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Abstract—In the field of X-ray security applications, even
the smallest details can significantly impact outcomes. Objects
that are heavily occluded or intentionally concealed pose a
great challenge for detection, whether by human observation or
through advanced technological applications. While certain Deep
Learning (DL) architectures demonstrate strong performance
in processing local information, such as Convolutional Neural
Networks (CNNs), others excel in handling distant information,
e.g., transformers. In X-ray security imaging the literature has
been dominated by the use of CNN-based methods, while the
integration of the two aforementioned leading architectures has
not been sufficiently explored. In this paper, various hybrid
CNN-transformer architectures are evaluated against a common
CNN object detection baseline, namely YOLOVS. In particular,
a CNN (HGNetV2) and a hybrid CNN-transformer (Next-ViT-S)
backbone are combined with different CNN/transformer detec-
tion heads (YOLOVS and RT-DETR). The resulting architectures
are comparatively evaluated on three challenging public X-ray
inspection datasets, namely EDS, HiXray, and PIDray. Inter-
estingly, while the YOLOVS detector with its default backbone
(CSP-DarkNet53) is generally shown to be advantageous on
the HiXray and PIDray datasets, when a domain distribution
shift is incorporated in the X-ray images (as happens in the
EDS datasets), hybrid CNN-transformer architectures exhibit
increased robustness. Detailed comparative evaluation results,
including object-level detection performance and object-size error
analysis, demonstrate the strengths and weaknesses of each
architectural combination and suggest guidelines for future
research. The source code and network weights of the models
employed in this study are available at https://github.com/jgenc/
xray-comparative-evaluation.

Index Terms—Object detection, X-ray imaging, convolutional
neural networks, vision transformers, hybrid architectures

I. INTRODUCTION

Automated X-ray screening for prohibited item detection
constitutes a crucial task for public safety and yet remains
open to several challenges, such as object occlusion, cluttered
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scenes, high intra-class variation, and the inherent visual
ambiguity of grayscale X-ray imagery [1]. Under these con-
ditions, relying on manual inspection can lead to fatigue
and errors in high-throughput environments. In recent years,
deep neural networks have driven breakthroughs in generic
object detection. Consequently, deep learning methods, such
as Convolutional Neural Networks (CNNs), have introduced
notable advances in automatic object detection in X-ray images
(2] [3] [4].

In parallel, Vision Transformers (ViTs) have shown in-
creased capabilities in modeling global visual context, by
attending to whole image patches via multi-head self-attention
[5] [6]. In particular, DETR [7] formulates the task of object
detection as a set prediction problem. Additionally, sparse
DETR [8] employs a Swin transformer backbone and adjusts
accordingly token usage across various configurations. More-
over, DINO [9] introduces contrastive denoising, mixed query
anchors, and dual look-ahead box prediction, along with test
time augmentation [10].

More recently, hybrid CNN-transformer architectures have
been introduced, which combine the complementary merits
of CNNs and ViTs to address various computer vision tasks
more efficiently [11]. In particular, when CNNs’ excellence in
capturing local detail is combined with ViTs’ ability to capture
long-range relationships across the visual scene, promising
object detection performance can be observed [12]. In this
context, Next-ViT-S [13] comprises a leading example that
alternates specialized convolution blocks with attention-based
ones at each stage and outperforms comparable CNNs and
ViTs on standard benchmarks. More specifically, Next-ViT-S
retains the inductive biases and speed of convolution, while
incorporating global receptive fields through the use of self-
attention; Moreover, it is explicitly engineered for efficient
deployment, thus being an ideal backbone network for object
detection tasks in realistic scenarios.

Despite the rise of ViTs and hybrid CNN-transformer
architectures in natural image analysis, the X-ray imaging
community still focuses on CNN-based approaches [14]. This
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is mainly because ViT architectural components often require
large training datasets and can be computationally heavy. To
this end, the advantageous characteristics of hybrid CNN-
transformer architectures have not yet been sufficiently ex-
plored in X-ray security imaging [3].

In this paper, the issue of applying hybrid CNN-transformer
architectures for the detection of illicit objects [15] in X-ray
inspection imaging is investigated, aiming at examining their
performance against the typical CNN-only detection baseline.
In particular, various hybrid architectures are formed by com-
bining a CNN (HGNetV2 [16]) and a hybrid CNN-transformer
(Next-ViT-S [13]) backbone with different CNN/transformer
detection heads (namely, YOLOvVS [17] and RT-DETR [18],
respectively). The formed architectures are comparatively
evaluated against a common and well-performing CNN-only
object detection baseline, namely YOLOv8 with its default
backbone (CSP-DarkNet53) [17]. All methods are evaluated
on three challenging public X-ray inspection datasets, namely
EDS [19], HiXray [20], and PIDray [21]. Compared to HiXray
and PIDray, EDS introduces a distributional shift in the
collected data, due to the use of three different X-ray scanners
during the capturing process, simulating in this way real-world
deployment challenges and emphasizing on the evaluation
of models’ robustness. Interestingly, the YOLOvVS8 detector
performs better in the HiXray and PIDray datasets; however,
hybrid architectures are shown to be advantageous in the
EDS one. Moreover, detailed comparative evaluation results,
also including object-level detection performance and object-
size error analysis, demonstrate the pros and cons of each
architectural combination and suggest guidelines for future
research.

The remainder of the paper is organized as follows: Section
IT presents an overview of previous work in the field of DL-
based X-ray object detection. Section III details the hybrid
CNN-transformer neural network architectures considered in
this work. Section IV discusses the obtained experimental re-
sults and highlights key findings. Section V draws conclusions
and outlines future research directions in the field.

II. PREVIOUS WORK

Automatic X-ray security inspection systems typically rely
on the use of DL-based object detection methods that, so
far, have been predominantly based on CNN architectures.
In particular, notable early studies, such as DOAM [22] and
LIM [20], adapt popular CNN-based object detectors, to suit
the characteristics of the X-ray imaging domain. On another
direction, detection heads such as SSD, FCOS, YOLOv3 and
YOLOVS have also been explored [14], aiming at addressing
real-time analysis requirements. More elaborate approaches
follow the respective advancements in generic CNN-based
detection schemes. In particular, EM-YOLO [23] enhances
YOLOV7 with X-ray specific pre-processing for handling oc-
clusion, low contrast, and class imbalance. SC-YOLOvS [24]
modifies the backbone to adapt to object position and shape.
Additionally, Wang et al. [25] propose two YOLOVS variants
with changes to the neck and head networks, maintaining size

while boosting performance. YOLOv8-GEMA [26] adjusts the
backbone and neck for improved results. Moreover, TinyRay
[27] uses a YOLOv7 variant with the lightweight FasterNet
backbone, while Ren et al. [28] apply distillation to train
compact YOLOv4 and RetinaNet models.

Following the application of hybrid CNN-transformer ar-
chitectures to natural RGB images, the same methods have
been used in X-ray-based illicit object detection. In particular,
the Trans2ray [29] approach comprises a dual-branch hybrid
framework for dual-view X-ray imaging, achieving notable
performance against other dual-view detectors. Additionally,
the EslaXDET [30] method applies self-supervised training
[31] on a ViT and introduces a detection head for creating
multi-scale feature maps.

Although hybrid CNN-transformer architectures show
promise, they remain less adopted in X-ray inspection com-
pared to conventional CNNs. Their limited uptake is mainly
due to challenges like increased computational overhead,
which is critical for high-throughput systems. In this con-
text, lightweight adaptations, like TinyViT [32] and Efficient
Hybrid DETR [18], explore parameter reduction strategies
without compromising performance, while leveraging Neural
Architecture Search (NAS) for balancing accuracy and latency
aspects. On the other hand, the demand of transformer-based
components for increased training datasets (compared to the
respective CNN case) introduces further concerns and obsta-
cles. In this respect, the lack of sufficiently large X-ray datasets
and the presence of biases in the publicly available ones (e.g.
due to the inherent scarcity of security threats in publicly
annotated benchmarks), require the development of appropri-
ate techniques, like semi-supervised learning and synthetic
data augmentation. Towards this direction, the approaches
of Lin et al. [33] and Huang et al. [34] demonstrate how
hybrid architectures benefit from cross-domain pretraining and
attention-based few-shot learning, respectively, reducing in
that way the reliance on large labeled datasets.

III. HYBRID CNN-TRANSFORMER-BASED OBJECT
DETECTION

This section details the hybrid CNN-transformer archi-
tectures investigated in this work, providing the basis for
their performance comparison against a conventional CNN-
only detection baseline. In particular, various hybrid architec-
tures are formed by combining recent and well-performing
CNN (HGNetV2 [16]) and hybrid CNN-transformer (Next-
ViT-S [13]) backbones with different CNN/transformer de-
tection heads (namely, YOLOvVS [17] and RT-DETR [18],
respectively). Denoting each formed object detector as
D(head, backbone), the considered composite architectures in
this work are as follows: D(YOLOVS, Next-ViT-S), D(RT-
DETR, HGNetV2), and D(RT-DETR, Next-ViT-S). The lat-
ter are comparatively evaluated against a common and
well-performing CNN-only object detection baseline, namely
D(YOLOVvS8, CSP-DarkNet53), i.e. the YOLOVS detector with
its default CSP-DarkNet53 backbone [17].



In the following sections, the architectural modifications to
the key neural components (namely, detectors YOLOvS8 and
RT-DETR, and backbone Next-ViT-S) that are required for
forming the D(YOLOVS, Next-ViT-S) and D(RT-DETR, Next-
ViT-S) object detectors are detailed.

A. Next-ViT backbone network

Next-ViT [13] is a hybrid model combining convolutional
and transformer network components, designed so as to
achieve an optimal balance between latency and accuracy. It
adopts a hierarchical pyramidal architecture, which comprises
multiple stages that are adaptable for various downstream
tasks, including object detection and segmentation. Next-ViT
includes an initial stem stage (incorporating standard convo-
lutional layers), followed by four primary ones (labeled .Sy
to Sy4), where the feature output size is subsequently reduced
by half at each stage. Each primary stage incorporates Next
Convolutional Blocks (NCB) and Next Transformer Blocks
(NTB), in order to model both short- and long-term depen-
dencies within the input visual data. In the current study, the
smallest Next-ViT-S configuration is considered for ensuring
real-time performance, using model weights' pre-trained on
the ImageNet dataset.

B. Hybrid YOLOvS-based object detector

In order to form the D(YOLOvVS, Next-ViT-S) object detec-
tor, the CSP-DarkNet53 backbone, included in the standard
YOLOVS architecture, is substituted by the Next-ViT-S one.
This requires modifications to the connections of the original
YOLOVS8 neck network, in order to handle the varying feature
map sizes and spatial resolutions of the intermediate layers of
the Next-ViT-S backbone.

The default YOLOvS implementation (with the
CSPDarkNet-53 backbone) utilizes multi-scale feature
maps that are organized in five stages, labeled P; to Ps.
In order to effectively utilize these features, YOLOvVS
incorporates skip connections (known as residual links) from
the backbone to the neck module, a process facilitated by
the so called Path Aggregation Network (PAFPN); these skip
connections merge and upscale feature maps. By convention,
the output of each backbone block is referred to as a ‘layer’,
numbered sequentially throughout the network, in order to
differentiate from the P, feature levels. YOLOvVS utilizes
connections to layers 4 and 6, corresponding to the outputs
of the layers before Ps; and Pj. In order to integrate the
Next-ViT-S backbone to the YOLOvVS8 detector head, three
different combinations of skip connections are considered
that are denoted C(z,y), where x is the index of the first
skip layer and y the next one, and graphically illustrated in
Fig. 1:

o ((10,20): Layer 10 represents the first transformer block

(NTB) in So, incorporating both basic visual features
and broad contextual information. Layer 20, on the other

lhttps:// github.com/bytedance/Next- ViT?tab=readme-ov-file#
image-classification
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Figure 1: Architecture of the D(YOLOvVS, Next-ViT-S) detec-
tor.

hand, is the third NTB block in S3, which bears more
profound features.

e ('(9,19): Layer 9 is the last convolutional block (NCB)
in Sy, possessing basic visual information, but lacking
comprehensive contextual information. Layer 19 is the
last NCB block in S3, now integrating contextual infor-
mation from the preceding NTB layers.

e C(7,17): Layer 7 is the first NCB block in S5, incorporat-
ing features from S;. Layer 17 is located two layers after
the second NTB block, bearing contextual information
that has not yet been refined by subsequent NCB layers.

The final output features of the Next-ViT-S backbone are
processed by the YOLOvVS SPPF layer (a modified version of
the SPP-Network) and then by the original neck network. After
extensive experimental evaluation, configuration C'(7,17) was
shown to lead to superior detection performance and utilized
in all experiments in this study.

C. Hybrid RT-DETR-based object detector

In order to formulate the D(RT-DETR, Next-ViT-S) detector,
the default backbone (HGNetV2 [16]) of RT-DETR [18] is
replaced by the Next-ViT-S one. The latter requires modifica-
tions to the connections of the original RT-DETR neck network
towards the backbone for accounting for the different feature
map scales and spatial resolutions of Next-ViT-S. In particular,
the CNN-only HGNetV2 network comprises a hierarchical
architecture with four stages, denoted ‘stage 1-4’. Two residual
connections are established from the backbone (stages 2 and
3) to the detection head (layers 3 and 7). In order to integrate
the Next-ViT-S backbone to the RT-DETR detection head,
two skip connections of different feature scales are defined
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Figure 2: Architecture of the D(RT-DETR, Next-ViT-S) detec-
tor.

from the backbone to the neck network. Similarly to III-B,
the same skip connections C(10,20), C(9,19), and C(7,17)
are again considered. The head network, consisting of three
RT-DETR decoder heads, remains unchanged. The overall
D(RT-DETR, Next-ViT-S) architecture is illustrated in Fig.
2. Following thorough experimental assessment, configuration
C(9,19) was shown to be the most efficient one and was used
in all experiments carried out in this study.

IV. EXPERIMENTAL RESULTS

This section details the defined experimental framework for
evaluating the performance of the considered object detectors,
while the obtained results, along with their corresponding
assessment discussion, are subsequently provided.

A. Experimental framework

1) Datasets: The EDS [19] dataset focuses on the chal-
lenge of domain shift that is inherent in X-ray imaging, due
to factors like varying parameters across different scanning
devices. In particular, three different X-ray scanners are em-
ployed, resulting into variations in the captured color, depth
and texture information channels, mainly introduced by the
different device specs and wear levels. The packages used
during the scanning process were artificially prepared. EDS
supports ten classes of common daily-life objects, namely
Plastic bottle (DB), Knife (KN), Scissor (SC), Laptop (LA),
Umbrella (UM), Lighter (LI), Device (SE), Power bank (PB),
Pressure (PR), and Glass bottle (GB). The dataset comprises
14,219 images containing 31, 654 object instances from three
domains (X-ray machines), resulting in ~ 2.22 instances per
image on average. The defined experimental protocol dictates

the training of a detection model in a single domain and its
subsequent evaluation in a different one, resulting in a total of
six performed experimental sessions.

The HiXray [20] dataset contains real-world X-ray scans
collected from an international airport, where the image an-
notations were provided by the airport security personnel.
The dataset comprises 45,364 images that include a to-
tal of 102,928 prohibited items, i.e. ~ 2.27 instances per
image. The dataset supports eight classes, namely Portable
charger 1 (lithium-ion prismatic cell) (PO1), Portable charger
2 (lithium-ion cylindrical cell) (PO2), Tablet (TA), Mobile
phone (MP), Laptop (LA), Cosmetic (CO), Water (WA), and
Nonmetallic Lighter (NL). HiXray is split into a training (80%
of images) and a test (20% of images) set.

The PIDray [21] dataset focuses on deliberately hidden
items, mimicking real-world scenarios where prohibited ob-
jects are intentionally concealed. The latter fact adds an extra
level of complexity to the object detection task, since it is
required to identify hidden items (and not ‘simply’ detecting
objects obscured by other items and/or environmental factors).
All scan samples are collected under real-world settings,
namely at airport, subway, and railway station security check-
points. PIDray includes twelve classes of prohibited items,
namely Baton (BA), Pliers (PL), Hammer (HA), Power-bank
(PB), Scissors (SC), Wrench (WR), Gun (GU), Bullet (BU),
Sprayer (SP), Handcuffs (HC), Knife (KN), and Lighter (LI).
The dataset is split into a training (29,457 samples, ~ 60%
of images) and a test (18,220 samples, ~ 40% of images)
set. Moreover, the test set is further divided into three sub-
sets, namely an easy (the images contain only one prohibited
object), a hard (the images contain more than one illicit items),
and a hidden (the images contain deliberately hidden objects)
one, with 9,482, 3,733, and 5,055 images, respectively.

2) Performance metrics: Mean Average Precision (mAP)
constitutes the most commonly used metric in object de-
tection applications, which estimates a comprehensive and
aggregated evaluation of the examined model’s performance
across different confidence levels and object classes. Among
the different variants regarding how mAP is calculated, es-
pecially with respect to the selected Intersection over Union
(IoU) threshold (that assesses the spatial overlap between the
predicted bounding box (generated by a detector model) and
the corresponding ground truth one (that defines the actual
location of the object) for determining true positive detection,
the following ones have been considered in this work: a)
mAP?°: This refers to the mAP score calculated using an IoU
threshold of 0.5. b) mAP®%%°: This involves a more rigorous
evaluation protocol, which calculates mAP by averaging AP
scores over a range of defined IoU thresholds, typically from
0.5 to 0.95 with a step of 0.05, and subsequently averaging the
computed results across all object classes. This metric provides
a more comprehensive assessment of the model’s localization
accuracy, by considering its performance at different levels
of overlap with the ground truth annotation. In general, higher
mAP scores, which receive values ranging from 0 to 1, indicate
better performance.



Table I: Object detection results for the EDS, HiXray and PIDray datasets (left column: mAP®°, right column: mAP5%:9%)

Detector EDS HiXray PIDray

D(YOLOVS, CSP-DarkNet53)  0.547 / 0.386  0.845/ 0.564  0.897 / 0.807
D(YOLOVS, Next-ViT-S) 0.588 /0.408 0.841/0.551 0.898 / 0.801
D(RT-DETR, HGNetV2) 0.573/0.410 0.839/0.510 0.835/0.720
D(RT-DETR, Next-ViT-S) 0.504 /0.322 0.818/0.483 0.879/0.773

Table II: Object detection results for the various sessions of the EDS dataset (left column: mAP®°, right column: mAP5%:9%)

Detector Di_s2 D13 D21 D2_.3 D351 D32 Avg.

D(YOLOVS, CSP-DarkNet53) 0.482/0.340 055570410 0.454/0295 0.619/0.449 0.587/0.411 0.590 / 0.411 0.547 / 0.386
D(YOLOVS, Next-ViT-S) 0.512/0.347 0.603/0.441 0.515/0.341 0.648 / 0.454 0.624 /0.434 0.626/0.431 0.588 / 0.408
D(RT-DETR, HGNetV?2) 0.506 /0352 0.569 /0424 0.506/0.350 0.648 /0.471 0.595/ 0.431 0.616 / 0.429  0.573 / 0.410
D(RT-DETR, Next-ViT-S) 0.446 / 0.292  0.545/ 0.343 0.372/0.217 0.450/0.286 0.578 /0377 0.636/0.419 0.504 / 0.322

Table III: Object detection results for the various subsets of the PIDray dataset (left column: mAP®, right column: mAP?%:9%)

Detector easy hard hidden overall

D(YOLOVS, CSP-DarkNet53) 0.911/0.846 0914 /0.812 0.797 / 0.682  0.897 / 0.807
D(YOLOVS, Next-ViT-S) 0.912/0.837 0.910/0.799 0.803/0.685 0.898 / 0.801
D(RT-DETR, HGNetV2) 0.864 /0.780 0.864 /0.724  0.681 / 0.548  0.835/ 0.720
D(RT-DETR, Next-ViT-S) 0.898 /0.824 0.898 /0.770  0.779 / 0.646  0.879 / 0.773

3) Implementation details: All reported experiments were
conducted using a PC with Ubuntu Linux 22.04 OS, equipped
with an Intel Core 19-13900K CPU and two NVIDIA GeForce
RTX 4070 Ti GPUs. For the YOLOv8 and RT-DETR de-
tectors the implementations and layer weights available in
the Ultralytics framework® were used, while for the Next-
ViT-S® the respective publicly available source code and
weights were also utilized. Regarding hyperparameter setting,
all detectors were trained using a batch size equal to 18.
For the EDS dataset, D(RT-DETR, Next-ViT-S) was trained
using Stochastic Gradient Descent (SGD) with a learning rate
of 0.01 and a momentum of 0.937, while for the remaining
detectors the AdamW optimizer was employed with a learning
rate of 0.000714. For the HiXray and PIDray datasets, due
to their larger size, all detectors were trained using SGD
with a learning rate of 0.01 and a momentum of 0.937.
All experiments incorporated an early stopping mechanism to
prevent overfitting.

B. Evaluation results and discussion

Table I summarizes the object detection results obtained
for all considered detectors for all the datasets employed,
where both the mAP?® and mAP?**% metrics are provided.
Additionally, Tables II and III present the detailed detection
performance for the various experimental sessions and subsets
of the EDS and the PIDray datasets, respectively. Object-
level performance (mAP?%%° metric) for each dataset is illus-
trated in Fig. 3. Moreover, Fig. 4 demonstrates object scale-
related performance (mAP?*%° metric) for each dataset, where
the COCO [35] dataset object scale definitions for ‘small’,

2https://github.com/ultralytics/ultralytics
3 https://github.com/bytedance/next-vit

‘medium’, and ‘large’ were considered. Furthermore, indica-
tive detection results of the various detectors are illustrated in
Fig. 5.

From the presented results, several critical observations and
key insights can be extracted, the most important of which are
summarized as follows:

e Overall, the D(YOLOvVS, CSP-DarkNet53) detector, i.e.
a CNN-only architecture, achieves the best performance
(Table I), exhibiting the highest recognition rate in 2
out of the 3 considered datasets (namely, HiXray and
PIDray). This demonstrates the increased capability of
convolutional operators in modeling appearance patterns
in X-ray images. It needs to be highlighted though that
both HiXray and PIDray contain data collected from a
single scanner each.

o Interestingly, for the EDS dataset, where multi-
ple/different scanners are employed and the defined ex-
perimental sessions target the evaluation under domain
shifts in the underlying data distributions, most hybrid
CNN-transformer detectors outperform the D(YOLOVS,
CSP-DarkNet53) one, with D(RT-DETR, HGNetV2)
showcasing the highest performance (Table I). The latter
suggests that transformer-based components result into
increased robustness to data distribution shifts, mainly
due to their increased capability in incorporating global
contextual information in the extracted features (com-
pared to the respective convolutional-only blocks).

o Across all experiments (Tables I-1IT), YOLOv8-based de-
tectors with a Next-ViT-S backbone consistently outper-
form their RT-DETR-based counterparts, demonstrating
the superiority of the YOLOv8 detection head over the
RT-DETR one. The latter indicates that transformer-based
detection heads are not advantageous for the analysis
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Figure 3: Object-level performance (mAP%%% metric) for
datasets: a) EDS, b) HiXray, and c) PIDray.

of X-ray security images, which inherently exhibit no
particular spatial structure (i.e. objects in containers are
usually positioned without a specific/consistent spatial
order).

Replacing a CNN backbone (either CSP-DarkNet53 and
HGNetV2) with a hybrid one (Next-ViT-S) is shown not
to always lead to improved performance (Table I), regard-
less of the employed detection head (either YOLOvVS-
or RT-DETR-based one). This demonstrates the need
for careful design and comprehensive experimentation
regarding compatibility aspects, when incorporating a
hybrid backbone in an object detection scheme.
Examining the detection results in the EDS dataset (Table
II), it can be seen that the CNN-only D(YOLOVS, CSP-
DarkNet53) detector generally leads to inferior perfor-
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Figure 4: Object scale-related performance (mAP*%*%° metric)
for datasets: a) EDS, b) HiXray, and c) PIDray.

mance in all experimental sessions, compared to most
hybrid architectures (with the best D(YOLOvVS, Next-ViT-
S) and D(RT-DETR, HGNetV2) detectors performing
almost equally well), as already discussed and explained
above.

Investigating the performance for the various subsets
in the PID dataset (Table III), it can be seen that
D(YOLOvS8, CSP-DarkNet53) performs best for the
‘easy’ and ‘hard’ ones. However, for the ‘hidden’ par-
tition, where the objects of interest are intentionally con-
cealed and significant occlusions are present, the hybrid
D(YOLOVS, Next-ViT-S) detector demonstrates a slightly
improved recognition rate.

Analyzing the performance with respect to individual ob-
ject types (Fig. 3), it can be observed that the D(YOLOVS,
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Figure 5: Indicative object detection results in the EDS, HiXray, and PIDray datasets.

CSP-DarkNet53) detector outperforms all remaining ones
for all classes in the HiXray and PIDray datasets. How-
ever, in the EDS dataset, D(YOLOvS8, CSP-DarkNet53)
performs inferior for all object types than most hybrid
detectors, especially for classes ‘Plastic bottle’ (DB),
‘Scissor’ (SC), ‘Lighter’ (LI), ‘Power bank’ (PB), and
‘Pressure’ (PR), i.e. both objects types with fine-grained
local patterns (SC, LI, PB, and PR) as well as with
broader motifs in their captured chemical composition
appearance.

« Examining the impact of the objects’ scale (Fig. 4), it can
be seen that in the EDS dataset that D(YOLOvS, CSP-
DarkNet53) is significantly outperformed by D(YOLOVS,
Next-ViT-S) and D(RT-DETR, HGNetV2) for ‘medium’
size objects, while this difference is decreased for ‘large’
instances. On the other hand, for the HiXray and PIDray
datasets (where D(YOLOvS, CSP-DarkNet53) performs
best), the object scale does not seem to significantly affect
the performance for all detectors.

V. CONCLUSION

In this paper, various hybrid CNN-transformer architec-
tures were introduced and evaluated against a common CNN
object detection baseline, namely YOLOVS. In particular, a
CNN (HGNetV2) and a hybrid CNN-transformer (Next-ViT-
S) backbone were combined with different CNN/transformer
detection heads (YOLOv8 and RT-DETR). The resulting ar-
chitectures were comparatively evaluated on three challenging
public X-ray inspection datasets, namely EDS, HiXray, and
PIDray. One of the key observations concerned the fact that
while the YOLOV8 detector with its default backbone (CSP-
DarkNet53) was shown to be advantageous on the HiXray
and PIDray datasets, when a domain distribution shift is
incorporated in the X-ray images (EDS datasets), hybrid CNN-
transformer architectures demonstrated increased robustness.
Future research includes the investigation of additional hybrid
CNN-transformer configurations and broader experimental
evaluation in additional datasets.
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