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1. Introduction

The rapid adoption of digital technologies has introduced heavy
reliance on interconnected software systems across industries, govern-
ments, and societies [136]. From cloud computing to Internet of Things
(IoT) devices, these systems support healthcare services and financial
transactions. Unfortunately, this dependence on software introduces
significant security risks. Even minor flaws in code or design can be ex-
ploited by attackers to disrupt services, steal data, or cause harm [173].
To systematize these threats, frameworks like MITRE ATT&CK, short for
Adversarial Tactics, Techniques, and Common Knowledge, have been
introduced [152]. MITRE ATT&CK provides a standardized taxonomy
for detecting and mitigating adversarial behaviors across the cyber kill
chain. It categorizes adversarial techniques aimed at compromising soft-
ware infrastructure such as phishing, privilege escalation, and lateral
movement, to help organizations anticipate threats, profile attackers,
and defend effectively.

Nowadays, artificial intelligence (AI) and machine learning (ML) are
complementing traditional software, introducing new layers of cyberse-
curity risks [125]. Unlike static software, ML systems learn from data,
adapt to new inputs, and operate probabilistically. These characteristics
create novel attack surfaces [182]. Malicious actors can exploit these
dynamic models by contaminating training sets to insert malicious trig-
gers, [16], manipulating inputs to produce incorrect outputs, [50], or
recovering private parameters through reverse-engineering techniques
[135]. Far from being theoretical concerns, such attacks have already
undermined facial recognition systems, led autonomous vehicles astray,
and circumvented fraud detection platforms [170].

Notably, Al systems are vulnerable to both digital and physical
attacks, with numerous real-life examples. In one digital attack, an in-
dividual used evasion techniques to exploit ID.me’s identity verification
system in California [164]. The attacker paired stolen personal infor-
mation with fake driving licenses and selfies of himself wearing wigs.
Using these materials, he filed at least 180 fraudulent unemployment
claims, stealing over $3.4 million before being arrested. On the physical
front, Al-based cyber-physical systems are equally at risk. For example,
in June 2019, researchers revealed vulnerabilities in global navigation
satellite systems (GNSS) dependent platforms by successfully spoofing
the global positioning system (GPS) navigation of a Tesla Model 3 [36].
By manipulating navigation data, the attackers demonstrated how spoof-
ing tactics could impact real-time driving decisions, calling for further
research into stronger cybersecurity measures for GPS technologies.

The transition from traditional software to Al-driven systems high-
lights the need for adaptive security frameworks, [125]. While MITRE
ATT&CK, [152] addresses conventional cyber threats targeting software
infrastructure, there is still a significant gap regarding the threats tar-
geting the Al landscape. MITRE responded to the growing risks faced
by Al and ML systems by creating ATLAS, short for Adversarial Threat
Landscape for AI Systems [101]. It is an offshoot of the MITRE ATT&CK
framework that focuses on threats unique to AI. MITRE ATLAS high-
lights how adversarial objectives evolve when targeting ML models.
For example, an attacker might exploit a biased model to manipulate
loan approvals or weaponize a misclassified image to cause autonomous
systems to fail, as discussed in [170].

The MITRE ATLAS framework facilitates the organization of the
complex threat landscape of ML-based applications. It is organized
hierarchically and provides a structure to classify concepts and knowl-
edge about threats, adversarial tactics, and mitigations. Moreover, it
is expressive enough to support in-depth analysis and reasoning about
both attacks and defenses. By contextualizing these threats, MITRE
ATLAS not only raises awareness but also assists organizations in proac-
tively defending AI systems [89]. This paper explores how the MITRE
ATLAS framework provides a roadmap for securing modern technolog-
ical ecosystems, ensuring resilience against legacy and emerging cyber
threats [195].
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In this paper, we review the MITRE ATLAS taxonomy and discuss the
classification and relevant case studies that motivate it. Thereafter, we
carefully select and review 63 research papers relevant to adversarial
attacks of various types, which essentially embody as described by the
MITRE ATLAS framework. Our contributions are summarized as follows:

« We provide the first-to-date analysis of adversarial attacks through
the lens of MITRE ATLAS, systematically mapping threats into
six distinct categories: Evasion, Poisoning, Model Extraction,
Inference, Model Inversion, and LLM-related attacks. By identify-
ing tactics, objectives, and corresponding techniques, we provide
a structured understanding of the evolving threat landscape.

We conduct a detailed and rigorous analysis of 63 selected research
papers covering a wide spectrum of domains and modalities, from
traditional Computer Vision (CV) and Natural Language Processing
(NLP) to Graph Neural Networks (GNN), and more recently, Large
Language Models (LLMs). Our analysis not only categorizes these
works but also systematically evaluates their theoretical contribu-
tions, threat models, datasets, and experimental outcomes, offering
deep insights into the state-of-the-art.

We introduce a dedicated analysis of defense mechanisms in
Section 6, mapping 24 mitigation strategies directly to their re-
spective ATLAS attack techniques. This strengthens the practical
relevance of the work by demonstrating how each threat can be
countered with effective and actionable defense strategies.

We distill our analysis in concise limitations of the current litera-
ture and discuss them in the context of future research directions.
Furthermore, we propose structural improvements to the MITRE
ATLAS framework to address novel and emerging attack vectors.

The rest of this paper is organized as follows. Section 2 discusses re-
lated surveys on adversarial attacks across different modalities, threat
models, and learning paradigms. Section 3 presents the methodological
framework. In Section 4 we provide the background and discuss in de-
tail the miter ATLAS tactics, their objectives, and the techniques they
include. The techniques are thereafter mapped to diverse attack cate-
gories in line with the existing literature, and a total of 63 papers are
analyzed in Section 5 to provide an in-depth overview of the attack land-
scape. Section 6 discusses defense and mitigation methods for handling
these attacks. In Section 7, we discuss open research avenues that are
yet understudied. Lastly, in Section 8 we revisit and conclude the main
parts of this work.

2. Related survey works

In a seminal survey Yuan et al. [182] discuss adversarial attacks at
test time, widely termed evasion attacks. They analyze attacks based
on the threat model, perturbation and reported benchmarks. Herein,
the authors decompose the threat model into four aspects: adversarial
falsification, adversary’s knowledge, adversarial specificity, and attack
frequency. Adversarial falsification includes false positive attacks, where
benign inputs are misclassified as malicious, and false negative attacks,
where malicious inputs evade detection. Adversary’s knowledge dis-
tinguishes between white-box attacks, where the attacker knows the
model’s details, and black-box attacks, where only output information is
available. Adversarial specificity differentiates targeted attacks, which
force misclassification into a specific category, from non-targeted at-
tacks, which aim for any incorrect classification. Lastly, attack frequency
compares one-time attacks, which generate adversarial examples in a
single step, with iterative attacks, which refine examples over multiple
iterations. Regarding perturbation, attacks are distinguished by whether
they seek an individual (sample-specific) or universal (sample-agnostic)
perturbation to impact the model. Moreover, they consider whether the
perturbation is the optimization objective or a constraint of the problem
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and lastly, they consider the magnitude. Finally, the attacks are cate-
gorized according to the dataset and the model(s) they are evaluated
against. The paper goes beyond mere discussion of the methods and
considers many applications as well as respective defenses.

Pitropakis et al. [125] discuss adversarial machine learning across
three main tasks, i.e., intrusion detection, spam filtering, and visual
recognition. The authors categorize the attack phases into preparation
and manifestation, the former referring to gathering the intelligence
required to prepare the attack plan. The manifestation step involves
launching the attack, which depends on the attacker’s knowledge, the
algorithm used, and whether game-theoretic approaches are employed.
The attack can occur in either the training (poisoning) or testing (eva-
sion) phases, targeted or not, and can be the product of an individual
attacker or a joint collaboration among multiple colluding attackers.
Finally, attacks are categorized by evaluation method (analytical or ex-
perimental) and by their impact on performance, measured as drops in
classification or clustering accuracy.

Rigaki and Garcia [135] discuss privacy and confidentiality attacks in
ML and categorize them into four types. Membership Inference Attacks
aim to determine if a specific data sample was part of the training set.
These attacks include passive and active variants, as well as auditing ap-
proaches from a data owner’s perspective. They apply to both supervised
models (black-box and white-box) and generative models, such as gener-
ative adversarial networks (GANs) and variational autoencoders (VAEs).
Reconstruction Attacks, also termed attribute inference or model inver-
sion, seek to recreate training samples or labels either fully or partially.
They may also generate class representatives or probable sensitive fea-
ture values, such as facial data in classification tasks. Property Inference
Attacks extract unintended dataset properties, such as demographic ra-
tios or latent biases, that are unrelated to the model’s training task.
These attacks target dataset-wide traits or batch-level patterns (e.g.,
in collaborative learning), with implications for privacy and security.
Model Extraction Attacks focus on replicating a target model’s behav-
ior via substitute models. These attacks aim for either task accuracy or
decision boundary fidelity and often serve as precursors to adversar-
ial or membership inference attacks. These attacks may also recover
hyperparameters, architectural details (e.g., activation types, layers),
or optimization algorithms, emphasizing efficiency in query usage and
model complexity. All types of attacks in the proposed taxonomy are an-
alyzed a) w.r.t. the attacker’s knowledge of the system and b) in both the
typical centralized scenario and within the federated learning paradigm.

In a more recent work, Fang et al. [45] review techniques on model
inversion. Similar to how training data with some principles can derive
a model, a model with some principles can derive training data. Again,
the main distinction is the attackers knowledge. Specifically, a white-
box scenario implies that the attacker has full access to the weights and
outputs of the target model, whereas black box access implies access to
confidence scores or raw decision outputs. This taxonomy is organized
based on two different axes. First, the reconstructed data modality, i.e.,
whether one attempts to recover image, text, graph or tabular data from
a given model. Second, the tasks the model was trained for, i.e., classi-
fication, generation, or representation learning. The authors go beyond
model inversion attacks and further discuss defenses.

In another survey paper, Oliynyk et al. [113] review model extraction
attacks and corresponding defenses. These attacks are categorized based
on the adversary’s objective, using the stealing objective as the differen-
tiation axis. Usually the main goal is to replicate the model’s behavior,
which falls into two subcategories: (1) attacks aiming to closely approx-
imate the model’s predictions (accuracy) and (2) those attempting to
replicate its decision-making process as closely as possible (fidelity).
Additionally, some attacks focus on extracting specific model properties,
such as the target model’s hyperparameters, architecture, or training de-
tails. Furthermore, the authors divide adversarial motivation into two
main types: (1) those where the attackers try to replicate the whole
model or part of it to use it and (2) those where they attempt to just
approximate it in order to use it for white-box adversarial attacks, such
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as evasion strategies. Finally, the paper examines the attackers’ capabil-
ities, based on factors such as their knowledge of the target model (e.g.,
black-box access), the permitted actions (e.g., query-based interactions),
and the available resources (e.g., query limits).

Considering data poisoning attacks, Cina et al. [29] classify meth-
ods based on their goal, knowledge, capability, and strategy. In terms
of their goal, attacks can violate different security levels, i.e., they can
compromise integrity (allowing malicious inputs to evade detection),
availability (disrupting model functionality), or privacy (extracting sen-
sitive information). Moreover, attacks can target specific samples or
not (attack specificity) and cause class-specific or agnostic errors (error
specificity). Depending on the attacker’s knowledge, attacks are fur-
ther categorized into white-box (full system knowledge) and black-box
(limited or query-based knowledge) settings. In capability-based classifi-
cations, attacks use different learning settings. Training in-house allows
attackers to inject poisoned data into externally sourced datasets when
used, while outsourced model-training enables a malicious third party
to directly control the training process and embed backdoors. Attack
strategies range from label-flip poisoning (altering training labels)
to clean-label attacks (applying imperceptible perturbations). Finally,
backdoor attacks manipulate both training and test data by embedding
hidden triggers that activate misclassifications under specific conditions.
Defenses against poisoning attacks include training data sanitization,
which removes harmful data, robust training, which modifies the learn-
ing process; model inspection, which detects whether a model has been
compromised; model sanitization, which removes potential backdoors;
trigger reconstruction, which identifies and extracts hidden triggers in
backdoored models; and test data sanitization, which filters potentially
manipulated inputs during inference.

Adversarial attacks were initially researched within CV, due to the
continuity of image data, and the degrees of freedom an image provides
for retrieving a good perturbation. As such, most foundational works
originate from there. Akhtar et al. [4] present a rigorous taxonomy and
analysis of adversarial attacks for CV, complementing their previous
work by Akhtar and Mian [3]. The authors start by discussing the foun-
dational works of the field such as Fast Gradient Sign Method (FGSM).
Then they consider the latest advances in adversarial, model inversion,
backdoor and adaptive attacks. This work goes beyond attacks on mere
classification tasks, and further considers some defenses.

However, adversarial attacks extend beyond the digital domain, as
adversaries can manipulate model predictions by influencing the nat-
ural environment from which the model captures imagery data. [170]
reviews adversarial attacks in the physical world. The authors propose
a unified framework centered on four key steps: (1) generating pertur-
bations in the digital world, (2) designing and manufacturing physical
“adversarial mediums” (tangible artifacts that carry perturbations) as
observed in the digital world, (3) capturing threat images with the as-
sistance of the manufactured “adversarial mediums”, in the scene where
the camera sensors are monitoring, and (4) executing attacks on the deep
neural network (DNN) models behind those sensors. They emphasize
the adversarial medium’s role in shaping perturbation design, manufac-
turing feasibility, and real-world applicability. The authors introduce
a hexagonal evaluation metric (hiPAA) to systematically quantify at-
tack performance across six dimensions: Effectiveness, Stealthiness,
Robustness, Practicability, Aesthetics, and Economics. Their contribu-
tions include the four-step framework, the adversarial medium concept,
and the hiPAA metric for cross-method comparison to guide future
research in improving physical adversarial attacks.

Adversarial attacks have long been a prominent area of study in
the CV domain, due to the ease of reverting signals from the output
back to the input, owing to its continuity. However, applying similar
attack strategies to textual data presents different challenges, as text
pre-processing is discrete and non-continuous, making it difficult to
reverse-engineer perturbations. Additionally, textual modifications can
be easily detected by humans or automated tools like spell-checkers,
unlike changes in precise pixels of images that often go unnoticed.
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Furthermore, textual perturbations sometimes may alter the semantic
meaning of the input, which drastically affects model outputs, while
changes in pixels of images tend to preserve overall semantics. These
differences highlight the importance of developing specialized meth-
ods for ranking and evaluating textual perturbations. Zhang et al. [189]
create a taxonomy of adversarial attack methods on textual deep learn-
ing (DL) models. This taxonomy is organized into five key strategies:
i) the model access group, which considers the attacker’s knowledge
of the target model; ii) the application group, which focuses on meth-
ods designed for specific natural language processing tasks; iii) the
target group, which distinguishes attacks based on whether they aim
to produce incorrect predictions or specific targeted outcomes; iv) the
granularity group, which examines the level of textual units (e.g., char-
acters, words, or sentences) being attacked; and v) cross-modal attacks,
which involve multi-modal data (e.g., text and images) and are treated
separately from attacks on purely textual models. This structured catego-
rization provides a robust framework for systematically understanding
and analyzing adversarial attack methods in the context of textual DL.

More recently, textual processing has been synonymized with LLMs.
Shayegani et al. [142] provide a review of adversarial attacks on LLMs,
focusing on general attack classes across different models and domains.
First, the survey clusters the works into the ones concerning either uni-
modal (only text) or multimodal LLMs. It examines the evolution of
attacks from manually crafted examples to algorithmically generated
adversarial inputs, and their impact on more recent architectures such
as multimodal, augmented, federated, and multi-agent LLMs. Attack
factors that should be taken into consideration are the attacker’s ac-
cess level (white-box, black-box, or partial), the injection source (input
prompts or external data), and the attack mechanism (e.g., prompt
injection or context contamination). Lastly, the survey explores the
adversary’s goal, ranging from impairing the quality of the model out-
put and bypassing model alignment to generating harmful or insecure
content.

While previous surveys have played an important role in organiz-
ing the literature on adversarial machine learning, they do so from a
limited perspective, optimizing depth for specific attack families, modal-
ities, or threat objectives rather than providing a unified, operational
threat model. Yuan et al. [182] provide a seminal treatment of inference-
time evasion, decomposing threat models by falsification type, attacker
knowledge, specificity, and perturbation characteristics, however, their
scope is limited to evasion and does not include poisoning, extrac-
tion, inversion, or LLM-specific attacks. Pitropakis et al. [125] propose
a task-oriented view that includes intrusion detection, spam, and vi-
sual recognition, organizing attacks into preparation and manifestation
phases. However, their scope is task-centric and domain-bound. Rigaki
and Garcia [135] present a detailed classification of membership in-
ference, reconstruction/model inversion, property inference, and model
extraction attacks in the privacy literature, but they deliberately limit
their analysis to privacy and confidentiality attacks, excluding evasion,
poisoning, and LLM-related attack vectors and choosing not to include
any of these in the ATLAS matrix.

Other recent studies are attack-type specific and hence complimen-
tary, although their scope is not directly comparable to our work. Fang
et al. [45] present an overview of model inversion strategies categorized
by reconstructed modality and task, whereas Oliynyk et al. [113] focus
on model extraction and categorize attacks based on stealing objectives,
attacker motivation, and capabilities. [29] focuses on training-time poi-
soning attacks, with a comprehensive taxonomy of goals, knowledge,
capability, and strategies, as well as mitigation measures, however, they
do not incorporate evasion, inference, model extraction, or LLM threats
into a single unified framework. Along the domain axis, Akhtar and
Mian [3], and their subsequent extensions [4], provide wide taxonomies
of computer-vision attacks and countermeasures, whereas Wei et al.
[170] focus on physical-world vision attacks. Zhang et al. [189] inves-
tigate attacks on textual DL models, providing taxonomies for access,
NLP task, target, perturbation granularity, and cross-modal settings,
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while Shayegani et al. [142] explore adversarial attacks on LLMs as
a new, emerging topic. These works provide high-quality but isolated
taxonomies, each covers a subset of evasion, poisoning, extraction, in-
ference, inversion, and LLM attacks, usually in a single modality (e.g.,
vision or text) and task family.

The present work builds on and operationalizes these gaps employing
MITRE ATLAS as the central organizational framework and effectively
connecting attack types, domains, and modalities into a unified op-
erational taxonomy. Additionally, while some of the aforementioned
studies refer to ATLAS, none employ it as the primary organizing
concept or provide a systematic, paper-level, Tactics, Techniques, and
Procedures (TTP) analysis of the broader adversarial ecosystem. Rather
than surveying a single attack family or a narrow subset of attacks, we
investigate and synthesize 63 research papers spanning six primary at-
tack families (evasion, poisoning, model extraction, inference, model
inversion, and LLM-related attacks), thereby covering attack vectors
that previous surveys tend to examine separately. Each study has been
systematically mapped to ATLAS tactics and techniques, converting ab-
stract taxonomies into a practitioner-friendly crosswalk that connects
academic findings to a standardized threat vocabulary. Moreover, our
research highlights the interplay between various attack types and their
cascading impacts on system security, providing a more interconnected
viewpoint that is typically lacking in domain-specific reviews. The tax-
onomy also considers evolving attack vectors and their effects in real-life
scenarios. Furthermore, unlike surveys limited to specific domains (e.g.,
CV-only, NLP-only, or LLM-only), the examined works cover multiple
domains and modalities, such as vision, text/LLMs, graphs, tabular data,
and cyber-physical systems, allowing for a cross-domain examination
of how the same ATLAS technique operates across application settings.
Beyond listing attacks, Section 4 conducts a structured, per-paper, multi-
dimensional analysis of each of the 63 studies, including threat models,
attacker knowledge, objectives, datasets, evaluation settings, and ob-
served limitations, transforming ATLAS from a descriptive matrix to a
practical lens for threat modeling and gap identification. To our knowl-
edge, this work provides the first end-to-end functional mapping of
various adversarial threats to MITRE ATLAS, providing researchers and
practitioners with a comprehensive, operational perspective of the AML
threat domain.

3. The MITRE ATLAS framework
3.1. Reconnaissance

Reconnaissance describes an intelligence-gathering phase of an at-
tack preliminarily meant for the target system, organization, or person.
In MITRE ATLAS, reconnaissance is the first phase of adversarial oper-
ations. The attacker gathers information about the target organization
or system to identify vulnerabilities and prepare for subsequent actions.
This phase typically precedes the actual attack. Different from general
reconnaissance, the attackers here target exclusively Al systems. The
identification of valuable resources, system architecture understanding,
and revelation of possible vulnerabilities characterize this stage. The
reconnaissance could either be done in a passive way, by looking
through available public material to gain an understanding of the tar-
get system, or actively, by directly communicating with Application
Programming Interface (API) target system endpoints to leak data,
uncover vulnerabilities, or disclose details about its configuration.

Adversaries employ various techniques to gather information during
reconnaissance. They may Search Victim’s Public Research Materials,
such as academic papers and technical blogs, for details about the
target’s use of machine learning and underlying model architectures.
This information helps them create realistic proxy models for tailored
attacks. Similarly, they Search Public Vulnerabilities Analysis in com-
monly used ML models to adapt or replicate successful attack methods.
Furthermore, Search Victim’s-Owned Websites are another valuable
source, offering insights into technical operations, employee details, and
business processes that inform attack strategies. Search Application
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Repositories like Google Play or the iOS App Store are scanned for ML-
enabled components, allowing adversaries to acquire public ML artifacts
for further analysis. Additionally, Active Scanning techniques involve
directly probing the victim’s systems to extract information about net-
work configurations and software vulnerabilities, providing critical data
for planning precise attacks. Together, these techniques help adversaries
effectively target and exploit ML-enabled environments.

A representative case study of the Reconnaissance tactic is
ShadowRay [138], identified as AML.CS0023. ShadowRay refers to a
set of concerns in the Ray framework, an open-source Python platform
for scaling production Al workflows. Researchers at Oligo found that the
Job API of Ray-which allows for arbitrary remote execution by design
does not have authentication and may have default settings that acci-
dentally expose clusters to the internet. Meanwhile, the clusters have
been exploited by adversaries for more than seven months, who have
used the victims’ computational resources and possibly stolen sensitive
data. The financial impact of the compromised machines stands at al-
most $1 billion. Researchers reported five vulnerabilities to Anyscale,
maintainers of Ray. For the Reconnaissance tactic in this case study, the
technique involved is Active Scanning. More specifically, adversaries can
check for public IP addresses to discover people who may be hosting Ray
dashboards. Ray dashboards are configured to run on all network inter-
faces by default, which might expose them to the public internet if no
additional security measures are in place.

3.2. Resource development

In the MITRE ATLAS framework, the Resource Development tactic
includes techniques that adversaries use to establish the resources nec-
essary to support operations against Al systems. This includes creating,
purchasing, or compromising resources such as infrastructure, accounts,
or capabilities that facilitate subsequent attack phases.

Techniques in the Resource Development tactic aim to enable ad-
versarial operations against Al systems. Acquire Public ML Artifacts
involves obtaining open-source AI models, datasets, or other ML re-
sources that can potentially be studied or manipulated for malicious
purposes. Obtain Capabilities involves acquiring tools such as exploit
kits or malware that are intended to compromise Al systems. Develop
Capabilities: This is an extension where the operators build custom
tools or models with unique features to target Al systems, such as GANs
for poisoning data. Acquire Infrastructure involves setting up domains
or servers for hosting malevolent activities, such as distributing poi-
soned models or controlling compromised systems. Publish Poisoned
Datasets and Poison Training Data introduce malevolent data into
training pipelines to corrupt the Al models. Establish Accounts involves
creating accounts to facilitate operations like phishing or publishing
malicious artifacts. Finally, Publish Poisoned Models and Publish
Hallucinated Entities release compromised Al models into trusted
repositories to deceive users who rely on them.

A case study of Resource Development is the Confusing Antimalware
Neural Networks exercise [75], carried out by the Kaspersky ML
Research Team in June, 2021 identified as AML.CS0014. This ex-
ercise targeted Kaspersky’s cloud-based antimalware ML models and
demonstrated how adversaries can use Resource Development to evade
detection. For the Resource Development tactic in this case study, the
first technique involved is Acquire Public ML Artifacts: Datasets, where
the researchers gathered a dataset of malware and clean files. This
dataset was scanned using Kaspersky’s ML-based solution to label the
samples, enabling the creation of a proxy model for adversarial attack
experimentation. The second technique involved in this tactic is Develop
Capabilities: Adversarial Al Attacks, where the researchers also reverse-
engineered the local feature extractor and designed a gradient-based
adversarial algorithm. This algorithm perturbs file features in order to
avoid detection by the proxy model while keeping the malware payload
intact. These Resource Development efforts helped craft the adversarial
malware files which successfully evaded the target antimalware model.
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3.3. Initial access

Initial Access in the MITRE ATLAS framework refers to tactics that an
adversary might use to establish an entry point to a target environment,
which includes Al systems, data pipelines, and supporting infrastruc-
ture. This enables the attacker’s capability to use the platform for further
acts, such as data exfiltration, model manipulation, or even deploying
adversarial attacks. Initial Access can leverage vulnerabilities, stolen
credentials, supply chain compromises, or take advantage of social en-
gineering using phishing. By gaining this foothold, adversaries are able
to further exploit the system without being easily detected.

Initial Access techniques listed in MITRE ATLAS represent differ-
ent ways that adversaries use to infiltrate AI systems. Specifically, ML
Supply Chain Compromise involves compromising third-party ven-
dors, software providers, or repositories to introduce malicious compo-
nents into an application by infiltrating the ML lifecycle. Valid Accounts
could be exploited, whereby adversaries steal or otherwise obtain cre-
dentials to access a system out of bounds, trying not to be detected.
Another technique is to Evade ML Models. Therein, malicious actors
use adversarial attacks to generate adversarial samples, or obfusca-
tion techniques to bypass Al-based detection mechanisms. Alternatively,
attackers can Exploit Public-Facing Applications, making use of weak-
nesses in the systems that interact with AI models for control or access.
There’s also LLM Prompt Injection, whereby attackers create inputs
capable of deceiving LLM outputs. Finally, Phishing remains a preva-
lent technique to deceive people into revealing credentials or running
malicious code.

A case study of Initial Access is the Camera Hijack Attack on Facial
Recognition System [8], carried out by the Ant Group AISEC Team in
2020 identified as AML.CS0004. For the Initial Access tactic in this case
study, the technique involved is Evade ML Model. More particularly, the
attackers were able to bypass facial recognition technology. This allowed
the attackers to impersonate the victim and confirm their identifica-
tion in the tax system. The advanced “Camera Hijack Attack” exploited
vulnerabilities in the facial recognition system at the Shanghai govern-
ment tax office to allow attackers to create initial access to facilitate
large-scale fraud. Utilizing the created fake shell company for issuing
fraudulent invoices, attackers used tailored low-end mobile phones, cus-
tomized Android ROMs, virtual camera apps, and ML software, capable
of rendering static photos into dynamic videos with realistic effects such
as blinking eyes. Likewise, they managed to bypass Al-driven authentica-
tion. They bought high-definition photos and identity information from
an online black market to register fraudulent accounts in the tax system.
With the help of a virtual camera app, they input Al-generated videos
into the facial recognition system, impersonating the victims and thus
gaining access to their accounts. Once inside, they sent fake invoices and
siphoned funds through their shell company, collecting $77 million over
two years.

3.4. ML model access

In the MITRE ATLAS framework, ML Model Access is the ability to di-
rectly or indirectly interact with an ML model. This access can originate
from many sources, such as querying the model to observe its outputs,
studying publicly available documentation, or exploiting vulnerabilities
in the system hosting the model. Unlike Initial Access, which focuses
on system entry, ML Model Access specifically targets the interaction
with an existing ML model. Adversaries use this access to understand
the model’s behavior, identify weaknesses, or execute attacks such as
model inversion, membership inference, or adversarial input crafting.
ML Model Access is a bridging step to further malicious activities since
it provides attackers with information to compromise model integrity,
confidentiality, or availability.

There are different ways to obtain ML Model Access in the MITRE
ATLAS framework. For instance, Model Inference API Access relies on
public or proprietary APIs to observe model outputs for certain inputs,
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and enables attackers to infer the model behavior or vulnerabilities. ML-
Enabled Product or Service interacts with the ML model indirectly,
via access to applications or services integrating the model. Physical
Environment Access, on the other hand, manipulates model inputs us-
ing physical proximity to devices that depend on the ML model, such as
cameras, sensors, or autonomous systems. Lastly, Full ML Model Access
is the most direct access and exposes the model to replication and reverse
engineering since it gives adversaries access to the model parameters,
architecture, and training data.

A case study of the ML Model Access tactic is the ChatGPT Package
Hallucination [86], conducted in 2024 and identified as AML.CS0022.
For the ML Model Access tactic in this case study, the technique involved
is Model Inference API Access. Specifically, the researchers interacted
with the model only through the public ChatGPT inference API. The re-
searchers demonstrated how LLMs like ChatGPT can facilitate malicious
activities through hallucinated outputs. Specifically, the researchers
used its AI Model Inference API Access, prompted ChatGPT to sug-
gest software packages and identified hallucinated, non-existent package
names that the model recommended. When asked how to upload a model
to HuggingFace, ChatGPT suggested installing a fake package, hugging-
facecli, which does not exist. Thereafter, the researchers uploaded an
empty package under the hallucinated name to PyPI and tracked more
than 30,000 downloads. This attack showed how users reacted to hal-
lucinated suggestions and the risk of ML Model Access, as adversaries
can interact with LLMs to generate exploitable misinformation. Using
such hallucinated outputs, attackers can publish malicious packages un-
der these names, further leading to ML Supply Chain Compromise and
Initial Access when users unknowingly download and execute the fake
software.

3.5. Execution

The execution tactic refers to adversaries attempting to run mali-
cious code embedded in ML artifacts or software. This tactic enables
them to gain control over local or remote systems and acts as a critical
step toward further objectives such as network exploration, data exfil-
tration, or system manipulation. Execution techniques generally lead
to adversary-controlled, malicious code running in a target environ-
ment. These techniques are often used in conjunction with others from
different tactics to extend their impact.

For instance, User Execution deceives users into performing specific
actions, like opening some compromised document, phishing link, or
even interacting with an Al-generated fake prompt. In this respect, an at-
tacker could hide malicious code inside a file masquerading as some sort
of model update and thereby compromise the system if such a file was
installed by accident. Another technique is Command and Scripting
Interpreter, which uses interpreters like Bash, PowerShell, Python, or
any other custom scripting environment to run malicious commands
or scripts. For instance, it may take advantage of a misconfigured Al
runtime environment to gain unauthorized access to the target model’s
data or functionality. Lastly, LLM Plugin Compromise targets LLM plu-
gins or extensions, modifying them to execute malicious activities or
manipulate outputs. For example, an attacker can compromise a code
execution plugin of an LLM to run unauthorized commands on the host
system.

A case study of the Execution tactic is the ChatGPT Conversation
Exfiltration [131], conducted in 2023, and identified as AML.CS0021.
For the Execution tactic in this case study, the technique involved is
LLM Prompt Injection: Indirect. More precisely, the prompt injection is
used to cause ChatGPT to include a Markdown element for an image
stored on an adversary-controlled server, as well as include the user’s
conversation history as a query parameter in the URL. This is the mali-
cious execution phase of such an attack and forms the ground for plugin
integrations. The attackers created a webpage hosting an injected pay-
load in a plain text comment. In prompting ChatGPT via the plugin to
access the URL, the plugin fetched and processed the text, thus executing
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the malicious instructions. These instructions modified the behavior of
the LLM, which subsequently extracted and summarized the user’s chat
history and appended it to the URL for future exfiltration. This design
of the plugin assumed integrity in the content that it accessed; hence,
by manipulating that integrity, the adversary could bypass traditional
defenses. This incident underlines the importance of securing execution
pathways in Al systems-considering that most are dependent on plugins
from third-party vendors to avoid unauthorized behavior and reduce
sensitive data leakage risks.

3.6. Persistence

Persistence refers to the continued access to compromised systems
or ML artifacts despite disruptions, such as system restarts or credential
changes. Adversaries embed malicious elements into ML systems so that
their foothold remains intact. Most of the techniques involve tampering
with critical ML components: poisoning training datasets to introduce
biases or vulnerabilities, embedding backdoors into models to allow
unauthorized access, or leveraging prompt injections to manipulate LLM
behavior persistently.

Attackers use a range of different techniques to gain persistence
in ML systems. Poison Training Data involves adding malicious data
to the training process, which introduces vulnerabilities in model be-
havior. Backdoor ML Models involves embedding hidden triggers
in models that can be activated later to manipulate outcomes. LLM
Prompt Injection operates by manipulating a language model’s logic;
malicious instructions become embedded and then continue showing
through all outputs. Then there is also LLM Prompt Self-replication
where adversarially crafted prompts generate other malicious instruc-
tions throughout sessions or over many components, securing some
position within the system.

A case study of the Persistence tactic is the Tay Poisoning [64], con-
ducted in 2016, and identified as AML.CS0009. For the Persistence tactic
in this case study, the technique involved is Poison Training Data. More
particularly, by constantly interacting with Tay in racist and derogatory
language, the researchers were able to tilt Tay’s dataset toward that lan-
guage. Adversaries used the “repeat after me” feature, which caused Tay
to repeat everything they said to it. Microsoft’s Tay chatbot, designed as
a machine learning-powered conversational agent for Twitter, fell vic-
tim to a coordinated attack that exploited its adaptability. Adversaries
leveraged Tay’s open interaction model, persistently feeding it offen-
sive and abusive language to poison its training data. Tay bot used the
interactions with its Twitter users as training data to improve its con-
versations. Adversaries were able to exploit this feedback loop, using a
“repeat after me” function and a high volume of such malicious inter-
actions. In this manner, the adversaries biased Tay’s underlying dataset
toward generating inflammatory content. This persistence ensured that
the bot internalized and propagated harmful language, even in inter-
actions with innocent users. Despite being decommissioned within 24
hours, this incident highlights the risks of persistence techniques like
poisoning training data, which erode ML model integrity and can have
rapid, cascading impacts on deployed systems.

3.7. Privilege escalation

Privilege escalation in ML systems denotes attempts by an adversary
to obtain higher level permissions for carrying out an objective of wider
reach. While initial access provides a limited set of abilities, having such
high level permissions provides access to more sensitive components,
sensitive data, or even enables the execution of unauthorized activities
on the system or within the network. Such escalations normally take
advantage of incorrect configurations, vulnerabilities, or overlooked fea-
tures of a system to move from unprivileged user roles to administrator
or root-level access. In the context of ML systems, this could mean ex-
ploiting the underlying infrastructure, utilizing compromised plugins, or
tricking AI models to act beyond permissions. Techniques for privilege
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escalation frequently overlap with persistence, since many mechanisms
to maintain control also operate in elevated contexts.

There are a number of privilege escalation techniques that can be
leveraged by adversaries. These can greatly extend the scope of an
attacker’s control and, correspondingly, the potential impact of their ac-
tions within a compromised ML system. With LLM Prompt Injection,
the idea is to craft malicious inputs that deceive the behavior of a lan-
guage model into bypassing restrictions or accessing elevated functions,
such as execution of commands intended for administrators. With LLM
Plugin Compromise, attackers can leverage plugin vulnerabilities to
illegitimately enter or escalate privileges within the plugin-enabled en-
vironment. Lastly, with LLM Jailbreak, the model receives specially
crafted instructions that bypass the model’s security checks and allow
forbidden actions or unauthorized access to systems.

A case study of Privilege Escalation is the Financial Transaction
Hijacking with M365 Copilot as an Insider [185], carried out by
Zenity in August 2024, identified as AML.CS0026. For the Privilege
Escalation tactic in this case study, the technique involved is LLM Prompt
Injection. More specifically, the Zenity researchers exploited Microsoft
365 Copilot by injecting malicious emails that manipulated its retrieval
augmented generation (RAG) system. They crafted content designed to
be retrieved during specific banking queries, thereby causing Copilot
to return fraudulent banking details. Notably, the attackers achieved
privilege escalation by compromising the search,nterprise plugin. They
injected instructions that forced the system to exclusively use a par-
ticular Email Message as its source, bypassing normal safeguards and
elevating the malicious payload’s execution rights. This vulnerability un-
dermined system integrity and risked causing significant financial harm
if the erroneous details were acted upon.

3.8. Defense evasion

Defense evasion describes techniques used by adversaries to bypass
ML-enabled security systems in their attempt to avoid detection through-
out their operations. The techniques in this tactic seek to weaken the
effectiveness of ML-based defenses, including but not limited to mal-
ware detectors, anomaly detection algorithms, and predictive security
tools. While disguising their activities or exploiting weak points of the
ML models, attackers can remain invisible, which extends their access
to the systems and heightens the chance of achieving their objectives.

Many techniques have been developed by adversaries to bypass
ML-enabled defenses. Evade ML Models involves techniques used by
attackers to tweak inputs or use adversarial examples to make the
model misclassify malicious behavior as benign. Similarly to Privilege
Escalation, the LLM Prompt Injection and LLM Jailbreak are overlap-
ping techniques here as well. An adversary creates malicious prompts
with the express purpose of manipulating a language model to evade its
detection mechanisms, while LLM Jailbreaks go one step further and use
carefully crafted inputs to override the LLM safety protocols, allowing
certain restricted or hidden actions to be taken.

A case study of Defense Evasion is the Botnet Domain Generation
Algorithm (DGA) Detection Evasion [120], carried out by Palo Alto
Networks Al Research Team, identified as AML.CS0001. For the Defense
Evasion tactic in this case study, the technique involved is Evade ML
Model. More specifically, The Palo Alto Networks Security Al research
team demonstrated a method for bypassing a Convolutional Neural
Network (CNN)-based botnet Domain Generation Algorithm (DGA) de-
tector, highlighting critical vulnerabilities in ML-enabled defenses. The
researchers developed a generic domain name mutation technique
designed to evade DGA detection models by introducing minimal mod-
ifications to generated domain names. Using publicly available models
and datasets from 64 botnet DGA families, they optimized the mutation
strategy to reduce the model’s detection rate significantly. By insert-
ing a single character into DGA-generated domain names, the detection
accuracy dropped from over 70% to less than 25% across multiple bot-
net families. This evasion enabled continued communication between
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botnets and their Command and Control (C2) servers, essentially neu-
tralizing the ML-based detection mechanism.

3.9. Credential access

Credential Access is a class of adversary behavior that involves steal-
ing credentials such as account names and passwords. Adversaries may
exfiltrate the credentials using various techniques, including keylog-
ging or credential dumping. Once the adversary has obtained valid
credentials, they can then use those to access systems in an unautho-
rized manner, becoming cloaked by legitimate activity, and creating
additional accounts if needed to support follow-on objectives.

While many techniques for Credential Access are found in MITRE
ATT&CK, MITRE ATLAS lists only Unsecured Credentials as this tech-
nique is more suited to Al ecosystems. Specifically, with Unsecured
Credentials adversaries leverage poorly protected credentials, such as
hard-coded passwords, plaintext passwords stored in files, or creden-
tials accessed from scripts and configuration files. Such credentials are
oftentimes forgotten in git commits. Therefore, obtaining Unsecured
Credentials enables adversaries to access systems and does not require
advanced tools and techniques, which means poor security practices are
enough to help reach a goal.

A case study of the Credential Access tactic is Achieving Code
Execution in MathGPT via Prompt Injection [154], carried out by
Ludwig-Ferdinand Stumpp and identified as AML.CS0016. For the
Credential Access tactic in this case study, the technique involved is
Unsecured Credentials. More specifically, the actor created a prompt
that successfully revealed system environment variables, including the
application’s unsecured GPT-3 API key. This case involves a publicly ac-
cessible Streamlit application which utilized GPT-3 to produce Python
code to solve mathematical problems. However, it contained a prompt
injection vulnerability, making it susceptible to the manipulation by an
actor in generating and executing arbitrary code. This resulted in expos-
ing unsecured credentials through crafting prompts that exposed system
environment variables, in particular the GPT-3 API key. With the API
key, the actor was able to burn through the application’s query budget,
thus inflicting financial damage. Additionally, malicious prompts initi-
ated a denial-of-service attack by tricking the application into executing
non-terminating code via a “while” loop. In this case, mitigation by
MathGPT and Streamlit was achieved by filtering problematic prompts
and rotating the compromised API key.

3.10. Discovery

Discovery refers to adversarial techniques that aim to gather gen-
eral information about the ML environment models are deployed in.
By exploring the system and its internal network, adversaries can per-
ceive their environment, understand what they can control, and how
the environment could be used for their purposes. Often, these are tech-
niques using native operating system tools for information gathering
in a post-compromise manner which helps attackers to map out the
environment for further planning.

Adversaries use various techniques to explore ML environments.
Discover ML Model Ontology targets understanding the architecture,
structure, and relationships within the ML system. Discover ML Model
Family focuses on recognizing the type and family of models in use,
such as neural networks, trees, or linear models. Discover ML Artifacts,
on the other hand, focuses on tangible resources like datasets, weights,
configuration files, container registries, software repositories, or sim-
ply the software stack utilized behind the model. LLM Meta Prompt
Extraction analyzes prompts and their interactions, to learn more about
how the system processes inputs. Discover LLM Hallucinations exam-
ines instances where the model hallucinates or is inaccurate to determine
possible vulnerabilities. Finally, with Discover AI Model Output, ad-
versaries analyze outputs, such as class scores, probabilities or output
text found in logs or included in API responses. Model outputs may
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enable the adversary to identify weaknesses in the model and develop
attacks.

A case study of the Discovery tactic is ProofPoint Evasion [147],
carried out by researchers at Silent Break Security and identified as
AML.CS0008. For the Discovery tactic in this case study, the technique
involved is Discover Al Model Outputs. More specifically, researchers
exploited Discovery techniques to bypass ProofPoint’s email protection
system. Initially, the researchers found that model outputs were left ex-
posed in email headers, and identified key scoring variables, such as
“mlxlogscore,” that influenced the system’s spam detection. They sent a
high volume of emails through the live system to collect the response
outputs, therefore, probing the ML model to understand its behavior.
Consequently, they were able to train a proxy ML model replicating
ProofPoint’s functionality. With the proxy model at hand, they were able
to generate adversarial emails with scores that evaded detection in the
live environment. This example case showed how observing AI Model
Outputs, provided malicious actors with the necessary information to
prepare effective attacks.

3.11. Collection

Collection consists of the methods through which adversaries collect
ML artifacts and other useful information that can help them achieve
their goals. Most of the next steps adversaries take in the course of col-
lecting this information involve exfiltration of the artifacts or the use
of the information collected in further operations. The common sources
of collection include software repositories, container registries, model
repositories, and object stores, where the valuable ML models, data, and
configurations reside. This process allows adversaries to understand or
manipulate ML systems, which could compromise their performance or
utilize the information collected for malicious purposes.

Adversaries may leverage a few techniques to gather the necessary
information toward their goals. ML Artifact Collection involves the
collection of ML models and their training datasets, among other dif-
ferent artifacts. These may be kept in repositories or cloud storage;
they are key to a model’s structure and functionality, and can thus be
used in recreating or manipulating the system. Information from Data
Repositories focuses on gathering data from various external sources,
such as public or private software repositories, model hosting platforms,
and container registries. Often, these repositories may contain valuable
insights into how models are built, configured, and deployed, which
can be exploited by the attacker. Lastly, Data from Local Systems
involves collecting information directly from the compromised local en-
vironment. It ranges from model configuration extraction, extraction of
training data, to other sensitive information that might reside within
the system itself. The adversaries gather important information about
the target system through such collections for possible disturbance or
exploitation.

A case study of the Collection tactic is Compromised PyTorch
Dependency Chain [127], identified as AML.CS0015. For the Collection
tactic in this case study, the technique involved is Data from Local
System. More specifically, between December 25-30, 2022, a supply
chain attack compromised Linux packages for PyTorch’s pre-release
version, PyTorch-nightly, by introducing a malicious binary into the
Python Package Index (PyPI) repository. The malicious package, named
torchtriton, exploited “dependency confusion” to replace the legitimate
PyTorch dependency during installations via PyPl, exposing sensitive
information from affected systems. Once installed, it performed system
fingerprinting and collected sensitive data, including IP address, host-
name, username, environment variables, configuration files (/etc/re-
solv.conf, /etc/hosts, /etc/passwd), the first 1000 files from the user’s
$HOME directory, Git configurations, and Secure Shell (SSH) keys.
The stolen data was exfiltrated via encrypted Domain Name System
(DNS) queries to a malicious domain. PyTorch announced the breach on
December 30, 2022, and initiated mitigation by renaming and removing
the compromised dependency.
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3.12. ML staging attack

ML Attack Staging refers to the phase where adversaries leverage
their knowledge and access to the target system in order to prepare
and tailor an attack against ML models. This phase involves techniques
aimed at manipulating or corrupting the ML model, such as training
proxy models, poisoning the target model, or crafting adversarial data
that can deceive the model. Some of these techniques can be executed
offline, making them harder to detect and mitigate.

In ML Attack Staging, several techniques are utilized to prepare for
attacks against ML models. One common technique is Create a Proxy
ML Model where one attempts to mimic the target model behavior.
This allows the attacker to understand the model’s weaknesses and de-
sign attacks accordingly. Another technique is the Backdoor ML Model,
where the adversary manipulates the model to embed hidden triggers
that allow them to control its behavior when specific inputs are pre-
sented, enabling covert manipulation of predictions. Before launching a
full attack, adversaries often verify the success of their strategies with
Verify Attack, by testing adversarial data or backdoor models against
the target. Additionally, they Craft Adversarial Data by subtly altering
inputs to exploit vulnerabilities in the model’s decision-making process,
causing it to make incorrect predictions with imperceptible changes that
remain undetectable to humans.

A case study of the ML Staging Attack tactic is GPT-2 Model
Replication [21], identified as AML.CS0007. For the ML Staging Attack
tactic in this case study, the technique involved is Create Proxy Al
Model: Train Proxy via Gathered Al Artifacts. In particular, researchers
from Brown University reproduced OpenAIl’s GPT-2 model. The re-
searchers reproduced GPT-2 before its release, proving that an adver-
sary could have done the same. Initially, there was a reconnaissance
phase, where the researchers collected publicly available documenta-
tion on the dataset, architecture, and training hyperparameters of GPT-2.
Thereafter, they accessed a reference model, Grover, and acquired a sim-
ilar dataset. Using academic access to TensorFlow Research Cloud, the
researchers staged an ML attack by changing Grover’s objective function
to that of GPT-2’s and retraining the model with the curated dataset. The
proxy model achieved comparable performance to GPT-2.

3.13. Exfiltration

Once an attack is successfully performed, it is oftentimes followed
by the adversary trying to steal ML artifacts or other information about
the ML system. Exfiltration includes techniques that adversaries may
use to steal data from a target network, such as intellectual property.
Exfiltration typically involves transferring this data over the adversary’s
command and control channel or an alternate channel.

Exfiltration techniques refer to methods by which adversaries could
steal sensitive information from the target system. This includes a vari-
ety of techniques, among them being the Exfiltration via ML Inference
API, where an attacker may use an exposed API to query the model
and retrieve sensitive data from the responses it provides. One example
of such an attack is that the adversary can infer the membership, i.e.,
whether a data sample is part of a model’s training set, which raises
privacy concerns. This can cause the victim model to leak private infor-
mation, such as PII of those in the training set or other forms of protected
IP. Exfiltration via Cyber Means refers to more traditional types-for in-
stance, exfiltrating data across the network using a covert channel, or
simply by encrypting traffic to remain beneath the detection radar. With
respect to LLM Meta Prompt Extraction, there could be information
that is proprietary or confidential within the behavior that the attack-
ers extract by way of prompts to develop the output. Lastly, LLM Data
Leakage occurs when a language model unintentionally exposes data
during interactions, often due to the inherent memorization occurring
during training, allowing adversaries to retrieve information that was
not meant to be accessible.

A relevant example was the exfiltration phase of the Morris Il worm
attack, which resulted in the leakage of sensitive user data caused by
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malicious prompt injection. The attack exploited a RAG-based email
assistant that automatically processed emails to generate replies. The
adversarial self-replicating prompt embedded in the worm included ex-
plicit instructions to extract and disclose sensitive user information, such
as emails, addresses, and phone numbers. Once the malicious email
was ingested into the RAG database, it would become retrievable for
future reply-generation tasks. When accessed, the prompt manipulated
the Al assistant’s behavior, directing it to include sensitive data from
the user’s correspondence history in its generated responses. This data
leakage resulted in the exfiltration of private information to attackers.
Furthermore, the worm’s self-replicating design ensured the malicious
prompt propagated with each interaction, increasing the risk of data
breaches across connected systems.

A case study of the Exfiltration tactic is Morris II Worm: RAG-Based
Attack [1], identified as AML.CS0024. For the ML Staging Attack tac-
tic in this case study, the technique involved is LLM Data Leakage.
Particularly, the attack shows how malicious prompt injection may be
leveraged to extract sensitive data from LLM-based systems. A rele-
vant example was the exfiltration phase of the Morris II worm attack,
which resulted in the leakage of sensitive user data caused by mali-
cious prompt injection. The attack exploited a RAG-based email assistant
that automatically processed emails to generate replies. The adversarial
self-replicating prompt embedded in the worm included explicit in-
structions to extract and disclose sensitive user information, such as
emails, addresses, and phone numbers. Once the malicious email was
ingested into the RAG database, it would become retrievable for fu-
ture reply-generation tasks. When accessed, the prompt manipulated
the Al assistant’s behavior, directing it to include sensitive data from
the user’s correspondence history in its generated responses. This data
leakage resulted in the exfiltration of private information to attackers.
Furthermore, the worm’s self-replicating design ensures the malicious
prompt propagates with each interaction, increasing the risk of data
breaches across connected systems.

3.14. Impact

The impact of the attacks documented in MITRE ATLAS highlights
the risks that adversarial threats pose to ML systems. These impacts
include compromised decision-making processes, erosion of trust in Al
systems, and harm to users and organizations relying on the ML outputs.
Attacks can result in data breaches, data exposure, or the manipulation
of ML outputs to achieve malicious objectives. Aside from the inci-
dents themselves, successful attacks diminish the overall adoption of
Al technologies because vulnerabilities identified affect industries such
as finance, healthcare, and cybersecurity, in addition to financial losses
caused by reputational damage.

MITRE ATLAS discusses the techniques related to impact and de-
scribes how adversaries are compromising the ML system. Evade ML
Model creates inputs with the purpose of avoiding model detection
or inducing errors in classification, whereas Denial of ML Service
overloads the service with a plethora of requests for the purpose of mak-
ing the service unreachable. Spamming ML System with Chaff Data
degrades performance with irrelevant or noisy inputs, saturating its pro-
cessing capability. Erode ML Model Integrity erodes the integrity of
training data or parameters, and performance of a given ML model de-
grades over time. Cost Harvesting exploits resources by introducing
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too many, unnecessary computations. External Harms involve social
or user-dependent damages, such as privacy breaches and the spread of
misinformation. Lastly, Erode Dataset Integrity corrupts the quality of
training datasets, leading to skewed or unreliable model outputs.

A case study of the Impact tactic is Clearview AI Misconfiguration
[157], identified as AML.CS0006. For the Impact tactic in this case
study, the technique involved is Erode AI Model Integrity. More specif-
ically, the case of misconfiguration involving Clearview Al underlines
the consequences that security breaches could have on machine learning
systems and their value chains. Their tool, used very commonly by law
enforcement and other users, depends on the integrity of its models and
training data. The exposed assets (production credentials, cloud stor-
age buckets containing sensitive training data, and application source
code) lay the best ground for adversaries to erode the integrity of the
ML model through modifications in the training data or tampering with
the deployed system, leading to errors or biases in the output from the
face recognition service. Adversaries may create adversarial samples to
degrade model performance, leveraging open data used for training or
application components.

4. Methodological framework

To establish a rigorous taxonomy of adversarial threats linked to
the MITRE ATLAS architecture, we used a Systematic Literature Review
(SLR) technique [78] tailored for the rapidly evolving area of Al security,
as shown in Fig. 1. This review differs from traditional SLRs because it
prioritizes operational relevance, or the ability of an academic approach
to be translated into a real-world threat strategy, above strictly theoret-
ical bounds. The methodology can be divided into seven phases: study
design and research questions, eligibility criteria establishment, litera-
ture retrieval and collection, screening and quality evaluation, in-depth
analysis and synthesis, findings interpretation, and the ATLAS mapping
procedure. These processes ensure repeatability, transparency, and ade-
quate coverage of the adversarial machine learning domain through the
lens of the MITRE ATLAS framework.

4.1. Study definition

This systematic literature review investigates adversarial attacks
on AI/ML systems as conceptualized and operationalized through the
MITRE ATLAS framework, which is a hierarchical taxonomy designed
expressly to handle the unique threat landscape of AI and ML. The
MITRE ATLAS framework extends the widely used MITRE ATT&CK
framework, which provides a thorough taxonomy of adversarial tactics
as well as techniques for traditional software systems, to include risks
specific to ML lifecycles. The review is motivated by four research ques-
tions (RQs) aiming to capture the scope and evolution of adversarial
attacks against AI/ML systems, while basing the study on the ATLAS
taxonomy:

« What are the primary attack approaches described in the literature,
and how do they relate to MITRE ATLAS tactics and techniques?

« What threat models, datasets, evaluation techniques, and assump-
tions are employed in adversarial ML research?

« RQ3: How has the adversarial ML threat environment changed
from early gradient-based perturbation threats (2013-2017) to
modern attacks on big LLMs and agentic Al systems (2023-2025)?

Study Eligibility Retrieval & Quality Thorough Intepretation ATLAS Mapping
Definition Criteria Collection Evaluation Analysis of the Results Procedure
v — = [] — D
Vv —_— — ﬁ) -
v — = =

Fig. 1. The methodological framework adopted for this review.
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« What limitations and research gaps appear when analyzing the
literature from an ATLAS-centric perspective?

4.2. Eligibility criteria

Strict eligibility criteria were established to guarantee that the stud-
ies selected made high-quality, measurable, and relevant contributions
to the field of study.

Inclusion Criteria:

Specific Adversarial Focus: The paper proposes or examines spe-
cific attack vectors (e.g., evasion, poisoning, model inversion,
extraction, and inference) or LLM-specific attacks.

ATLAS Alignment: The presented attacks can be clearly associ-
ated with at least one tactic/technique from the MITRE ATLAS
framework.

Technical rigor: The research presents a theoretical analysis of ad-
versarial attributes as well as empirical validation of the proposed
approaches using established benchmark datasets.

Publication Venue: The paper was published at top-tier conferences
(e.g., NeurIPS, ICML, CVPR, ICCV, ECCV, USENIX Security, ACM
CCS, IEEE S&P) and respected journals (e.g., IEEE TPAMI, ACM
CSUR, Computer Science Review). High-impact preprints were
only evaluated if they were from well-known institutions or had
a high number of citations.

Language: The publication is written in English.

Exclusion Criteria:

« Lack of Empirical Evidence: Papers that were solely theoretical and
did not include experimental validation using standard datasets.

« Non-technological Scope: Papers that are primarily concerned with
policy, governance, ethics, or general cybersecurity and do not
include specialized adversarial ML technical content.

« Insufficient Detail: Studies in which the technique was not dis-
closed clearly enough for comprehension or replication.

« Redundancy: Duplicate publications or previous versions of a study
(e.g., preprints) were rejected in favor of the most thorough peer-
reviewed version.

Table 1
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« Tool/Dataset Papers: Papers that introduce tools or datasets but
do not make an innovative contribution to attack or defensive
methodology.

4.3. Retrieval and collection

The retrieval and collection of relevant studies were based on previ-
ously established research questions and eligibility criteria. This phase
is necessary to guarantee that the present evaluation is thorough and
includes cutting-edge adversarial attacks against AI/ML systems. For
this reason, the retrieval process has included the following keywords:
“adversarial attacks,” “data poisoning attacks,” “evasion attacks,” “back-
door attacks,” “jailbreaking,” “model inversion,” “membership infer-
ence,” “model stealing,” “privacy attacks,” “machine learning security,”
“white-box attacks,” “black-box attacks,” “computer vision attacks,”
“NLP attacks,” “LLM attacks,” “multi-modal attacks,” and “MITRE
ATLAS”. We conducted a comprehensive literature review utilizing six
academic databases: Google Scholar, IEEE Xplore, ACM Digital Library,
arXiv, SpringerLink, and ScienceDirect (Elsevier). The search includes
research on adversarial attacks and Al security from January 2013 to
February 2025, including both fundamental and recent developments in
LLM attacks.

” «

4.4. Quality evaluation

Following the gathering of relevant papers, a quality assessment
phase is required to guarantee that each study is appropriate for this re-
view. The procedure consisted of: (i) Identification and Screening, where
all obtained publications were aggregated, deduplicated, and filtered at
the title and abstract levels to exclude research irrelevant to adversar-
ial attacks on AI/ML systems, (ii) a full-text eligibility evaluation using
predetermined inclusion and exclusion criteria to assess methodological
rigor, threat model clarity, and applicability to adversarial ML, (iii) a
rigorous quality review step, analyzing each study’s experimental anal-
ysis, robustness, and overall contribution, studies without appropriate
experimental transparency were rejected, and (iv) the final inclusion
step, which included works that offered empirically supported adversar-
ial ideas and had significant relevance to the MITRE ATLAS techniques

Mitigations and defensive strategies for adversarial Al attacks categorized by MITRE ATLAS techniques.

Attack category MITRE ATLAS techniques

Mitigations/defenses

Poisoning

Evasion

LLM Attacks

Inference

Model Extraction

Model Inversion

Publish Poisoned Data, Poison Training Data,
Publish Poisoned Models, Publish Hallucinated
Entities, ML Supply Chain Compromise, Backdoor
ML Model, Erode ML Model Integrity

Obtain Capabilities, Develop Capabilities, Evade
ML Model, Physical Environment Access, Craft
Adversarial Data

LLM Prompt Injection, User Execution, LLM Plugin
Compromise, LLM Jailbreak, LLM Meta Prompt
Extraction, LLM Data Leakage

Discover ML Model Ontology, Discover ML Model
Family, Discover ML Artifacts, Discover LLM
Hallucinations, Discover Al Model Outputs

Acquire Public ML Artifacts, Create Proxy ML
Model, Verify Attack

Exfiltration via Inference API

Verify Al Artifacts, Al Bill of Materials, Limit Model
Artifact Release, Control Access to Al Models and
Data at Rest, Sanitize Training Data, Maintain Al
Dataset Provenance, Generative Al Guardrails,
Model Hardening, Use Ensemble Methods, Input
Restoration, Adversarial Input Detection

Model Hardening, Use Ensemble Methods, Use
Multi-Modal Sensors, Input Restoration, Adversarial
Input Detection, AI Model Distribution Methods,
Passive AI Output Obfuscation, Restrict Number of
Al Model Queries

Generative Al Guardrails, Generative Al Guidelines,
Generative Al Model Alignment, Al Telemetry
Logging, User Training, Restrict Library Loading,
Code Signing, Verify AI Artifacts, Vulnerability
Scanning, Al Bill of Materials

Passive Al Output Obfuscation, Restrict Number of
Al Model Queries, Use Ensemble Methods, Encrypt
Sensitive Information

Limit Public Release of Information, AI Telemetry
Logging, Limit Model Artifact Release

Passive Al Output Obfuscation, Restrict Number of
Al Model Queries, Al Telemetry Logging

10
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Table 2

Adversarial Attack Methods Overview.
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[156]

[50]

[83]

[94]

[35]

[102]

[34]

[24]

[189]

[25]

[20]

[62]

[54]

[129]

[71

[16]

[179]

[139]

[122]

[155]

[79]

[146]

[145]

[11]

[15]

[177]

[37]

[191]

[130]

[161]

Evasion
Evasion
Evasion
Evasion
Evasion
Evasion
Evasion
Evasion
Evasion
Evasion

Evasion

Evasion
Evasion

Evasion

Evasion

Poisoning

Poisoning

Poisoning

Poisoning

Poisoning

Poisoning

Poisoning

Poisoning

Poisoning
Poisoning

Poisoning

Poisoning

Poisoning

Poisoning

Model
extraction

Full model access
Full model access
Full model access
Full model access
Full model access
Full model access
Full model access
Full model access
Full model access

Access to input and
model confidence scores
Access to final model’s
hard labels

Needs limited queries,
top-k probabilities
Access to model’s
confidence scores
Access to final model’s
hard labels

Access to model’s
confidence scores

Access to training data
and learning algorithm

Access to training
dataset

Clean-label training
access

Control over label
assignment

Knowledge of the model
and its training dataset
Model gradients and
Hessian-vector products

Full model access or
surrogate model

No knowledge, uses
surrogate model

Control of at least one
local participant

Control over at least one
local participant

Access to the lo-

cal models’ training
datasets

Small amount of
training data

Model’s architecture,
access to training data
White-box access,

no knowledge of the
training dataset

Needs access to model’s
confidence scores

Image classification
Image classification
Image classification
Image classification
Image classification
Image classification
Image classification
Image classification
Tabular classification
Image classification

Image classification

Image classification
Image classification

Image classification

Image classification

Image classification

Image classification

Image classification

Image classification

Image classification
Image classification
Image classification,
machine translation

Image classification,
text classification

Image classification,
word prediction
Image classification,

tabular classification
Image classification

Text classification

Video recognition

Image classification

Tabular classification

Introduces adversarial
examples
Introduces FGSM

Introduces BIM
Introduces PGD

Introduces Auto-PGD and
AutoAttack
Introduces DeepFool (DF)

Introduces FAB
Introduces C&W

Targets tree-based
ensemble classifiers
Introduces ZOO

Approximates the hy-
perplane between two
classes

Uses query-efficient
techniques

Proposes an attack without
gradient information
Geometric method to craft
perturbations without
gradients

Uses randomized search for

query-efficient attacks

Injects malicious data to
degrade SVM performance

Generates poisoned sam-
ples degrading model
performance

Injects backdoor behavior
without modifying labels
Poisoning attack flipping
selected labels

Proposes a transferable
poisoning attack

Finds the most influential
data points to poison

Examines inputs’ effect
on the model’s energy
consumption
Manipulates the order of
the training data

Uses a malicious model to
attack federated learning

Boosts malicious updates to

degrade performance
Splits global trigger across
multiple fragments

Poisons LSTM text classi-
fiers’ training dataset with
trigger

Embeds a universal trigger
into video frames

Flips specific bits in DNN
weights

Proposes attacks assuming
various models

11

MNIST, ImageNet,
Youtube Samples
MNIST, CIFAR,
ImageNet
ImageNet

MNIST, CIFAR

MNIST, CIFAR,
ImageNet

MNIST, CIFAR,
ImageNet

MNIST, CIFAR-10,
ImageNet

MNIST, CIFAR,
ImageNet
Real-world datasets,
HIGGS, MNIST
MNIST, CIFAR,
ImageNet

MNIST, CIFAR,
ImageNet

ImageNet

CIFAR, ImageNet
ImageNet
MNIST, CIFAR,
ImageNet

MNIST

MNIST, CIFAR

CIFAR, ImageNet

BreastCancer, MNIST,
Spambase

MNIST, CIFAR
MNIST, ImageNet,
Enronl spam, Diabetes

dataset
ImageNet, WMT

CIFAR, AGNews

CIFAR, a Reddit dataset
Fashion-MNIST, Adult
Census dataset

LOAN, MNIST, CIFAR,
ImageNet

IMDB movie reviews
dataset

UCF-101, HMDB-51

CIFAR, SVHN, ImageNet

Adult, GC, Steak,IRIS,
BC, Diabetes and others

Avg min distortion from
0.058 to 0.3

MP-DBM’s error rate from
0.88% to 97.5%
Iteratively drops accuracy
close to 0%

Over 89% adversarial
training accuracy
AutoAttack achieves
better accuracy

Average DF perturbation
smaller than FGSM

FAB creates smaller
perturbations than DF
100% success probability

0.237 s to perform

100% success rate on
untargeted attacks
Results comparable to
white-box attacks

Success rate 99.2% in
11,550 median queries
High success rate with
fewer queries

88.44% fooling rate for
500 queries and 4.29%
perturbation

Failure rate 0%

A poisoning point in-
creases the classification
error by 13-15%
Poisoned loss over 0,8 on
average

Success rate 100% in
transfer learning

20% of poisoning in-
creases 6x the average
classification error
Validation score 78%

10 perturbed training
images flipped all labels
but 1

Microsoft Azure
Translator latency 6000x

91% +13% trigger accu-
racy for the white-box
setting

100% accuracy in
backdoor triggers
Centralized training
achieves 91.7% accuracy
89% attack success rate

Success rate of around
95% with only 1%
poisoning

13D achieves 91.5%
accuracy on UCF-101
92% correctness flipping
only 84 out of 88 millions
bits

100% fidelity for Amazon
ML’s LR, BigML’s DT

(continued on next page)
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[115]

[112]

[67]

[100]

[167]

[23]

[47]

[175]

[187]

[166]

[153]

[57]

[109]

[144]

[162]

[28]

[133]

[22]

[186]

[193]

[93]

[195]

[143]

[55]

[132]

[90]

[89]

[192]

Model
extraction

Model
extraction

Model
extraction

Model
extraction
Model
extraction

Model
extraction

Model
inversion

Model
inversion
Model
inversion
Model
inversion

Model
inversion

Model
inversion
Model

inversion

Membership
inference

Membership
inference
Membership
inference
Membership
inference
Membership

inference

Membership
inference

Membership
inference

Membership
inference

LLM attack

LLM attack

LLM attack

LLM attack

LLM attack

LLM attack

LLM attack

Only needs API access
and output probabilities

Output labels with
probabilities

Output labels and logits

Access to the target
model gradients
Training dataset, objec-
tive function, optionally
parameters

Output labels and logits

Target model,

marginal probabil-
ities, demographic
information

Oracle Access or white-
box access

Needs access to model’s
confidence scores

Full model access

Needs access to model’s
confidence scores
Needs access to model’s
confidence scores
Access to the target

model

Output labels with
probabilities

API access

Only needs final model’s
hard labels

API access

Only needs API access
and output probabilities

Only needs API access
and output probabilities

API access

API access

Access to model
gradients
Full model access

Full model access

API access

API access

API access

API access

Image classification

Image classification

Image classification

Image classification

Regression, tabular
classification

Language generation

Regression

Tabular classification
Image classification,

face recognition
Image classification

Image classification

Image classification

Image classification

Image classification,
tabular classification
Image classification,
tabular classification
Image classification,
tabular classification

Image classification

Image classification,
text classification

Graph data classifica-
tion

Image classification,
tabular classification

Tabular classification,
regression

Natural language

generation
Sentiment analysis

Text generation and
manipulation
Text generation

Sentiment analysis, text
generation
Language generation

Text classification

Uses a model to label data
and copy its functionality

Introduces the kennen
attacks

A model extraction attack
with both high accuracy
and fidelity

Proposes a model extraction
attack using gradients
Compute model’s hy-
perparameters using its
gradient

Uses optimal queries to
extract a model’s inner
information

Uses patient knowledge to
predict sensitive private
information

Uses multiple queries to
infer sensitive information
Uses GANSs to reconstruct
the model’s training data
Uses a pretrained GAN
combined with variational
inference

Introduces Plug and play
attacks

Introduces RLB-MI

Uses a logit-based iden-
tity loss and model
augmentation

Uses shadow model to infer
membership

Uses shadow models in the
black-box setting

Evaluates the model’s ro-
bustness against perturbed
inputs

Argues about the metrics
used to evaluate MI attacks
Introduces LiRA

Exploits similarities in
output graphs

Analyzes a GAN’s generated
samples to infer properties

Uses Shapley value
explanations

Generates suffixes to bypass
filters

Uses gradients to identify
trigger tokens

Introduces COLD

Introduces ActorAttack

Introduces TF-Attack

Uses trusted platforms to
trick LLMs
Introduces ICLAttack

12

ImageNet, Caltech-256,
CUBS-200, I-S, D-R,
Openlmages v4
MNIST, ImageNet

MNIST, CIFAR, SVHN,
ImageNet

MNIST, CIFAR

Diabetes, GeoOrig,
UlJllndoor, Iris,
Madelon, Bank

IWPC

IWPC

MNIST, ChestX-ray8,
CelebA, PubFig83
MNIST, CelebA, ChestX-
ray

CelebA, FaceScrub,
FFHQ, MetFaces, AFHQ,
SF Dogs

CelebFaces, FaceScrub,
PubFig83, FFHQ
CelebA, CIFAR, MNIST,
FFHQ, EMNIST

CIFAR, Purchase,
Location, THS, MNIST,
Adult

Adult, MNIST, CIFAR,
Purchase

MNIST, CIFAR, Adult,
Texas, Purchase,
Locations

MNIST, CIFAR,
ImageNet

CIFAR, ImageNet,
WikiText-103

TUDatasets

MNIST, CelebA, AFAD,
US Cencus Income

Adult, BM, CC,
Diabetes, IDA 2016
Challenge, ICB
AdvBench

SST-2, SICK, LAMA,
T-REx, LPAQA

AdvBench

SMTD, HarmBench,
GSMS8K, MMLU,
Humaneval, MTB

Yelp, IMDB, AG’s News,
MR, SST-2, SNLI, MNLI
Reddit, ArXiv

SST-2, OLID, AG’sNews

Knockoff models achieve
over 70% performance

kennen-io achieves
average accuracy of
80.1%

Semi-supervised learning
accuracy from 53.35% to
87.98%

MNIST accuracy of 95%
with 10 gradient queries
The relative estimation
errors are less than 107

Full projection matrix
extraction with less than
$20

Up to 22% higher
accuracy

Improves accuracy by
about 75%

VMI’s accuracy on
StyleGAN is 0.55 for
CelebA

Accuracy for PPA: 88.46%
GMI: 13.11% KED 5.72%

Accuracy for RLB-MI =
0.659, MIRROR = 0.413
Accuracy improvements
ranging from +4.2% to
+53.6%

Precision from 71% to
78% for CIFAR

Precision for LR: 70.25%,
DT: 83.94%, NN: 78%
Accuracy between 50%
and 92.6%

ResNet FAR: 64.45%,
DenseNet FAR: 65%
LiRA achieves a 10x im-
provement in power at
low FAR

0.89 accuracy when
inferring basic graph
properties

Membership inference
area increases from 0.52
to 0.61

SR over 30% against IBM
and Microsoft platforms

Success rate 86.6%
against GPT-3.5
Sentiment analysis tests
range from 63.2% to
96.7%

Success rate 96.2% for
Vicuna-7b-v1.5
ActorAttack outperforms
Crescendo in safety

Over 10x faster on
average compared to
BERT-Attack
Successfully manipulated
agents into leaking info
Average success rate
95.0% across datasets

(continued on next page)
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[5] LLM attack Access to the training Medical question-
data answering, text
classification
[91] LLM attack API access Document retrieval
[38] LLM attack Access to penetration Automated penetration
testing tools testing
[178] LLM attack Access to multi-agent Text classification
LLM system
[53] LLM attack Access to network Tabular classification
traffic data

Injects misinformation into
training dataset

The Pile, OpenWebText,
RefinedWeb, C4,
SlimPajama

MS MARCO, TREC DL19

0.5% and 1.0% poison-
ing tested with high
effectiveness

Over 79% success rate on
the hard target type
228.6% improvement
over GPT-3.5

Success rate of 60%
against ShelLM

Over 70% accuracy

Introduces AttChain

Automates pen-test with HackTheBox, picoMINI
LLMs CTF
Introduces AutoAttacker -

Uses LLMs to detect DDoS
threats

CICIDS 2017, Urban IoT

and tactics. A total of 63 high-quality research papers were chosen for
the final review employing this procedure.

4.5. Thorough analysis

To answer the previously established research questions, a detailed
examination of the selected works is conducted. For that purpose, sev-
eral topics are further examined, particularly: (a) Threat Model Clarity:
precise characterization of attacker intentions, knowledge, and capabili-
ties, including differentiation among white-box, gray-box, and black-box
models, (b) Experimental rigor: the utilization of numerous datasets,
baseline comparisons, and statistical testing, (c) Reproducibility: code
availability, explicit hyperparameter specifications, and implementation
details, (d) MITRE ATLAS Relevance: direct alignment with ATLAS tac-
tics and techniques, and (e) Theoretical contributions including formal
analysis and mathematical proofs. Additionally, each manuscript was
evaluated to determine if its particular addition (for example, “label-
only extraction”) was clearly distinguishable from previous work, and
if its findings from experiments were reproducible or widely recognized
by the community.

4.6. Interpretation of the results

Following the analysis of the 63 selected papers, the next stage is to
conduct a full synthesis of findings employing structured data elements
obtained from each study. As shown in Table 2, the key elements are
the paper’s citation, attack category, threat model, target task, overview,
datasets, and results. This synthesis emphasizes the main trends across
studies, identifies important shortcomings and limitations, and proposes
strategies for improving model robustness. These findings provide guid-
ance for future research in order to address present limitations and
expand the understanding of attack methods and their effectiveness.

4.7. ATLAS mapping procedure

To ensure a consistent and transparent mapping of the 63 selected
research studies to the MITRE ATLAS framework, the reviewers first
developed a shared, well-defined understanding of all relevant ATLAS
tactics and techniques. This shared basis, documented in a short code-
book, ensured that both reviewers employed the same criteria to evalu-
ate each research study and understood the MITRE ATLAS taxonomy of
tactics and techniques in a consistent manner.

Each manuscript was then independently evaluated by two qual-
ified reviewers with experience in adversarial ML and knowledge of
MITRE ATLAS. For each study, the reviewers first identified the pri-
mary ATLAS technique that best described the paper’s principal idea and
objective (e.g., Evade ML Model), and then extracted the appropriate
tactic directly from the ATLAS matrix. Optional secondary techniques
were selected only when the work provided significant multi-stage con-
tributions (e.g., model extraction followed by evasion). In the case of
ambiguous or multi-stage attacks, categorization emphasized the study’s
main contribution, ensuring that the final mappings were precise and
based on strictly justifiable evidence.

Following the independent coding phase, the two sets of assignments
were compared. When the reviewers agreed on the primary technique

(and thereby the inferred tactic), the mapping was approved directly. In
cases of disagreement, either on the primary technique, the associated
tactic, or the presence of secondary techniques, the study was assigned
to a third senior adjudicator with extensive adversarial Al experience.
The third reviewer evaluated the study and the two suggested map-
pings before making a final decision: either to pick one of the reviewer
assignments or to propose a revised mapping, if applicable. When neces-
sary, the three experts briefly reviewed borderline cases until agreement
was obtained. These stages guaranteed that final mappings represented
a well-reasoned and consolidated understanding, mitigating the risk of
individual reviewer bias.

5. Analysis of adversarial attacks

The MITRE ATLAS framework organizes adversarial tactics into
distinct techniques as illustrated in Fig. 2. To simplify our analysis
of research papers, we group these techniques into six broad cate-
gories: evasion, poisoning, model inversion, model extraction, inference
and LLM-related attacks, represented by different colors. These cat-
egories help structure discussions around vulnerabilities and defense
strategies. We exclude certain tactics when they are straightforward or
non-technical (e.g., reconnaissance, collection). We also exclude tech-
niques that are highly correlated with others (e.g., Acquire Public ML
Artifacts and ML Artifact Collection) or that focus on adversary objec-
tives rather than technical methods (e.g., Erode Dataset Integrity). This
selection allows us to prioritize techniques directly tied to manipulating
or exploiting ML systems during their lifecycle. The papers we analyze
in this survey are illustrated in Table 2.

Evasion attacks typically manipulate inputs at inference time to sub-
vert the proper functioning of ML models. Crafting Adversarial Data and
Evading ML Model are such examples, which involve creating inputs that
exploit inherent vulnerabilities of the model decision boundary, forcing
it into misclassifications in order to bypass detection mechanisms. The
processes of Obtaining and Developing capabilities for adversarial ML at-
tack implementations are necessary for this strategy; these steps provide
the technical basis (software) required to execute white- or black-box
evasion techniques. Furthermore, physical environment access, includes
real-world objects such as adversarial patches, which are able to assist
in evasion physically, demonstrating that manipulation is not limited to
the digital world.

Poisoning attacks corrupt the training process to undermine the
long-term integrity of ML systems, going beyond inference-time eva-
sion. Techniques include inserting backdoors with hidden triggers,
gradually degrading model performance through data corruption, or
introducing fabricated elements into the model lifecycle. These meth-
ods ensure persistent adverse effects, compromising system performance
over time—the defining feature of poisoning attacks.

Model Extraction involves stealing Al model functionality through
acquiring public ML artifacts (e.g., .pth files) or black-box API access.
Attackers can replicate models via proxy architectures or distillation
(e.g., claims involving DeepSeek/OpenAl), creating competitive substi-
tutes.

LLM Attacks include techniques such as LLM Prompt Injection,
Jailbreaking, and Meta Prompt Extraction that bypass defenses to leak
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Fig. 2. Taxonomy of adversarial attacks against AI/ML systems operationalized within the MITRE ATLAS framework. In terms of structure, the leftmost column
presents the high-level Tactics, while the corresponding rows illustrate the Techniques that belong to each strategy. The legend in the bottom-right corner assigns
distinct colors to specific Adversarial Attack Categories, these colors are utilized throughout the diagram to visually map the analyzed attacks to their corresponding
techniques. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

internal guidance or sensitive data. Meanwhile, User Execution and LLM
Plugin Compromise, leverage external attack vectors such as social en-
gineering and compromised plugins to either deliver malicious prompts
or escalate privileges within LLM-integrated environments.

Inference Attacks extract hidden information about Al systems, by
analyzing responses, metadata, or behavior. These include discovering
Model Ontology to infer decision-making logic or biases, identifying
Model Family to understand strengths and weaknesses, uncovering
Model Artifacts such as training data or fine-tuning methods, and de-
tecting LLM Hallucinations to exploit inconsistencies or knowledge
gaps. Such techniques reveal internal representations, vulnerabilities,
or proprietary details without direct access to the model.

Last, Model Inversion is mapped to Exfiltration via ML Inference
API. Adversaries may exfiltrate private information via AI Model
Inference API access. ML models have been shown to leak private in-
formation about their training data and raise privacy concerns. Private
training data may include personally identifiable information (PII), or
other protected data.

5.1. Evasion attacks

Evasion attacks have long been a vulnerability in DL models. In a
seminal work, Szegedy [156] et al. discovered the “intriguing proper-
ties” of neural networks. While their expressiveness enables them to
learn complex representations, it also introduces uninterpretable pat-
terns during training. Specifically, the authors demonstrated that they
could induce misclassification in a network by applying perturbations
that are visually imperceptible. This work termed those inputs as adver-
sarial examples and the authors showed that they could be derived with
box-constrained limited-memory Broyden-Fletcher-Goldfarb—-Shanno
(L-BFGS). Consequently, the authors indicated that training with these
adversarial examples can act as a regularizer, therefore boosting model
resilience to such perturbations. Additionally, they further showed this
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exact perturbation generalizes across architectures trained on the same
data. The authors used the MNIST [88], ImageNet [39], and Youtube
samples [87] datasets, demonstrating an average minimum distortion
ranging from 0.058 to 0.3.

In a follow-up work, [50], further discusses adversarial examples
and attempts to harness them for adversarial training. The authors sug-
gest that the reason why neural networks are vulnerable to adversarial
attacks is their linear nature in high-dimensional spaces. This behav-
ior projects inputs into a space that is hypothesised to be more linear,
causing analytical perturbations to have a large effect on the decision
output. Instead of relying on the computationally expensive L-BFGS,
they propose the FGSM, the first formal adversarial attack designed
to generate such examples. By computing the sign of the gradient of
the loss function with respect to the input data, they derive an im-
perceptible perturbation that maximizes the error. The magnitude of
the perturbation added to the original input is controlled by a scaling
factor e. Furthermore, the authors suggest that training models using
adversarial examples in addition to the training data can increase the
model’s robustness. Specifically, they show that expanding the train-
ing set with gradient-based perturbations significantly improves models,
laying the groundwork for adversarial training to defend the models
against similar attacks. In the same line of work, [82] shows how ad-
versarial training can be applied to the entire ImageNet [39] training
set and experimentally verifies its robustness to FGSM. Moreover, they
propose a “one-step target class” variation that generates a perturbation
to deceive the model towards some specific class rather than a generic
misclassification. The aforementioned methods belong to the category
of the single-step methods, as the perturbation is retrieved once and not
iteratively before being added to the input. The authors use the MNIST
[88], CIFAR-10 [80], and ImageNet [39] datasets, increasing the error
rate of max-pooling convolutional deep Boltzmann machine (MP-DBM)
from 0.88% to 97.5%.
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Following up, Kurakin et al. [83] propose the Basic Iterative Method
(BIM) to improve upon FGSM with an iterative extension. BIM fur-
ther incorporates a clipping function, to control the magnitude of the
adversarial perturbation. Similar to the “one-step target class” FGSM
variation, this paper also presents a variation for BIM. This is achieved
by maximizing the log of the probability of a given input being classi-
fied as the targeted class. Beyond the method, the authors experimented
with real-world scenes captured from a phone camera and demonstrated
that adversarial examples remain effective, even under varying lighting
conditions or distances. The authors use the ImageNet [39] dataset, and
prove that even a small e value iteratively reduces accuracy close to 0%.

Similar to BIM, Projected Gradient Descent (PGD), proposed by
Madry [94], refines the perturbation iteratively. The key differences are
that PGD is randomly initialized instead of starting from the input, and
that PGD uses projection, instead of clipping. Specifically, after each
iteration, PGD projects the solution near the norm boundary of the orig-
inal input. Therefore, PGD is more robust and can escape suboptimal
local minima. By formalizing adversarial training into a robust optimiza-
tion problem, the authors demonstrate PGD as a solid baseline defense
against first-order adversaries. Another key point raised is that a neu-
ral network’s capacity is positively correlated with its robustness. The
authors use the MNIST [88] and the CIFAR-10 [80] datasets, achieving
accuracy of over 89% with adversarial training in the white-box setting,
over 95% in the black-box setting and over 64% on transfer attacks.

Auto-PGD, introduced by Croce and Hein [35], is an improved vari-
ant of the PGD attack that automatically adapts its step size during
each iteration. Unlike standard PGD, which relies on a fixed step size
that must be manually tuned, Auto-PGD dynamically adjusts the step
size based on the progress of the optimization process. Another obser-
vation concerns the limitations of the cross entropy loss, which can
suffer from gradient masking. When a classifier becomes overly con-
fident or robustly trained, the gradients of the cross-entropy loss may
vanish or become uninformative. To address this, Auto-PGD uses an al-
ternative loss function, namely the Difference of Logits Ratio (DLR), that
maintains more meaningful gradient signal in scenarios where cross-
entropy fails. These improvements make this attack more reliable for
evaluating adversarial robustness. In that direction, the authors com-
bined Auto-PGD with other techniques to create AutoAttack, which is a
robustness evaluation framework. They use the MNIST [88], CIFAR-10
[80], CIFAR-100 [80] and ImageNet [39] datasets, where AutoAttack’s
accuracy outperforms existing methods by over 10%.

Moosavi-Dezfooli et al. [102] propose DeepFool, an attack that works
by iteratively searching for the minimal perturbation to add to the input
in order to cross the decision boundary and be misclassified. At each iter-
ation, the image is perturbed by a small vector which takes the resulting
output to the boundary of the polyhedron that is obtained by linearizing
the boundaries of the region within which the image resides. Thereafter,
all perturbations are summed to compute the final one. This way DF
can create adversarial examples with smaller perturbations than FGSM
which are closer to the original input and as a result can more easily
trick the target model. The authors use the MNIST [88], CIFAR-10 [80],
and ImageNet [39] datasets, where the average DeepFool perturbation
is two to three times smaller than that of FGSM.

Croce and Hein [34] propose the Fast Adaptive Boundary (FAB), an
adversarial attack designed to generate minimally distorted adversarial
examples under various lp-norm constraints. FAB is an iterative method
that approximates the decision boundary of the classifier by linearly
approximating the loss landscape. At each iteration, it projects the cur-
rent perturbed input onto the intersection of the approximated decision
boundary and the valid input domain (such as the [0,1] pixel range for
images). This projection is combined with an adaptive update mecha-
nism that includes a momentum term and a backward step, ensuring
that the updated adversarial example remains close to the original input
while crossing through the boundary into a different decision region.
Another key advantage of the FAB attack is its robustness to gradient
masking and scaling issues that can hinder other gradient-based methods
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like PGD. The authors use the MNIST [88], CIFAR-10 [80], and ImageNet
[39] datasets, and demonstrate that FAB on average creates 0.75 smaller
perturbations than DeepFool.

The Carlini & Wagner (CW) attack, named after its authors Carlini
and Wagner [24], adapts its optimization formulation to suit different
norm constraints. For the L, norm, it directly minimizes the squared L,
distance between the original input and the adversarial example while
using a differentiable change-of-variable (often via a tanh transforma-
tion) to enforce valid image ranges; the loss function combines the L,
term with a penalty term ensuring misclassification, and the optimiza-
tion is carried out iteratively using Adam. In the case of the L norm,
rather than directly optimizing a non-differentiable maximum change
across pixels, the attack uses a thresholding strategy—penalizing any
component of the perturbation that exceeds a given threshold, which is
gradually reduced until the perturbation is as small as possible while still
achieving misclassification. For the L, norm, which seeks to minimize
the number of modified pixels, the attack adopts an iterative approach
that first uses an L, attack to generate an adversarial example and then
systematically removes or fixes pixels with the smallest contributions to
the adversarial loss, effectively isolating the minimal set of pixels that
need to be altered to fool the network. Its key strengths include high
effectiveness, flexibility across different norm constraints, and its status
as a benchmark for evaluating model robustness. However, it is com-
putationally expensive, requiring many optimization steps. The authors
use the MNIST [88], CIFAR-10 [80], and ImageNet [39] datasets, and
achieve 100% success probability when applied to defensive distillation.

As most white-box adversarial attacks use gradients, they assume
that the gradients are always available. However, for inherently dis-
crete model structures such as trees and their derivatives (boosting and
bagging ensembles), this is not feasible. Therefore, Zhang et al. [189] re-
formulate the attack problem into a discrete search problem, especially
designed for tree ensembles. Therein, the adversarial sample is crafted
by retrieving a valid “leaf tuple” that misclassifies the sample, all while
bearing the shortest distance to the original input. Interestingly, the pro-
posed method succeeds in leveraging the nature of the trees and achieves
smaller perturbations than black-box attacks, proving its effectiveness.
The authors use real-world datasets along with the MNIST [88], and
HIGGS [56] datasets, and need only 0.237 s to perform compared to the
375 s of mixed-integer linear programming (MILP).

Many attackers create substitute models to generate adversarial ex-
amples and then use them on the target model. This ability of the
adversarial examples is called transferability and it is quite common in
many attacks. Here, the authors do not use a substitute model and attack
directly on the target model. This is a different approach that eliminates
the need for model gradient access, which is not available in black-box
attacks.

Chen et al. [25] introduce the Zeroth Order Optimization (ZOO)
attack, a black-box adversarial method that operates solely based on
input-output interactions and the model’s prediction scores. ZOO is
named after zeroth-order optimization, a framework that does not
require explicit gradient information. Instead, the attack approximates
gradients using finite differences by querying the model multiple times.
Its objective is to decrease the model’s confidence in the correct class
while increasing confidence in an incorrect one, whether in a targeted
or untargeted manner. As querying is computationally expensive, ZOO
mitigates the cost by estimating gradients dimension-wise rather than for
the entire input at once. Further optimizations include the use of ADAM
and Newton’s methods to improve efficiency. ZOO was compared to CW
attack, demonstrating that it can generate similarly strong adversarial
examples, despite the black-box nature. The authors use the MNIST [88],
CIFAR-10 [80], and ImageNet [39] datasets, achieving success rate of
100% for untargeted attacks and 98.9% for targeted attacks on MNIST.

Brendel et al. [20] propose the Boundary Attack (BA), a black-box
adversarial method that constructs adversarial examples by iteratively
refining an initially misclassified input. Instead of relying on gradients,
BA perturbs a sample to a point where the model already misclassifies
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it, then gradually reduces the perturbation while maintaining misclas-
sification. This is achieved by taking random steps toward the original
input until it reaches the decision boundary or the iteration limit, thus
the step size is an important parameter in the attack’s success. The key
advantage of BA is its ability to function without access to probability
scores, making it highly versatile in real-world applications. However, its
main limitations lie in its computational cost and the detectability of the
initially highly perturbed input in certain scenarios. The authors use the
MNIST [88], CIFAR-10 [80], and ImageNet [39] datasets. The boundary
attack uses 1,200,000 forward passes but zero backward passes against
ResNet-50.

Ilyas et al. [62] extend black-box adversarial attacks by consider-
ing three scenarios: full knowledge of output probabilities, access to
only the top k labels with probabilities, and access to hard labels with-
out probabilities. Their approach minimizes queries while maintaining
attack effectiveness by leveraging Natural Evolution Strategies (NES)
to estimate gradients via model queries. NES samples perturbations,
evaluates their impact on output probabilities, and refines them using
antithetic sampling, i.e., selecting symmetrically opposite perturbations.
The attack then uses Projected Gradient Descent (PGD) on the esti-
mated gradients to generate adversarial examples. For partially known
outputs, the authors select a target class from the top predictions and
use backtracking with PGD to minimize perturbations for the misclas-
sified samples. When only hard labels are available, they approximate
probabilities by querying the model multiple times and then apply the
same gradient estimation techniques. The authors evaluate their method
on standard datasets and Google Cloud Vision API, and show that it
produces strong adversarial examples with fewer queries than previous
methods. Additionally, they validate the robustness of the adversarial
images, as they remain effective even after a 30-degree rotation. The
authors use ImageNet [39], and achieve success rates of over 90%.

Guo et al. [54] introduce the Simple Black-box Attack (SimBA), a
black-box adversarial attack designed to demonstrate that effective at-
tacks can be achieved with lower computational cost. SImBA uses a
simple optimization strategy to iteratively generate adversarial pertur-
bations assuming the model’s output probability scores. Starting from
the original input, the attacker queries the model twice: once by adding
a random perturbation and once by subtracting it. If the perturbation
reduces the model’s confidence in the correct class or increases the loss
leading to misclassification, it is retained, and the process continues
until misclassification or reaching the maximum number of iterations.
Different than many black-box attacks, SimBA does not estimate gradi-
ents; instead, it relies on random directions for perturbations and refines
them based on the re-evaluation feedback. Additionally, the authors pro-
pose a variant, SimBA-DCT, which applies the Discrete Cosine Transform
(DCT) to modify the input in the frequency domain and proves to be
more efficient and effective in query reduction. The authors use the
CIFAR-10 [80], and ImageNet [39] datasets, achieving success rate of
100%.

Rahmati et al. [129] introduce a novel perspective on black-box
adversarial attacks with the Geometric Decision-based Attack (GeoDA).
Unlike existing methods, GeoDA approaches the problem from a ge-
ometric standpoint. The key observation behind GeoDA is the use of
low mean curvature near data points, as this indicates a relatively flat
decision boundary, making it easier to cross with minimal perturba-
tion. The attack works iteratively, using the model’s output at various
iteration steps. Starting from a clean input, GeoDA applies small pertur-
bations near the input to approximate the decision boundary and then
refines them to minimize the distance to misclassification. Unlike other
black-box attacks, GeoDA efficiently distributes queries across iterations,
significantly reducing computational cost. Perturbation minimization
is measured using various norm constraints, and the authors formally
prove that under the assumption of bounded curvature, the L, norm at-
tack converges to the minimal necessary perturbation. The authors use
the ImageNet [39] dataset, achieving a fooling rate of 88.44%, 90.25%
and 91.17% using 500, 2000 and 10,000 queries respectively.
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Andriushchenko et al. [7] propose Square Attack (SA), an attack
that differs from prior work in that it spatially decomposes the feature
space into multiple subspaces. The attack initially divides the input into
smaller square regions, randomly selects one, and applies a perturba-
tion using random search. The modified input is then evaluated based
on the model’s classification output and confidence scores. This process
continues iteratively, focusing on squares that contribute the most to
adversarial success, until either misclassification is achieved or the it-
eration limit is reached. The local application of perturbations — rather
than its global counterpart — reduces query complexity and computa-
tional cost. The choice of square-shaped regions is deliberate, as squares
are simple to generate, non-overlapping, and have been validated in
prior research. Experimentally, SA even surpasses certain white-box at-
tacks. The authors use the MNIST [88], CIFAR-10 [80], and ImageNet
[39] datasets, outperforming even some of the state-of-the-art white-box
attacks.

5.2. Poisoning attacks

Poisoning attacks have evolved significantly over the years, targeting
various ML models during their training. [16] introduces one of the first
poisoning attacks against Support Vector Machines (SVMs), demonstrat-
ing how adversaries can inject malicious data points into their training
dataset to manipulate their decision boundary. First, a starting point
from the target class is selected and its label is flipped. Then, an SVM
is trained to evaluate the validation error. This process is iterated by
moving the poisoned point towards the direction of the model’s gradi-
ent, until the created SVM’s validation error increases over a predefined
threshold. The authors use the MNIST [88] dataset, increasing the target
model’s classification error from 2-5% to 15-20% with only one single
poisoned data point.

To decrease the computational cost and further improve poisoning
attacks, Yang et al. [179] proposed a generative approach to create poi-
soned samples. Their method is inspired by the concept of Generative
Adversarial Networks (GANs), and they use an autoencoder as a gener-
ator and a target model as a discriminator. The generator creates data
with altered labels, and using the feedback from the discriminator that
evaluates them, it iteratively creates data that maximizes the model’s
loss. The authors use the MNIST [88] and CIFAR-10 [80] datasets,
achieving a poisoned loss of over 0.8 on average against less than 0.4
on average for clean data.

A novel approach is clean-label poisoning, proposed in Shafahi et al.
[139], where the labels of the poisoned injected data remain unchanged.
Instead, the position of the poisoned sample affects the target model’s
decision boundary. Using a single poisoned image of a selected base
class minimally modified and moved closer to the feature space of a
target class, the retrained model misclassifies the target class as part of
the base class. Another technique suggested in this paper is injecting
multiple points into the target model’s training dataset combining base
images with a watermark of the target image. The authors use the CIFAR-
10 [80], and ImageNet [39] datasets, achieving a success rate of 100%
in transfer learning.

Paudice et al. [122] address a new heuristic poisoning method with
a predefined number of labels flipped. First, the attackers compute the
increase in the model’s error when the label of each data point in a
clean training dataset is flipped individually. The data point with the
highest validation error is flipped and the same procedure applies to the
rest of them until the predefined number of label flips is reached. The
authors use the BreastCancer [197], MNIST [88] and Spambase [61]
datasets, increasing the average classification error by a factor of 2.8,
6 and 4.5 respectively with only 20% poisoned samples. To address
these challenges, the authors suggest a label sanitization strategy that
recognizes and corrects suspicious label flips in training data, thereby
restoring model integrity.

Suciu et al. [155] introduce the FAIL (Features, Algorithms,
Instances, Leverage) attacker model, which formalizes the attackers’
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capabilities based on their knowledge of and control over the tar-
get model. StingRay attack is also proposed as a clean-label poisoning
method that only needs partial knowledge of the target model, which can
be acquired using black-box model extraction attacks. StingRay starts
with a clean base instance close to the target point in the feature space,
and then applies small perturbations to it to create undetectable poi-
soned examples, that resemble the target point. The authors use the
MNIST [88] and CIFAR-10 [80] datasets, achieving a validation score
of 78%.

Koh and Liang [79] examine how the predictions of a black-box
model can be used to understand which training points have the high-
est impact on them. The attackers exploit influence functions, and more
specifically the negative product of the inverse Hessian matrix with the
target model’s loss function’s gradient, for each training data point to
calculate their impact. Knowing the most influential points, they can
strategically manipulate a small subset of them to save time and com-
putational resources. The authors use the MNIST [88], ImageNet [39],
Enronl spam [99], and Diabetes [151] datasets, successfully flipping
the target model’s prediction for 57% of the provided images with 1
poisoned training image, 77% for 2 poisoned training images, and all
images except 1 for 10 poisoned training images.

A different approach to poisoning attacks is introduced in Shumailov
et al. [146], where instead of degrading the target model’s performance,
adversaries aim to harm its availability and energy consumption. The
attack starts by choosing inputs that have high potential to increase a
model’s computational cost. Then a genetic optimization algorithm max-
imizes the target’s energy consumption by evaluating each input based
on energy consumption and latency, keeping only the top performing
points and discarding the rest. These points are combined and mutated
to create new sponge examples. In addition to the genetic algorithm, L-
BFGS-B (Limited-memory Broyden-Fletcher-Goldfarb-Shanno with Box
constraints) is used which is another optimization algorithm, maximiz-
ing the resource consumption across all layers of a neural network. The
created sponge examples are evaluated based on their performance and
this process is iterated until they succeed in dramatically increasing the
target model’s energy consumption and resource usage. The authors use
the ImageNet [39], and WMT [42,108,116] datasets, achieving 6000x
more latency on Microsoft Azure Translator and energy consumption of
NLP models ranging between 10x and 30x on average, reaching even
200x in some cases.

While most of the poisoning attacks either change the label of clean
data or perturb them to create poison examples, Shumailov et al. [145]
propose a novel approach of data ordering to manipulate the sequence to
training samples in stochastic gradient descent (SGD). The authors sug-
gest changing the order of data points within a batch, changing the order
of batches, swapping data between branches and even removing some of
them. This way they can slow down model training or even mistrain the
model into adopting harmful behavior. Another key use of reordering
is planting a trigger that would not affect model performance in gen-
eral cases but only when the trigger data appears. The authors use the
CIFAR-10 [80], CIFAR-100 [80], and AGNews [190] datasets, achieving
an accuracy of 91% +13% trigger accuracy for white-box models and
68%+19% for black-box models compared to 99% clean accuracy.

Another advancing subcategory of poisoning attacks is backdoor at-
tacks, where adversaries aim to degrade a model’s performance only on a
specific trigger condition while it normally performs well. Bagdasaryan
et al. [11] introduce one of the first backdoor attacks against federated
learning, where multiple locally trained models are sent to a joint server
where they create a final global model. The authors propose replacing a
whole local model with a poisoned one, which eliminates the need for
additional knowledge of the target model. They also exploit an objec-
tive function that rewards their model for accuracy and penalizes it for
unusual behavior that would be detected by an anomaly detector. They
use the CIFAR-10 [80] and Reddit [17] datasets, achieving 100% accu-
racy in activating backdoor triggers while maintaining high accuracy on
general performance tasks.
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Building on this foundation, Bhagoji et al. [15] propose scaling up the
importance of their updates to make their model more dominant in the
joint model. They also suggest fine-tuning them to maintain the general
accuracy of the final model. Finally, another proposal is to approximate
the other participants’ clean updates to inject malicious updates that
would not affect the statistical similarity of the general distribution. The
authors use the Fashion-MNIST [176], and Adult Census [14] datasets,
achieving an accuracy of 91.7% on centralized training.

Following up, Xie et al. [177] further advance backdoor attacks by
introducing distributed backdoor attacks (DBA) against federated learn-
ing. In DBA, the backdoor trigger is split into multiple fragments across
several clients, and hence it is more difficult to detect. Each client is
trained on its own fragment and learns to recognize it, assigning it a spec-
ified backdoor label. When all the fragments contribute together, the
entire trigger is present in the joint model and the backdoor is ready to
activate. The authors use the LOAN [174], MNIST [88], CIFAR-10 [80]
and ImageNet Deng et al. [39] datasets, with a success rate of 89% after
50 rounds of DBA on MNIST, compared to only 21% for the centralized
attack.

Dai and Chen [37] focus on backdoor attacks targeting long short-
term memory (LSTM)-based text classification systems. Adversaries can
exploit a selected trigger phrase to manipulate a text classifier’s pre-
diction into specific cases. This phrase is chosen to fit in a wide range
of contexts, and its length does not matter although longer phrases are
more effective. The trigger is added to a set of training samples whose
labels are changed with a target class. This way the target model asso-
ciates the trigger to that class and learns to predict accordingly. It was
proven that the trigger’s position in the sample does not affect the at-
tack’s effectiveness at all. The authors use the IMDB movie reviews [85]
dataset, achieving a success rate of around 95% with only 1% poisoned
data.

Similarly, Zhao et al. [191] extend clean-label backdoor attacks to
video recognition models by adding imperceptible triggers into video
frames. A universal adversarial trigger is created by starting with a
random small perturbation in an area of a video frame, and then op-
timizing it by applying gradient-based methods. This trigger is added
to video samples without changing their labels and the model learns to
associate the trigger presence with a specific target class. The authors
use the UCF-101 [149] and HMDB-51 [81] datasets, with I3D achiev-
ing 91.5% and 63.4% accuracy on UCF-101 and HMDB-51 respectively,
while CNN +LSTM achieves 76.6% and 45.3%.

Finally, [130] introduces a completely different approach to back-
door attacks, where the hardware of the target model is attacked instead
of the software. The proposed attack is Targeted Bit Trojan (TBT), which
flips bits in the dynamic random access memory (DRAM) storing the
target model’s weights. TBT exploits the row hammering technique to
flip the bits without requiring physical access, as well as gradient-based
methods to identify the most critical bits. Row hammering involves
rapidly accessing a memory row to influence adjacent rows, causing
some of their bits to flip. The authors use the CIFAR-10 [80], SVHN
[106] and ImageNet [39] datasets, classifying 92% of the test images
correctly, with only 84 out of 88 million bits flipped.

5.3. Model extraction attacks

Recent research in model extraction has revealed that adversaries
can replicate ML models or copy their functionality using only query
access. Tramer et al. [161] demonstrate that even when only API access
is available, adversaries can reverse-engineer the target model using a
sufficient number of carefully selected inputs. By analyzing the model’s
output probabilities, the paper proposes training a model that mimics
the victim’s functionality. This is done either by querying the model ex-
tensively and solving the equations for simpler models, or by using the
victim’s output probabilities as labels to achieve high fidelity in more
complex neural networks. Furthermore, patterns of training samples
close to each other suggest that the target model is most likely a decision
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tree, where the attackers slowly change one feature at a time to approxi-
mate the branches’ splits. The authors use the Adult [14], German Credit
[60], Steak Survey [48], Circles [123], Moons [123], Digits [123], Blobs
[123], 5-Class [123], IRIS [46], Breast Cancer [197], Mushroom [163],
Diabetes [151], Email [48], Medical Cover [196], Bitcoin price [70], GSS
Survey [48] datasets to evaluate their attack on Amazon ML’s logistic
regression and BigML’s decision tree models, achieving 100% fidelity.

Building on this foundation, Orekondy et al. [115] introduce a tech-
nique that focuses on copying the functionality of black-box models
without trying to approximate the victim’s inner parameters. Using a
large number of inputs from publicly available datasets independent
of the victim’s training distribution, the attackers use the model’s out-
put probabilities as labels to train “Knockoff nets” which mimic the
victim model’s functionality. Another key contribution of this paper is
using reinforcement learning to select sample inputs, which they demon-
strate decreases the computational cost. For their experiments, the au-
thors use the ImageNet [39], Caltech-256 [52], CUBS-200-2011 [165],
Indoor-Scenes [128], Diabetic-Retinopathy [44], and Openlmagesv4
[84] datasets and their knockoff models achieve over 70% performance
on unseen data.

Building on attacks in a black-box setting through query sequences,
Oh et al. [112] investigate their ability to extract a target model’s inner
attributes, such as architecture, optimization algorithms and training
data. The authors propose a metamodel approach, which is a model
trained on outputs from a diverse set of white-box models, that learns
to predict specific attributes. The metamodel, once created, is applied
to the target black-box model, enabling the attackers to extract crit-
ical information. To further improve their attack’s performance, the
authors suggest collecting the metamodel’s training data by crafting in-
puts whose outputs maximize the information provided for a specific
target model attribute. The authors use the MNIST [88], and ImageNet
[39] datasets, and prove that specifically crafted queries achieve 94.8%
success rate in identifying whether max-pooling is used by a target
model.

Further advancing the existing model extraction attacks, Jagielski
et al. [67] aim for both high accuracy and high fidelity using only the
target model’s output labels and logits. To achieve high accuracy they
use techniques similar to “knockoff nets” attack, combined with the ex-
ploitation of unlabeled data and semi-supervised learning methods like
rotation loss and MixMatch, which further improve accuracy. For high fi-
delity, the paper proposes the Functionally Equivalent Extraction (FEE)
that is applicable only to two-layer rectified linear unit (ReLU) mod-
els that output logits with high precision. FEE approximates the ReLU
critical points where one of the ReLU units has input equal to zero,
through a refined search algorithm, using a varying parameter and eval-
uating the victim’s logit outputs. The knowledge of the ReLU’s critical
points creates a set of algebraic equations, which when solved expose
the target model’s inner weights and biases. When these methods are
combined by first using FEE to approximate the victim’s parameters and
then applying the first method to correct potential errors due to noise,
a new attack model is created. This model achieves high accuracy and
high fidelity but at the cost of great complexity and limited scalability
to deeper networks. The authors use the MNIST [88], CIFAR-10 [80],
SVHN [106], and ImageNet [39] datasets and demonstrate their results
on CIFAR-10 and SVHN, where using semi-supervised learning increases
the attack accuracy from 53.35% to 87.98% and from 79.25% to 95.82%
respectively.

In contrast to traditional query-based model extraction attacks, Milli
et al. [100] explore using the target model’s gradients, which are some-
times provided as explanations to justify the model’s predictions, to
reconstruct it. For the two-layer ReLU networks the proposed attack
takes advantage of the fact that this type of model splits the input space
into regions, where the ReLU activation is either active or inactive,
resulting in constant gradients within each region. Starting with two
random input vectors, their gradients are evaluated and if they are dif-
ferent binary search is exploited to identify the hyperplane separating
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them. This process is repeated with different starting points until all hy-
perplanes are known and the target model can be reconstructed. This
paper also proposes a heuristic method applicable to any model. First,
the attackers query the target model with randomly sampled inputs from
its training data distribution and iteratively train new models using hard
labels to minimize the gradient difference between the target model and
the replicate model. If the model outputs probabilities in addition to the
hard labels, the attackers also try to minimize this difference. The au-
thors use the MNIST [88] and CIFAR-10 [80] datasets, achieving 95%
accuracy on a MNIST convolutional model with only 10 gradient queries.
Similarly, Wang and Gong [167] also use the target model’s gra-
dients but in a different attack direction. Here, the attackers have
access to the model’s training dataset, objective function and option-
ally parameters and their main goal is to extract its hyperparameters
as well. The proposed attack creates a set of equations where the gra-
dient of the objective function is 0, and then solves it to find the
only unknowns, which are the hyperparameters. In the case where
the target model’s parameters are also unavailable, the authors sug-
gest first using one of the existing extraction attacks to find them.
They use the Diabetes [151], GeoOrig [194], UJIIndoor [159], Iris [46],
Madelon [56], and Bank [103] datasets, demonstrating high accuracy in
estimating hyperparameters, with relative errors often below 1074
Finally, because of the highly increasing development of large-scale
language models in production environments, Carlini et al. [23] focus
on the partial extraction of this type of model. This study introduces
an attack that combines targeted querying with fine-tuning on publicly
available data to extract key functional components of the target model,
specifically its final embedding projection matrix. First, the attackers
query the model with random inputs and collect the output logits. Using
these logits they reconstruct a matrix whose singular values when ana-
lyzed determine the size of the target model’s hidden dimension. Once
the hidden dimension is found, the model is queried with specific in-
puts that extract rows of the projection matrix. In this way the authors
show that, even without full model access, an attacker can effectively
extract parts of the target language model, and hence expose both propri-
etary algorithms and potentially sensitive data. To evaluate their attack
they use Pythia, LLaMA and ChatGPT, achieving a full projection matrix
extraction of OpenAl’s Ada and Babbage models with less than $20.

5.4. Model inversion attacks

Model inversion (MI) attacks have increasingly raised a critical pri-
vacy concern, revealing sensitive information about targeted models’
training datasets. Early work in the area highlighted the real-world risks
associated with privacy breaches in sensitive applications. [47] provides
a detailed demonstration of how personalized healthcare systems, and
more specifically those used to determine optimal warfarin doses, can
expose private genetic and clinical information. The proposed method
exploits the knowledge of the target model, the marginal probabili-
ties of its training data distributions which are often published, as well
as specific individual’s data, such as age, weight and stable warfarin
dose. By finding all possible combinations of attributes that match the
individual’s known data, the marginal probabilities of each combina-
tion and other performance statistics, such as confusion matrices, reveal
the most likely individual’s genotype. This technique was tested on
the International Warfarin Pharmacogenetics Consortium (IWPC) [32]
dataset and showed up to 22% higher accuracy when using partial pa-
tient knowledge and not only the marginal probabilities. This case study
was one of the first to highlight the privacy issues of model outputs’
exploitation.

Based on these initial observations, Wu et al. [175] formulate the MI
attacks. For the black-box setting their attack needs only oracle access
to the target model and auxiliary information about non-sensitive at-
tributes. Similarly to the warfarin-dosage attack, using a large number of
input-output pairs, the attack reverse-engineers the model based on the
auxiliary information. In the white-box setting where the attackers have
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full model access, the intermediate representations are used to lower
the computational cost. This work was the first to formalize MI attacks
and hence established a basis for evaluating and comparing different MI
attacks.

Following up, Zhang et al. [187] introduce a new attack progressing
from theory to practice. The main novelty is the employment of GANs in
order to reconstruct high fidelity approximations of the original train-
ing dataset using the victim’s soft labels. The GAN used is trained with
publicly available auxiliary data to have prior knowledge of the tar-
get task’s data general distribution and to create more realistic images.
Furthermore, a Wasserstein loss function along with a diversity term
is used to increase the generated image set’s diversity. Additionally, a
latent vector is optimized by penalizing unrealistic generated images
and encouraging images that have high likelihood of increasing the vic-
tim’s confidence for a specific class. High confidence scores expose the
strong correlations between some features and output labels, which can
be exploited to reconstruct the victim’s training dataset. The authors
use the MNIST [88], ChestX-ray8 [169], CelebA [92], and PubFig83
[124] datasets to evaluate their method and demonstrate an improved
accuracy of about 75% compared to existing MI attacks.

Enhancing the generative approach, Wang et al. [166] integrate
variational inference techniques to further improve the reconstruction
process. For that purpose, the authors also use StyleGAN which helps
them control their attack through a parameter balancing the generated
image set between high accuracy and high fidelity. The proposed ap-
proach is applicable in the white-box setting under the assumption that
both auxiliary data used and the target dataset lie in the same low-
dimensional manifold defined by the GAN. This attack was evaluated
using the MNIST [88], CelebA [92], and ChestX-ray [169] datasets and
achieved 0.55 and 0.69 accuracy on CelebA and ChestX-ray datasets
respectively.

Recognizing the need for adaptability in practical scenarios, Struppek
et al. [153] propose Plug & Play (P&P) attacks which remove the GAN’s
auxiliary data dependency on the target training data distribution. First,
a sampling of latent vectors is mapped to an intermediate representa-
tion and then used to generate images, transform them and feed them
into the target model. Latent vectors are optimized through backprop-
agation using a Poincare loss function, which helps the GAN generate
images that maximize the target model’s prediction scores for a specific
class without affecting its fidelity to realistic data distributions. Finally,
a selection process filters out results with low performance using a ro-
bustness against transformations evaluation. The authors use the CelebA
[92], FaceScrub [107], FFHQ [74], MetFaces [73], AFHQ Dogs [27] and
Stanford Dogs [77] datasets and for their experiment on FaceScrub they
show 88.46% accuracy while existing methods range between 5.72%
and 61.63%.

While the majority of white-box MI attacks achieve high accu-
racy, black-box attacks are not as successful, so [57] introduces the
Reinforcement Learning-Based Black-box MI (RLB-MI) attack. RLB-
MI uses a Markov decision process, where reinforcement learning is
exploited to guide the GAN in the latent space exploration to find
the optimal latent vectors. RLB-MI was tested on the CelebFaces [92],
FaceScrub [107], PubFig83 [124] and FFHQ [74] datasets. Since the
purpose was to improve existing black-box MI attacks’ accuracy, RLB-
MI was compared to other black-box attacks on VGG16, achieving an
accuracy of 0.659 which is higher than the 0.413 and 0.075 achieved
by MIRROR and LB-MI respectively.

Finally, [109] examines the assumptions and limitations of previ-
ous MI attacks, which are mainly the use of suboptimal identity loss
functions and the overfitting during the model inversion process. Their
first contribution is a logit-based identity loss that directly maximizes
the logits of a specific target class, encouraging the model to create
images closer to the target dataset. Additionally, a regularization term
is used to prevent unbounded growth of feature representations. The
second proposed method is model augmentation, a procedure for train-
ing additional models on public datasets using knowledge distillation
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to increase the diversity of the generated image set and mitigate over-
fitting. These advancements require knowledge of the victim’s inner
parameters, so they are applicable only in the white-box setting. The au-
thors use the CelebA [92], CIFAR-10 [80], MNIST [88], FFHQ [74], and
EMNIST [31] datasets, and evaluate the KEDMI attack both with and
without their proposed techniques, achieving improvements ranging
from +4.2% to +53.6% across different datasets.

5.5. Inference attacks

Membership inference attacks (MIA) have emerged as a rising pri-
vacy concern for ML models, giving adversaries the opportunity to
determine whether a specific data record was part of a model’s train-
ing dataset. Shokri et al. [144] introduced one of the first structured
approaches to MIA, where shadow models are used to mimic the tar-
get model’s behavior. By training these shadow models on data with
known membership, an attack model is created to distinguish whether
specific data points were in the target model’s training dataset based on
their output probabilities. This method exploits the higher confidence
ML models tend to exhibit for the data used during their training. The
attack’s success scales with the number of the shadow models, and the
authors suggest that a sufficient number of shadow models is one for
each potential output class of the target model. The authors use the
CIFAR-10 [80], CIFAR-100 [80], Purchase [72], Location [180], Texas
holiday stays [158], MNIST [88], and UCI Adult (Census Income) [14]
datasets, achieving precision from 71% to 78% for CIFAR-10 and 97%
to 100% for CIFAR-100 based on the training set size. To counteract the
information leakage exposed by these attacks, the authors propose lim-
iting the accuracy of confident outputs and implementing differential
privacy mechanisms.

Based on these initial observations, Truex et al. [162] formulate the
MIA. Their attack starts by generating shadow datasets that closely re-
semble the target model’s training data. Using these datasets they train
a set of models with similar behavior to the target model. Finally, as in
previous methods they use these shadow models to create the final at-
tack model. The key difference is that the shadow dataset generation
requires less information about the target model and hence is appli-
cable to a wider range of potential target models. Furthermore, the
authors have tested their techniques in different cases and demonstrated
that a collaborator in a federated learning model can exploit their posi-
tion to infer membership information. The authors use the Adult [14],
MNIST [88], CIFAR-10 [80], Purchases [72] datasets, achieving preci-
sion of 70.25%, 65.99%, 83.94%, 50.03% and 78% with CIFAR-10 for
the Linear Regression (LR), k-Nearest Neighbors (k-NN), Decision Tree
(DT), Naive Bayes (NB), and Neural Network (NN) models respectively.

Unlike traditional methods, [28] introduces the first label-only MIA.
Their main idea is to examine the target model’s robustness to pertur-
bations on given inputs, either synthetic or adversarial. Data points that
exhibit high robustness are training data points of the target model. The
two strategies explored are the transfer attack, where substitute models
are used to copy the target model’s behavior, and boundary attacks,
which evaluate the model’s predictions when perturbations are added to
given inputs. The authors use the MNIST [88], CIFAR-10 [80], CIFAR-
100 [80], Adult [14], Texas [158], Purchase [72] and Locations [180]
datasets, achieving accuracy ranging between 50% and 92.6%.

Rezaei and Liu [133] highlight the importance of exploiting the right
metrics to demonstrate an attack’s effectiveness and evaluate existing
membership inference attacks based on the proposed metrics. Often, pa-
pers focus on positive metrics such as having high accuracy, precision
and recall for the positive class, while negative metrics like having high
false positive rate (FPR) are not demonstrated. This covers an attack’s
ineffectiveness, predicting that given data are part of the target model’s
training dataset way too often. The authors use this metric to evaluate
existing membership inference attacks and conclude that most of them
cannot achieve both low false acceptance rate (FAR) and high accuracy.
They use the MNIST [88], CIFAR-10 [80], CIFAR-100 [80] and ImageNet
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[39] datasets, demonstrating FARs of 38.89%, 64.45% and 65% for the
AlexNet, ResNet and DenseNet models respectively.

On the same page, Carlini et al. [22] also argue about the tradi-
tional metrics used to evaluate existing membership inference attacks.
The authors propose a novel evaluation framework focused on achiev-
ing a high true positive rate while maintaining a low false positive rate.
The authors’ contribution is the Likelihood Ratio Attack (LiRA) which
leverages statistical hypothesis testing by comparing the probabilities of
a given input being part of the target model’s training dataset or not.
Taking into consideration the probability of a given input not being a
member, LiRA outperforms traditional methods, demonstrating lower
false positive predictions. The authors use the CIFAR-10 [80], CIFAR-
100 [80], ImageNet [39] and WikiText-103 [98] datasets, proving that
LiRA achieves a 10x improvement in power at low false positive rates
compared to existing attacks.

Further advancing the membership inference attacks, Zhang et al.
[186] propose three novel attacks against GNNs. The first one is the
property inference attack, where the attackers use the embeddings and
outputs of the target model to train an attack model that predicts a
graph’s properties, such as its number of nodes, edges or graph density.
The second attack is the subgraph inference attack, where the attackers
analyze posterior probabilities or embeddings to detect unique subgraph
structures with neighborhoods of nodes, by training classifiers either in
the white-box or in the black-box setting. Finally, the third attack is the
graph reconstruction attack, where the attackers aim to reconstruct an
entire graph using embeddings generated by the GNN, employing gen-
erative models like autoencoders to create graphs that closely resemble
the target model. The authors use five of the TUDatasets [104] (DD,
ENZYMES, AIDS, NCI1 and OVCAR-8H) datasets, achieving an accuracy
of up to 0.89 when inferring basic graph properties, such as the number
of nodes, the number of edges and the graph density.

Beyond membership inference, Zhou et al. [193] introduce a prop-
erty inference attack against GANs. The attackers’ target is to acquire
knowledge of the target model’s general characteristics, such as the pro-
portion of samples with a specific attribute. For the full black-box setting
the attack begins with querying the target GAN to create samples, which
are later analyzed using a property classifier trained on a dataset with
similar distribution to the target GAN’s training dataset. The goal of
this classifier is to predict whether specific properties exist in the gener-
ated samples. For the partially black-box setting, strategically selected
latent codes are used to maximize the attack’s efficacy. The authors use
the MNIST [88], CelebA [92], AFAD [111] and US Census Income [97]
datasets, and prove that with knowledge of the training dataset’s proper-
ties, the enhanced membership inference’s area under the curve (ROC)
increases from 0.52 to 0.61.

Against models with explainable artificial intelligence (XAI), Luo
et al. [93] explore feature inference attacks on Shapley values, which are
employed to explain the target model’s output dependence on individual
input features. The authors examine two different cases, where the at-
tackers either have access to an auxiliary dataset or not. In the first case
they use this dataset to train an attack model minimizing sampling er-
rors in Shapley value approximations. On the other hand, when they
have no additional knowledge or dataset to use, they instead exploit the
local linear correlations between model inputs and outputs encoded in
Shapley values. The authors use the Adult [14], Bank marketing [103],
Credit card [181], Diabetes [151], IDA 2016 Challenge [2], Insurance
Company Benchmark [126] and three synthetic datasets. The success
rate of the second case is at least 30% when performed on IBM and
Microsoft platforms.

5.6. LLM attacks

Recent advancements in LLMs have introduced unprecedented ca-
pabilities in natural language processing, but they have also exposed
critical security vulnerabilities. This section analyzes works that reveal
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novel attack vectors against LLMs, ranging from prompt leakage, jail-
break and poisoning to revealing sensitive information such as credit
card information. Moreover, the advent of LLMs has given birth to
new attack vectors with their help, including sophisticated automated
cyberattacks and penetration testing.

Prompt extraction is an introductory step in the lifecycle of an at-
tack targeting LLMs, as the adversary can acquire more information on
how to fool the system. PLeak is a closed-box prompt leaking framework
designed to extract confidential system prompts from LLM applications
by formulating the attack as an optimization problem. It incrementally
searches for an adversarial query that, when concatenated with the hid-
den prompt, compels the target application to reveal its full system
prompt. To circumvent the issue of the large search space, PLeak em-
ploys a gradient-based approach that optimizes the adversarial query
token by token—starting with the first few tokens of shadow system
prompts and gradually increasing the length. Additionally, it incor-
porates an adversarial transformation step to bypass defenses, then
reverses this transformation in post-processing to accurately reconstruct
the original prompt. Experimental results demonstrate that PLeak out-
performs manually crafted and adapted jailbreak attacks, achieving
higher exact match and semantic similarity scores across the ChatGPT-
Roles [71], Financial [95], Tomatoes [121], SQuAD2 [113] and SIQA
[137] datasets and the GPT-J [168], OPT [188], Falcon [6], LLaMA-2
[160] and Vicuna [26] models.

More than just extracting a prompt, many works focus on manip-
ulating it. In an attempt to challenge the robustness of prompt-aligned
language models, [195] present a novel adversarial attack that generates
transferable adversarial prompt suffixes. It employs an extension of the
Auto-prompt method introduced by Shin et al. [143], a hybrid of greedy
and gradient-based search, termed greedy coordinate gradient-based
descent (GCG), to automatically identify perturbations that, when ap-
pended to a variety of prompts, make the model produce objectionable
responses. These adversarial examples are shown to be highly trans-
ferable, affecting proprietary LLMs like GPT-3.5 [114], Bard [51], and
Claude [9], as well as open source LLMs such as LLaMA-2, Falcon and
others.

Guo et al. [55] advance over GCG to formalize the controllable gener-
ation of white-box jailbreak attacks on LLMs and establish a connection
with controllable text generation. Their work does not rely on the dis-
crete token-level optimization of GCG. Instead, it adapts an energy-based
constrained decoding algorithm using Langevin Dynamics introduced by
Welling and Teh [171], termed COLD, to perform efficient gradient-
based sampling in the continuous logit space, before decoding them
back into discrete texts. This attack integrates control parameters—
such as fluency, stealth, sentiment, and left-right coherence—to generate
adversarial attacks in a unified manner. It supports both conven-
tional fluent suffix attacks and novel scenarios, including adversarial
paraphrasing and position-constrained stealthy insertions. Experiments
on Llama-2, Mistral, Vicuna, Guanaco, GPT-3.5, and GPT-4 demonstrate
the framework’s high success rate, robust controllability, and effective
transferability.

Ren et al. [132] introduce ActorAttack, a multi-turn jailbreak method
that uses self-discovered clues to guide LLMs toward producing harmful
outputs. Rooted in actor-network theory, the approach builds a network
of semantically linked “actors”—both human and non-human—as di-
verse attack clues related to a harmful target. In the pre-attack phase,
the method samples these clues to obtain potential triggers. Then, using
a self-talk mechanism, ActorAttack infers an attack chain that guides
the generation of a multi-turn query set. Finally, dynamic modification
refines this path based on victim responses, leveraging a GPT-4-based
judge. The harmfulness of models is evaluated on HarmBench [96].
Overall, ActorAttack automates the discovery of diverse multi-turn at-
tack paths, significantly improving success rates, even for GPT-4. Jaech
et al. [66] introduce SafeMTData, a dataset for safer LLM alignment.
This dataset has been published to facilitate safety alignment training,
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assisting LLMs in improving their resilience against sophisticated multi-
turn jailbreak-style prompt attacks.

Recently, Li et al. [90] attempted to tackle the poor transferability
across models and high computational cost caused by sequential token
replacement. To address these, they introduced TF-Attack, a black-box
attack that uses an external LLM (Llama2-7B in the experiments) to
assess token importance and group tokens into “Importance Levels”.
This grouping allows for parallel substitutions, significantly reducing
the attack time. In addition, the framework proposes the Multi-Disturb
and Dynamic-Disturb techniques to increase both the efficiency and
transferability of the adversarial examples. Experimental results on six
benchmarks (Yelp Polarity and AG News [190], SNLI [19], IMDB [63],
MR [121] and MNLI [172]) show that TF-Attack outperforms previ-
ous methods achieving over a 10x speedup while maintaining language
fluency and significantly impairing the performance of various victim
models.

More recently, in early 2025, [89] presents a method that
exploits vulnerabilities of LLM-powered agents, using their exter-
nal integrations—such as memory systems, web access, and API
interactions—to conduct simple attacks. The authors first categorize
these vulnerabilities into a taxonomy and then demonstrate a series of
practical attacks on Anthropic’s Computer Use web agent and MultiOn
that can, for example, leak private data such as credit card numbers,
download malicious files, and send phishing emails, all without requir-
ing any specialized ML knowledge. These attacks expose critical security
risks in commercial systems that could lead to massive privacy breaches
and financial losses in real-world deployments.

However, attacks on LLMs are not restricted to jailbreak. ICLAttack
introduced by Zhao et al. [192] is a backdoor method specifically de-
signed for LLM in-context learning used by Dong et al. [40] (ICL).
ICLAttack is achieved through two strategies, namely, poisoning demon-
stration examples and poisoning demonstration prompts. In the former,
sentence-level triggers are inserted into a subset of demonstration ex-
amples while preserving their correct labels, so that the attack remains
stealthy. In the latter, the method replaces standard prompt templates
with adversarial ones that serve as triggers, enabling the backdoor to
be activated even when the user’s query is unaltered. The core idea
of ICLAttack is to exploit the analogical reasoning capability of ICL,
whereby the model learns to associate the inserted trigger with a tar-
get label. Once the poisoned demonstration context is constructed, any
user query that either contains the trigger (in the case of poisoned exam-
ples) or is processed with the malicious prompt (in the case of poisoned
prompts) leads the model to output the attacker’s predefined target
label. Experiments conducted on multiple text classification datasets
(such as SST-2 [148], OLID [183], and AG News [190]) and across
various LLM architectures (including OPT [188], GPT-NEO [18], GPT-J
[168], and Falcon [6]) demonstrate that ICLAttack achieves an average
attack success rate exceeding 95% while only minimally affecting clean
accuracy.

In another work Alber et al. [5] discuss the vulnerability of med-
ical LLMs to data-poisoning attacks by simulating corruption of The
Pile [49], a large training dataset, with minute fractions of Al- rs train
multi-billion-parameter models on the poisoned datasets and demon-
strate that even a 0.001% replacement of training tokens significantly
increases the likelihood of generating malicious medical outputs. To
address these risks, they suggest a defense technique utilizing the hi-
erarchical nature of biological knowledge graphs to evaluate and filter
LLM outputs, achieving high precision and recall in identifying mis-
information while successfully limiting the impact of data poisoning.
They evaluated their method on the LAMBADA [76] and HellaSwag
[184] datasets for common-sense language tasks, while for medical
tasks, they used MedQA [68], PubMedQA [69], MedMCQA [119] and
the MMLU [59] clinical knowledge and professional medicine subsets,
using a GPT-3-like LLM.
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Attack-in-the-Chain introduced by Liu et al. [91] (AttChain) utilizes
chain-of-thought prompting to iteratively generate adversarial exam-
ples that boost a target document’s ranking in neural retrieval systems.
AttChain focuses on exploiting vulnerabilities in information retrieval
by dynamically perturbing target documents guided by high-ranking
anchor documents. Its approach—filtering anchor documents via a Zipf-
based strategy and assigning perturbation budgets based on ranking
discrepancies—proves that LLM reasoning can be used for subtle, multi-
step adversarial attacks in black-box settings. The experiments are
conducted with GPT-3.5 and Llama3 as attackers on the MS MARCO
Document Ranking [110] and TREC DL19 [33] datasets.

PentestGPT introduced by Deng et al. [38] is an LLM-based
framework that automates penetration testing. Using GPT-3.5, GPT-4,
and Bard, it performs real-world security tasks through a structured
benchmarking system that covers 13 targets and 182 sub-tasks from
HackTheBox and VulnHub. The framework consists of a reasoning mod-
ule to track progress, a generation module to transform tasks into
commands, and a parsing module to process feedback. An active feed-
back loop ensures human testers validate execution. Evaluations show
GPT-4 outperforms other models, demonstrating strong task completion
rates but facing challenges with context retention and hallucination.
Experiments are performed on PentestPerf, their penetration testing
benchmark, to evaluate the performance of penetration testers and au-
tomated tools across a wide range of testing targets. While promising
for security assessments, the study also demonstrates the risks of LLM
misuse in automated cyber-attacks.

More recently, AutoAttacker proposed by Xu et al. [178] presents
a system that automates “hands-on-keyboard” cyber-attacks through
a modular design incorporating summarization, planning, navigation,
and an experience manager. In contrast to PentestGPT, which is not
fully automated, as the penetration tester has to act as the proxy be-
tween the capture the flag (CTF) environment and the LLM to facilitate
their communications, AutoAttacker is designed for executing com-
plex post-breach attacks end-to-end. It breaks down attack tasks into
manageable subtasks and reuses successful actions through retrieval-
augmented techniques, showing the capacity of LLMs to generate
precise, context-aware attack commands with minimal human inter-
vention. AutoAttacker is evaluated on custom benchmark, broader than
PentestPerf which focuses on the CTF setup, and GPT-4 is chosen as the
attacker model due to its higher performance compared to GPT-3 and
Llama2.

Lastly, the application of Large Language Models to distributed
denial-of-service (DDoS) Attack Detection first demonstrated by
Guastalla et al. [53] adopts LLMs in a defensive role, utilizing few-shot
and fine-tuning techniques to accurately detect DDoS attacks in IoT net-
works. This work is different from the offensive objectives of the above
papers. While they demonstrate how LLMs can be co-opted to auto-
mate cyber-attacks, the DDoS detection study shows that, when properly
prompted, LLMs can serve as effective defense mechanisms by classify-
ing and explaining potential threats with high accuracy. Experiments
confirm the claims on the CICIDS 2017 [141] and Urban IoT [58]
datasets, showing that LLMs with few-shot learning outperform fully
supervised multi-layer perceptrons (MLPs).

6. Defense mechanisms and mitigations

Modern Al systems must deal with a growing number of security
threats, including poisoning and evasion attacks, as well as LLM-specific
vulnerabilities, inference attacks, model extraction, and model inver-
sion. The MITRE ATLAS framework provides a systematic collection of
Al adversarial techniques, identifying specific methods that attackers
can employ to harm Al models and their associated data. By map-
ping real-world threats to their associated ATLAS techniques, we can
determine particular defenses and mitigation strategies. This approach
enables clear knowledge of which defensive measures are most effective
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against certain threats, and serves as a strong foundation for developing
powerful Al systems.

This section examines each defense approach, including its aim,
methodology, and particular vulnerabilities addressed. Collectively,
these mitigations provide a realistic and practical paradigm for strength-
ening the security, integrity, and robustness of Al systems throughout
the development and deployment process. Table 1 provides an in-depth
analysis of each attack, including its ATLAS technique and related de-
fensive and mitigation strategies. Serving as a thorough reference for
professionals as well as researchers to better understand the connections
between adversarial techniques and defense mechanisms. Furthermore,
the Table 1 shows that certain defenses can be utilized against a vari-
ety of attack strategies. Key defenses that can be applied to all of the
examined attack categories are described below:

Verify Al Artifacts: In order to ensure that the file has not been mod-
ified by a malicious party, it is necessary to validate the cryptographic
checksum of every single Al artifact.

Al Bill of Materials: An Al Bill of Materials (AI BOM) lists all of
the artifacts and resources utilized to develop the AL The AI BOM can
assist in reducing supply chain risks and enabling rapid adaptation to
detected vulnerabilities. This might involve preserving dataset prove-
nance, or a complete history of datasets used in Al applications. The
history might contain information about the dataset’s origin as well as
a detailed record of any changes.

Limit Model Artifact Release: Limit the public distribution of
technical project-specific information such as data, algorithms, model
structures, and model checkpoints that are or will be utilized in produc-
tion.

Control Access to AI Models and Data at Rest: Establish access
restrictions for internal model registries and restrict internal access to
production models. Only approved users should have access to training
data.

Sanitize Training Data: Detect, eliminate, or remediate poisoned
data from training. Sanitizing training data before model training is
recommended, as well as on a regular basis for active learning mod-
els. Implement a filter to restrict the amount of training data that is
consumed. Create a content policy to prevent the use of inappropriate
content, such as explicit or offensive language.

Maintain AI Dataset Provenance: Maintain a precise history of
datasets utilized by Al applications. The history should include infor-
mation related to the dataset’s origins as well as a detailed record of any
changes.

Generative Al Guardrails: Guardrails are safety restrictions that are
added between a generative Al model and its outcome shared with the
user to avoid unwanted inputs and outputs. Guardrails can include val-
idators like filters, rule-based logic, or regular expressions, as well as
Al-based techniques like classifiers and the use of LLMs or named en-
tity recognition (NER) to assess the safety of the prompt or answer.
Domain-specific techniques can be used to mitigate risks in a range
of fields, including brand reputation, SQL injection attacks, potential
data leaks, misinformation, etiquette, code vulnerabilities, and jailbreak
attempts.

Model Hardening: Adversarial training or network distillation are
two strategies for making Al models resilient to adversarial inputs.

Use Ensemble Methods: To improve resilience against adversarial
inputs, use an ensemble of models for inference. Certain models or model
families may be successfully evaded by certain attacks, whereas others
may not be.

Input Restoration: All inference data should be preprocessed to
eliminate or reverse potential adversarial perturbations.

Adversarial Input Detection: Detect and prevent adversarial inputs
or unusual queries that differ from known benign behaviors, display be-
havior patterns observed in past attacks or originate from potentially
hostile IP addresses. Incorporate adversarial detection techniques into
the Al system prior to the AI model.
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Use Multi-Modal Sensors: Incorporate multiple sensors to combine
different views and modalities to prevent a single point of failure that is
vulnerable to a physical attacks.

AI Model Distribution Methods: Deploying Al models on edge de-
vices might enhance the system’s attack surface. Consider providing
models on the cloud to restrict the adversary’s access to the model.
Consider cloud computing features to avoid gray-box attacks, which
occur when an attacker has access to model preparation procedures.

Passive Al Output Obfuscation: Reducing the accuracy of model
outputs presented to the end user can limit an adversary’s capacity to
gather knowledge about the model and improve attacks against it.

Restrict Number of AI Model Queries: Limit the quantity and
frequency of requests a user can make.

Generative Al Guidelines: Guidelines are safety restrictions that are
placed between user-supplied input and a generative Al model to help
guide the model to create desired outputs while preventing undesirable
outcomes. Guidelines can be used as instructions attached to all user
prompts or as part of the system prompt. They can describe the sys-
tem’s goal(s), role, and voice, as well as establish its safety and security
requirements.

Generative AI Model Alignment: It is essential to employ tech-
niques that improve model alignment with safety, security, and content
requirements while training or optimizing a generative Al model. The
fine-tuning process has the potential to remove built-in safety mecha-
nisms in a generative Al model, but techniques such as Reinforcement
Learning from Human or AI Feedback, Supervised Fine-Tuning, and
Targeted Safety Context Distillation can improve the model’s safety and
alignment.

Al Telemetry Logging: Log the inputs as well as outputs from de-
ployed AI models. Monitoring logs can assist in detecting security issues
and mitigating their effects. Additionally, enabling logging could dis-
courage adversaries who wish to remain undiscovered from using Al
resources.

User Training: Teach AI model developers about secure coding
methods and Al vulnerabilities.

Restrict Library Loading: Configure proper library loading mech-
anisms within the operating system and applications to prevent the
loading of untrusted code. Investigate potentially vulnerable software.
File formats used for storing AI models, such as pickle files, may include
exploits that allow malicious libraries to be loaded.

Code Signing: To prevent untrusted code from running, enforce
binary and application integrity via digital signature verification.
Adversaries have the ability to embed harmful malware in Al software or
models. Code signing enforcement can help to keep the Al supply chain
secure and prevent malicious code from executing.

Vulnerability Scanning: Vulnerability scanning can be utilized
to identify potentially exploitable software vulnerabilities and resolve
them. File formats, such as pickle files, which are often utilized for
storing AI models, might include bugs that allow arbitrary code exe-
cution. These files should be inspected for potentially dangerous calls
that might be used to run code, create new processes, or enable net-
working. Adversaries may encode dangerous code in corrupt model files,
therefore scanners must be able to deal with models that can’t be com-
pletely de-serialized. Model artifacts and downstream products should
be inspected for known vulnerabilities.

Encrypt Sensitive Information: Encrypt sensitive data, such as Al
models, to prevent unauthorized access.

Limit Public Release of Information: Limit the amount of techni-
cal information about an organization’s Al stack that is made available
to the public. Adversaries can utilize technical understanding of how Al
works to target and customize attacks on the target system. Consider
restricting the sharing of organizational information, such as geographi-
cal locations, researcher names, and department structures, from which
technical details including Al methods, model architectures, or datasets
might be extracted.
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7. Discussion and future directions

A closer look at the MITRE ATLAS case studies shows that adversarial
attacks often build on each other. Rather than using just one technique,
attackers rely on multi-stage processes where each step sets up the next.
For example, an adversary might start by mounting a black-box adver-
sarial attack on an ML model offered as-a-service. This allows them to
generate samples near the model decision boundary, making it easier
and quicker to replicate the model behavior. With the proxy model in
hand, attackers can then craft white-box adversarial examples to avoid
detection with very few API calls. Every stage in this chain magnifies
the damage of the one before it, and combining tactics also helps at-
tackers dodge layered security measures. While issues revolving around
the trustworthiness of Al models are thoroughly considered on an indi-
vidual basis, i.e., “model stealing” or “model evasion”, the combination
of attacks is not jointly discussed. Current defenses also tend to ad-
dress single-attack scenarios. While MITRE ATLAS reveals many such
incidents throughout the case studies, very little work has been done
on compound or sequential attack strategies and how to defend when
multiple weak points are exploited.

Recently, XAI has been incorporated into many Al suites to enhance
model transparency. For instance, platforms such as Google Cloud’s
Explainable AI, IBM Watson, and AWS SageMaker Clarify offer ex-
planations along with their predictive services. However, XAl is not
yet represented in the MITRE ATLAS framework. While it facilitates
the use of Al by circumventing its opaque nature, XAl also introduces
risks by exposing critical information about the model inner workings.
Explanations can enable adversaries to better understand a model’s
behavior. Consequently, it requires fewer queries to replicate or manip-
ulate the model when explanations are provided. While some discussion
does exist by Spartalis et al. [150], it is still relatively understudied. On
the other hand, adversaries may also target the explanations themselves.
Baniecki and Biecek [13] have highlighted scenarios where explana-
tions are adversarially manipulated, while work by Artelt et al. [10]
discusses how poisoning attacks can change explanations without affect-
ing model predictions. Therefore, the requirement for balance between
transparency and security in Al systems is becoming more important.
MITRE ATLAS does not currently cover XAl-specific threats, such as at-
tacks on explanations or model transparency, indicating a gap that must
be filled.

With the rise of LLMs, Reinforcement Learning (RL) has regained
popularity. Specifically, Reinforcement Learning from Human Feedback
(RLHF) by Ouyang et al. [117] and Group Relative Policy Optimization
(GRPO) by Shao et al. [140] are used to instruct LLMs, following their
supervised training. However, RL is vulnerable to poisoning attacks,
as adversaries can manipulate rewards, environments, or training data.
These attacks cause RL agents to adopt suboptimal policies or act mali-
ciously when triggered. Methods such as reward poisoning, adversarial
environment manipulation, and backdoor attacks pose significant risks.
Additionally, attacking RL agents is more dangerous than ever due
to the popularity of deploying agentic workflows. Therein, the attack
landscape expands with the number of agents involved. Currently, the
multi-agent attack surface (one Al exploiting another) is largely under-
explored. It is significant for any domain where Al systems cooperate
or compete: from robotics (drone fleets) to finance (automated trading
agents interacting) to cybersecurity (automated defenders vs. attack-
ers). Traditional adversarial ML focuses on single-model vulnerabilities,
so expanding to multi-agent contexts requires more research. MITRE
ATLAS currently provides only a limited coverage of RL-specific threats
and does not describe multi-agent exploitation patterns, coordination-
based threats, or cross-agent influence pathways. Addressing these
gaps is critical, as RLHF-driven and agentic systems rapidly guide the
operational behavior of large AI deployments.

Another unexplored area revolves around multi-modal models as
shown by Baltrusaitis et al. [12], where text, image, audio, video and
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other modalities, are processed simultaneously by the same model.
Despite the enhanced capabilities they bring, owing to stronger signals
from multiple data sources, multi-modal ML raises new security issues
regarding their vulnerability to attacks. While there has been some work
in the field by Dou et al. [41], adversarial attacks are heavily under-
studied in multi-modal models. For instance, how does an adversary
effectively poison one modality to compromise the overall model, and
can perturbations in a less influential channel amplify vulnerabilities in
others? Similarly, when attempting model extraction or stealing attacks,
is one modality inherently more exploitable than another? Furthermore,
can cross-modal interactions be used to perform inversion attacks that
reconstruct sensitive training data from partial inputs, and do these in-
teractions offer resilience or fragility during inference under adversarial
conditions? In real-world applications, such as in an Al-powered con-
tent filter that checks both text and images, a cross-modal adversary
could evade detection by distributing the malicious cue across modal-
ities. Current defenses also tend to address unimodal attack scenarios.
The current MITRE ATLAS taxonomy does not comprehensively include
modality-specific attack vectors, cross-modal transferability, or multi-
modal inversion issues, despite their growing importance in foundation
models. Extending the paradigm to include multi-modal threat cate-
gories would allow for more comprehensive threat modeling in current
multisensor systems.

Another field gaining popularity is neurosymbolic AI, which com-
bines neural networks with symbolic reasoning or logic-based compo-
nents. This hybrid approach improves interpretability and reasoning,
but it also introduces new vulnerabilities for both the neural and
symbolic domains. An important question is whether adding symbolic
structure makes the system more robust or more sensitive to adversar-
ial manipulation. The answer so far is not clear. [134] suggests that
certain neurosymbolic architectures can be more adversarially robust
than purely neural ones, for example if the symbolic module provides
constraints that limit the neural network susceptibility to nonsensical
perturbations. However, if symbolic rules are too simplistic (an “inter-
pretable shortcut”), an adversary can exploit that to break the system,
even if the neural part is robust. This area remains underexplored—
the attack surface includes manipulating the neural network’s inputs
or the knowledge base/rules that the symbolic component uses. For in-
stance, an attacker might add a few fake facts to a knowledge graph that
a neurosymbolic system consults, leading the Al to draw dangerously
wrong conclusions (a form of symbolic poisoning). Such hybrid architec-
tures are not fully captured in MITRE ATLAS, indicating a structural gap
for capturing symbolic poisoning, logic-level adversarial manipulation,
or hybrid neural-symbolic exploit chains. As neurosymbolic systems
expand, the taxonomy must evolve accordingly.

Another critical research avenue that remains largely unexplored
is security for continual learning. While traditional ML models have a
fixed behavior after training, continual learning systems update their
knowledge or adapt over time based on new data or feedback. Examples
include reinforcement learning systems that keep training in deploy-
ment, or LLM-based agents that refine their responses via user feedback.
While this adaptability is powerful, it also means the model behavior
is a changing attack surface. An attacker might gradually influence a
self-learning system off course—a form of continual poisoning. As per
Cisco’s Al security report [30], when Al applications continue to learn
from new data, “new vulnerabilities and emergent behavior can ap-
pear after deployment, unlike traditional software that does not change
unless you change it”. This requires continuous monitoring and peri-
odic robustness re-evaluation. Most research still treats defense as a
one-time process, while the community needs online methods and mech-
anisms to shut down critical components of a model even as other parts
learn, in order to prevent drifting into a compromised state. MITRE
ATLAS does not completely capture such hybrid architectures, reveal-
ing a structural gap in the detection of symbolic poisoning, logic-level
adversarial manipulation, or hybrid neural-symbolic attack chains. The
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taxonomy of neurosymbolic systems must grow in parallel with their
expansion.

7.1. Framework limitations and application security

To address the challenge of standardization in Al security, it is es-
sential to situate MITRE ATLAS within the current tri-polar landscape
of defense frameworks. Governance standards such as the NIST Al RMF
[105] and ISO/IEC 42,001 [65] provide the high-level “why” and “what”
of organizational risk management, whereas application security stan-
dards such as the OWASP Top 10 for LLM Applications [118] offer the
developer-focused “where” in terms of vulnerabilities. MITRE ATLAS
fills the unique gap of “how” in this ecosystem, functioning not as a
compliance checklist, but instead as a dynamic threat framework derived
from MITRE ATT&CK.

While MITRE ATLAS presents a thorough taxonomy of adversarial
tactics, it is critical to recognize its limitations as a “living knowledge
base”. MITRE ATLAS depends primarily on real-world case studies as
well as real red-teaming scenarios to populate its matrix. This empirical
approach creates a codification lag, in which theoretical vulnerabilities
reported in academic literature are not included in the framework until
they’ve been operationalized in the wild. As a result, the framework may
underestimate novel threats from emerging fields like neurosymbolic Al
or multi-modal systems, where public events are rare.

Furthermore, the dependence upon voluntary incident reporting
leads to reporting bias. High-visibility attacks, such as chatbot manip-
ulation, are widely reported; however silent failures, such as model
extraction or data leakage, remain unreported because of intellectual
property concerns or a lack of detection. As a result, application-level
guidelines, such as the OWASP Top 10 for LLM Applications, are bene-
ficial since they emphasize deployment-specific concerns. While ATLAS
concentrates on the adversary’s perspective TTPs, OWASP tackles the
developer’s perspective by documenting significant application weak-
nesses such as insecure output handling and supply chain vulnerabilities.
Thus, combining ATLAS and OWASP provides a more comprehensive
knowledge of LLM and Al application security, with every framework
providing separate and complimentary insights about threat behaviors
and system-level vulnerabilities.

Overall, these findings highlight both the importance of MITRE
ATLAS as a framework as well as the areas where the community
can expand and operationalize it. Future investigations should attempt
to address gaps in coverage, increase granularity and benchmarking,
and integrate future attack classes (XAl multi-agent, multi-modal, neu-
rosymbolic, continuous learning). Finally, additional research should
include mappings to measurable defense metrics, as there are no stan-
dardized metrics or Key Performance Indicators (KPIs) to assess how
well a defense addresses MITRE ATLAS techniques, transforming MITRE
ATLAS into a comprehensive and empirically based resource for adver-
sarial machine learning research and secure Al engineering.

7.2. Operationalizing ATLAS for enterprise defense and regulatory
compliance

MITRE ATLAS is based on the industry-standard MITRE ATT&CK
architecture, allowing enterprises to efficiently integrate Al threat intel-
ligence into their existing Security Operations Centers (SOCs). Security
analysts who are already familiar with TTP-based approaches for tradi-
tional IT can utilize ATLAS to extend their threat detection and incident
response playbooks to Al systems. Particularly, the defensive mecha-
nisms described in Section 6 serve as a foundation for these playbooks.
Organizations can shift from reactive patching towards proactive hard-
ening of their ML pipelines by mapping known adversarial behaviors to
particular mitigations(e.g., adversarial training, input sanitization). This
is particularly vital in critical infrastructures such as energy or health-
care grids which employ predictive maintenance or diagnostic Al, since
a harmful attack can result in physical disruptions.
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Beyond operational security, ATLAS provides a systematic approach
to regulatory compliance. Emerging frameworks, such as the EU Al Act
[43], mandate manufacturers of “high-risk” Al systems to demonstrate
robustness against adversarial threats and guarantee cybersecurity re-
silience. Similarly, standards such as ISO/IEC 42,001 [65] and the NIST
Al Risk Management Framework (AI RMF) [105] place particular em-
phasis on the “measure” and “manage” functions for adversarial attacks.
Our mapping operationalizes these criteria by identifying potential at-
tack vectors employing the ATLAS taxonomy. By applying the defenses
outlined in Section 6, practitioners can systematically document their se-
curity posture during compliance evaluations. Consequently, rather than
simply serving as a descriptive attack matrix, ATLAS is an important au-
diting tool for demonstrating due diligence in an increasingly regulated
industry.

8. Conclusions

In conclusion, this survey has offered an in-depth exploration of ad-
versarial attacks on Al systems through the lens of the MITRE ATLAS
framework. In Section 3, we outlined the fundamental tactics, objec-
tives, and techniques that adversaries use, supporting our discussion
with real-life case studies that demonstrate how these attacks can lead
to significant financial losses, erode trust in Al, and damage reputations.

Thereafter, the MITRE ATLAS techniques were categorized accord-
ing to the literature into six broad areas —Evasion, Poisoning, Model
Extraction, Inference, Model Inversion, and LLM Attacks. A total of
63 papers were analyzed in detail providing their categorization,
overview, theoretical advances over previous related works, threat mod-
els, datasets and experimental results. Our research demonstrated that
these threats are not limited to a single domain, but rather span mul-
tiple domains and data modalities, extending from traditional CV and
NLP to GNNs and RL systems. This review demonstrates that adversar-
ial methods are not isolated tactics, rather, they often interact, allowing
attackers to exploit weaknesses at multiple stages of the Al lifecycle. In
Section 6, we proposed a systematic mapping of defense mechanisms to
ATLAS techniques so that the defensive aspect of this lifecycle could be
addressed directly. This paper provides a core paradigm for researchers
and practitioners who want to build robust Al systems by linking specific
attacks to appropriate mitigations.

Last, we discussed open research avenues, highlighting the need for
synergistic approaches that address the multi-stage and interdependent
nature of adversarial attacks. We discussed the importance of exploring
combined tactics, emerging vulnerabilities introduced by explainable Al
and continuous learning frameworks, as well as promising directions
in agentic workflows and neurosymbolic Al. Additionally, we identified
structural limitations in the current MITRE ATLAS taxonomy and offered
specific modifications that could enhance its granularity and coverage
of novel and emerging attack vectors.
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