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Abstract

Early Autism Spectrum Disorder (ASD) detection is important for early intervention. This
study investigates the potential of eye-tracking (ET) data combined with machine learning
(ML) models to classify ASD and Typically Developed (TD) children. Using a publicly
available dataset, five ML models were evaluated: Support Vector Machine (SVM), Random
Forest, Convolutional Neural Network (CNN), Artificial Neural Network (ANN), and
Random Forest improved with Convolutional Filters (ConvRF). The models were trained
and tested using a set of evaluation metrics, including accuracy, precision, recall, F1-score,
and ROC Area Under the Curve (AUC). Among these, the ConvRF model attained superior
performance, achieving a recall of 90% and an AUC of 88%, indicating its robustness in
identifying ASD children. These results highlight the model’s effectiveness in ensuring
high sensitivity, which is critical for early ASD detection. This study shows the promise of
combining ML and eye-tracking technology as accessible non-invasive tools for enhancing
early ASD detection, resulting in timely and personalized interventions. Limitations and
recommendations for future research are also included.
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1. Introduction
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder affecting how

people interact, learn, and behave. Symptoms typically appear within the first three years of
life, and the disorder tends to affect males more frequently, with a ratio of 4 to 1. Regarding
high-functioning individuals, this ratio increases to approximately 10 to 1, whereas it
decreases to around 2 to 1 in low-functioning cases [1]. Early autism diagnosis is crucial to
maximize the benefits of intervention [2,3]. Despite the progress in intervention strategies,
studies show that about 10% of people with autism remain non-verbal throughout their
lives [4]. Individualized and timely support, especially at the age of preschool, increases
the likelihood of developing verbal communication and social skills [5–7], improving the
quality of their lives and reducing stress for their families.

Eye-tracking (ET) technology is a method for monitoring eye movements, recording
where people look, for how long, and how their eyes move. Moreover, it measures gaze
points relative to the face and pupil reactions to different stimuli. Implementing ET requires
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recording devices (cameras and sensors) to capture eye movements, often enhanced by
infrared light reflecting off the eyes for greater accuracy.

ET technology is a useful tool for tracking and analyzing human behavior, providing
insights into how individuals process visual stimuli, interact with their environment, and
make decisions in real time. ET is widely applied in psychology and neuroscience to detect
neurological disorders such as autism [8,9] and Parkinson’s disease [10]. Additionally, it is
utilized in marketing to understand which aspects of advertisements capture attention, as
well as in educational fields to assess how students interact with teaching materials [11]. Fi-
nally, ET encompasses applications in entertainment, offering more interactive experiences
for consumers in movies and video games [12].

Three main ET techniques are used as follows:

1. Video-Oculography (VOG): Visible light and cameras are employed to capture eye
movement, with options for remote or head-mounted setups. However, it might be
affected by lighting conditions and reflections.

2. Pupil-Corneal Reflection (PCR): Infrared light is utilized to produce a corneal re-
flection as a stable reference point, allowing for accurate tracking even with head
movement. Although precise, PCR struggles with varying lighting conditions.

3. Electrooculography (EOG): Records eye movement by detecting electrical potential
differences across electrodes around the eye. This technique is particularly useful in
low-light environments and can measure movements even with closed eyes, but the
electrodes can make it more intrusive.

2. Research Objective
This study employs an eye-tracking dataset developed by Carette et al. [13] and aims

to achieve autism classification in children through five different machine learning (ML)
algorithms, i.e., Support Vector Machine (SVM), Random Forest, Convolutional Neural
Network (CNN), Artificial Neural Network (ANN), and Random Forest with Convolutional
Filters (ConvRF). The key innovation of this approach, compared to earlier studies using the
same dataset, is the application of the ConvRF algorithm. This algorithm combines pattern
recognition in images, enabled by CNNs’ convolutional filters, with Random Forest’s
training speed, offering an efficient and accurate classification method.

3. Research and Related Work
Autism research has significantly benefited from the application of ML techniques

in a variety of data sources, such as images [14,15], data collected during web browsing
tasks [16,17], as well as biological data. With respect to biological data, one prominent
approach involves the use of brain Magnetic Resonance Imaging (MRI) images, which
provide valuable insights into the structural and functional differences in the brains of
ASD individuals. Multiple studies have shown that ML algorithms, such as Support Vector
Machines (SVMs) and Convolutional Neural Networks (CNNs), can be highly effective
in analyzing these brain images. For example, Krishna Kumar et al. [18] implemented
ML models to identify patterns in MRI data, attaining diagnostic accuracy rates of up to
92%. Similarly, Song et al. [19] employed radiomics, a method for extracting features from
medical images, and attained impressive results, i.e., an accuracy of 89.47% using SVM and
86.48% using CNN. These findings underscore the potential of MRI-based approaches for
ASD classification.

In addition to MRI, Electroencephalography (EEG) data have proven to be a valuable
tool in ASD research. EEG measures the electrical activity of the brain, providing insights
into the frequency bands that reflect various brain functions. Studies have utilized EEG
signals to identify biomarkers related to ASD, employing ML algorithms to classify in-
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dividuals based on their brain activity. Jayawardana et al. [20] utilized EEG data from
children with ASD, leading to accuracy of over 90% employing CNN models, whereas
Bhaskarachary et al. [21] implemented Transfer Learning (TL) techniques regarding EEG
data, utilizing Extra Trees and XGBoost classifiers, which resulted in accuracy of 67.7%
and recall of 83.3%. These results highlight the potential of EEG-based models to improve
diagnostic accuracy, providing a complementary approach to MRI-based methods.

Another technology applied in ASD research is ET, examining the gaze patterns of
individuals while engaging with visual stimuli. ET has been shown to reveal distinct differ-
ences in gaze behavior between ASD individuals and neurotypical ones. ML algorithms
have also been employed regarding gaze patterns for autism classification, with promising
results. For example, Carette et al. [22] utilized Long Short-Term Memory (LSTM) networks
to analyze ET data, achieving increased accuracy (83%) in classifying ASD children, show-
ing the power of temporal sequence analysis in understanding ASD-related gaze behavior.
In another study, Zhao et al. [23] combined ML with ET data, employing algorithms such
as Naïve Bayes and Random Forest to attain high diagnostic accuracy of 92%. These studies
emphasize that ML, when applied to ET data, can offer highly reliable classification results,
further improving early ASD detection and diagnosis.

Taken together, these studies demonstrate the developing intersection of ML, bio-
logical data (such as MRI, EEG, and ET), and ASD detection. The integration of these
methodologies has shown great promise in enhancing the accuracy and efficiency of early
ASD detection, emphasizing that ML is a powerful tool for advancing clinical diagnostics.

4. Methodology
4.1. Dataset

In the current study, the dataset from [13] was utilized. This dataset includes visu-
alized ET data recording eye movements and attention distribution of ASD children and
neurotypical ones. The participants, 59 individuals (38 males and 21 females), watched
videos that included various visual stimuli, and the data contain gaze coordinates, fixation
durations, and saccadic eye movements. Participants were classified into two categories:
(1) 30 neurotypical (TC) and (2) 29 individuals with ASD (TS).

The participants’ ages ranged from 3 to 13 years, with 47% being between 5 and
9 years old. The dataset also includes assessments using the Childhood Autism Rating Scale
(CARS), which is a tool that classifies individuals within the autism spectrum. The majority
of autistic participants were rated with CARS scores ranging from 25 to 36, indicating mild
to moderate forms of autism.

A total of 547 images were generated (328 from neurotypical participants and 219 from
individuals with ASD), depicting the patterns of eye movements and areas of interest. In
Table 1, the overall statistics of the participants are shown.

Table 1. Overall statistics of participants.

Category Value

Number of Participants 59
Gender Distribution (Male/Female) 38 (64.4%)/21 (35.6%)

Neurotypical Participants 30
Participants with ASD 29
Age (Mean/Median) 7.88/8.1

CARS (Mean/Median) 32.97/34.5
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4.2. Preprocessing

The dataset initially consisted of 480 × 640 pixel images with 3 color channels. In the
first preprocessing step, these images were normalized to a range of 0–1. To achieve this,
all pixel values were divided by 255.0, which is the maximum possible value for a pixel.
This normalization process leads to a more stable learning process and reduces overfitting
as models utilizing input data with large variations tend to learn overly specific features
rather than generalizing to new data. Moreover, normalization accelerates the convergence
of optimization algorithms.

The images were then converted to grayscale to reduce the color channels from three
(RGB) to one. This reduces data complexity and enhances processing speed. Additionally,
this technique contributes to the elimination of any noise present in the images caused by
color information, making pattern recognition easier.

Finally, since the images had a black background with significant empty space, the
image size was adjusted to 225 × 225 pixels. This resizing maintains uniformity across all
images as they now share the same dimensions while also reducing the amount of data the
model needs to process. This reduces both training and prediction time without losing any
important details in the images.

4.3. Algorithms

For the classification task, several algorithms were tested with various hyperparameter
values to determine the optimal implementation. The following algorithms were evaluated:

1. Random Forest.

• N_estimators: The number of decision trees used in the algorithm.
• Max_depth: The maximum depth of the decision trees.
• Min_samples_split: The minimum number of samples required to split a node.
• Min_samples_leaf: The minimum number of samples required to form a

leaf node.

2. Support Vector Machine (SVM).
3. Artificial Neural Network (ANN). The hyperparameters used for training the ANN

are shown in Table 2.

Table 2. ANN hyperparameters.

Parameter Value

Number of hidden layers 2
Number of neurons 128, 64
Activation function Sigmoid

Dropout Rate 0.5

• Number of hidden layers: The number of hidden layers in the model.
• Number of neurons: The number of neurons in each hidden layer.
• Activation function: The activation function for each neuron in the layer.

4. Convolutional Neural Network (CNN). The hyperparameters used for training the
CNN are shown in Table 3.

• Convolutional Filters: The number of filters applied at each convolution stage.
Each filter extracts specific features from the image.

• Kernel Size: The two-dimensional matrix used as a filter in the convolution
process. The kernel’s dimensions determine how many points in the image are
checked during each convolution step.
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• Pool Size: The size of the region from which the maximum or average value is
selected during pooling. Pooling reduces the spatial dimensions of the features
while preserving significant information.

Table 3. CNN hyperparameters.

Parameter Value

Convolutional filters 32, 64, 128
Kernel Size (3,3)
Pool Size (2,2)

Hidden Layers 2
Number of Neurons 128, 64

Dropout Rate 0.5

5. Convolutional Filters + Random Forest (ConvRF).

5. ConvRF Model Tuning
The ConvRF model consists of two distinct components. The first is a Convolutional

Neural Network (CNN) employed for feature extraction, whereas the second one is a
Random Forest classifier responsible for classification. The pretrained VGG16 (Visual
Geometry Group) model [18], a deep learning architecture developed at the University
of Oxford including sixteen layers, was utilized for feature extraction from images. The
initial thirteen layers are convolutional, and the final three are fully connected. This model
contains a total of 138 million parameters but is commonly used for TL applications. In these
cases, it is pretrained and only the last layers are retrained to adapt to the specific problem.

5.1. Fine-Tuning

To fine-tune the model for the dataset of this study, a GlobalAveragePooling2D layer
was first added to reduce the feature dimensions and create a simplified vector for each
feature. In addition, a Dense layer with a single neuron was incorporated to perform the
classification. The weights for each neuron in the initial 12 layers were set as non-trainable,
ensuring that only the layers responsible for extracting complex features from the images
were trained. The model was trained for 15 epochs using the Adam optimizer with a low
learning rate (0.00001) to prevent overfitting.

Once the model was trained on the dataset, the last two layers—responsible for
classification—were removed and replaced with a Random Forest classifier. This classifier
was then trained not on the original dataset images but on the data extracted by VGG16.

5.2. Hyperparameter Tuning

Following the configuration of the feature extraction model, hyperparameter tuning
took place on the classifier to assess potential improvements in the overall model. The Grid
Search technique was implemented for hyperparameter tuning, systematically exploring a
grid of values and testing all possible combinations to identify the optimal set based on the
selected metric. Table 4 presents the grid used for the search.

The Grid Search technique evaluated 3 × 3 × 3 × 3 = 81 combinations, performing
5-fold cross-validation, a training evaluation technique dividing data into five subsets,
using four for training and one for validation; this process was repeated five times to use
each subset for validation, thus running 405 times.
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Table 4. Parameter search grid.

Hyperparameter Values

N_estimators 100, 200, 300
Max_depth None, 10, 20

Min_samples_split 2, 5, 7
Min_samples_leaf 1, 2, 5

6. Results and Discussion
6.1. Training Results

In Table 5, the algorithms used and their performance on selected metrics are presented,
whereas these results are visualized in Figure 1.

Table 5. Algorithm performance results by metric.

Metric Random Forest SVM ANN CNN ConvRF

Accuracy 0.736 0.691 0.764 0.764 0.764
Precision 0.736 0.698 0.753 0.768 0.768

Recall 0.841 0.809 0.873 0.841 0.841
F1-Score 0.785 0.75 0.808 0.803 0.803

AUC 0.81 0.78 0.78 0.78 0.82
Prediction Time 0.0002 0.035 0.002 0.013 0.0006

Figure 1. Comparison of algorithms.

Table 5 shows that all the algorithms attained relatively similar metric scores, with
Random Forest and ConvRF showing higher AUC scores. Additionally, ConvRF, CNN,
and ANN demonstrated the highest accuracy and precision, whereas ANN achieved the
best F1-score and recall values.

Examining these metrics and the AUC score, we notice that the models using the
Random Forest classification method exhibited better class separation as their curves were
closer to 1 compared to the other models, whose curves were between 1 and the 0.5 line,
indicating greater randomness.

6.2. Model Tuning Results

Table 6 includes the performance of the fine-tuned model on the test dataset across the
evaluation metrics applied.

A general improvement across all the metrics was observed, with the most notable
enhancement observed in the AUC score. Figure 2 depicts the model’s confusion matrix,
which also reveals that this model showed a tendency to identify ASD more readily while
struggling with neurotypical cases, misclassifying approximately 1 in 3 instances.
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Table 6. Fine-tuning results.

Metric Score

Accuracy 79.09
Precision 77.03

Recall 90.47
F1-Score 83.21

AUC Score 0.88

Figure 2. Fine-tuned model confusion matrix.

Figure 3 shows the ROC curve along with the AUC score. In addition to the significant
improvement in the AUC score, the ROC curve appeared smoother, indicating more
stable performance.

Figure 3. Fine-tuned model AUC.
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6.3. Hyperparameter Tuning Results

As shown in Table 7, Grid Search demonstrated the following optimal values for
this issue.

Table 7. Optimal hyperparameters.

Hyperparameter Optimal Value

N_estimators 300
Max_depth 10

Min_samples_split 5
Min_samples_leaf 2

Next, VGG16 was used for feature extraction from the images, and Random Forest was
trained on these features utilizing the optimal hyperparameters shown in Table 7. Table 8
contains the performance of the fine-tuned model on the test dataset across the evaluation
metrics used.

Table 8. Hyperparameter tuning results.

Metric Score

Accuracy 78.18
Precision 76.03

Recall 90.48
F1-Score 82.61

AUC Score 0.86

An improvement in results was observed compared to the initial models, although
the results were slightly lower than the fine-tuned VGG16. Figure 4 displays the model’s
confusion matrix, whereas Figure 5 shows the ROC curve and the AUC score.

Figure 4. Hyperparameter-tuned model confusion matrix.
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Figure 5. Hyperparameter-tuned model AUC.

6.4. Overall Results

Several studies have examined the combination of ML algorithms with ET technology
for ASD detection. Akter et al. [24] used the dataset of [13] and found that a Multi-Layer-
Perceptron (MLP) achieved the best results, i.e., an AUC of 79.2% and recall of 88.9%.
Elbattah et al. [15] employed the same ET dataset and implemented Transfer Learning
methods to classify the results. Applying VGG-16, ResNet, and DenseNet, they attained an
AUC of 78% and recall of 56%.

Building on these findings, our study focused on implementing ML algorithms to ET
data for early autism detection in children. Five algorithms were evaluated—Support Vector
Machine (SVM), Random Forest (RF), Convolutional Neural Network (CNN), Artificial
Neural Network (ANN), and Random Forest with Convolutional Filters (ConvRF). These
algorithms were tested using metrics such as accuracy, precision, recall, F1-score, ROC
curve, AUC score, and confusion matrix.

ConvRF was the most effective model due to its consistent performance across all the
metrics. Particularly, it outperformed SVM by 18.95%, Random Forest by 10.27%, ANN
by 8.51%, and CNN by 4.62%. After fine-tuning certain layers of the pretrained model
on the study’s dataset and employing hyperparameter optimization, the ConvRF model
attained an AUC of 88% and a recall of 90%. These results emphasize the model’s ability
to effectively distinguish between neurotypical and ASD children, specifically excelling
in recall, which ensures high sensitivity in recognizing ASD cases. The ConvRF approach
shows advantages in efficiency and interpretability, providing an effective tool for ASD
classification based solely on ET data.

Compared to other studies combining machine learning (ML) with eye-tracking (ET)
data for ASD detection, our method demonstrates significant improvements. For example,
Akter et al. [24] attained an AUC of 79.2% and a recall of 88.9% employing a Multi-Layer-
Perceptron (MLP) on the dataset from [13]. In contrast, our model achieved an AUC of
88% and a recall of 90%, demonstrating higher overall discriminative power and slightly
improved sensitivity. Furthermore, Elbattah et al. [15] applied Transfer Learning methods,
particularly VGG-16, ResNet, and DenseNet, on the same ET dataset, resulting in an AUC
of 78% and a significantly lower recall of 56%. Our method obviously outperforms these
Transfer Learning models in both AUC and recall, indicating a more robust and effective
approach for early autism detection based exclusively on ET data.
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7. Limitations
Despite the promising performance of the Convolutional Random Forest (ConvRF)

model, several limitations need to be taken into account. Firstly, the relatively small sample
of 59 participants, combined with an age bias of 5–9 years and a focus on autism of specific
functionality, limit the generalizability of our findings. Furthermore, the imbalance in
the dataset, with 328 images of neurotypical individuals compared to 219 of ASD ones,
may result in bias regarding the model’s training and affect classification performance.
Secondly, although the ConvRF model attained a competitive AUC of 0.88, the presentation
of results depends on combined performance metrics. This method lacks detailed subgroup
analyses, such as performance stratified by age or CARS score, and omits confidence
intervals. Such detailed analysis would provide a more robust assessment of the model’s
behavior across different conditions. Lastly, although the model has a rapid prediction time
of 0.0006 seconds, the overall pipeline, containing the initial generation of eye-tracking
pattern images, demands substantial computational resources. This requirement limits the
scalability and real-time use of the model, specifically when dealing with raw eye-tracking
data in clinical settings.

8. Future Work
To advance our research, future studies could prioritize several key areas. Firstly,

the acquisition of larger, more diverse datasets, encompassing varied demographics and
clinical presentations, is essential to improve model generalizability and decrease bias.
Secondly, the implementation of advanced machine learning models, specifically deep
neural networks (DNNs) such as attention-based and transformer networks, could increase
classification accuracy. Cloud computing could be implemented to optimize training and
processing of large datasets. Thirdly, the integration of eye-tracking data with multimodal
data, such as EEG, fMRI, and clinical outcomes, is crucial for a comprehensive under-
standing of the disorder and personalized interventions. Longitudinal studies are needed
to track disorder progression and intervention effectiveness. Fourthly, Explainable AI
(XAI) techniques could be employed to improve model interpretability and clinical trust.
Finally, future research could focus on developing individualized treatment plans based
on multimodal predictive models and conducting precise clinical validation studies to
translate research into effective clinical practice.

9. Conclusions
The application of eye-tracking (ET) technology in combination with machine learning

(ML) presents a promising approach to improve the understanding and early detection of
Autism Spectrum Disorder (ASD). This study presented a novel approach to ASD classifi-
cation, utilizing an ET dataset from Carette et al. [13], aiming to differentiate between ASD
and Typically Developed (TD) children. Among the machine learning algorithms evaluated,
Convolutional Random Forest (ConvRF) achieved superior performance, obtaining a recall
of 90% and an Area Under the Curve (AUC) of 88%. This performance highlights the
potential of ConvRF to accurately classify ASD in children, contributing to a significant
improvement over other traditional methods. Particularly, the ConvRF model attained
these results with considerably faster training times compared to deep neural network
models such as Artificial Neural Networks (ANNs) and Convolutional Neural Networks
(CNNs), which is an important advantage for practical application. This efficiency in
training time, in combination with the high classification performance, makes ConvRF
an interesting option for clinical applications. The recall and AUC values achieved show
that our model could be implemented as a valuable tool in clinical settings, potentially
combined with existing diagnostic methods and advancing earlier interventions. Early
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ASD detection is important since it enables the implementation of timely and personalized
interventions, which can significantly enhance developmental outcomes. The success of
the ConvRF approach highlights the potential of combining advanced machine learning
techniques with eye-tracking data to improve ASD detection and intervention strategies.
Future studies could focus on validating these findings in larger, more diverse populations
and examining the integration of this model into real-world clinical workflows.
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