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Abstract—This paper introduces TORNADO, a cloud-

integrated robotics platform designed to tackle the challenges of 

autonomous manipulation in dynamic indoor environments, 

particularly those involving small, soft, or deformable objects. 

TORNADO integrates large-scale foundation models for 

perception, language comprehension, and high-level reasoning, to 

achieve strong zero-shot generalization across a wide range of tasks. 

At its core, the platform features an adaptive cognitive pipeline 

capable of dynamically reconfiguring its modules—including 

semantic 3D SLAM, people-aware navigation, dexterous 

manipulation, and human-in-the-loop learning—to manage 

uncertainty and adapt to changing conditions. Additionally, 

TORNADO incorporates a multi-modal Learning-from-

Demonstration interface and an Explainable AI engine, enhancing 

transparency and easing the burden of teaching new tasks. The 

system is validated through three industry-relevant scenarios: (1) 

flexible gear and ply-sheet handling in a mechanical parts factory, 

(2) patient support in a hospital palliative ward, and (3) product 

sampling and waste management in a distribution center. 

TORNADO aims to significantly enhance the agility, safety, and 

overall task performance of mobile manipulators operating in 

dynamic, human-centric environments. 

Keywords— robotics, foundation models, deformable object 

manipulation, explainable AI, learning from demonstration, 3D 

SLAM, adaptive robotics, human robot interaction, healthcare, 

manufacturing, waste management. 

I. INTRODUCTION 

Autonomous Mobile Robots (AMRs) equipped with arms 
and grippers are becoming increasingly common in industrial 
and service environments, where they perform a variety of 
manipulation tasks[1]. While current systems are quite 
effective at handling rigid objects in relatively uncluttered 
spaces—executing basic actions like grasping, sliding, 
pushing, and poking—many real-world applications demand 
far greater dexterity. A significant challenge arises when 
dealing with small, soft, or deformable objects (SSDs) in 
crowded, dynamic environments, particularly those shared 
with humans. Unlike rigid objects, SSDs are inherently 
unpredictable—their shapes and physical properties can 
change in response to interactions with the robot or 
surrounding environment [2], [3], [4]. Additionally, their 
complex internal structures and dynamic behaviors make 
them difficult to model and control using traditional 
approaches. As a result, existing AMRs struggle to meet the 
demands of such tasks, particularly when operating under 

real-time constraints, ensuring human safety, and adapting to 
unforeseen variations. Overcoming these challenges is crucial 
for advancing robotic manipulation in more unstructured and 
interactive settings. 

Recent advances in machine learning suggest that 
Foundation Models (FMs)—large-scale pretrained Deep 
Neural Networks (DNNs) capable of zero-shot generalization 
and exhibiting emergent properties—could open up new 
possibilities for tackling complex robotic manipulation tasks 
[5], [6], [7], [8], [9], [10]. These models have already 
transformed fields like computer vision (e.g., DINO [11], 
CLIP [12]) and Natural Language Processing (NLP) (e.g., 
Large Language Models (LLMs) such as GPT-3 [13] and 
GPT-4 [14]). However, when it comes to robotics, their 
potential remains largely untapped, with research still in its 
early stages. 

Deploying robots in real-world environments presents 
additional challenges due to their dynamic and unpredictable 
nature. This complexity is further amplified in Human-Robot 
Interaction (HRI) scenarios, where robots must maintain 
safety, real-time responsiveness, and consistent reliability 
while collaborating or coexisting with humans [15], [16], [17], 
[18], [19]. Meeting these demands requires advanced 
mechanisms such as Out-of-Distribution Detection (OOD) 
[20], Test-Time Adaptation (TTA) [21], and Few-Shot 
Adaptation (FSA) [22] along with robust frameworks for 
assessing human trust [23] and modeling behavior [24], [25]. 

Without these capabilities, even the powerful reasoning 
and multimodal understanding of foundation models (FMs) 
may not be enough to ensure stable task performance or safe 
collaboration in environments filled with uncertainties and 
unexpected variations [26]. Developing these adaptive 
mechanisms is crucial for advancing robotic autonomy in 
complex, human-centric settings. 

In this paper, we introduce TORNADO, a novel cloud 
robotics platform designed to harness the potential of FMs for 
real-time, adaptable, and cognitively advanced robotic 
manipulation, especially in the handling of SSDs within 
cluttered and human-populated environments. TORNADO 
envisions a robot agent deployed under human supervision 
and guided by high-level instructions (e.g., verbal 
commands), while most of the computationally intensive 
cognitive processing resides in a pool of cloud-hosted FMs 



with zero-shot generalization capabilities [27]. To prevent 
catastrophic forgetting and maintain adaptability, TORNADO 
continuously monitor and adjust the active models, exploiting 
human feedback when available and self-supervised learning 
otherwise. 

Central to TORNADO is an Adaptive Cognitive Pipeline 
Manager (ACPM) that automatically assembles an optimal 
pipeline based on the environment, current robot goals, and 
available FMs. Depending on the scenario, TORNADO may 
choose either a model-based approach—where FMs improve 
semantic task plans for low-level controllers—or an end-to-
end pipeline—where Reinforcement Learning (RL) or 
imitation learning agents directly command actuators. In cases 
of task failure or entirely new skill requirements, on-the-fly 
learning is facilitated through novel Learning-from-
Demonstration (LfD) from multi-modal inputs (e.g., vision 
language, and tactile) and Augmented Reality (AR) interfaces, 
bolstered by Explainable AI (XAI) techniques. TORNADO 
will be validated across three industrial use-cases—flexible 
small gears manipulation, palliative patient care, and product 
quality sampling/waste picking—each involving dynamic, 
unpredictable settings with complex human-robot interaction. 
TORNADO aims to redefine the state of the art in cognitive 
robotics, empowering machines to handle novel tasks in ever-
changing environments with minimal human intervention or 
engineering overhead. 

II. BACKGROUND AND RELATED WORK 

A. Existing AMR Solutions and Limitations 

Autonomous Mobile Robots (AMRs) are designed to 
operate with minimal human intervention, even in 
unpredictable or partially unknown environments. To achieve 
this, they require robust navigation systems capable of real-
time obstacle avoidance and route planning. As depicted in 
Figure 1, there are four pillars of challenges in AMRs with 
respect to localization, navigation, obstacle avoidance and 
path planning. Depending on whether they function indoors or 
outdoors, AMRs utilize a range of sensors—such as sonar, 
inertial measurement units (IMUs), and external range 
finders—to perceive and map their surroundings. Over the 
past few decades, mobile robots have significantly increased 
productivity in numerous fields, including manufacturing, 
agriculture, military, and education. The adoption of AMRs 
has accelerated further due to the COVID-19 pandemic, as 
various sectors—particularly healthcare, security, and food 
services—shift toward minimizing human-to-human 
interaction by employing human-to-machine interfaces 
instead  [28]. AMRs distinguish themselves through their 
ability to make autonomous decisions: they perceive their 
surroundings, interpret or recognize relevant information, and 
execute actions or manipulations based on the acquired 
knowledge. This high level of autonomy makes AMRs more 
promising and effective than automated guided vehicles, as 
they do not require physical guidance systems or centralized 
control for navigation [29]. 

AMRs have been increasingly deployed in complex 
missions—such as surveillance, disaster response [30], [31] 
and domestic applications [32], [33], [34]—where 

environmental uncertainties are paramount. 

 

AMRs can move using wheels, legs, or a hybrid 
combination. Wheeled robots are widely favored for their 
mechanical simplicity, stability, and energy efficiency [35]. 
However, they struggle on rough or obstructed terrain, where 
legged or hybrid robots offer greater adaptability. While 
legged robots are better suited for uneven surfaces, they come 
with increased mechanical complexity and control challenges. 
The choice of locomotion depends on factors like 
maneuverability, terrain conditions, and load capacity [36], 
[37], [38]. 

To navigate effectively, AMRs rely on sensors to gather 
data from both their internal state and external environment. 
Proprioceptive sensors (e.g., encoders, gyroscopes) monitor 
the robot’s movement, while exteroceptive sensors (e.g., 
cameras, sonar, radar) help detect obstacles and map the 
surroundings. These sensors can be active—emitting signals 
to measure feedback—or passive, simply capturing 
environmental stimuli like a camera does. Selecting the right 
combination of sensors is crucial for accurate object detection, 
data collection, and localization [37], [39]. 

For AMRs to move autonomously, they must determine 
their current position, target destination, and optimal path to 
reach it. Navigation typically involves sensor-based 
localization, such as computer vision for object recognition 
and feature matching [40], [41], [42], [43] alongside trajectory 
planning, which continuously updates the AMR’s route in 
response to obstacles. In dynamic settings—such as 
surveillance, disaster response, and home automation—
AMRs must adapt to frequent environmental changes and 
incorporate real-time obstacle avoidance and path 
recalculation [44]. 

Integrating locomotion, perception, and navigation, allows 
AMRs to achieve fully autonomous and reliable operation. 
Ongoing research aims to enhance obstacle detection, sensor 
fusion, and adaptive learning strategies, expanding the 
potential applications of AMRs in fields like healthcare, 
mining, and education [32], [45], [46],[47], [48]. 

However, the degree of adaptivity to dynamically 
changing scenes or materials that we propose in TORNADO, 
by improving FMs and other recent technologies in a targeted 
manner, cannot be realized with existing tools. New research 
must be done, and novel algorithms must be developed. This 
requires advancements in real-time perception, sensor fusion, 
and adaptive control strategies, ensuring that AMRs can 
respond to unforeseen variations with greater precision and 
reliability. 

 
Figure 1: Challenges in AMRs include Localization, 

Navigation, Obstacle Avoidance and Path Planning. 

 



B. Foundation Models (FMs) in Robotics 

FMs like GPT-3, GPT-4, CLIP, DALL-E, and PaLM-E 
have demonstrated remarkable capabilities in vision and 
language processing, thanks to their training on vast, diverse 
datasets. In general, most FMs capitalize on transformer 
architecture. Transformers utilize a multi-head self-attention 
mechanism to capture contextual relationships between tokens 
efficiently, enabling significantly faster training and inference 
compared to Recurrent Neural Networks (RNNs) or Long 
Short Term Memory Networks (LSTMs). For each token, the 
model computes three key vectors: a query, a key, and a value. 
It then uses scaled dot products between queries and keys to 
determine the level of attention each token should give to 
others within the same context window. Because multiple 
attention heads operate in parallel, they learn different aspects 
of similarity, enriching the model’s understanding of 
relationships between tokens. The outputs from these attention 
heads are then concatenated, passed through feedforward 
layers, and combined using skip connections, forming a 
transformer layer. Stacking multiple such layers creates the 
encoder-decoder architecture that powers many modern 
LLMs and vision-language models. 

In practical applications, Transformers can efficiently 
manage heavy computational loads by parallelizing these 
attention computations across GPUs and TPUs. Several 
factors influence a model’s capacity, including the context 
window size, the number of attention heads per layer, the 
dimensionality of each attention vector, and the depth of the 
model (number of layers). For example, GPT-3 features a 
2048-token context window, 96 attention heads per layer, a 
head dimension of 128, and 96 total layers. When used 
autoregressively—as in text prediction—the model employs 
positional encodings to retain the sequence order, allowing it 
to generate tokens one at a time while dynamically updating 
its context window. 

In robotics, these models present an exciting opportunity 
to enhance adaptability and performance across various tasks, 
including perception, planning, and control. Their potential 
spans numerous domains, from autonomous driving to 
household assistance, industrial automation, and assistive 
robotics. Foundation models offer the advantage of zero-shot 
learning, reducing the need for extensive task-specific training 
and data collection. However, integrating these models into 
real-world robotics comes with significant challenges. One 
major hurdle is the scarcity of multimodal sensor data, which 
is essential for effective model training. Additionally, the 
variability in physical environments and hardware platforms 
complicates deployment, while uncertainties like language 
ambiguity and model hallucination introduce further risks. 
Ensuring safety and real-time performance is another critical 
concern—researchers must develop rigorous evaluation 
frameworks and optimize model architectures to meet the 
stringent speed, and reliability demands of robotic systems. 

Despite these obstacles, ongoing research in AI and 
robotics suggest a promising future. Foundation models have 
the potential to drive cross-domain knowledge transfer, 
leading to more resilient, flexible, and autonomous robotic 
systems. 

 

C. Small, Soft, or Deformable Objects Manipulation 

(SSDOM) 

Current solutions face challenges in more complex 
scenarios, such as dexterously handling small, soft or 
deformable objects (SSDs) within crowded spaces where 
humans are also operating and interact with the robots [49]. 
Many SSDs can be unpredictable to manipulate, changing 
shape and properties in response to contact with the robot or 
the environment, thus often requiring real-time adjustments. 

Deformable Object Manipulation (DOM) pushes robotic 
grasping beyond the traditional assumption of rigid objects, 
recognizing that many real-world tasks—spanning from 
microsurgery to industrial assembly—involve materials that 
change shape upon contact. This expanded perspective 
introduces several technical challenges, including accurately 
sensing deformation, managing the high degrees of freedom 
in soft materials, and modeling their complex nonlinear 
behaviors. Despite these difficulties, advancing DOM is 
crucial for enabling autonomous robots to operate effectively 
in unstructured environments. Recent research has explored 
model-based manipulation planning [50], multi-robot 
collaboration for DOM [51], multi-modal sensing techniques 
[52], and deformable object modeling approaches [53] often 
categorizing solutions by material properties [54] or by 
advances in learning, perception, and control [55]. 

On the hardware side, DOM tasks frequently demand 
custom-designed grippers tailored to specific deformable 
objects. Examples range from cable-sliding end-effectors [56] 
and towel clips [57] to push–tap tools [58] and soft robotic 
hands for organ manipulation [59]. While a single, highly 
dexterous gripper for multiple applications is an attractive 
concept, practical concerns—such as hygiene, material 
compatibility, and task-specific constraints—often make 
specialized solutions more viable. Meanwhile, non-
anthropomorphic soft grippers are gaining traction, offering 
built-in compliance for delicate items like food or biological 
tissue. Additionally, soft robots, which themselves deform 
dynamically, introduce an entirely new set of control and 
modeling challenges. A key research question remains: Can 
methodologies from soft robotics be adapted to DOM? If so, 
this could pave the way for a unified framework capable of 
manipulating both rigid and deformable objects with greater 
versatility and robustness. 

TORNADO aims to introduce novel AI-powered 
algorithms contributing to AMRs with unprecedented 
capabilities for SSD manipulation and navigation in complex, 
dynamic, people-centric indoor environments adaptation to 
changing conditions. SSDs may have complex internal 
structures and their motion may be difficult to model 
accurately. 

D. Autonomous Navigation in Dynamic, People‐Centric 

Environments 

Visual SLAM has long been a fundamental component of 
robotic perception, enabling simultaneous localization and 
mapping across various domains, including augmented reality 
and autonomous driving. Classical approaches, such as ORB-
SLAM [60], [61], [62] and VINS-Mono [63], have 
demonstrated robust performance in predominantly static 
environments. However, real-world settings often involve 
moving objects and unpredictable changes, posing significant 
challenges for purely geometric methods. In response, recent 
advancements—exemplified by DS-SLAM [64], DynaSLAM 



[65], and Dynam-SLAM [54]—have integrated semantic 
perception and multisensor fusion, leveraging deep learning to 
identify and segment dynamic elements. This shift toward 
semantic SLAM enhances localization accuracy and ensures 
more consistent mapping, particularly in dynamic, human-
centric environments. As a result, modern SLAM systems are 
evolving beyond purely geometric map construction, enabling 
robots to interact more intelligently with the changing 
elements in their surroundings. 

Beyond mapping and localization, navigating effectively 
in human-populated spaces requires robust dynamic obstacle 
avoidance strategies. A widely used approach in robotics is the 
velocity-obstacle framework (also known as the collision cone 
or forbidden velocity map)  [66], which identifies and 
eliminates velocity options that could lead to collisions. Over 
time, this foundational method has been refined to include 
better trajectory prediction of surrounding agents [67], [68], 
[69], [70], [71], accounts for uncertainty in sensing and 
motion decisions [72], and distributes responsibility across 
multiple agents using the reciprocal velocity obstacle concept 
[73]. These methods are highly effective in ensuring safety in 
crowded, dynamic environments, with some even mirroring 
observed pedestrian behaviors under specific conditions [74], 
[75]. However, such approaches are inherently mechanistic, 
often prioritizing strict collision avoidance at the cost of 
natural, human-like motion patterns. 

An alternative research direction, inspired by social and 
behavioral studies, aims to model human walking heuristics to 
enhance the legibility, comfort, and predictability of robotic 
motion in shared spaces. Concepts such as proxemics [76] and 
social-force models [77], initially developed to analyze 
interpersonal space and crowd behavior, have been adapted 
for robotic applications [78], [79]. For instance, Moussaid et 
al. [2], [3] introduced a heuristic for mutual avoidance, which 
produces smooth and efficient paths, a desirable quality for 
both human pedestrians and service robots. Expanding on 
these sociologically inspired models, sampling-based 
methods [80] and global path planners [17], [81], [82], [83], 
[84], [85], [86], [87], [88] have incorporated dedicated cost 
functions and constraints to account for social comfort and 
clear lines of sight. Additionally, research in learning-based 
human intent prediction [89], [90], [91], [92], complements 
these approaches, enabling robots to anticipate human 
movements and intentions for more fluid navigation in 
interactive environments. 

As these approaches illustrate, achieving autonomous 
navigation in dynamic, human-centric spaces necessitate a 
seamless inclusion of perception, motion planning, and social 
awareness. Modern visual SLAM pipelines, now augmented 
with semantic understanding [66], [67], [68], allow robots to 
recognize and localize dynamic objects [93], while 
sophisticated local navigation algorithms—whether based on 
velocity obstacles [66], [67], [68], [69], [72], [74], [75] or 
socially inspired heuristics—ensure motion that is safe, 
smooth, and human-friendly. The ongoing challenge lies in 
bridging these methodologies: balancing rigorous, collision-
avoidance-driven models with the adaptability and nuance of 
human-inspired motion heuristics. 

 

E. Human–Robot Interaction, LfD, and XAI Methods 

In human–machine interaction, the ability to explain a 
robot’s actions or decisions plays a crucial role in building 

user trust and understanding. These explanations can take 
various forms, including natural language descriptions [94], 
[95], [96], trajectory demonstrations [26], [87], [97], 
visualized movement paths [97], [98], [99], [100], or even 
decision trees [101]. While many XAI (explainable AI) 
techniques have been shown to enhance human–robot and 
human–agent interactions [102], their implementation comes 
with challenges. 

One key trade-off is overreliance on explanations—if 
users begin depending too much on the robot’s justifications, 
they may struggle to operate independently. Additionally, 
certain explanation methods can negatively impact task 
performance, particularly when they are too complex or 
intrusive [103]. Another concern is cognitive overload; when 
explanations are too frequent or difficult to process, users may 
find themselves distracted rather than helped, potentially 
leading to a decline in task efficiency. Therefore, an effective 
balance must be struck—ensuring explanations enhance 
understanding without overwhelming the user. 

Integrating XAI into Learning from Demonstration (LfD) 
can significantly improve the way humans teach robots new 
tasks, especially for users with little to no experience in 
programming. Research has explored various ways to make 
this process more intuitive. 

For example, Luebbers et al. [104] introduced the concept 
of counterfactuals—which involves modifying specific 
conditions to show how they influence learning. By using 
augmented reality to display a robot’s trajectory both with and 
without a particular learned parameter, they helped users 
visually grasp the cause-and-effect relationship between their 
teaching and the robot’s behavior. Similarly, Sena et al.  [97] 
examined the impact of XAI on LfD by showing users how 
learned policies generated movement trajectories from 
different points in a workspace. Their findings revealed that 
teaching effectiveness improved when explanations clarified 
how well a robot generalized its learning. However, merely 
replaying demonstrations from pre-selected or already-taught 
locations did not offer significant benefits. Through two user 
studies—one involving a 2D point-to-point reaching task and 
another focusing on pick-and-place operations—Sena et al. 
further found that feedback-based explanations could replace 
explicit rule-based guidance, making human instruction more 
intuitive. 

Despite its benefits, a major limitation of XAI in LfD is 
that many current approaches rely on handcrafted 
explanations [97], [99]. As a robot’s operational environment 
expands, manually curating these explanations becomes 
impractical. Ultimately, integrating XAI within HRI and LfD 
represents a promising direction for improving human–robot 
collaboration. However, refining these methods to balance 
transparency, usability, and scalability remains a crucial 
challenge for future research. 

 

III. TORNADO CONCEPT & METHODOLOGY 

A. TORNADO Concept and Functional Architecture 

The TORNADO project, whose overall functional 
architecture is illustrated in Figure 2, aims to advance 
autonomous mobile robot (AMR) operations by integrating 
state-of-the-art AI-driven mechanisms that enhance robotic 
perception, cognition, interaction, and action within dynamic, 
time-sensitive indoor environments. The project focuses on 



enabling sensing, scene understanding, and dexterous 
manipulation (SSD) tasks that can be performed safely and 
efficiently with minimal human oversight, while ensuring 
seamless human–robot interaction. 

To achieve these objectives, TORNADO encompasses a 
multidisciplinary approach, incorporating project 
management, user-centered pilot studies, core research and 
development, system integration, and dissemination activities. 
These components are closely interlinked: user requirements 
inform the design and implementation of new technologies, 
while continuous risk assessment ensures that research efforts 
remain both innovative and grounded in practical constraints. 
The various technological advancements are ultimately 
consolidated into a unified ecosystem and validated through 
pilot applications, focusing on human trust and acceptance. 
Additionally, continuous engagement with stakeholders 
fosters a collaborative research community, facilitating 
broader adoption and practical deployment of TORNADO’s 
innovations. 

TORNADO envisions a flexible, modular, and cloud-
connected AMR platform designed for operation in indoor 
environments. The AMR is equipped with specialized 
effectors, such as dexterous grippers, and a comprehensive 
suite of sensors, including standard cameras and depth 
sensors, to enable continuous 3D environmental perception. 

Processing is distributed across on-board and off-board 
resources. Lightweight on-board computers manage local 
control and safety functions, while low-level controllers 
handle actuation and motion execution. For computationally 
intensive tasks, such as semantic 3D simultaneous localization 
and mapping (SLAM), the platform utilizes a secure cloud 
infrastructure hosting large-scale foundation models (FMs) 
and high-performance servers. This hybrid processing 
approach allows TORNADO to offload demanding 

computations, ensuring efficient resource utilization while 
overcoming hardware limitations. 

A core innovation within TORNADO is its adaptive 
cognitive pipeline, which enables the AMR to dynamically 
adjust to unexpected environmental changes. A key 
component is the dynamic semantic 3D SLAM module, which 
continuously updates the robot’s internal environmental 
representation as objects or people move. If the task context 
shifts—for instance, due to a new user request or an 
unforeseen obstacle—the mission planning system 
reconfigures routes or task sequences in real time. Moreover, 
the system incorporates online fine-tuning of foundation 
models, allowing it to refine its behavior based on real-world 
interactions. This adaptive mechanism enhances operational 
robustness, enabling the AMR to function reliably across a 
range of conditions without requiring constant human 
intervention. 

 

 

TORNADO is designed to facilitate intuitive human–
robot interaction, accommodating both expert users and non-
specialists. The system supports multimodal communication, 
enabling users to issue high-level commands through speech, 
gestures, or a smartphone interface. To minimize cognitive 
overload, the robot provides only essential status updates, 
such as mission completion alerts or notifications of 
unexpected obstacles. For deeper engagement, TORNADO 
incorporates augmented reality (AR) and explainable AI 
(XAI) subsystems, which provide transparency into the 
robot’s decision-making process. These systems allow users 
to visualize recognized objects, planned actions, and 
reasoning processes, thereby enhancing trust and 
interpretability. These mechanisms support effective human–

 
Figure 2: TORNADO system functional architecture 

 



robot collaboration by enabling users to anticipate, 
understand, and influence the robot’s behavior. In scenarios 
where the robot encounters tasks beyond its current 
capabilities, an internal failsafe mechanism initiates automatic 
task replanning. If repeated failures occur, a remote supervisor 
is notified via a smartphone application, allowing for human 
intervention as needed. 

When manual intervention is required, an operator can 
provide ground-truth labels for perception tasks or conduct a 
Learning from Demonstration (LfD) session. The LfD process 
is enhanced through AR-based visualization tools, which 
overlay real-world information onto the robot’s perceived 
environment, enabling the operator to demonstrate actions 
directly. These demonstrations are then stored as reusable 
action policies, allowing the robot to gradually expand its skill 
set over time. This iterative learning approach progressively 
reduces the need for human intervention, thereby increasing 
autonomy and efficiency in future tasks. 

TORNADO relies on secure, low-latency networking, 
supported by next-generation wireless infrastructure, to 
enable seamless communication between on-board and off-
board systems. This connectivity ensures that real-time 
perception, AI model adaptation, and human–robot interaction 
can occur without significant latency. TORNADO achieves a 
high degree of computational efficiency, allowing the system 
to scale effectively across diverse operational settings. 
Whenever additional computing power is required, intensive 
processing tasks—such as deploying large-scale foundation 
models or high-level reasoning modules—can be dynamically 
offloaded to cloud servers. This architecture enables robust, 
adaptive functionality while mitigating the computational 
constraints typically associated with mobile robotic platforms. 

The TORNADO project represents a comprehensive 
integration of cutting-edge AI, advanced robotics, and 
human–robot collaboration frameworks. Each technological 
component—whether in dynamic SLAM, mission planning, 
or AR-enhanced interaction—is designed to function within a 
cohesive, scalable ecosystem. The result is an AMR platform 
that is capable of executing complex, real-world tasks with 
minimal supervision, adapting seamlessly to changing 
environments, and engaging intuitively with human users. 
Furthermore, TORNADO ensures that technological 
advancements align with regulatory, ethical, and societal 
considerations, providing a reliable and responsible 
foundation for the next generation of autonomous robotic 
systems. 

 

B. Safe Robot Planning, Navigation, and SSD Manipulation  

 

The TORNADO project aims to develop an advanced 
robotics framework that enables intelligent, autonomous 
operation in dynamic and unpredictable environments. The 
integration of intelligent motion control with industrial 
systems, as outlined in the IMOCO4.E reference framework 
[105], provides a structured approach to combining 
architecture, data management, AI, and digital twin 
technologies for resilient and adaptable automation. Building 
on this foundation, TORNADO enhances autonomy by 
integrating foundation models (FMs), state-of-the-art AI 
techniques, and a set of key functional modules designed to 
ameliorate perception, planning, execution, safety, and 

communication. Tornado incorporates a) An Adaptive task 
planning that utilizes FMs such as large language models 
(LLMs) to interpret user instructions and generate real-time 
task hierarchies, b) Navigation and manipulation policies that 
dynamically adjust to environmental changes, c) A 
multimodal semantic 3D SLAM framework that continuously 
maps and updates the robot’s surroundings, d) A safety 
mechanism capable of evaluating and modifying robot actions 
on-the-fly to maintain operational integrity and e) A low-
latency wireless infrastructure that optimally distributes 
computational workloads between on-board and cloud 
resources. 

The Dynamic Task Planner (DTP) is responsible for 
processing high-level user instructions while continuously 
adapting the robot’s task execution based on real-time 
environmental feedback. It interprets natural language 
commands using FM-based real-time comprehension and 
integrates insights from dynamic 3D scene information and 
human-awareness cues. Building upon LLMs, the DTP can 
contextualize user goals and decompose them into a 
hierarchical task tree, which is dynamically restructured as 
new conditions emerge [106]. This results in a resilient, on-
the-fly re-planning system capable of handling unpredictable 
real-world scenarios while maintaining task efficiency. 

The Action Execution Manager (AEM) translates the 
DTP’s high-level task plans into concrete execution policies 
for navigation and manipulation, referencing the robot’s 
current 3D scene map. Unlike traditional robotic control 
systems that rely on predefined, rigid behaviors, the AEM 
incorporates continual learning mechanisms, enabling the 
robot to refine its actions based on user feedback and evolving 
environmental conditions. FMs specialized for navigation and 
manipulation can be dynamically deployed or fine-tuned, 
allowing the robot to adapt its behavior based on 
demonstrations or newly acquired data. In cases where AI-
driven policies encounter unfamiliar conditions, traditional 
control systems act as a fallback mechanism, ensuring 
reliability and operational stability. In some scenarios, end-to-
end FM-powered pipelines may be used for direct perception-
to-action execution [107], enabling the robot to react 
dynamically to workspace changes, material variations, or 
human commands. 

At the foundation of TORNADO’s cognitive architecture 
is the Scene Mapper (SM), which employs a neural implicit 
3D SLAM framework [108]. This system fuses data from 
multiple sensory inputs, including RGB, RGB-D, stereo video 
streams, and neurally derived semantic or geometric cues, to 
construct a continuously updated 3D representation of the 
environment. To enhance mapping accuracy, LiDAR-based 
techniques are incorporated from the WOLF framework 
[109], which utilizes factor graphs for multi-sensor fusion. 
The outputs from neural and geometric SLAM pipelines are 
integrated with the SM produces a cohesive, real-time scene 
representation that supports multiple system functions; Task 
planning (DTP) which updates the environment model for task 
scheduling and replanning. Action execution (AEM) which 
provides localized data for fine-tuned navigation and 
manipulation. Knowledge representation which supplies 
scene semantics for improved AI reasoning and interaction. 
Progress monitoring which ensures that task execution aligns 
with dynamic workspace conditions. 

Systemic safety is governed by the Safety Manager 
(SAM), which evaluates whether the robot can safely execute 



a given task based on sensor states, actuator conditions, and 
high-level decision layers [110]. This module features a fault-
diagnosis subsystem that detects and localizes both hardware 
and software faults, triggering appropriate responses based on 
severity levels. For minor issues, the SAM attempts automatic 
fault recovery, reinitializing or replacing failed modules while 
maintaining overall mission continuity. In the case of critical 
failures, it can instruct the robot to halt operations and return 
to a designated safe zone. Additionally, the SAM ensures that 
remote supervisors remain informed, transmitting decision 
logs and risk alerts to authorized personnel. Should 
communications be disrupted, locally implemented on-board 
failsafes ensure that the robot maintains safe behavior until 
connectivity is restored. 

Finally, the Communications Manager (COM) provides a 
secure, low-latency infrastructure that facilitates seamless data 
exchange between the robot, edge computing resources, and 
cloud servers. This infrastructure is designed to a) 
Dynamically allocate computing resources based on task 
demands, b) Employ post-quantum encryption to safeguard 
data integrity, c) Leverage Beyond-5G wireless networks for 
ultra-fast, real-time connectivity. The edge networking 
gateway, built on FIWARE standards, enables advanced data 
handling, while a containerized cloud backbone (orchestrated 
via Kubernetes) ensures scalable and efficient processing. 
This allows the system to offload computationally intensive 
workloads to cloud servers as needed, ensuring that the AMR 
remains agile and responsive regardless of task complexity or 
mission variability. 

 

C. Adaptive AI and Self-Adjusting Cognitive Pipelines 

 

TORNADO introduces a three-tier framework designed to 
enable real-time adaptation of foundation model (FM)-driven 
cognition, ensuring robust and reliable performance even as 
conditions change, or domain shifts occur. At the core of this 
framework is the Adaptation Manager (AM), which integrates 
out-of-distribution (OOD) detection, few-shot adaptation 
(FSA), and test-time adaptation (TTA) to determine when and 
how to update active FMs autonomously [111], [112]. By 
incorporating human-provided ground-truth labels when 
available, the AM refines perception, navigation, and 
manipulation FMs during deployment, addressing the 
limitations of purely zero-shot inference. It also detects 
unknown or out-of-domain objects, preventing incorrect 
classification or inappropriate task execution. 

Building on these adaptive mechanisms, the Adaptive 
Cognitive Pipeline Manager (ACPM) manages the selection 
and composition of pretrained FMs or alternative control 
strategies based on real-time environmental analysis and 
mission objectives. Using 3D scene graphs and behavior trees, 
the ACPM dynamically switches between perception-to-
action pipelines (e.g., RT-2) and model-based approaches 
(e.g., CLIP, DINOv2) depending on the operational context 
[106]. This ensures that task execution remains flexible and 
context-aware, aligning task decomposition with the most 
effective FM or combination of models. When pre-existing 
models and adaptive methods fail to achieve accurate 
performance, the Demonstration Manager (DM) enables on-
demand human teaching. Skilled operators can initiate 
learning-from-demonstration (LfD) sessions through an XAI- 
and AR-supported interface [113]. The system captures 

multimodal cues, including human pose estimation and 
spoken instructions, to label and store new task policies, which 
can later be recalled for similar tasks. Meanwhile, it performs 
few-shot learning to encode structured motion primitives, this 
approach expands the robot’s skill set efficiently without 
requiring lengthy offline retraining. 

Through this integrated adaptation framework, 
TORNADO ensures that AMRs can continuously refine their 
capabilities, respond intelligently to new challenges, and 
extend their learning through human interaction when 
necessary, enhancing both autonomy and operational 
reliability. 

 

D. Advanced Robotic Perception and HRI  

 

TORNADO develops an advanced perception and 
human–robot interaction (HRI) architecture that utilizes AI-
driven mechanisms to enhance situational awareness, natural 
communication, and ergonomic collaboration in dynamic, 
people-centric environments. At its core, the Semantic 
Environment Analyzer (SEA) utilizes pretrained foundation 
models (FMs) to extract scene semantics in real time, 
performing instance segmentation, 3D object pose estimation, 
and person recognition [114], [115]. Beyond image-based 
analysis, monocular neural depth estimation provides 3D 
geometric cues from single RGB frames. Depending on the 
domain requirements, multiple FM backends—such as CLIP, 
DINOv2, SAM, and InternVideo—can be deployed [116]. To 
optimize efficiency, knowledge distillation techniques are 
applied to reduce model size while maintaining performance. 
The semantic predictions and depth estimates generated by 
SEA are then integrated into scene-mapping processes, 
ensuring a comprehensive understanding of the environment. 

For verbal interaction, the Sound and Language Manager 
(SLM) combines pretrained audio FMs and large language 
models (LLMs) to facilitate speech recognition, sentiment 
classification, and real-time dialogue processing [117]. A 
dialog supervisor dynamically adjusts conversational prompts 
to prevent inappropriate responses and ensure context-aware 
interaction. When high-level user commands are detected, 
SLM forwards them to the robot’s planning module, while a 
specialized LLM version, equipped with Named Entity 
Recognition and advanced querying, accesses up-to-date 
knowledge graph (KG) data for informed decision-making. 
Additionally, dedicated audio FMs handle environmental 
sound classification, speaker identification, and voice 
sentiment analysis, further enriching the robot’s 
understanding of human communication. 

The Human State Analyzer (HSA) constructs a real-time 
human model, integrating visual cues (such as facial 
expressions, body poses [118], and gestures [119], [120], 
[121], [122]) with audio signals, including speaker identity 
and sentiment analysis [123]. By incorporating optical flow, 
gaze estimation, and contextual knowledge, HSA can predict 
human movements and intentions [124], [125], [126]. These 
outputs, along with scene representations, populate a dynamic 
knowledge graph (KG) [127], supporting real-time contextual 
reasoning and action anticipation. To enhance interpretability, 
TORNADO extends existing ontologies [128] by 
incorporating beliefs, goals, and cultural norms, while a 
combination of graph neural networks (GNNs), rule-based 



approaches, and temporal logic reasoning guides adaptive 
robot [129], [130], [131], [132]. 

To improve human–robot collaboration, an XAI-AR 
interface supports teleoperation-based learning-from-
demonstration (LfD), providing real-time insights into the 
robot’s operational status and AI-driven decisions [133]. 
Advanced explainable AI (XAI) techniques, including LIME, 
SHAP, and ELI5, generate attribution heatmaps that highlight 
the factors influencing deep neural network (DNN) decisions 
[134] .Additionally, concept-based explanations clarify how 
missing or hidden information affects the robot’s behavior. 
Predictive and adaptive AR interfaces [135] are designed to 
balance situational awareness with cognitive load, ensuring 
smooth demonstration sessions and real-time perceptual 
adaptation. 

Beyond technological development, TORNADO 
incorporates human factors research, conducting behavioral 
studies and ergonomic analyses [136], [137]. These 
investigations explore how user traits—such as attention span, 
working memory, and anthropomorphism tendencies—
influence HRI experiences. By combining offline 
experimental evaluations with real-time cognitive and 
ergonomic monitoring, the project ensures that AR-based 
demonstrations and verbal interactions remain intuitive, safe, 
and accessible to diverse user populations. 

Together, these interconnected modules create a 
comprehensive perception and HRI framework, enabling 
robust autonomous operation in dynamic indoor 
environments. Through the integration of AI-driven 
perception, multimodal communication, adaptive learning,  

 

and human-aware interaction, TORNADO enhances the 
capabilities of autonomous robots, facilitating seamless 
collaboration and adaptability in complex real-world settings 

E. Integration Strategy and Pilot Use Cases  

 
TORNADO follows a step-by-step development and 

integration strategy, gradually bringing together its 

framework components through a ROS-based approach. Each 
module undergoes unit testing and iterative validation, 
ensuring reliability before being deployed in three distinct 
industry-relevant use cases. These scenarios vary in domain, 
environmental complexity, and human–robot interaction 
requirements, demonstrating how a single TORNADO system 
can adapt to different conditions with minimal adjustments. In 
all cases, the autonomous mobile robot (AMR) operates on 
battery power while relying on low-latency Beyond-5G 
wireless networks for real-time AI processing. TORNADO 
will be validated through the following Use Cases, presented 
in Figure 3 as well: 

1) Use Case 1 – Handling Small Gears and Deformable 

Ply-Sheets (Mechanical Parts Factory) 
 

In a mechanical parts factory, a mobile collaborative robot 
with dexterous locomotion and manipulation skills 
autonomously handles small, delicate gears and larger, 
heavier ones, as well as placing deformable ply sheets 
between gear layers. Beyond simple grasping from blisters or 
crates, the robot assists human workers by assembling product 
sets on a worktable while ensuring safe and damage-free 
handling. The ability to adjust to different gear sizes and 
flexible materials highlights TORNADO’s strengths in 
precise motion execution, real-time task re-planning, and 
effective human collaboration. 

 

2) Use Case 2 – Patient Care in a Palliative Ward 

(Hospital) 
 

In a hospital palliative care ward, an existing two-armed 
mobile robotic platform is deployed to perform various 
support tasks, such as attendance tracking of patients and staff, 
patient assistance (e.g., handing over tissues or water bottle, 
picking up dropped items, or calling the nurse), medical 
support (e.g. monitoring and replacing about catheter bags or 
closing IV bag valves). It also assists with clinical 
administration and provides psychological support for 
caregivers. A key challenge in this setting is the ability to 

 
Figure 3: Use Cases in TORNADO 

 

 



recognize and adapt to unexpected situations, such as 
respiratory crises or psychological distress. Through short 
verbal exchanges, the robot can offer timely assistance and 
reassurance, demonstrating TORNADO’s advanced human–
robot interaction capabilities and real-time perceptual 
adaptation. 

 

3) Use Case 3 – Product Sampling and Waste Collection 

(Distribution Center) 
 

In a distribution center, a mobile robotic platform takes on 
quality assurance and waste disposal responsibilities. It 
periodically checks for hazards like floor spills, clears 
movable obstacles, and samples raw or partially damaged 
materials from shelves, delivering them to a testing area. 
Additionally, it identifies and collects deformable packaging 
waste for proper disposal. These tasks highlight TORNADO’s 
ability to navigate complex, high-traffic environments, 
dynamically respond to user commands, and adapt workflows 
based on changing conditions. Across all three use cases, 
TORNADO’s performance is assessed using both quantitative 
metrics (e.g., task accuracy) and qualitative feedback from 
professionals. The final hardware setup for each scenario—
including robotic arms, grippers, sensors, and embedded 
computing units—is progressively integrated over the course 
of the project. This ensures that TORNADO’s AI-driven 
architecture remains flexible, scalable, and adaptable to a wide 
range of industrial applications and real-world challenges. 

 

IV. EXPECTED OUTCOMES  

 
TORNADO will introduce novel AI-powered algorithms 

contributing to AMRs with unprecedented capabilities for 
SSD manipulation and navigation in complex, dynamic, 
people-centric indoor environments, in the following ways: (i) 
equipping robots with ground-breaking AI technologies for 
autonomous and efficient robotic perception, cognition, 
interaction and action; (ii) introducing a new generation of AI-
powered robots able to perform non-repetitive functionalities 
with unprecedented success and limited-to-no human 
supervision requirements, in complex dynamic environments; 
(iii) targeting to launch a new line of interactive, human-
centric autonomous robots with improved capabilities to assist 
humans; and via (iv) unveiling robots with safe, fast and 
dexterous autonomous SSD manipulation capabilities under 
changing conditions. 

Furthermore, TORNADO will deliver innovations that 
will result in the development of smarter, safer AMRs with 
unprecedented cognitive autonomy and robustness, focusing 
on the following key aspects: (i) augmenting robots with 
sophisticated adaptive cognition for safe and natural physical 
and verbal interaction with humans and/or the environment in 
social/collaborative settings; (ii) significantly increased levels 
of safety in AMRs in uncontrolled, time-varying, dynamic 
environments; and via (iii) development of AMRs with 
advanced SSD manipulation capabilities for various high-
impact industries, by concretely implementing the single 
TORNADO system on three different industrial use-cases. 

 

V. DISCUSSION 

 
TORNADO’s impact is expected to cover and interact 

with European society, economy and the scientific landscape. 
This impact is expected to be characterized as wider while 
having long-term effect. TORNADO will contribute to 
revolutionizing AMR technology, by inducing the following: 
(i) accelerating European robotics innovation by timely 
incorporation of cutting-edge AI research; (ii) facilitating the 
spread of Europe-made AMRs to new sectors with significant 
societal impact, thus increasing their productivity and 
reducing relevant costs and via (iii) Enabling the gradual 
reduction of AI’s carbon footprint. 

TORNADO elegantly combines novel/emerging ideas, 
approaches and technologies to enhance Europe’s open 
strategic autonomy goals. TORNADO will contribute to this 
impact in the following manner: (i) radically new adaptive AI-
enabled AMRs with unprecedented cognitive capabilities 
enabling new functionalities; (ii) integration of cloud and 
Beyond-5G technologies for remarkably enhancing current 
robot capabilities; and via the (iii) incorporation of a “human-
centric” design for multifunctional, interactive AMRs, as 
foreseen by the so-called Industry 5.0 concept. 

TORNADO directly contributes to the needs of the 
European industry regarding innovative and efficient 
approaches across the digital supply chain, by concentrating 
on providing robust AMR solutions in industrial automation 
and healthcare robotics for dynamic and unpredictable 
environments, to improve performance, quality and human 
satisfaction. TORNADO will introduce novel contributions 
regarding the following disruptive technologies: (i) 
integration of advanced, multifunctional and highly adaptive 
AMR solutions; (ii) development of a toolkit for on-the-
fly/on- line robotic AI adaptation during robot deployment; 
(iii) incorporation of FM technologies for more reliable AMR 
perception; and via the (iv) adoption of user-friendly and 
intuitive AR technologies. 

Finally, TORNADO contributes to greener digital supply 
chains by developing advanced, lower-complexity AI 
algorithms for a new generation of multifunctional robots with 
higher cognitive autonomy and adaptivity. In a way, 
TORNADO is expected to have an impact on the fulfillment 
of Green AI goals. 
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