
Malware Detection in Docker Containers:
An Image is Worth a Thousand Logs

8 –12 J UNE 2025 / / MONT REAL , C ANADA

IEEE International Conference on Communications

Communications Technologies 4Good

A. Nousias, E. Katsaros, E. Syrmos, P. Radoglou-Grammatikis, T. Lagkas, V. Argyriou, I. Moscholios, E. Markakis, S. Goudos
and P. Sarigiannidis*

* University of Western Macedonia, psarigiannidis@uowm.gr

1

20XX
IEEE ICC // Communications Technologies 4Good

8-12 June // Montreal, Canada

Under DYNABIC & P2CODE

K3Y Ltd
International Hellenic

University
Hellenic Mediterranean

University
University of

Western Macedonia
Kingston University

London
University of
Peloponnese

Aristotle University
of Thessaloniki

A. Nousias
E. Katsaros
E. Syrmos

P. Radoglou Grammatikis

T. Lagkas E. Markakis P. Sarigiannidis
P. Radoglou Grammatikis

V. Argyriou S. GoudosI. Moscholios

www.k3ylabs.bg www.cs.ihu.gr www.hmu/en/home/ www.uop.gr/en www.auth.gr/en/homepage/www.uowm.gr/en/ www.kingston.ac.uk/

This project has received funding from the European Union’s Horizon Europe research and innovation
programme under grant agreement No 101070455 (DYNABIC) and No 101093069 (P2CODE)

2

INTRODUCTION & RELATED WORK

IEEE ICC // Communications Technologies 4Good
8-12 June // Montreal, Canada

3

INTRODUCTION

Software Containers Broad Adoption and Benefits:

20XX IEEE ICC // Communications Technologies 4Good
8-12 June // Montreal, Canada

• Gained widespread adoption in recent years.
• Abstract system-specific dependencies and enable scalability.
• Represent standardized, self-contained units of software.
• Support diverse functionalities: OS, DB, ML models, etc.

Security Challenges with Container Adoption

• Significant security challenges arise despite benefits.
• Injection of malicious software into containers is a growing

threat.
• Compromised containers can be entry points for further

attacks.

4

20XX

• Signature-Based Detection: Scans files for known
malware patterns; fast for known threats but struggles
with novel or polymorphic malware.

• Heuristic-Based Detection: Analyzes static features of
files for suspicious characteristics (e.g., obfuscation,
uncommon instructions); helps detect unknown
malware but risks false positives.

• Behavioral Monitoring: Observes runtime behavior
(e.g., unauthorized network communication, file
modifications); effective but may miss dormant
malware.

1. Classic Approaches in Malware Detection

RELATED WORK
2 MAIN LINES OF WORK

Sathyanarayan et al. 2008

Signature generation and detection of
malware families.

Aslan and Samet, 2020

A comprehensive review on malware
detection approaches.

IEEE ICC // Communications Technologies 4Good
8-12 June // Montreal, Canada

5

20XX

2. ML-based Malware Detection

Deep-Hook: Detects obfuscated malware by monitoring
applications and analyzing memory dumps.

RELATED WORK
2 MAIN LINES OF WORK

Cui et al., 2018

Detection of malicious code variants based on
deep learning.

Gilbert et al., 2019

Using CNN for classification of malware
represented as images.

Karn et al., 2020

Cryptomining detection in container clouds using
system calls and explainable machine learning.

Landman and Nissin, 2021

Deep-hook: A trusted deep learning-based
framework for unknown malware detection and
classification in linux cloud environments.

CNN-Based Malware Recognition: Uses CNNs to classify
whether a file is a malware or not.

Machine Learning Advances in Malware Detection: Uses
LSTMs system calls in Kubernetes pods, for cryptomining
malware.

IEEE ICC // Communications Technologies 4Good
8-12 June // Montreal, Canada

6

20XX

THIS PAPER'S RESEARCH SCOPE

FULL CONTAINERS

Previous research examines single-files, we focus on the attestation
of the whole software container, i.e. a multi-GB file.

VIA THE FILE SYSTEM
We want to attest docker containers before deploying them, that is,
without access to memory dumps or runtime behavior just the file
system.

EFFICIENT

We want the method to scale to arbitrarily large containers and
be able to run on small or no GPUs, with relatively low runtimes.

TOWARDS ZERO DAY

We want a method that will be able to learn patterns and perhaps
recognize novel threats. Malware has basic recurring patterns such
as changes in the registry or other system files.

IEEE ICC // Communications Technologies 4Good
8-12 June // Montreal, Canada

7

CONTRIBUTIONS

20XX

C1. TASK FORMULATION C2. DATA GENERATION
PIPELINE

C3. COMPROMISED SOFTWARE
CONTAINER DATASET

We formulate the Novel task of
identifying malware-compromised

dockerized software containers
with ML-based methods and

propose a streaming, patch-based
CNN approach.

We introduce a novel dataset
containing 3,364 large-scale RGB

image representations of benign and
compromised dockerized software

containers.

We define a fully customizable and
scalable data generation pipeline for

creating images of benign and
compromised software containers

across various OS and CPU
architectures.

We show experiments with various
CNNs and demonstrate our

approach outperforms commercial
methods.

C4. EXPERIMENTAL
ANALYSIS

4 MAIN CONTRIBUTIONS

IEEE ICC // Communications Technologies 4Good
8-12 June // Montreal, Canada

8

PROPOSED METHOD

IEEE ICC // Communications Technologies 4Good
8-12 June // Montreal, Canada

9

20XX

Our method assumes as input the tarball file binary array
representing the dockerized software container.

1. Image Converter: Casts the byte array onto an RGB
image representation using an Image converter based
on Hilbert space-filling curve.

2. Malware Detector: (i) Splits the image into patches of
predefined shape and process them with a CNN
model.​ (ii) Performs predictions on each patch
whether it is malicious or not.​

• The patch-based approach allows to process larger
containers (images) that would not fit into the GPU
otherwise.

• Allows for early-exit inference, i.e. it can stop once it
detects the first malicious patch, enabling faster
runtimes.

• Explainable-by-design, as the malicious patch points
to the malicious bytes when reversing the Hilbert
curve from the image back to the bytes.

PROPOSED METHOD

Steps Advantages

IEEE ICC // Communications Technologies 4Good
8-12 June // Montreal, Canada

10

DATA GENERATION PIPELINE

IEEE ICC // Communications Technologies 4Good
8-12 June // Montreal, Canada

11

20XX

DATA GENERATION PIPELINE

1. Extract raw tool & malware records

Ιngest tools from the Linux APT package manager as
well as malwares from MalwareBazaar.

Generates a Dataset Definition by selecting
malware, tools, OS and CPU architecture. Allows
fine grained control over the data generation. The
definition is a blueprint of the dataset to-be-
produced.

Builds benign and compromised software containers
from the dataset definition and stores them as tarfiles.

Converts tarfiles to images. Uses container difference
tool to create segmentation masks.

IEEE ICC // Communications Technologies 4Good
8-12 June // Montreal, Canada

3. Software Container Builder

2. Dataset Definition Generator 4. Image & Mask Converter

12

COMPROMISED SOFTWARE CONTAINER
DATASET

IEEE ICC // Communications Technologies 4Good
8-12 June // Montreal, Canada

13

IEEE ICC // Communications Technologies 4Good
8-12 June // Montreal, Canada

THE COMPROMISED SOFTWARE CONTAINER DATASET (I)

Based on the Data Generation Pipeline, we introduce a synthetic
dataset of 3364 images representing benign and malware-
Compromised Software Containers (COSOCO).

Each image in the dataset represents a dockerized software
container that has been converted to an image. Software
container records are labelled benign or compromised:

• A benign software container will have installed commonly
used harmless packages and tools.

• A compromised software container, will have, among
harmless benign tools and packages, its underlying file
system affected by some activated malware instance.

Each compromised instance is accompanied by a mask, i.e. a
black and white image which marks the pixels that correspond to
the files of the underlying system that have been altered by a
malware.

Figure: Channel decomposition of a 1024x4096 down-

sampled software container image. From left to

right: R-channel: byte-class, G-channel: byte-

value, B-channel: tarball file structure, RGB

image

14

IEEE ICC // Communications Technologies 4Good
8-12 June // Montreal, Canada

THE COMPROMISED SOFTWARE CONTAINER DATASET (II)

Total Train Validation Test

Nr. Images 3364 2360 328 676

Nr. Benign Images 2225 1564 214 447

Nr. Compromised Images 1139 796 114 229

Nr. Unique Packages 1297 1053 206 393

Nr. Unique Malware 495 347 49 99

Avg. Image Size 158 MP 158 MP 157 MB 157 MP

Avg. Mask / Image Ratio 0.32% 0.35% 0.29% 0.24%

DATASET
STATISTICS

MALWARE
STATISTICS

Signature Unique Total Avg. Bytes affected

Mirai 225 494 58 KB

Gafgyt 119 284 132 KB

CoinMiner 28 72 451 KB

XorDDos 27 50 18 KB

Kaiji 21 53 4.7 MB

Tsunami 16 43 1024 B

GoBrut 14 34 512 B

BPFDoor 7 16 20 KB

RotaJakiro 5 5 134 KB

Unknown 33 79 678 KB

Total 495 1139 355 KB

15

EXPERIMENTAL ANALYSIS

IEEE ICC // Communications Technologies 4Good
8-12 June // Montreal, Canada

16

IEEE ICC // Communications Technologies 4Good
8-12 June // Montreal, Canada

QUANTITATIVE RESULTS (I) – CNN ARCHITECTURES COMPARISON

Key Metrics F1 score Precision Recall Accuracy # Params (M)

VGG 0.552 0.928 0.393 0.784 132.9

ShuffleNet v2 0.586 0.857 0.445 0.787 2.3

MobileNet v2 0.622 0.855 0.489 0.799 3.5

AlexNet 0.680 0.821 0.581 0.815 61.1

EfficientNet 0.724 0.861 0.624 0.837 5.3

ResNet18 0.736 0.826 0.664 0.839 11.7
ResNet18 stands out in terms of performance
with an F1 score of 0.736.

• We present results for multiple lightweight CNN architectures along with their parameter counts. All models were
trained on a downscaled dataset version were software containers were represented by 1024 x 4096 sized images.

• We evaluate on multiple metrics including F1 score, Precision, Recall and Accuracy. We rank model performance
based on F1 Score.

VGG has the worst performance despite
highest parameter count.

EfficientNet is second in performance with
half parameters than ResNet.

17

IEEE ICC // Communications Technologies 4Good
8-12 June // Montreal, Canada

QUAΝΤITATIVE RESULTS (II) - VIRUS TOTAL COMPARISON

• To establish a baseline we use Virus Total, an online platform with more than 70 commercial antivirus scanners to
evaluate the test set of the Compromised Software Container dataset. We upload the test set and parse the results of
their analysis.

• Our method outperforms all individual engines as well as all their ensembles while being a lot faster than the API call
and not relying on external software.

Key Metrics F1 score Precision Recall Accuracy

Pandas (#32) 0.085 1.000 0.044 0.679

Karspersky (#18) 0.598 1.000 0.427 0.807

Ikarus (#1) 0.703 1.000 0.542 0.846

VirusTotal (≥ 20) 0.601 0.990 0.431 0.807

VirusTotal (≥ 1) 0.709 0.992 0.551 0.848

ResNet18 0.736 0.826 0.664 0.839

Evaluation results for "ensembles of engines".
With '≥ a' we denote the scores where at least
a engines classify a record as malevolent.

Evaluation results of popular engines and their
relative ranking (#) among other engines

Our approach outperforms all commerial
solutions.

18

IEEE ICC // Communications Technologies 4Good
8-12 June // Montreal, Canada

QUALITATIVE RESULTS

Each pair illustrates an image and its respective mask. White

pixels refer to the bytes compromised by malware activity,

whereas the red bounding boxes indicate the patch predicted

as malevolent using ResNet18.

Our streaming, patch-based approach is:

a) Scalable: Reduces GPU memory required, as it processes
the image in patches.

b) Efficient: Implicitly allows early-exit inference to improve
the runtime, as it finishes inference after the first malicious
patch is detected.

c) Explainable-by-design: By identifying the patch with
malicious content, provides explanations by design. One can
easily reverse engineer the image generation process using
the Hilbert space-filling permutation and derive the exact
byte locations of the malicious component within the
container.

19

CONCLUSIONS & FUTURE WORK

IEEE ICC // Communications Technologies 4Good
8-12 June // Montreal, Canada

20

IEEE ICC // Communications Technologies 4Good
8-12 June // Montreal, Canada

CONCLUSIONS

FUTURE WORK

• We introduced the task of identifying compromised software
containers given their file system with machine learning and
proposed a streaming, patch-based CNN approach.

• To encourage further research, we introduced a novel dataset of
Compromised Software Containers (COSOCO) along with a
Dataset Generation Pipeline.

• We used the COSOCO dataset to train CNN classification models
and produce baseline results

• Investigate Transformer architectures for direct training on byte-
level representations.

• Examine the performance vs efficiency trade-offs when training
at higher image resolutions.

• Investigate techniques under the framework of Multiple Instance
Learning (MIL) that may be more suitable.

21

APPENDIX B: TOOL DEMONSTRATION

IEEE ICC // Communications Technologies 4Good
8-12 June // Montreal, Canada

22

IEEE ICC // Communications Technologies 4Good
8-12 June // Montreal, Canada

23

TOOL DEMO

TOOL DEMONSTRATION

20XX IEEE ICC // Communications Technologies 4Good 8-12 June // Montreal, Canada 24

