IEEE International Conference on Communications

r‘C/ l E E E Icc ® Communications Technologies 4Good

8-12 JUNE 2025 // MONTREAL, CANADA

Malware Detection in Docker Containers:
An Image is Worth a Thousand Logs

A. Nousias, E. Katsaros, E. Syrmos, P. Radoglou-Grammatikis, T. Lagkas, V. Argyriou, |I. Moscholios, E. Markakis, S. Goudos
and P. Sarigiannidis*

* University of Western Macedonia, psarigiannidis@uowm.gr

Under DYNABIC & P2CODE

K3Y Ltd

www.k3ylabs.bg

A. Nousias
E. Katsaros
E. Syrmos
P. Radoglou Grammatikis

20XX

le

International Hellenic
University

www.cs.ihu.gr

T. Lagkas

Hellenic Mediterranean
University

www.hmu/en/home/

E. Markakis

&

DYNABIC

University of
Western Macedonia

www.uowm.gr/en/

P. Sarigiannidis
P. Radoglou Grammatikis

JUIS

Kingston
University

London

Kingston University
London

www.kingston.ac.uk/

V. Argyriou

This project has received funding from the European Union’s Horizon Europe research and innovation
programme under grant agreement No 101070455 (DYNABIC) and No 101093069 (P2CODE)

IEEEICC // Communications Technologies 4Good
8-12 June // Montreal, Canada

~2COD=

University of
Peloponnese

www.uop.gr/en

I. Moscholios

Aristotle University
of Thessaloniki

www.auth.gr/en/homepage/

S. Goudos

@ IEEE ICC’

INTRODUCTION & RELATED WORK

IEEEICC // Communications Technologies 4Good

8-12 June // Montreal, Canada

INTRODUCTION

Software Containers Broad Adoption and Benefits:

* Gained widespread adoption in recent years.

* Abstract system-specific dependencies and enable scalability.
* Represent standardized, self-contained units of software.

* Support diverse functionalities: OS, DB, ML models, etc.

Security Challenges with Container Adoption

* Significant security challenges arise despite benefits.
* Injection of malicious software into containers is a growing

threat.
 Compromised containers can be entry points for further
attacks.
e IEEEICC // Communications Technologies 4Good
@ |EE€q&' 8-12 June // Montreal, Canada N

RELATED WORK

2 MAIN LINES OF WORK

1. Classic Approaches in Malware Detection

. Sathyanarayan et al. 2008 i * Signature-Based Detection: Scans files for known
. Signature generation and detection of malware patterns; fast for known threats but struggles
malware families. with novel or polymorphic malware.

* Heuristic-Based Detection: Analyzes static features of
files for suspicious characteristics (e.g., obfuscation,
Aslan and Samet. 2020 uncommon instructions); helps detect unknown

. . malware but risks false positives.
A comprehensive review on malware

detection approaches. * Behavioral Monitoring: Observes runtime behavior
(e.g., unauthorized network communication, file
modifications); effective but may miss dormant
malware.

IEEEICC // Communications Technologies 4Good
8-12 June // Montreal, Canada

RELATED WORK

2 MAIN LINES OF WORK

2. ML-based Malware Detection

Cui etal., 2018

[~
Detection of malicious code variants based on

deep learning. L CNN-Based Malware Recognition: Uses CNNs to classify

Gilbert et al., 2019 whether a file is a malware or not.

[~
Using CNN for classification of malware
represented as images.

Karn et al., 2020 B

[~
Cryptomining detection in container clouds using
system calls and explainable machine learning.

Machine Learning Advances in Malware Detection: Uses
LSTMs system calls in Kubernetes pods, for cryptomining
malware.

Y

Landman and Nissin, 2021 N

[~
Deep-hook: A trusted deep learning-based
framework for unknown malware detection and
classification in linux cloud environments.

Deep-Hook: Detects obfuscated malware by monitoring
applications and analyzing memory dumps.

-

IEEEICC // Communications Technologies 4Good
8-12 June // Montreal, Canada

THIS PAPER'S RESEARCH SCOPE

FULL CONTAINERS

Previous research examines single-files, we focus on the attestation
of the whole software container, i.e. a multi-GB file.

VIA THE FILE SYSTEM

We want to attest docker containers before deploying them, that is,
without access to memory dumps or runtime behavior just the file
system.

EFFICIENT

We want the method to scale to arbitrarily large containers and
be able to run on small or no GPUs, with relatively low runtimes.

TOWARDS ZERO DAY

We want a method that will be able to learn patterns and perhaps
recognize novel threats. Malware has basic recurring patterns such
as changes in the registry or other system files.

IEEEICC // Communications Technologies 4Good

1EEE ICC 8-12 June // Montreal, Canada

C1. TASK FORMULATION

We formulate the Novel task of
identifying malware-compromised
dockerized software containers
with ML-based methods and
propose a streaming, patch-based
CNN approach.

CONTRIBUTIONS

4 MAIN CONTRIBUTIONS

C2. DATA GENERATION
PIPELINE

We define a fully customizable and
scalable data generation pipeline for
creating images of benign and
compromised software containers
across various OS and CPU
architectures.

C3. COMPROMISED SOFTWARE
CONTAINER DATASET

We introduce a novel dataset
containing 3,364 large-scale RGB
image representations of benign and
compromised dockerized software
containers.

IEEEICC // Communications Technologies 4Good

8-12 June // Montreal, Canada

| N |
ot Y,

o e
S L 3
a .
a s
- | | |
n J—]
. —]
. N
. ‘0
’0 *

...ll‘

C4. EXPERIMENTAL
ANALYSIS

We show experiments with various
CNNs and demonstrate our
approach outperforms commercial
methods.

PROPOSED METHOD

IEEEICC // Communications Technologies 4Good

8-12 June // Montreal, Canada

PROPOSED METHOD

/ ‘Image Convemf

Malware Detector » \

Q 2]
2000001001010 == v
L = SIREA
TAR Vol] B = Eiﬁ—) ME
SNL— % oot
K Input Tarball File 7 Image X’ [[H x W x 3] Patches T, | P« [Hy, x W, x 3] ‘ Outputs ¥p I Py
Steps Advantages
Our method assumes as input the tarball file binary array * The patch-based approach allows to process larger
representing the dockerized software container. containers (images) that would not fit into the GPU
otherwise.
1. Image Converter: Casts the byte array onto an RGB
image representation using an Image converter based * Allows for early-exit inference, i.e. it can stop once it
on Hilbert space-filling curve. detects the first malicious patch, enabling faster
: : : : runtimes.
2. Malware Detector: (i) Splits the image into patches of
predefined shape and process them with a CNN * Explainable-by-design, as the malicious patch points
model. (ii) Performs predictions on each patch to the malicious bytes when reversing the Hilbert
whether it is malicious or not. curve from the image back to the bytes.

IEEEICC // Communications Technologies 4Good
8-12 June // Montreal, Canada

@ IEEE ICC’

DATA GENERATION PIPELINE

IEEEICC // Communications Technologies 4Good

8-12 June // Montreal, Canada

DATA GENERATION PIPELINE

P i 1 & ®—— O ——
=% 00 k-4
Software Tool, | = “t‘o“g"" L
ecords ot Mask
Sooords. @
............... g@
3 ‘
C 4 : —t e mage
@ -8 p = P _.g o= P
. Malware | E ; Dataset 'Software Container Container Convarta
\ Records | = —— s/ Configuration L Builder Snapshots ¥ Image j
1. Extract raw tool & malware records 3. Software Container Builder
Ingest tools from the Linux APT package manager as Builds benign and compromised software containers
well as malwares from MalwareBazaar. from the dataset definition and stores them as tarfiles.
2. Dataset Definition Generator 4. Image & Mask Converter
Generates a Dataset Definition by selecting Converts tarfiles to images. Uses container difference
malware, tools, OS and CPU architecture. Allows tool to create segmentation masks.

fine grained control over the data generation. The
definition is a blueprint of the dataset to-be-
produced.

IEEEICC // Communications Technologies 4Good
8-12 June // Montreal, Canada

@ IEEE ICC’

COMPROMISED SOFTWARE CONTAINER
DATASET

IEEEICC // Communications Technologies 4Good

8-12 June // Montreal, Canada

THE COMPROMISED SOFTWARE CONTAINER DATASET (I)

o Based on the Data Generation Pipeline, we introduce a synthetic

dataset of 3364 images representing benign and malware-
Compromised Software Containers (COSOCO).

Each image in the dataset represents a dockerized software
container that has been converted to an image. Software
container records are labelled benign or compromised:

* A benign software container will have installed commonly
used harmless packages and tools.

e A compromised software container, will have, among
harmless benign tools and packages, its underlying file
system affected by some activated malware instance.

, . Each compromised instance is accompanied by a mask, i.e. a
Figure: Channel decomposition of a 1024x4096 down-
sampled software container image. From left to black and white image which marks the pixels that correspond to
right: R-channel: byte-class, G-channel: byte- the files of the underlying system that have been altered by a

value, B-channel: tarball file structure, RGB

image malware.

IEEEICC // Communications Technologies 4Good

8-12 June // Montreal, Canada

THE COMPROMISED SOFTWARE CONTAINER DATASET (1)
[oWl ren vaidien Tes |

Nr. Images 3364 2360 328 676
Nr. Benign Images 2225 1564 214 447
DATASET Nr. Compromised Images 1139 796 114 229
STAT| ST|CS Nr. Unique Packages 1297 1053 206 393
Nr. Unique Malware 495 347 49 99
Avg. Image Size 158 MP 158 MP 157 MB 157 MP
Avg. Mask / Image Ratio 0.32% 0.35% 0.29% 0.24%

Mirai 225 494 58 KB
Gafgyt 119 284 132 KB
CoinMiner 28 72 451 KB
XorDDos 27 50 18 KB
MALWARE Kaiji 21 53 4.7 MB
STAT'ST'CS Tsunami 16 43 1024 B
GoBrut 14 34 512 B
BPFDoor 7 16 20 KB
Rotalakiro 5 5 134 KB
Unknown 33 79 678 KB

IEEEICC // Communications Technologies 4Good

8-12 June // Montreal, Canada

EXPERIMENTAL ANALYSIS

IEEEICC // Communications Technologies 4Good

8-12 June // Montreal, Canada

QUANTITATIVE RESULTS (I) = CNN ARCHITECTURES COMPARISON

* We present results for multiple lightweight CNN architectures along with their parameter counts. All models were
trained on a downscaled dataset version were software containers were represented by 1024 x 4096 sized images.

* We evaluate on multiple metrics including F1 score, Precision, Recall and Accuracy. We rank model performance
based on F1 Score.

Key Metrics - Precision Recall Accuracy # Params (M)

VGG 0.552 0.928 0.393 0.784 132.9 } VGG has the worst performance despite
highest parameter count.

ShuffleNet v2 0.586 0.857 0.445 0.787 2.3

MobileNet v2 0.622 0.855 0.489 0.799 3.5

AlexNet 0.680 0.821 0.581 0.815 61.1

. EfficientNet is second in performance with

EfficientNet 0.724 0.861 0.624 0.837 5.3
half parameters than ResNet.

T ARG o S REE . RgsNet18 stands out in terms of performance
with an F1 score of 0.736.

(:. IEEE ICC

QUANTITATIVE RESULTS (1) - VIRUS TOTAL COMPARISON

* To establish a baseline we use Virus Total, an online platform with more than 70 commercial antivirus scanners to
evaluate the test set of the Compromised Software Container dataset. We upload the test set and parse the results of
their analysis.

* Our method outperforms all individual engines as well as all their ensembles while being a lot faster than the API call
and not relying on external software.

Key Metrics - Precision Recall Accuracy
Pandas (#32) 0.085 1.000 0.044 0.679
Evaluation results of popular engines and their
K ky (#18 0.598 1.000 0.427 0.807 - : . .
arspersky (#18) relative ranking (#) among other engines
Ikarus (#1) 0.703 1.000 0.542 0.846
VirusTotal (2 20) 0.601 0.990 0.431 0.807 Evaluation results for "ensembles of engines".
- With '> a' we denote the scores where at least
VirusTotal (= 1) 0.709 0.992 0.551 0.848 a engines classify a record as malevolent.
S oeT: 0.826 0.664 0.839 } Oulrt'approach outperforms all commerial
solutions.

(:. IEEE ICC

QUALITATIVE RESULTS

Each pair illustrates an image and its respective mask. White
pixels refer to the bytes compromised by malware activity,
whereas the red bounding boxes indicate the patch predicted
as malevolent using ResNetl§.

(:. IEEE ICC

Our streaming, patch-based approach is:

a) Scalable: Reduces GPU memory required, as it processes
the image in patches.

b) Efficient: Implicitly allows early-exit inference to improve
the runtime, as it finishes inference after the first malicious
patch is detected.

c) Explainable-by-design: By identifying the patch with
malicious content, provides explanations by design. One can
easily reverse engineer the image generation process using
the Hilbert space-filling permutation and derive the exact
byte locations of the malicious component within the
container.

@ IEEE ICC’

CONCLUSIONS & FUTURE WORK

IEEEICC // Communications Technologies 4Good

8-12 June // Montreal, Canada

8-12 Jupg

CONCLUSIONS

We introduced the task of identifying compromised software
containers given their file system with machine learning and
proposed a streaming, patch-based CNN approach.

To encourage further research, we introduced a novel dataset of
Compromised Software Containers (COSOCO) along with a
Dataset Generation Pipeline.

We used the COSOCO dataset to train CNN classification models
and produce baseline results

FUTURE WORK

Investigate Transformer architectures for direct training on byte-
level representations.

Examine the performance vs efficiency trade-offs when training
at higher image resolutions.

Investigate techniques under the framework of Multiple Instance
Learning (MIL) that may be more suitable.

@ IEEE ICC’

APPENDIX B: TOOL DEMONSTRATION

IEEEICC // Communications Technologies 4Good

8-12 June // Montreal, Canada

TOOL DEMO

IEEEICC // Communications Technologies 4Good
8-12 June // Montreal, Canada

TOOL DEMONSTRATION

EEEEEEE // Communications Technologies 4Good 8-12 June // Montreal, Canada

