatenated representation is then passed through a stack
of five residual blocks at each scale. Second, to facilitate



richer representations through cross-scale interaction, we apply
Asymmetric Feature Fusion [6] to enhance the output of the
residual blocks at scales s = 1 and 2. The resulting features fs

t

have output channel dimensions defined as 2s+4. In contrast
to the approach in [14], we omit Fourier transforms entirely,
opting instead for standard residual blocks. Furthermore, at
each time step t, the features from time step t − 1 are not
recomputed, but instead retrieved from a cached version, as
in [20].

Fusion: At each scale, features fs
t and WF̃s

(fs
t−1) are

concatenated and a channel attention mechanism [33] follows
to selectively fuse them into fs

t . MOST-NET+ uses optical
flow outputs from lower scales to warp encoder features from
the previous time step as WF̃ (f

s
t−1). Here, W denotes the

warping operator while F̃ s is an upscaled version of F s+1 for
higher scales and the identity matrix for s = 3.

D. Decoders

Dense Outputs: The attended encoder features F s
t are

forwarded to the corresponding expansion blocks at each scale
through skip connections. At the coarsest scale (s = 3),
the attended features F 3

t are directly processed by a stack
of two residual blocks, each producing 128 output channels.
Following this, the resolution is progressively restored using
two transposed convolutions with a stride of 2. At finer scales
(s < 3), the attended features F s

t are first concatenated with
the upsampled decoder features from the next lower scale.
This combined representation is then passed through 3 × 3
convolutions to reduce the number of channels by half. The
result is subsequently fed into two residual blocks with 64 and
32 output channels, respectively. These residual block outputs
form scale-specific shared backbones, resulting in features
denoted as gst . Each scale is followed by lightweight task-
specific branches to predict dense outputs. In this work, we
expand these branches by employing three 3×3 convolutional
layers, each separated by ReLU activations, to estimate Ms

t

and Rs
t . MOST-NET+ facilitates refinement of segmentations

at higher scales by upsampling and reintegrating lower-scale
predictions into the task-specific branches of subsequent finer
scales.

Optical Flow Cascades: At each scale, optical flow esti-
mation modules predict dense, two-channel flow fields repre-
senting the horizontal and vertical offsets between consecutive
frames. These modules take as input a pair of concatenated fea-
ture maps and process them through a cascade of convolutional
blocks to estimate a residual flow field, which is subsequently
upsampled to a fixed resolution. The flow estimator design
incorporates seven (3×3) convolsequenceutional layers at each
scale, which progressively reduce the spatial dimensions of the
feature maps and predict the optical flow at one-quarter ( 14 ) of
the original resolution. Subsequently, the predicted flow fields
are upsampled by a factor of four using bilinear interpolation.
For example, at the third scale—where the input features are at
H
4 ×W

4 resolution—the feature maps are further downsampled
to H

16 ×
W
16 , and the flow is predicted at this reduced resolution

before being upsampled back to H
4 × W

4 . It is important to

note that, for optical flow estimation, the architecture branches
out only at the third (small) and second (medium) scales.
We observed through experimentation that including the first
(highest resolution) scale yields only marginal performance
gains while significantly increasing computational cost, and
thus we exclude it from the final model.

IV. EXPERIMENTS

The experiments are performed on the Vident-real [27]
clinical dataset suitable for multi-task video processing in
intra-oral surgeries, encompassing restoration, teeth segmen-
tation, and inter-frame homography estimation. The dataset
comprises 100 real intra-oral surgical sequences, split into
training (65 videos), validation (10 videos), and test sets (25
videos). The dataset is recorded at approximately 54 frames
per second. Each frame captured during the interventions is
paired with its high-quality counterpart, a teeth segmentation
mask, and an inter-frame homography matrix. In this work, the
homographies are replaced with optical flows distilled from the
large version of RAFT [23]. Moreover, we restrict each video
sequence for all train, validation and test splits to 100 frames
to allow for faster experimentation cycles.

We use the Charbonnier loss [3] as L1, the binary cross-
entropy [19] as L2 and the Endpoint Error (EPE) [9] as L3

to train MOST-NET+. The task-specific, manually-derived loss
weights, are set to 1×10−1, 2×10−1 and 1×10−1 for λ1, λ2

and λ3 respectively. For all experiments, we employ a batch
size of 4, Adam [15] as the optimizer with a learning rate of
1 × 10−4 reduced to 1 × 10−6 with cosine annealing for θ.
The training frames are augmented by horizontal and vertical
flips with 0.5 probability, and color jittering.

To validate the effectiveness of the proposed approach,
we conduct comparisons against representative baselines that
balance accuracy and efficiency. For video restoration, we
select ESTRNN [33] and MIMO-UNET [6] as lightweight
yet performant architectures. For optical flow estimation,
RAFT [23] and FlowNet [9], widely recognized for their strong
performance across diverse datasets. In the segmentation task,
we compare against UNET++ [35] and DeepLabv3+ [4]
with a ResNet50 [10] encoder, as established benchmarks in
medical and general semantic segmentation. These models
were selected due to their relevance, reported performance,
and suitability for real-time or resource-constrained scenarios.

The performance of the proposed framework is evaluated
using task-specific metrics: PSNR and SSIM are employed
to assess the fidelity and structural consistency of restored
frames, EPE quantifies the accuracy of optical flow estima-
tion, and IoU measures the quality of semantic segmentation,
focusing on intra-oral regions. To account for computational
efficiency and real-time applicability, we additionally report
the number of trainable parameters (#P) and inference speed
in frames per second (FPS). For completeness, each metric is
reported both on the test and validation sets, with validation
values shown in parentheses.



TABLE I: Performance over PSNR, SSIM, IoU and EPE on the test (validation) set.

Methods PSNR SSIM EPE IoU #P(M) FPS
BASELINE 17.87 (18.77) 0.829 (0.855) 9.24 (8.52) 0.270 (0.214) - -
FLOWNet [9] - - 2.63 (2.11) - 38.7 52.7
RAFT [23] - - 1.81 (1.43) - 5.3 5.1
MIMO-UNET [6] 25.83 (26.37) 0.967 (0.966) - - 6.8 4.6
ESTRNN [33] 28.65 (28.39) 0.977 (0.973) - - 2.3 10.6
UNET++ [35] - - - 0.730 (0.788) 50.0 7.9
DLV3+ [4] - - - 0.746 (0.765) 26.7 25.5
ESTRNN+RAFT+DLV3+ 28.65 (28.39) 0.977 (0.973) 1.81 (1.43) 0.746 (0.765) 34.3 3.0
MOSTNET+(SW) 29.96 (29.27) 0.972 (0.965) 3.51 (2.81) 0.685 (0.723) 13.2 6.4
MOSTNET+(DW) 29.97 (28.99) 0.969 (0.963) 2.13 (1.70) 0.716 (0.739) 29.8 5.2

(a) Input Bt (b) Restored Rt (c) Mask Mt (d) Flow Ot

Fig. 2: Visualization outputs for all tasks MOST-NET+(DW) performs.



V. RESULTS

Table I presents the results of our experiments. First, we
establish lower-bound reference points: we compute baseline
PSNR and SSIM between each input image and its ground-
truth restoration to define the minimum reconstruction quality
that any meaningful model should surpass. We then report
baseline EPE (end-point error) under a zero-motion assump-
tion using the optical-flow labels to gauge the average pixel
displacement in the dataset. Finally, we include baseline IoU
from a trivial “random” classifier that labels every pixel as
“teeth” (and none as background) to indicate the segmentation
performance achievable without any learned information.

Our proposed approach, MOSTNET+, is evaluated in two
variants: MOSTNET+SW that outputs optical flow only on the
small scale and MOSTNET+DW which predicts optical flow at
the lowerst and the medium scale. Both variants consistently
demonstrate competitive or superior performance across all
tasks — optical flow estimation, image enhancement, and
semantic segmentation — in a single, unified multi-task, multi-
scale architecture. MOSTNET+DW achieves the best PSNR
score of 29.97 and SSIM of 0.969, surpassing the image
enhancement baselines MIMO-UNET and ESTRNN, despite
their exclusive focus on that single task. Similarly, in optical
flow estimation, MOSTNET+DW delivers an EPE of 2.13,
better than specialized methods like FlowNet and approaching
the highly-accurate RAFT with and EPE of 1.81, but with
significantly better complexity and multi-task integration. In
terms of semantic segmentation, our method achieves an IoU
of 0.716, very close to the parameter-heavy UNET++ at 0.730
and DLV3+ at 0.746.

While delivering competitive performance, the MOST-
NET+ variants maintain a balanced model complexity. MOST-
NET+SW is especially lightweight at 13.2M parameters, com-
pared to much heavier models like UNET++ (50.0M) while
accommodating multiple tasks where UNET++ performs only
semantic segmentation. MOSTNET+DW, while slightly larger
at 29.8M, remains more compact than the combined single-
taskers in ESTRNN+RAFT+DLV3+ with a total of 34.3M,
while delivering strong performance across all tasks. In terms
of computational cost, MOSTNET+ also achieves a good bal-
ance, with runtime speeds suitable for practical applications,
specifically, 6.4 FPS for SW, 5.2 FPS for DW, that is about
2× faster than the forked ESTRNN+RAFT+DLV3+ option.
Moreover, we cast our MOSTNET+DW model on TensorRT
to half precision inference and achieve runtimes of 25.4 FPS.
Moreover, our model has low latency, since it does not utilize
future frames, making it appropriate for industrial applications.

Unlike all other baselines that focus on isolated tasks,
our MOSTNET+ architecture performs joint prediction of
optical flow, enhancement, and segmentation in a multi-scale
fashion. This design not only reduces the need for multiple
networks but also allows cross-task feature sharing, resulting
in more efficient learning and better generalization. Despite the
inherent challenge of multi-task learning, our method not only
closes the performance gap with single-task models but often

surpasses them, emphasizing the benefit of shared representa-
tions and spatial coherence across scales. Fig. 2 illustrates the
qualitative performance of MOST-NET+(DW), showcasing the
input frame, the restored output, the predicted segmentation
mask, and the estimated optical flow, demonstrating consistent
and coherent results across all tasks.

Despite these advantages, there are still failure cases for
different tasks. Such are scenes where the input imagery is
too dark and/or blurry, resulting in erroneous flow estimates.
Another issue is that the optical flow is hindered under fast
motion and performance degrades in such cases. We attribute
the optical flow errors of such cases to the inherent difficulties
of heavily degraded visual scenes as well as the optical
flow pseudo-labels that we consider noisy to a large extent.
Unfortunately, manually assessing the RAFT flow estimates
to filter them out is not straight-forward for a human, and
perhaps unsupervised flow learning schemes can assist.

Beyond its relevance in multi-task video analysis, our
method is particularly well-suited for deployment in remote
healthcare scenarios. Its low-latency and real-time perfor-
mance enable on-device processing for smart intra-oral cam-
eras or tele-dentistry systems, supporting diagnostic and in-
terventional tasks without the need for cloud offloading. As
such, it aligns with the goals of next-generation IoT-enabled
e-health applications.

VI. CONCLUSION

In this work, we introduced MOSTNET+, a unified, multi-
task, multi-scale architecture for simultaneous optical flow
estimation, video enhancement, and semantic segmentation
in intraoral video data. Motivated by the need for efficient,
real-time solutions in clinical settings, we leveraged task
synergies and hierarchical scale-specific modeling to design a
robust framework. MOSTNET+ delivers strong generalization
and competitive performance in multiple tasks through joint
modeling of enhancement and understanding across multiple
scales. Experimental results demonstrate that our proposed
variants, MOSTNET+SW and MOSTNET+DW, not only com-
pete but often outperform state-of-the-art single-task networks,
while maintaining lower computational complexity and run-
time overhead. Moreover, our solution achieves approximately
25 FPS with low latency. These findings validate the eligibility
of multi-task model deployment in real-time applications.
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Włódarczak, Emilia Lewandowska, Jacek Ruminski,
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