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Abstract

In the automotive domain, object detection is pivotal for enhancing safety and autonomy
through the identification of various objects of interest. However, insights into the influen-
tial image pixels in the detection process are often lacking. Recognizing these significant
regions within the image not only enriches our qualitative understanding of the model’s
functionality but also empowers us to refine and optimize its performance. Employing
Explainable Artificial Intelligence (XAI), we present an XAI component in this paper. This
component explains the predictions made by a pre-trained object detection model for a
given image by generating heatmaps that highlight the most critical regions in the image
for the detected objects.

Keywords: artificial intelligence; automotive; EigenCAM; explainable ai; explainable
artificial intelligence; object detection; visual XAI; XAI; YOLO

1. Introduction
In automotive applications, object detection plays a critical role in enhancing safety

and autonomy by identifying and classifying various objects in the vehicle’s surroundings,
such as pedestrians, vehicles, cyclists, and road signs. Explainable Artificial Intelligence
(XAI) techniques can be employed to provide insights into the decision-making process of
these object detection systems, offering explanations for the detections made.

In the automotive industry, XAI is very important due to the high stakes involved in
autonomous driving applications. Users and regulators demand transparency and account-
ability from autonomous systems, and XAI helps fulfill these requirements by providing
interpretable insights into the decision-making processes of object detection algorithms.

An example is the case where an autonomous vehicle identifies a pedestrian crossing
the road. XAI can provide explanations for why the pedestrian was detected, which features
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in the image led to the detection, and how confident the system is in its decision. These
explanations not only enhance the transparency of the system’s behavior but also facilitate
trust and understanding among users, regulators, and stakeholders.

This paper focuses on the application of XAI in the context of object detection in the
automotive domain. More specifically, it presents a software component that involves
explainability methods for object detection systems deployed in vehicles. This component
can serve as an explainability module within a broader framework or system comprising
multiple stages including pre-processing, detection, explainability, and notification, like the
one proposed in [1].

The paper is structured as follows: Section 2 provides a review of related literature.
Section 3 offers background information on relevant terms and approaches. In Section 4, the
detailed architecture of the XAI component is presented. Section 5 presents the experimental
findings. Finally, Section 6 concludes the paper with reflections on lessons learned and
outlines future directions.

2. Related Work
Numerous studies have explored XAI applications within the automotive sector. These

encompass diverse tasks such as object detection, predicting dangerous vehicle behaviors,
recognizing pedestrian intentions, identifying traffic lights, estimating steering angles, and
classifying images concerning traffic signs and vehicle/non-vehicle distinctions. To explain
the predictions of the proposed ML methods, researchers employ various XAI techniques
including saliency maps, Grad-CAM, sensitivity analysis, and visual attention mechanisms.
These approaches primarily generate heatmaps to highlight significant image regions.

Mankodiya et al. [2] introduce a semantic object detection method for autonomous
vehicles based on XAI. The study involves training and comparing three deep learning
architectures—ResNet-18, ResNet-50, and SegNet—for rad detection. Various XAI methods
are employed to explain the predictions of these black-box models. The best-performing
model’s predictions are specifically explained using the Grad-CAM and saliency map XAI
techniques, which generate visual heatmaps highlighting important regions in the images.
For training and testing, the KITTI road dataset, comprising 289 road images and their
corresponding annotations, is utilized. The results indicate that ResNet-18 exhibits superior
prediction performance, and the brighter pixel values in the generated heatmap highlight
more significant regions in the image. Despite these insights, the authors conclude that
while the explanations provide useful insights, they do not fully address the challenges
associated with black-box interpretability.

The authors in [3] propose a comprehensive vision-based framework tailored for
autonomous driving, encompassing four critical tasks: object detection, dangerous vehicle
prediction, pedestrian intention recognition, and traffic light identification. They leverage
various datasets to train and validate their models, including the BDD100K dataset for ob-
ject detection, a pedestrian dataset for intention prediction, a vehicle dataset for dangerous
vehicle estimation, and a traffic light dataset for signal recognition. In the object detection
task, the model identifies various objects within the driving environment, providing bound-
ing boxes and probabilities for each category. For pedestrian intention recognition, the
framework utilizes YOLOv4 to detect pedestrians and subsequently employs Part Affinity
Fields (PAFs) to extract human skeleton features. A Convolutional Neural Network (CNN)
then analyzes these features to infer pedestrian intentions, with results displayed as labels
on bounding boxes. Dangerous vehicle prediction involves classifying vehicles as safe or
dangerous based on behaviors such as braking, turning left, turning right, or crossing. This
classification is achieved through a CNN model, with the fine-tuned Efficientnet model
demonstrating superior accuracy compared to other examined models, such as MobileNet,
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VGGNet, GoogLeNet, and ResNet. Similarly, for traffic light recognition, the model dis-
tinguishes between safe signals (e.g., green lights) and dangerous signals (e.g., red lights).
Experimental results reveal that the fine-tuned MobileNet model outperforms alternative
models. To enhance the interpretability of their models, especially in the risk estimation
phase involving CNN-based models for vehicle and traffic light identification, the authors
apply the Randomized Input Sampling for Explanation (RISE) algorithm. This technique
generates saliency maps, revealing the importance of each pixel in determining the final
classification results.

In [4], a novel XAI method tailored for CNN-based models utilized in self-driving
cars is introduced. The method primarily focuses on sensitivity analysis, which gauges
the impact of each input feature. Initially, the images are converted to grayscale and are
subsequently altered from their original form. These modified and original images are then
fed into the model, and their disparities are evaluated by comparing the resulting output
vectors. Then, an explanation is generated by proportionally comparing each segment
of the original image to the previously computed difference, effectively pinpointing the
influential sections contributing to the final prediction. The efficacy of this XAI approach
is demonstrated through its application on a pre-trained CNN across four distinct image
datasets containing vehicle/non-vehicle images and images featuring traffic signs. Each
prediction is explained using this method, highlighting every step of the algorithm. These
explanations are then compared to those produced by other XAI techniques such as SHAP,
LIME, Grad-CAM, and eXplainable CNN (XCNN). Notably, the proposed method con-
sistently delivers successful explanations for all images, unlike other methods that may
produce inadequate explanations.

In [5], a framework aimed at explaining decisions made in autonomous driving
scenarios through visual attention mechanisms is introduced. To tackle this challenge,
the authors adopt an Imitation Learning approach, wherein a driving policy is acquired
from RGB frames to associate observed frames with corresponding vehicle steering angles.
The framework employs a fully convolutional network comprising five layers to extract
feature maps from input images. These feature maps are then fed into a multi-head visual
attention block to explain the predictions, followed by a final prediction block that estimates
the steering angle, representing the intended driver action. The model’s effectiveness is
demonstrated utilizing data from the CARLA urban driving simulator. The visual attention
activations are presented, showcasing how specific regions within the image are weighted
to offer insights into prediction explanations. Results indicate that integrating visual
attention mechanisms not only enhances prediction explanations but also boosts overall
model performance.

3. Background
3.1. Computer Vision and Object Detection

Computer vision is a field of Artificial Intelligence (AI) that focuses on enabling
computers to interpret and understand visual information from the world around them.
It encompasses a wide range of tasks, including image classification, object detection,
image segmentation, and image generation. This paper focuses on object detection, which
involves identifying and locating objects of interest within an image or video. This task
is crucial for various applications, including autonomous vehicles, surveillance systems,
medical imaging, and augmented reality. Object detection algorithms analyze input images
or video frames to detect and localize objects by predicting bounding boxes around them
and assigning class labels to the detected objects.

There are different approaches to object detection, including one-stage and two-stage
algorithms, each with its own trade-offs between speed and accuracy. One-stage detection
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algorithms, such as YOLO (You Only Look Once) [6] and SSD (Single Shot Multibox
Detector) [7], are designed to directly predict bounding boxes and class probabilities in a
single pass through the neural network. On the other hand, two-stage detection algorithms,
like Faster R-CNN (Region-based Convolutional Neural Network) [8], consist of two
sequential stages. In the first stage the algorithm generates region proposals, while in the
second stage, the proposed regions are classified into different object categories. One-stage
detection algorithms are known for their efficiency and speed, making them suitable for
real-time applications. However, two-stage algorithms generally offer higher accuracy but
can be computationally more intensive and slower compared to one-stage algorithms.

3.2. Explainable AI and Explainability

Explainable AI (XAI) refers to the development of AI systems that can provide under-
standable explanations for their decisions and behaviors. It aims to bridge the gap between
the opaque nature of complex machine learning models and the need for transparency,
accountability, and trust in AI systems. In the context of XAI, explainability refers to the
ability of an AI system to provide insights into why specific decisions were made, how the
system arrived at those decisions, and which factors influenced its output.

There are various approaches to achieving explainability in AI systems. First there
are interpretable models that are simple models that humans can easily understand and
interpret, such as decision trees or linear regression. Then there are transparent algo-
rithms with built-in mechanisms for providing explanations, such as rule-based systems
or probabilistic graphical models. Lastly, there are post hoc explanations, which involve
the generation of explanations for decisions made by complex black-box models like deep
neural networks, using techniques such as feature importance scores, attention maps, and
sensitivity analysis.

Overall, explainability mechanisms are crucial for ensuring that AI systems are not
only accurate and efficient but also trustworthy and accountable. By enabling humans
to understand AI decisions, XAI promotes ethical AI development and deployment, ul-
timately leading to more responsible and beneficial use of artificial intelligence across
various domains.

3.3. XAI for Images and Explainable Object Detection

In the context of images, XAI techniques aim to explain the inner workings of complex
deep learning models, which often operate as black boxes. By employing methods such as
feature visualization, saliency mapping, and attention mechanisms, XAI offers insights into
which parts of an image influenced the model’s decisions and why. This paper focuses on
object detection where XAI techniques can produce explanations in the form of heatmaps,
clarifying which image features led to the detection of specific objects and how confident
the model is in its predictions. In general, the application of XAI to images aims to enhance
the interpretability, trustworthiness, and accountability of AI systems, enabling users to
better understand their decisions.

The Class Activation Maps (CAMs) proposed in [9] are a powerful technique that
can be employed in object detection to provide insights into the regions of an image that
contribute most significantly to the model’s predictions. CAMs offer a visual representation
of the discriminative regions within an image that influence the classification decision for a
particular object class. They are useful in interpreting decisions of deep learning models,
especially CNNs used in object detection tasks. They generate heatmaps that highlight the
regions of interest, aiding users in visualizing model attention within the image.

Methods that can generate CAMs are divided into gradient-based methods like
Gradient-weighted Class Activation Mapping or simply Grad-CAM and gradient-free
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methods like EigenCAM. On the one hand, Grad-CAM generates CAMs by computing
the gradients of the target class score with respect to the feature maps of the last convo-
lutional layer [10]. By weighting these gradients, Grad-CAM highlights the importance
of each feature map for the target class prediction. On the other hand, the EigenCAM
method leverages the principal components derived from learned representations within
the convolutional layers to generate visual explanations [11].

4. Architecture
The proposed XAI component serves to explain the decision-making process of a pre-

trained object detection model, such as YOLO, by providing interpretable explanations in
the form of heatmaps. When presented with an input image and a pre-trained YOLO model,
the XAI component first passes the image through the YOLO model for object detection.
YOLO identifies and localizes objects within the image, providing bounding boxes and class
probabilities for each detected object. Next, the XAI component extracts feature maps from
various layers of the YOLO model that correspond to the detected objects. These feature
maps encapsulate the activations and responses of the neural network to different regions of
the input image. Subsequently, the XAI component employs EigenCAM, which utilizes the
extracted feature maps to generate a heatmap that highlights the regions of the input image
that contributed most significantly to the model’s decision for each detected object class.
EigenCAM has been selected as the preferred method because of its advantages over other
state-of-the-art methods. Firstly, it seamlessly integrates with all CNN models, eliminating
the need for modifications to layers or model retraining. Secondly, it can generate visual
explanations for multiple objects within the same image. Lastly, it operates independently
of gradient back-propagation, further enhancing its versatility and efficiency.

For the implementation of the XAI component, python was used, along with pytorch
and the pytorch-gradcam library [12] version 2.8.0, which offers EigenCAM.

Figure 1 presents the high-level architecture of the proposed XAI component that takes
images and a pre-trained model as input and generates a visual explanation in the form of
a heatmap.

Figure 1. XAI component architecture.

The heatmap produced by the XAI component serves as an explanation, indicating
which parts of the image were crucial in the YOLO model’s classification of each object.
Regions colored in red signify areas of high importance, indicating that these regions
in the input image strongly influenced the model’s prediction. Overall, the proposed
XAI component enhances the transparency and interpretability of the YOLO model’s
predictions by providing intuitive visual explanations in the form of heatmaps, enabling
users to understand and trust the model’s decisions more effectively.

5. Experimental Results
This section presents the results of the evaluation of the XAI component applied in the

context of the automotive domain. For the evaluation of the XAI component, YOLOv5 [13]
was employed as the input object detection model. An image depicting a road scene and
featuring various elements such as a road, a car, a cyclist, a traffic light, and several traffic
signs was passed as the input image into the XAI component.

The class activation maps for the pre-trained object detection model are shown in
Figure 2. The first image is the original image passed as input. Detected objects in this scene
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include a car, a cyclist, and a traffic light. In the second image, prominent regions are high-
lighted, notably the traffic light and multiple traffic signs. Lastly, the third image focuses
on pinpointing areas that have the most influence on each individually detected object.

Figure 2. An illustration showcasing an original input image processed by the XAI component,
alongside the output heatmap highlighting significant areas within the entire image, as well as
individual heatmaps highlighting detected objects within the scene.

6. Conclusions
In this paper, a software component that focuses on the explainability of pre-trained

object detection models in the automotive domain was presented. The proposed XAI
component was evaluated by employing a YOLOv5 detection model to generate visual
explanations for images related to the automotive domain. As part of the next steps
and future directions, we plan to incorporate and evaluate additional CAM-based XAI
methods and extend the assessment of the XAI component utilizing other state-of-the-
art object detection models, such as Faster R-CNN and SSD. Lastly, we intend to assess
the effectiveness of our XAI component through user satisfaction surveys and various
quantitative metrics.

Author Contributions: Conceptualization, M.S. and P.R.-G.; methodology, M.S., P.R.-G., T.L. and
V.A.; software, M.S., K.E.P., K.-F.K. and G.F.F.; validation, T.L., V.A. and P.S.; writing—original draft
preparation, M.S., P.R.-G., T.L. and V.A.; writing—review and editing, S.G., K.E.P., K.-F.K. and G.F.F.;
supervision, P.R.-G., T.L. and P.S.; project administration, P.R.-G.; All authors have read and agreed to
the published version of the manuscript.

Funding: This project has received funding from the European Union’s Horizon Europe research and
innovation programme under grant agreement No. 101070214 (TRUSTEE).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: Marios Siganos and Panagiotis Radoglou-Grammatikis were employed by the
company K3Y Ltd. The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential conflict of interest.

References
1. Siganos, M.; Radoglou-Grammatikis, P.; Kotsiuba, I.; Markakis, E.; Moscholios, I.; Goudos, S.; Sarigiannidis, P. Explainable

AI-based Intrusion Detection in the Internet of Things. In Proceedings of the 18th International Conference on Availability,
Reliability and Security, Benevento, Italy, 29 August–1 September 2023; pp. 1–10. [CrossRef]

2. Mankodiya, H.; Jadav, D.; Gupta, R.; Tanwar, S.; Hong, W.C.; Sharma, R. OD-XAI: Explainable AI-Based Semantic Object
Detection for Autonomous Vehicles. Appl. Sci. 2022, 12, 5310. [CrossRef]

3. Li, Y.; Wang, H.; Dang, L.M.; Nguyen, T.N.; Han, D.; Lee, A.; Jang, I.; Moon, H. A Deep Learning-Based Hybrid Framework for
Object Detection and Recognition in Autonomous Driving. IEEE Access 2020, 8, 194228–194239. [CrossRef]

http://doi.org/10.1145/3600160.3605162
http://dx.doi.org/10.3390/app12115310
http://dx.doi.org/10.1109/ACCESS.2020.3033289


Eng. Proc. 2025, 107, 44 7 of 7

4. Kim, H.S.; Joe, I. An XAI method for convolutional neural networks in self-driving cars. PLoS ONE 2022, 17, e0267282. [CrossRef]
[PubMed]

5. Cultrera, L.; Seidenari, L.; Becattini, F.; Pala, P.; Bimbo, A.D. Explaining Autonomous Driving by Learning End-to-End Visual
Attention. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, Seattle,
WA, USA, 14–19 June 2020. [CrossRef]

6. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.

7. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. Ssd: Single shot multibox detector. In Proceedings of
the Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Proceedings,
Part I 14; Springer: Berlin/Heidelberg, Germany, 2016; pp. 21–37.

8. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. Adv. Neural
Inf. Process. Syst. 2015, 28, 91–99. [CrossRef] [PubMed]

9. Zhou, B.; Khosla, A.; Lapedriza, A.; Oliva, A.; Torralba, A. Learning deep features for discriminative localization. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2921–2929.

10. Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-cam: Visual explanations from deep networks
via gradient-based localization. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29
October 2017; pp. 618–626.

11. Muhammad, M.B.; Yeasin, M. Eigen-cam: Class activation map using principal components. In Proceedings of the 2020 IEEE
International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 19–24 July 2020; pp. 1–7.

12. Gildenblat, J. PyTorch Library for CAM Methods. Available online: https://github.com/jacobgil/pytorch-grad-cam (accessed
on 4 November 2024).

13. Jocher, G. YOLOv5 by Ultralytics. 2020. Available online: https://zenodo.org/records/7347926 (accessed on 28 October 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1371/journal.pone.0267282
http://www.ncbi.nlm.nih.gov/pubmed/35972916
http://dx.doi.org/10.1109/CVPRW50498.2020.00178
http://dx.doi.org/10.1109/TPAMI.2016.2577031
http://www.ncbi.nlm.nih.gov/pubmed/27295650
https://github.com/jacobgil/pytorch-grad-cam
https://zenodo.org/records/7347926

	Introduction
	Related Work
	Background
	Computer Vision and Object Detection
	Explainable AI and Explainability
	XAI for Images and Explainable Object Detection

	Architecture
	Experimental Results
	Conclusions
	References

