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Abstract—As software supply chain accelerate through DevOps
automation and continuous delivery, container images have
become the primary vector for both application development
and security compromise. While static vulnerability scanners can
detect known CVEs, they are unable to uncover zero-day mal-
ware or runtime threats- particularly in container images sourced
from public registries, which are maintained by individual
contributors of varying intent and trustworthiness. In this paper,
we introduce a GitOps-drive sandboxing framework for proactive
and tamper-resistant container image attestation, addressing the
urgent need for deeper analysis before deployment. Our approach
combines static vulnerability detection with dynamic behavioral
inspection using gVisor-based sandboxing. Through filesystem
analysis, system call tracing, and network activity monitoring, the
framework identifies malicious patterns and anomalies. Adopting
this framework will empower developers and security teams to
enforce stronger trust guarantees even in the absence of SBOMs
or SLSA levels. This framework lays the foundations for a
resilient, trustworthy software delivery at scale in compliance
with NIST SP 800-218 and ISO/IEC 27001 standards.

Index Terms—docker, oci, docker containers, devops, cyberse-
curity, malware detection, tracing, cloud native security

I. INTRODUCTION

Containerization has become an integral part of modern
Continuous Integration and Continuous Delivery/Deployment
(CI/CD) pipelines, providing portability and consistency
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across heterogeneous environments [1]. Yet, reliance on public
contributed container images introduces significant security
risks: static vulnerability scanners can only identify known
Common Vulnerabilities and Exposures (CVEs), leaving zero-
day exploits and especially runtime-only malware undetected.
Container registies such as Docker Hub, Github Container
Registry, and Quay perform automated CVE scanning in the
background, as a preventative measure. However, they ignore
to capture the runtime behavior, where malicious artifacts
can still traverse into production. To this end, hardend base
images reduce the CVE surface by finetuning the dependency
graphs of known container images. Altough this approach
significantly reduces the CVE exposure, they are not able to
guarantee runtime safety when adversaries embed payloads
that trigger under specific conditions.

To address this gap, we introduce a GitOps-based sand-
boxing framework that combines industry-standard static CVE
scanning with dynamic sandboxing inspection (i.e., filesystem
access, syscall tracing, network monitoring). By aggregating
CVE summaries, external STIX threat reports, and runtime
logs into a unified attestation, our approach allows Software
Engineers to validate container images even in cases where
Software Bills of Materials (SBOMs) or Supply Chain Levels
for Software Artifacts (SLSA) metadata are absent, while
conforming to the NIST SP 800-218 and ISO/IEC 27001
standards [2], [3].

The contribution of this paper is summarised as follows:

1) A GitOps-compatible attestation framework is presented
that combines static and runtime container analysis.

2) A two-layer sandboxing architecture is introduced to se-
curely execute and monitor untrusted container images.

3) We demonstrate how runtime monitoring of system
calls and network activity can enhance the detection of
previously unknown threats in the software supply chain.

The remainder of this paper is organized as follows. Section
II performs a background review, while Section III dives
into the related work on container security and sandboxing
methods. Section IV details the architecture and components
of the proposed framework using the C4 Model abstraction,
while Section V concludes the paper with directions and future
work.



II. BACKGROUND

A. Container Security Challenges

The adoption of containerization technologies like Docker
has transformed software development, enabling continuous
integration and continuous delivery (CI/CD) pipelines. Regard-
less of their advantages, containers introduce critical security
challenges. Containers occasionally interact with the host
operating system kernel, increasing their attack surfaces. In de-
tail, common threats include base-image vulnerabilities, mis-
configurations, and software supply chain compromises [4],
[5]. Public container registries such as Docker Hub, GitHub
Container Registry, and Quay.io are particularly vulnerable
due to varying degrees of trustworthiness of contributors
[6]. Attackers often exploit this level of trust by disguising
malicious images as legitimate, introducing backdoors or in-
jecting malware during the image build process or via third-
party dependencies [7]. Misconfigured containers running with
excessive privileges can further introduce lateral movement or
host compromise [8].

B. Limitations of Static Analysis

Static vulnerability scanning tools such as Trivy, Clair,
and Grype are commonly used to identify known Common
Vulnerabilities and Exposures (CVEs) by matching container
software components against public vulnerability databases
[9]–[11]. Although these tools are effective for detecting
documented vulnerabilities, they fail to detect zero-day threats,
runtime-triggered exploits, or sophisticated malware embed-
ded within container filesystems. Static analysis alone thus
provides a false sense of security, as it lacks the capability to
detect threats that activate under specific runtime conditions
[12], [13]. Therefore, static analysis should be viewed as
foundational yet insufficient on its own, necessitating com-
plementary security methods to address advances and hidden
threats.

C. Dynamic Analysis and Sandboxing Fundamentals

Dynamic analysis complements static approaches by ob-
serving container behaviour during runtime to detect anoma-
lous activities. Sandboxing, a form of dynamic analysis, pro-
vides secure environments where untrusted container images
can be executed safely. Such sandboxing technologies include
Google’s gVisor, which intercepts system calls at the user-
space kernel, isolating containers from the host kernel, thereby
significantly reducing the risk of container escapes [14], [15].
On the other hand, Kata containers use micro-virtualization
for hardware-based isolation. These dynamic techniques can
capture runtime anomalies, such as suspicious system calls or
unauthorised network activity, which are typically indicative
of embedded malware or unknown vulnerabilities [16].

III. RELATED WORK

A. Existing Static Vulnerability Scanners

A considerable work has been focused on the static analysis
of container images to detect unknown vulnerabilities. Tools

such as Trive, Clair and Grype implement signature-based
scanning techniques that match image contents against public
vulnerability databases, including the National Vulnerability
Database (NVD). These tools are widely adopted within
CI/CD pipelines due to the simplicity, scalability, and effec-
tiveness in identifying documented CVEs.

Nevertheless, static analysis exhibits fundamental limita-
tions when considering the sophistication of contemporary
attackers in coordinated large-scale attacks. Specifically, they
are incapable of identifying obfuscated threats, polymorphic
malware, and zero-day exploits that are not yet included in
CVE databases. Furthermore, static scanners are not designed
to capture contextual behaviours that manifest only during run-
time, such as conditional execution of dormant payloads or
lateral network probing. As a result, reliance on static scanners
alone may lead to a false sense of security, particularly when
container images originate from unverified sources or public
registries maintained by contributors of unknown trustworthi-
ness.

B. Runtime Analysis and Sandboxing

To tackle the limitations of static scanners, studies have
proposed dynamic and behaviour-based analysis approaches
that require precise scaffolding of infrastructure to capture it.
gVisor, developed by Google, introduces a user-space kernel
that intercepts and emulates system calls, thereby providing
a strong isolation between running container workloads and
the host system. Similarly, Kata Containers leverage micro-
virtualisation to run each container in a lightweight virtual
machine, offering hardware-enforced security boundaries.

In addition to isolation, system call tracking, file system
interaction monitoring, and network traffic analysis have been
explored as detection mechanisms. Specifically, the COSOCO
malware detector, which employs a novel representation of
container images as RGB-encoded tarball visualisations, en-
abling the classification through convolutional neural networks
[17]. Although such techniques demonstrate promise in iden-
tifying unknown or obfuscated threats, they are frequently
deployed in an ad hoc manner, lack interoperability with
standard reporting formats and are detached from DevOps-
native workflows.

Concerning is the fact that current sandboxing approaches
do not consistently integrate with automated software deliv-
ery practices. This absence of formalised attestation artifacts
hinders their application in high-assurance environments that
require traceability and auditability of runtime behaviours.

Specifically, multiple classes of runtime exploits continue to
challenge containerised environments. These include container
escape vulnerabilities, cross-container attacks, and fileless
malware injections. Notably, the RunC runtime vulnerability
(CVE-2019-5736) enabled attackers to gain host-level access
by exploiting weaknesses in how system calls were handled,
allowing a compromised container to overwrite the host binary
[18]. Translating this into orchestrated environments such as
Kubernetes, makes this CVE more critical. Since breaches in



one container can result in lateral movement across pods via
shared resources.

C. Secure Build Pipelines and Industry Standards
Recent industry efforts have sought to improve software

supply chaing integrity by promoting verifiable build processes
and artifact provenance. For instance, Docker and Chainguard
offer minimal, hardened base images that are engineered to
reduce the CVE surface area. Simultaneously, cryptographic
signing and verification of container images are being realised
by the Sigstore project, thereby ensuring immutability and
origin of authenticity.

The SLSA framework further defines the best practices for
software build and distribution pipelines. For instance, SLSA
Level 3, the systems are expected to enforce strong guarantees
on build provenance through authenticated CI/CD workflows,
isolated builders, and tamper-evident logs. Although this
level significantly increased the artifact trustworthiness barrier,
SLSA L3 remains focused on the integrity of the build process
rather than the behaviour of the artifact post-deployment.

In addition, the cryptographically verified artifacts do not
ensure the possibility of embedded malicious behaviour that
activates only under specific runtime conditions. An under-
estimated portion of publicly available container images that
lack SBOMs remain unclassified under any formal trust model
[19].

Consequently, there is an urgent need for complementary
mechanisms that need to be adopted to provide behavioural
attestation of container images as sophisticated adversaries
find new ways to inflict catastrophic downtimes. The proposed
framework addresses this gap with a retroactive attestation
approach, which enhances the security posture even when
SBOMs or SLSA levels are absent. Ultimately, this design
is intended to support compliance security standards such as
NIST SP 800-218 and ISO/IEC 27001, which emphasize soft-
ware supply chain integrity and verifiable artifact provenance.

IV. ARCHITECTURE & SPECIFICATIONS

To realize a proactive malware detection in containerized
CI/CD pipelines, the proposed framework adopts a layered
architecture modeled using the C4 Model, which captures
the structure of the system across three abstraction levels:
Context, Container, and Component. This section provides a
detailed description of the interactions with external systems,
the internal software containers that comprise the framework,
and the key components within each subsystem. The initial
consideration of the implementation aims to facilitate GitOps-
based workflows while providing actionable security analysis
before containers are deployed.

A. Context-Level Architecture
The context-level view, illustrated in Fig.1, defines the

boundary of the proposed Container Attestation Framework
(CAF) and its interactions with external actors and systems.

A Software Engineer, acting either manually or via an
automated pipeline, submits an attestation request for a con-
tainer image. This request is processed by the CAF, which

Fig. 1: Container Attestation Framework - Context Level

then performs static and dynamic analysis by orchestrating
interactions with both external software systems and internal
subsystems.

The framework retrieves the container image from a public
container registry, such as Docker Hub, or RedHat Quay.
Subsequently, two static analyses are triggered simultaneously:

1) A CVE Scanner analyzes the container’s metadata
and software packages to detect known vulnerabilities
leveraging the National Vulnerability Database (NVD).

2) A Malware Detector receives the container image as a
tarball and responds in a STIX-compliant threat report.

After collecting results from the static scans, the CAF
executes the container sandboxed environment in our case,
using gVisor. A secure user-space kernel that intercepts and
emulates Linux syscalls. During this process, the framework
captures and stores system call traces and network packets in
a fully monitored environment without external connectivity.

Finally, the results from both static and runtime analyses
are aggregated into a structured JSON report. Specifically,
this report includes CVE summaries, the Malware detection
results (STIX report), behavioral logs, and composite risk
score. The final report is returned to the requesting user or
system, depending on the type of trigger.

B. Container-Level Architecture

The container-level architecture, shown in Fig.2, decom-
poses the internal structure of the CAF into five loosely
coupled containers, each responsible for a distinct phase of
the attestation process.

1) Container Processor: This container is mostly used as
an entry point into the system. It exposes a REST API
for the attestation and dispatches tasks for execution to
other components. Upon receiving an attestation request,
it parses the container image name, downloads it locally,
and generates a unique attestation identified (UUID). It
triggers simultaneous requests for CVE analysis, mal-
ware detection, and sandbox execution tasks leveraging
a distributed task queue.



Fig. 2: Container Attestation Framework - Container Level

2) Sandboxing Builder: This container configures and
initiates the sandbox environment using gVisor. Specif-
ically, it registers runtime parameters, including vol-
umes mounts for the logs generated during the runtime
execution, it also sets the OCI runtime to runsc, it
disables external networking, and sets debug/strace flags
to capture system behavior. This configuration ensures
full isolation and observability without compromising
the host.

3) Runtime Analysis Engine: During execution, this con-
tainer monitors the live behaviour of the attested con-
tainer. In detail, system call activity is captured through
strace using gVisor’s native syscall hooks. Similarly, the
network traffic is captured in a PCAP file where the
loopback is only available across the network stack.
Once the execution completes, which is bounded by a
timeout event specified in the configuration option of
the attestation request, logs are parsed and stored for
downstream analysis.

4) Static & Runtime Database: Runtime logs, PCAP files,
and external scan results are stored in two subsystem:

• A SQLite database for structured reports (CVE and
Malware metadata in STIX report)

• A Filesystem directory for raw execution logs (e.g.,
PCAP, syscall trace files)

5) Report Generator: This container aggregates all data
from the previous phases. It then computes a final risk
score based on CVE severity, malware classification, and
behavioral anomalies that have been observed at run-
time. The report is then formatted into a JSON output,
which includes the actual STIX report for completeness.

C. Component-Level Architecture

Following a more detailed break down of each container
the component-level architecture is used. Fig.3 showcases

the functional software components and clarifies how these
modules coordinate to execute a container attestation pipeline,
from request to report delivery.

The initiation is triggered as previously mentioned by a
Software Engineer manually or automatically via a pipeline.
The attestation request is received by the API handler, a
lightweight REST endpoint built with the Python Flask Web
Framework. The incoming request includes the image name,
the image tag, and the repository source (e.g., Docker Hub)
to which the docker client must connect to download. Upon
receiving the attestation request, a unique attestation ID is
attached for traceability across the attestation pipeline.

In order to manage the asynchronous task execution, a Task
Queue implemented using Python Celery sits in the middle
and dispatches three parallel jobs:

1) A CVE scan task
2) A malware detection task
3) A runtime sandbox execution task
Each task is handled by a designated Python client within

the Container Processor container. The CVE Scan task is
received by the CVE Analysis Client, which is responsible
for communicating with the external CVE scanning services
(such as Trivy, Clair or Gripe) via HTTP requests. After the
scanning process a webhook for storing the resulting CVE data
is used to persist them into the Security Analysis Database.
Similarly, the malware detection task is received and handled
by the Malware Scan Client. Responsible for converting the
subject container into a tarball file and dispatching an HTTP
request to the external Malware Detector service, in our
case, the COSOCO malware detector. The response with the
classification of the container is wrapped in a STIX threat
report and saved into the Security Analysis Database.

Simultaneously, the Sandbox Manager receives the runtime
sandbox execution task and prepares the environment for
executing the container in a controlled and fully monitored
runtime. Specifically, it configures the Docker daemon to use
the runsc OCI runtime provided by gVisor, enabling syscall
interception and isolation from the host kernel. Meanwhile,
the Network access is disabled to further secure the sandbox,
leaving only the loopback of the network stack. The strace and
debug logging is enabled to capture the runtime behavior of
the container. All generated logs are named using the unique
attestation identifier generated by the API Handler in the
Container Processor container.

Once the sandbox is ready to be used, the Sandboxing
Builder takes over the execution. Given that the Sandboxing
Orchestrator and the Sandbox Executor utilize the underlying
docker daemon and gVisor, but their operations are different,
they are illustrated separately in the figure. The Sandbox
Orchestrator builds the execution environment by specifying
the directories where the logs will be persisted. In contrast, the
Sandbox Executor launches the container for time-constrained
execution (e.g., 60 seconds) using the provided configurations.

During the execution of the container, the Runtime Analysis
Engine in the background is activated with the gVisor runtime
hooks configured by the Sandboxing Builder. These hooks



Fig. 3: Container Attestation Framework - Component Level

capture (i) all system calls made by the containerized process
(via strace-compatible output) and (ii) internal network com-
munication that is captured in PCAP format via the loopback
interface.

After the duration for executing the container in the sand-
box, the Network & Syscall Parser preprocesses the raw
syscall logs and network captures to follow the naming con-
vention of the unique attestation identifier. Afterwards, it then
moves them into the Static & Runtime Database. Considering
the type of the generated files, a remote or local object file
storage can be leveraged instead.

As a final step, the Report Generator takes over. The Report
Aggregator, using the unique attestation identifier, fetched the
CVE results, the Malware STIX report, the runtime syscall
logs and the network PCAP file. Once all are in place, the

Risk Analyzer starts the assessment of the overall security
score of the subject container. It correlates multiple sources of
input such as CVE scores, Malware classification, anomalous
runtime behaviors and network traces. Due to the requirement
of domain-specific expertise and the broader scope such inte-
gration entails, this component is intentionally abstracted as a
high-level placeholder in the current design. Potential integra-
tions may include third-party analysis tools, large-language
model (LLM) interfaces, intrusion detection systems, threat
intelligence feeds, or statistical anomaly detectors. Finally, the
Report Formatter serialises the output of the Risk Analyzer
into a JSON response, which can be consumed by either a
Software Engineer or an automated downstream process.



V. CONCLUSION & FUTURE WORK

This paper introduced a GitOps-compatible container attes-
tation framework designed to enhance supply chain security
by integrating static CVE analysis with dynamic sandboxing.
The proposed architecture adopts a multi-layered approach
that combines industry-standard vulnerability scanners with
behavioral runtime monitoring via gVisor, producing a com-
prehensive security report in STIX format. By observing both
the container’s filesystem and its runtime behavior—including
system calls and internal network traffic—the framework aims
to identify threats that static analysis alone would miss, such
as zero-day malware, hidden executables, or misconfigured
containers.

Unlike existing solutions that focus on signature-based
detection or hardened base images, our approach proactively
evaluates existing images found in public container registries,
regardless of their provenance or documentation (e.g., SBOM
or SLSA metadata). This expands its applicability to legacy
systems, community-contributed images, and third-party soft-
ware commonly integrated into DevSecOps pipelines.

While the architecture and component breakdown offer a
practical blueprint for implementation, several avenues exist
for future work. First, integrating automated decision-making
policies—such as blocking or flagging attested containers.
Second, extending the framework with live threat intelligence
feeds or anomaly detection models may further improve be-
havioral detection accuracy. Finally, deploying the framework
in production-like Kubernetes environments (e.g., ArgoCD
pipelines) will allow for GitOps-native container verification
workflows at scale.

As modern software delivery accelerates, ensuring trust in
containerised workloads becomes increasingly critical. This
framework offers a foundational step toward that goal by
enabling proactive, runtime-aware security attestation of con-
tainer images.
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