Surrogate-Guided Adversarial Attacks: Enabling
White-Box Methods in Black-Box Scenarios

Dimitrios Christos Asimopoulos
MetaMind Innovations, Kozani, Greece
Department of Information and Electronic Engineering,
International Hellenic University, Thessaloniki, Greece
Email: dasimopoulos@metamind.gr, dimiasim3 @ihu.gr

Panagiotis Fouliras
Department of Applied Informatics,
University of Macedonia, Thessaloniki, Greece
Email: pfoul@uom.edu.gr

Georgios Efstathopoulos
MetaMind Innovations, Kozani, Greece
Email: gefstathopoulos@metamind.gr

Vasileios Argyriou
Department of Networks and Digital Media,
Kingston University London, Penrthyn Road, UK
Email: vasileios.argyriou@kingston.ac.uk

Panagiotis Radoglou-Grammatikis
K3Y Ltd, Sofia, Bulgaria
Department of Electrical and Computer Engineering,
University of Western Macedonia, Kozani, Greece
Email: pradoglou@k3y.bg, pradoglou@uowm.gr

Konstandinos Panitsidis
Department of Management Science & Technology,
University of Western Macedonia, Kozani, Greece
Email: kpanytsidis@uowm.gr

Thomas Lagkas

Department of Computer Science,

Democritus University of Thrace, Kavala, Greece

Email: tlagkas@cs.duth.gr

Igor Kotsiuba

Durham University Business School, Millhill Ln, UK

Email: igor.kotsiuba@durham.ac.uk

Panagiotis Sarigiannidis
Department of Electrical and Computer Engineering,
University of Western Macedonia, Kozani, Greece
Email: psarigiannidis @uowm.gr

Abstract—Adversarial attacks pose significant threats to ma-
chine learning models, with white-box attacks such as Fast
Gradient Sign Method (FGSM), Projected Gradient Descent
(PGD), and Basic Iterative Method (BIM) achieving high success
rates when model gradients are accessible. However, in real-world
scenarios, direct access to model internals is often restricted,
necessitating black-box attack strategies that typically suffer
from lower effectiveness. In this work, we propose a novel
approach to transform white-box attacks into black-box attacks
by leveraging state-of-the-art surrogate models, including Multi-
Layer Perceptrons (MLP) and XGBoost (XGB). Our method
involves training a surrogate model to mimic the decision
boundaries of an inaccessible target model using pseudo-labeling,
thereby enabling the application of gradient-based white-box
attacks in a black-box setting. We systematically compare our
approach against conventional black-box attacks, such as Zero
Order Optimization (ZOO), evaluating their effectiveness in
terms of attack success rates, transferability, and computational
efficiency. The results demonstrate that surrogate-assisted attacks
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perform as good as standard black-box methods, bridging the
performance gap between white-box and black-box adversarial
attacks. This study highlights the power of surrogate models in
enhancing adversarial transferability and provides insights into
the robustness of different machine learning architectures against
adversarial threats.

Index Terms—Adversarial attacks, white-box, Black-box, eva-
sion, transferability, surrogate-model

I. INTRODUCTION

Adversarial attacks pose significant threats to machine
learning (ML) models, particularly in applications such as
computer vision, natural language processing, and cybersecu-
rity. These attacks exploit model vulnerabilities by introducing
small perturbations to input data, leading to high-confidence
misclassifications. White-box attacks, including Fast Gradient
Sign Method (FGSM), Projected Gradient Descent (PGD),
and Basic Iterative Method (BIM), achieve high success
rates by leveraging full access to the model’s architecture
and gradients. However, in real-world scenarios, such access
is typically unavailable, making black-box attack strategies
necessary. These approaches rely on query-based methods,
such as Zero Order Optimization (ZOO), or transferability of



adversarial examples from surrogate models, though often with
reduced effectiveness.

Black-box attacks face key limitations due to limited knowl-
edge of the target model’s decision boundary, high query
demands, and unreliable transferability—particularly when
targeting ensemble models like XGBoost. To address these
challenges, this work proposes a surrogate-based black-box at-
tack framework designed to improve adversarial transferability
without direct gradient access. A neural network surrogate is
trained using pseudo-labels from the target XGBoost model,
allowing the application of gradient-based white-box attacks
in a black-box context.

The main contributions of this paper are summarized as
follows:

o Surrogate-Based Black-Box Framework: A structured
attack methodology using a neural network surrogate
trained via pseudo-labeling to enable effective adversarial
generation against XGBoost.

« White-Box Attack Adaptation: Application of white-
box attacks in black-box scenarios through surrogate-
assisted transfer.

o Comparative Evaluation: Systematic comparison be-
tween the proposed surrogate-based approach and the
Z0O0 black-box attack, focusing on success rates, trans-
ferability, and computational efficiency.

This approach aims to bridge the gap between white-box
and black-box adversarial attacks, enhancing attack effec-
tiveness against non-differentiable models like XGBoost. By
leveraging surrogate models, it becomes possible to approx-
imate the target model’s behavior and generate transferable
adversarial examples with improved success rates. Further-
more, the framework reduces the dependency on excessive
query counts, making the attack process more scalable and
practical for real-world adversarial testing.

The rest of the paper is organized as follows. Section II
presents a background and similar works in this field. Section
III, provides the architecture of the proposed work alongside
the methodology. Next, section IV provides the dataset and
the metrics used, section V focuses on the evaluation analysis
and experimental results, while VI concludes this paper.

II. RELATED WORK

Deep neural networks (DNNs) have achieved state-of-the-
art performance across various domains but remain inherently
vulnerable to adversarial examples—carefully crafted pertur-
bations that cause incorrect predictions. This vulnerability
poses a significant challenge, particularly in black-box settings
where attackers have no access to the model’s internal param-
eters and must rely solely on observed input-output behavior.
To overcome this, many attack strategies leverage surrogate
models to approximate the decision boundaries of the target
model and generate transferable adversarial examples that
maintain effectiveness across model boundaries [1].

Adversarial attacks are typically classified into white-box
and black-box categories. White-box attacks, such as FGSM,
PGD, and Carlini & Wagner (C&W), assume full access to

model architecture and gradients, enabling precise, gradient-
based perturbations. In contrast, black-box attacks rely on
the transferability phenomenon, whereby adversarial examples
generated from a surrogate model can deceive a different,
unseen model. This transferability underpins the majority of
black-box attacks and has motivated extensive research on
improving the fidelity of surrogate models to approximate
target behaviors more effectively [2].

To address the surrogate-to-target mismatch, several meth-
ods have emerged. One notable advancement is the Lips-
chitz Regularized Surrogate (LRS), which introduces Lipschitz
continuity constraints to smooth the surrogate model’s loss
surface. This regularization enhances the generalizability of
perturbations, significantly increasing black-box attack success
rates against both standard and adversarially-trained models
[3].

Beyond algorithmic contributions, frameworks for system-
atic robustness evaluation have also gained traction. The Ad-
versarial Attack Generator (AAG) proposed in [4] is a modular
platform designed to evaluate ML/DL models’ resilience to
attacks in critical infrastructure domains. AAG uses the CI-
CFlowMeter parser to extract features from OCPP-based traf-
fic and applies a variety of adversarial techniques—including
FGSM, JSMA, PGD, and C&W—via its attack engine. Its
evaluation module benchmarks different classifiers, revealing
performance degradation under adversarial conditions and
emphasizing the need for adaptive defense strategies.

Further emphasizing this need, [5] investigated the ro-
bustness of Al-enabled Intrusion Detection Systems (IDS)
in the energy sector, specifically targeting the IEC 60870-
5-104 protocol. They employed both gradient-based attacks
(FGSM) and data-driven synthetic perturbations generated via
Conditional Tabular GANs (CTGANS). Their findings revealed
a substantial drop in detection accuracy across several clas-
sifiers, including Random Forest, XGBoost, and MLP, when
subjected to adversarial inputs—highlighting the limitations of
conventional IDSs under adversarial threat.

One key advancement in enhancing white-box attack trans-
ferability to black-box settings is the work by Inkawhich et
al. [6], which introduces a feature-space attack strategy that
perturbs internal activation patterns instead of just final pre-
dictions. By manipulating features across different hierarchy
levels in the network, the attack exploits deeper representations
shared across various model architectures, leading to improved
transferability.

In a similar vein, Wu et al. proposed the Skip Gradient
Method (SGM) [7], which strategically suppresses gradient
flow through residual connections during the attack generation
process. This method mitigates the overfitting of perturbations
to the specific architectural shortcuts of the surrogate model,
improving generalization to unseen architectures. Notably,
when used in combination with iterative attacks like I-FGSM
and MI-FGSM, SGM consistently enhances black-box success
rates, particularly in models with deep residual blocks such as
ResNets and DenseNets.

Wang et al. [8] contributed another dimension to white-



box to black-box adaptation through their Variance Tuning
Method (VTM). Instead of modifying the surrogate model
itself, VITM focuses on controlling the variance of gradient
updates during adversarial example generation. By balancing
the exploration and exploitation trade-off in the perturbation
process, the method avoids overfitting to the surrogate model’s
landscape. The result is a more diverse set of perturbations that
maintain their adversarial properties across target models.

Dong et al. introduced the Momentum Iterative Fast Gradi-
ent Sign Method (MI-FGSM) [9], which integrates momentum
into the iterative white-box attack process. This technique
helps the perturbation trajectory escape local optima associated
with the surrogate’s loss surface, leading to more stable and
generalized adversarial examples. MI-FGSM has been shown
to significantly outperform standard iterative methods in black-
box scenarios, especially when targeting commercial-grade
classifiers and adversarially trained networks.

Building on this momentum approach, Lin et al. [10]
proposed the Nesterov Iterative FGSM (NI-FGSM), which
applies Nesterov Accelerated Gradient (NAG) to anticipate
the future direction of gradient descent during adversarial
optimization. This forecasting behavior improves the attack’s
convergence and helps craft perturbations that are both more
transferable and less perceptible. When benchmarked on large-
scale datasets like ImageNet, NI-FGSM achieved higher black-
box success rates and exhibited better performance under
ensemble-targeting scenarios.

Taken together, these works demonstrate the evolving so-
phistication of adversarial attacks and the critical role of
surrogate modeling in black-box threat scenarios. However,
despite these advancements, challenges remain in improving
cross-model transferability, adversarial generalization, and ro-
bustness evaluation under real-world constraints. These gaps
motivate the need for improved methods that unify model
realism, attack efficacy, and systematic evaluation.

III. METHODOLOGY
A. Methodology Analysis

The proposed methodology addresses one of the key limi-
tations of adversarial machine learning in black-box settings:
the inability to apply gradient-based attacks directly on non-
differentiable models such as XGBoost. Traditional black-
box attacks often suffer from high query costs or unreliable
transferability. To overcome these challenges, this work in-
troduces a surrogate-assisted attack framework that enables
the use of efficient white-box attacks in black-box scenarios
by approximating the decision boundary of the target model
through pseudo-labeling.

The approach offers two main advantages. First, it reduces
the dependency on excessive query-based optimization by
relying on a substitute model trained to mimic the behavior
of the target classifier. Second, it enhances the transferability
of adversarial examples by aligning perturbation directions
with the surrogate model’s learned gradients. By systemat-
ically comparing direct query-based methods like Zero Or-
der Optimization (ZOO) with surrogate-assisted attacks, the

methodology provides insights into the effectiveness of white-
box attacks when adapted to black-box environments. This
analysis helps quantify not only attack success rates but also
the efficiency and scalability of the proposed strategy.

B. Problem Definition

In black-box adversarial attack scenarios, attackers lack
access to the target model’s internal parameters and gradients
and can only query the model to observe its outputs. Formally,
given a dataset D = {(X;,y;)},, where X; denotes the
input features and y; the corresponding labels, the target black-
box classifier fy, maps inputs to predictions according to

fbb X — Y.
In such settings, direct gradient-based attacks like
FGSM [11], PGD [12], or C&W [13] cannot be applied

because models like XGBoost, Random Forest, and Decision
Trees do not expose differentiable structures. Therefore, an
alternative approach is required to enable effective adversarial
perturbation generation.

C. Surrogate Model Training

To bypass the non-differentiability of the target model,
we introduce a surrogate learning phase where a differen-
tiable substitute model fy,,, parameterized by 6, is trained
to approximate the decision boundary of fi,. The surrogate
model employed in this work is a Multi-Layer Perceptron
(MLP), designed as a fully connected neural network with four
layers. The architecture integrates ReLU activations, batch
normalization, L2 regularization, and dropout mechanisms to
ensure stability and prevent overfitting [14].

The MLP architecture begins with an input layer of 256
neurons, followed by two hidden layers of 128 and 64 neu-
rons, progressively reducing the feature space. The output
layer applies a softmax activation function to support multi-
class classification using pseudo-labels provided by the target
model. The training process uses the Adam optimizer [15]
with a learning rate of 0.005, optimizing the sparse categorical
cross-entropy loss over 50 epochs with a batch size of 64.
Validation is performed on a hold-out dataset to monitor gen-
eralization, while dropout at a 50% rate mitigates overfitting
during training.

Rather than using true labels, the surrogate is trained on
pseudo-labels generated by querying the target black-box
model, minimizing the following loss function:

N
meinZL(fsub(Xiﬂ),fbb(Xi))7 (D
i=1

where £ denotes the classification loss, typically cross-
entropy. This pseudo-labeling strategy allows the surrogate
to approximate the decision regions of the target model,
providing the necessary gradients for subsequent adversarial
attacks.
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Fig. 1. Workflow for surrogate-assisted black-box adversarial attacks.

D. White-Box Attack Adaptation

After training the surrogate model, standard white-box
adversarial attacks, including FGSM, PGD, and BIM, can be
applied. These methods compute perturbations using gradients
from the surrogate model’s loss function. An adversarial
example X,qy is generated by perturbing a clean input X in
the direction of the loss gradient:

Xadv =X+e- sign (VXL(fsub(X)a y)) ) (2)

where € controls the perturbation magnitude and Vx /L
denotes the gradient of the loss function with respect to the
input. Although crafted on the surrogate, these adversarial
examples aim to remain effective when transferred to the
original black-box target model.

E. Black-Box Evaluation and Attack Workflow

The overall methodology is illustrated in Fig. 1. The process
begins by establishing baseline performance using clean input
data. Direct query-based attacks, such as ZOO, are applied as a
baseline for comparison. Following this, the surrogate model
is trained on pseudo-labeled data generated from the target
classifier. White-box attacks are then applied to the surrogate,
and the crafted adversarial examples are transferred back to
the target model for evaluation.

This approach enables the assessment of both the direct
black-box attack and the surrogate-assisted strategy, offer-
ing comparative insights into their respective attack success
rates, transferability performance, and computational costs.
By bridging white-box methods with black-box scenarios,
the methodology contributes to a more effective and scalable
framework for adversarial testing against non-differentiable
models.

The results from both black-box and white-box attack
strategies are compared to assess their effectiveness, and the
findings are ultimately communicated to the system user for
further analysis and decision-making.
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Fig. 2. Kernel Density  Estimation (KDE) plot of the
flow_total_ocppl6_metervalues feature from the Federated OCPP 1.6
Intrusion Detection Dataset

IV. EXPERIMENT SETUP

The experimental results were conducted on a MacBook
Air M2 equipped with an Apple M2 chip, 8GB of unified
memory, and 256GB of SSD storage. Despite its compact and
energy-efficient architecture, the M2 chip provides significant
computational power through its integrated GPU and Neural
Engine, enabling efficient execution of machine learning and
deep learning tasks. The preferred deep learning framework
for this experiment was TensorFlow, selected for its optimiza-
tion on Apple Silicon and seamless integration with macOS,
ensuring smooth execution of adversarial attack evaluations.

A. Dataset

The dataset utilized in this study is part of the OCPP
(Open Charge Point Protocol) Dataset, which was parsed using
CICFlowMeter to extract network flow statistics.

The dataset utilized in this study is the Federated OCPP
1.6 Intrusion Detection Dataset [16], which contains network
traffic and labeled cyberattack data targeting the Open Charge
Point Protocol (OCPP) 1.6. This dataset is specifically de-
signed to support Al-driven Intrusion Detection Systems (IDS)
and includes various adversarial scenarios relevant to electric
vehicle (EV) charging infrastructure. The recorded attacks
include Charging Profile Manipulation, Denial of Charge,
Heartbeat Flooding DoS, and Unauthorized Access, among
others. This dataset comprises various network flow features
recorded in PCAP CSV format, providing detailed insights
into network behavior.

To illustrate the internal behavioral structure of the dataset,
Fig.2 shows the distribution of MeterValues messages per
session across all recorded labels. This feature reflects how fre-
quently energy consumption metrics are reported in EV charg-
ing sessions and is particularly sensitive to disruptions caused
by cyberattacks.The dataset includes both normal/benign traf-
fic and multiple types of cyberattacks such as FDI Charging
Profile, DOC ID Tag, DOS Flooding Heartbeat, and DOS
Flooding EVCS Rejected attacks. Preprocessing steps involved
feature engineering to drop nonpredictive features, identifying
and handling null values, label encoding of target values,
and standard scaling of the features to ensure they are on



a common scale. For this study, the dataset is leveraged
to construct an adversarial dataset by applying white-box
adversarial attack methods on surrogate models to simulate
black-box attack scenarios and compare them with black-box
attacks. The generated adversarial samples are used to assess
the robustness of IDS models against adaptive adversarial
threats. The combination of raw network traffic (PCAP) and
structured flow statistics (CSV) provides a rich foundation for
evaluating the efficacy of adversarial defense mechanisms in
real-world EV charging environments.

B. Evaluation Metrics

1) Accuracy: The metric of accuracy measures the propor-
tion of correct classifications in relation to the total instances.
This evaluation metric is considered appropriate when the
training dataset is balanced, meaning it contains an equal
number of instances for all classes.

4 B TP+ TN )
CUraY = TP TN + FP+ FN

where:

TP — True Positives

TN — True Negatives
F P — False Positives
F'N — False Negatives

2) True Positive Rate: TPR represents the fraction of actual
intrusion instances that were correctly identified as intrusions.

TP
TP+ FN

3) False Positive Rate: FPR indicates the proportion of nor-
mal instances that were incorrectly classified as cyberattacks,
reflecting the balance between the accurate identification of
normal instances and the occurrence of false alarms.

TPR “4)

_FP
" FP+FN

4) F1 Score: The F1 score is a metric that captures the
balance between true positive rate (TPR) and precision. Pre-
cision is defined as the ratio of true positives to the sum of
true positives and false positives.

FPR 4)

_ 2x TP
 2xTP+FP+FN

5) Accuracy Drop: Calculates the difference between the
accuracy before the attack and the accurace after the attack.

F1 (6)

AA = Abefore - Aafter (7)

where:

o Apefore 18 accuracy before the attack.
o Auper is accuracy after the attack.

6) Transferability Score: The transferability score 7' quan-
tifies how effectively adversarial examples generated using the
substitute model transfer to the black-box model. It is defined
as:

T — S Ko (Kaavi) # i)
Zﬁ\;l“é[fsub(XadV,i) # yz]

where NV is the total number of adversarial examples, X,gy.;
is the ¢-th adversarial sample, and y; is its true label. The
functions fyp () and fop () denote the black-box and substitute
models, respectively. The indicator function ¥[-] returns 1 if
the condition is true and O otherwise. The score 1" reflects the
ratio of successful attacks on the black-box model relative to
those on the substitute model, indicating the transferability of
the adversarial examples.

®)

V. EXPERIMENTAL RESULTS
A. Evaluation of Models in clean data

The experimental results are conducted based on the work-
flow of the proposed system. Table I presents the performance
evaluation of the XGBoost model on the clean dataset before
the application of adversarial attacks. The models exhibit
high accuracy and F1-scores, indicating their effectiveness in
classifying the dataset under normal conditions. The XGBoost
model achieves an accuracy of 0.9335 on the clean dataset,
with a corresponding Fl-score of 0.9317. The True Positive
Rate (TPR) matches the accuracy at 0.9335, indicating con-
sistent performance in correctly classifying positive instances.
The False Positive Rate (FPR) remains low at 0.0166, demon-
strating good specificity. These results establish the baseline
performance of the XGBoost model prior to the application of
adversarial attacks, serving as a reference point for evaluating
the model’s robustness and vulnerability under adversarial
perturbations.

TABLE I
EVALUATION METRICS OF XGBOOST MODEL ON CLEAN DATASET
(BEFORE ADVERSARIAL ATTACKS)

FPR
0.0166

Metric
Score

TPR (Recall)
0.9335

F1-score
0.9317

Accuracy
0.9335

B. Evaluation of the Black-Box Model Under Adversarial
Attacks

The next step of our methodology focuses on evaluating
the XGBoost model after applying the ZOO black-box attack.
Table II summarizes the evaluation results for XGBoost under
this attack scenario, providing key performance metrics as
described in Section IV-B.

The results clearly demonstrate a significant degradation
in model performance under adversarial perturbations. The
accuracy of XGBoost drops sharply from its baseline clean
performance of 0.9335 to 0.5259 after the ZOO attack. The
Fl-score and TPR similarly decline to 0.5134 and 0.5259,
respectively, further confirming the effectiveness of the attack



in disrupting the model’s predictive capabilities. Meanwhile,
the FPR increases to 0.1185, reflecting a notable rise in
misclassification of negative instances.

TABLE II
EVALUATION RESULTS OF THE XGBOOST MODEL AFTER APPLYING THE
Z0OO0 BLACK-BOX ATTACK.

Metric 700 (XGBoost)
Accuracy 0.5259
F1-score 0.5134
TPR 0.5259
FPR 0.1185
Accuracy Drop 0.4076

These findings highlight the susceptibility of XGBoost to
black-box adversarial attacks, even when only query access
is available. The considerable drop in accuracy underscores
the vulnerability of such models in real-world deployment
scenarios where direct gradient information is inaccessible.

C. Evaluation of White-Box Attacks on the Surrogate Model

After evaluating the impact of black-box attacks, we as-
sessed the robustness of the surrogate model under white-box
adversarial attacks using epsilon equal to 0.7 in order to have
a big impact and have noteable results. Specifically, FGSM,
PGD, and BIM were applied to surrogate models trained using.
The results are detailed in Table IIIl. The XGBoost surrogate
model exhibited moderate resilience against adversarial per-
turbations, with its accuracy dropping from its clean state to
59.69% after FGSM and slightly lower to 59.38% under BIM.
While the accuracy drop ranged between 33.67% and 33.98%,
the model retained some robustness against adversarial attacks.
However, transferability was significantly high for FGSM
(99.81%), indicating that simple gradient-based attacks were
highly effective in perturbing the model. This effectiveness
decreased when iterative methods like PGD (89.12%) and BIM
(69.48%) were applied, showing that XGBoost maintained
a degree of robustness against more sophisticated white-box
attacks.

TABLE III
EVALUATION RESULTS AFTER APPLYING WHITE-BOX METHODS TO THE
SURROGATE MODEL USING XGBOOST.

Epsilon = 0.7
FGSM PGD BIM
Accuracy 0.5969 0.5953 0.5938
F1-score 0.4683 0.4907 0.4653
TPR 0.5969 0.5953 0.5938
FPR 0.1007 0.1011 0.1015
Accuracy Drop 0.3367 0.3382 0.3398
Transferability Score 0.9981 0.8912 0.6948

These results suggest that single-step attacks like FGSM,
despite their simplicity, can still cause severe disruption when
the surrogate model is well-aligned with the target decision
boundary. The higher transferability observed for FGSM im-
plies that the perturbations it generates lie in directions that

are highly compatible with the target model’s vulnerability
regions. Conversely, the reduced transferability of PGD and
BIM, which employ iterative refinements, indicates that these
methods may generate perturbations that overly exploit the sur-
rogate’s specific loss landscape, reducing their generalization
to the target. This observation highlights an important trade-
off between attack complexity and cross-model effectiveness.
It also underscores the need for adaptive adversarial strategies
that balance perturbation strength with transferability when
attacking non-differentiable models through surrogate-based
approaches.

VI. CONCLUSION & FUTURE WORK

In this study, we explored the efficacy of surrogate-based
adversarial attacks as a means to bridge the gap between
traditional black-box and white-box adversarial strategies.
Our results demonstrate that leveraging surrogate models
significantly enhances attack success rates, transferability, and
computational efficiency compared to conventional black-box
attacks. The proposed methodology allows the deployment of
gradient-based attacks in black-box settings, revealing pre-
viously unseen vulnerabilities in machine learning models,
particularly decision tree-based classifiers. These findings em-
phasize the necessity for more robust adversarial defenses, as
many machine learning architectures remain highly susceptible
to such attacks. Future research will focus on expanding the
scope of surrogate-based adversarial attacks by incorporating
a broader range of surrogate models, including transformer-
based architectures and more complex deep learning struc-
tures. Additionally, we plan to evaluate the effectiveness of
these attacks against state-of-the-art adversarial defenses, such
as adversarial training, feature squeezing, and certified robust-
ness methods. Another avenue of exploration involves assess-
ing the trade-offs between attack efficiency and detectability to
better understand the feasibility of these attacks in real-world
adversarial settings. Finally, we aim to refine our methodology
by optimizing the surrogate model selection process, ensuring
higher attack success rates while minimizing computational
overhead.
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