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H I G H L I G H T S

• Structured analysis using MITRE ATLAS to classify AI threats across six attack families, mapping tactics and techniques.

• Systematic analysis of 63 methods across domains, evaluating theory, threat models, datasets, and results.

• Actionable defense strategies mapping 24 mitigation mechanisms to MITRE ATLAS techniques as a practical guide for practitioners.

• Synthesis of findings highlighting research gaps, future directions, and proposed enhancements to the MITRE ATLAS framework.
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A B S T R A C T

Recent advancements in digital technologies and the integration of artificial intelligence (AI) with software sys­

tems have introduced new challenges in cybersecurity. Traditional frameworks such as MITRE ATT&CK have 

proven expressive enough for the analysis of software threats, yet they are limited in accommodating the vulner­

abilities of ML systems. In response, MITRE ATLAS was developed to extend the threat analysis specifically to 

AI and machine learning (ML) environments, providing a structured taxonomy for adversarial tactics and tech­

niques attempting to compromise them. In this paper, we extend the conversation by reviewing papers related 

to adversarial attacks and examining their categorization, their theoretical foundations, and their advancements 

compared to prior work. Specifically, we analyze a total of 63 papers across the entire AI attack spectrum and 

further delve into their objectives, threat models, scientific advancements, and evaluation. Our contributions 

include the first, to-date analysis of attack vectors following the MITRE ATLAS paradigm, a synthesis of recent 

advancements, and a discussion on the limitations in the current body of knowledge. We hope that our analysis 

clarifies the present challenges and serves as a foundation for future research towards securing AI systems.
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1 . Introduction

The rapid adoption of digital technologies has introduced heavy 

reliance on interconnected software systems across industries, govern­

ments, and societies [136]. From cloud computing to Internet of Things 

(IoT) devices, these systems support healthcare services and financial 

transactions. Unfortunately, this dependence on software introduces 

significant security risks. Even minor flaws in code or design can be ex­

ploited by attackers to disrupt services, steal data, or cause harm [173]. 

To systematize these threats, frameworks like MITRE ATT&CK, short for 

Adversarial Tactics, Techniques, and Common Knowledge, have been 

introduced [152]. MITRE ATT&CK provides a standardized taxonomy 

for detecting and mitigating adversarial behaviors across the cyber kill 

chain. It categorizes adversarial techniques aimed at compromising soft­

ware infrastructure such as phishing, privilege escalation, and lateral 

movement, to help organizations anticipate threats, profile attackers, 

and defend effectively.

Nowadays, artificial intelligence (AI) and machine learning (ML) are 

complementing traditional software, introducing new layers of cyberse­

curity risks [125]. Unlike static software, ML systems learn from data, 

adapt to new inputs, and operate probabilistically. These characteristics 

create novel attack surfaces [182]. Malicious actors can exploit these 

dynamic models by contaminating training sets to insert malicious trig­

gers, [16], manipulating inputs to produce incorrect outputs, [50], or 

recovering private parameters through reverse-engineering techniques 

[135]. Far from being theoretical concerns, such attacks have already 

undermined facial recognition systems, led autonomous vehicles astray, 

and circumvented fraud detection platforms [170].

Notably, AI systems are vulnerable to both digital and physical 

attacks, with numerous real-life examples. In one digital attack, an in­

dividual used evasion techniques to exploit ID.me’s identity verification 

system in California [164]. The attacker paired stolen personal infor­

mation with fake driving licenses and selfies of himself wearing wigs. 

Using these materials, he filed at least 180 fraudulent unemployment 

claims, stealing over $3.4 million before being arrested. On the physical 

front, AI-based cyber-physical systems are equally at risk. For example, 

in June 2019, researchers revealed vulnerabilities in global navigation 

satellite systems (GNSS) dependent platforms by successfully spoofing 

the global positioning system (GPS) navigation of a Tesla Model 3 [36]. 

By manipulating navigation data, the attackers demonstrated how spoof­

ing tactics could impact real-time driving decisions, calling for further 

research into stronger cybersecurity measures for GPS technologies.

The transition from traditional software to AI-driven systems high­

lights the need for adaptive security frameworks, [125]. While MITRE 

ATT&CK, [152] addresses conventional cyber threats targeting software 

infrastructure, there is still a significant gap regarding the threats tar­

geting the AI landscape. MITRE responded to the growing risks faced 

by AI and ML systems by creating ATLAS, short for Adversarial Threat 

Landscape for AI Systems [101]. It is an offshoot of the MITRE ATT&CK 

framework that focuses on threats unique to AI. MITRE ATLAS high­

lights how adversarial objectives evolve when targeting ML models. 

For example, an attacker might exploit a biased model to manipulate 

loan approvals or weaponize a misclassified image to cause autonomous 

systems to fail, as discussed in [170].

The MITRE ATLAS framework facilitates the organization of the 

complex threat landscape of ML-based applications. It is organized 

hierarchically and provides a structure to classify concepts and knowl­

edge about threats, adversarial tactics, and mitigations. Moreover, it 

is expressive enough to support in-depth analysis and reasoning about 

both attacks and defenses. By contextualizing these threats, MITRE 

ATLAS not only raises awareness but also assists organizations in proac­

tively defending AI systems [89]. This paper explores how the MITRE 

ATLAS framework provides a roadmap for securing modern technolog­

ical ecosystems, ensuring resilience against legacy and emerging cyber 

threats [195].

In this paper, we review the MITRE ATLAS taxonomy and discuss the 

classification and relevant case studies that motivate it. Thereafter, we 

carefully select and review 63 research papers relevant to adversarial 

attacks of various types, which essentially embody as described by the 

MITRE ATLAS framework. Our contributions are summarized as follows:

• We provide the first-to-date analysis of adversarial attacks through 

the lens of MITRE ATLAS, systematically mapping threats into 

six distinct categories: Evasion, Poisoning, Model Extraction, 

Inference, Model Inversion, and LLM-related attacks. By identify­

ing tactics, objectives, and corresponding techniques, we provide 

a structured understanding of the evolving threat landscape.

• We conduct a detailed and rigorous analysis of 63 selected research 

papers covering a wide spectrum of domains and modalities, from 

traditional Computer Vision (CV) and Natural Language Processing 

(NLP) to Graph Neural Networks (GNN), and more recently, Large 

Language Models (LLMs). Our analysis not only categorizes these 

works but also systematically evaluates their theoretical contribu­

tions, threat models, datasets, and experimental outcomes, offering 

deep insights into the state-of-the-art.

• We introduce a dedicated analysis of defense mechanisms in 

Section 6, mapping 24 mitigation strategies directly to their re­

spective ATLAS attack techniques. This strengthens the practical 

relevance of the work by demonstrating how each threat can be 

countered with effective and actionable defense strategies.

• We distill our analysis in concise limitations of the current litera­

ture and discuss them in the context of future research directions. 

Furthermore, we propose structural improvements to the MITRE 

ATLAS framework to address novel and emerging attack vectors.

The rest of this paper is organized as follows. Section 2 discusses re­

lated surveys on adversarial attacks across different modalities, threat 

models, and learning paradigms. Section 3 presents the methodological 

framework. In Section 4 we provide the background and discuss in de­

tail the miter ATLAS tactics, their objectives, and the techniques they 

include. The techniques are thereafter mapped to diverse attack cate­

gories in line with the existing literature, and a total of 63 papers are 

analyzed in Section 5 to provide an in-depth overview of the attack land­

scape. Section 6 discusses defense and mitigation methods for handling 

these attacks. In Section 7, we discuss open research avenues that are 

yet understudied. Lastly, in Section 8 we revisit and conclude the main 

parts of this work.

2 . Related survey works

In a seminal survey Yuan et al. [182] discuss adversarial attacks at 

test time, widely termed evasion attacks. They analyze attacks based 

on the threat model, perturbation and reported benchmarks. Herein, 

the authors decompose the threat model into four aspects: adversarial 

falsification, adversary’s knowledge, adversarial specificity, and attack 

frequency. Adversarial falsification includes false positive attacks, where 

benign inputs are misclassified as malicious, and false negative attacks, 

where malicious inputs evade detection. Adversary’s knowledge dis­

tinguishes between white-box attacks, where the attacker knows the 

model’s details, and black-box attacks, where only output information is 

available. Adversarial specificity differentiates targeted attacks, which 

force misclassification into a specific category, from non-targeted at­

tacks, which aim for any incorrect classification. Lastly, attack frequency 

compares one-time attacks, which generate adversarial examples in a 

single step, with iterative attacks, which refine examples over multiple 

iterations. Regarding perturbation, attacks are distinguished by whether 

they seek an individual (sample-specific) or universal (sample-agnostic) 

perturbation to impact the model. Moreover, they consider whether the 

perturbation is the optimization objective or a constraint of the problem 
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and lastly, they consider the magnitude. Finally, the attacks are cate­

gorized according to the dataset and the model(s) they are evaluated 

against. The paper goes beyond mere discussion of the methods and 

considers many applications as well as respective defenses.

Pitropakis et al. [125] discuss adversarial machine learning across 

three main tasks, i.e., intrusion detection, spam filtering, and visual 

recognition. The authors categorize the attack phases into preparation 

and manifestation, the former referring to gathering the intelligence 

required to prepare the attack plan. The manifestation step involves 

launching the attack, which depends on the attacker’s knowledge, the 

algorithm used, and whether game-theoretic approaches are employed. 

The attack can occur in either the training (poisoning) or testing (eva­

sion) phases, targeted or not, and can be the product of an individual 

attacker or a joint collaboration among multiple colluding attackers. 

Finally, attacks are categorized by evaluation method (analytical or ex­

perimental) and by their impact on performance, measured as drops in 

classification or clustering accuracy.

Rigaki and Garcia [135] discuss privacy and confidentiality attacks in 

ML and categorize them into four types. Membership Inference Attacks 

aim to determine if a specific data sample was part of the training set. 

These attacks include passive and active variants, as well as auditing ap­

proaches from a data owner’s perspective. They apply to both supervised 

models (black-box and white-box) and generative models, such as gener­

ative adversarial networks (GANs) and variational autoencoders (VAEs). 

Reconstruction Attacks, also termed attribute inference or model inver­

sion, seek to recreate training samples or labels either fully or partially. 

They may also generate class representatives or probable sensitive fea­

ture values, such as facial data in classification tasks. Property Inference 

Attacks extract unintended dataset properties, such as demographic ra­

tios or latent biases, that are unrelated to the model’s training task. 

These attacks target dataset-wide traits or batch-level patterns (e.g., 

in collaborative learning), with implications for privacy and security. 

Model Extraction Attacks focus on replicating a target model’s behav­

ior via substitute models. These attacks aim for either task accuracy or 

decision boundary fidelity and often serve as precursors to adversar­

ial or membership inference attacks. These attacks may also recover 

hyperparameters, architectural details (e.g., activation types, layers), 

or optimization algorithms, emphasizing efficiency in query usage and 

model complexity. All types of attacks in the proposed taxonomy are an­

alyzed a) w.r.t. the attacker’s knowledge of the system and b) in both the 

typical centralized scenario and within the federated learning paradigm.

In a more recent work, Fang et al. [45] review techniques on model 

inversion. Similar to how training data with some principles can derive 

a model, a model with some principles can derive training data. Again, 

the main distinction is the attackers knowledge. Specifically, a white-

box scenario implies that the attacker has full access to the weights and 

outputs of the target model, whereas black box access implies access to 

confidence scores or raw decision outputs. This taxonomy is organized 

based on two different axes. First, the reconstructed data modality, i.e., 

whether one attempts to recover image, text, graph or tabular data from 

a given model. Second, the tasks the model was trained for, i.e., classi­

fication, generation, or representation learning. The authors go beyond 

model inversion attacks and further discuss defenses.

In another survey paper, Oliynyk et al. [113] review model extraction 

attacks and corresponding defenses. These attacks are categorized based 

on the adversary’s objective, using the stealing objective as the differen­

tiation axis. Usually the main goal is to replicate the model’s behavior, 

which falls into two subcategories: (1) attacks aiming to closely approx­

imate the model’s predictions (accuracy) and (2) those attempting to 

replicate its decision-making process as closely as possible (fidelity). 

Additionally, some attacks focus on extracting specific model properties, 

such as the target model’s hyperparameters, architecture, or training de­

tails. Furthermore, the authors divide adversarial motivation into two 

main types: (1) those where the attackers try to replicate the whole 

model or part of it to use it and (2) those where they attempt to just 

approximate it in order to use it for white-box adversarial attacks, such 

as evasion strategies. Finally, the paper examines the attackers’ capabil­

ities, based on factors such as their knowledge of the target model (e.g., 

black-box access), the permitted actions (e.g., query-based interactions), 

and the available resources (e.g., query limits).

Considering data poisoning attacks, Ciná et al. [29] classify meth­

ods based on their goal, knowledge, capability, and strategy. In terms 

of their goal, attacks can violate different security levels, i.e., they can 

compromise integrity (allowing malicious inputs to evade detection), 

availability (disrupting model functionality), or privacy (extracting sen­

sitive information). Moreover, attacks can target specific samples or 

not (attack specificity) and cause class-specific or agnostic errors (error 

specificity). Depending on the attacker’s knowledge, attacks are fur­

ther categorized into white-box (full system knowledge) and black-box 

(limited or query-based knowledge) settings. In capability-based classifi­

cations, attacks use different learning settings. Training in-house allows 

attackers to inject poisoned data into externally sourced datasets when 

used, while outsourced model-training enables a malicious third party 

to directly control the training process and embed backdoors. Attack 

strategies range from label-flip poisoning (altering training labels) 

to clean-label attacks (applying imperceptible perturbations). Finally, 

backdoor attacks manipulate both training and test data by embedding 

hidden triggers that activate misclassifications under specific conditions. 

Defenses against poisoning attacks include training data sanitization, 

which removes harmful data, robust training, which modifies the learn­

ing process; model inspection, which detects whether a model has been 

compromised; model sanitization, which removes potential backdoors; 

trigger reconstruction, which identifies and extracts hidden triggers in 

backdoored models; and test data sanitization, which filters potentially 

manipulated inputs during inference.

Adversarial attacks were initially researched within CV, due to the 

continuity of image data, and the degrees of freedom an image provides 

for retrieving a good perturbation. As such, most foundational works 

originate from there. Akhtar et al. [4] present a rigorous taxonomy and 

analysis of adversarial attacks for CV, complementing their previous 

work by Akhtar and Mian [3]. The authors start by discussing the foun­

dational works of the field such as Fast Gradient Sign Method (FGSM). 

Then they consider the latest advances in adversarial, model inversion, 

backdoor and adaptive attacks. This work goes beyond attacks on mere 

classification tasks, and further considers some defenses.

However, adversarial attacks extend beyond the digital domain, as 

adversaries can manipulate model predictions by influencing the nat­

ural environment from which the model captures imagery data. [170] 

reviews adversarial attacks in the physical world. The authors propose 

a unified framework centered on four key steps: (1) generating pertur­

bations in the digital world, (2) designing and manufacturing physical 

“adversarial mediums” (tangible artifacts that carry perturbations) as 

observed in the digital world, (3) capturing threat images with the as­

sistance of the manufactured “adversarial mediums”, in the scene where 

the camera sensors are monitoring, and (4) executing attacks on the deep 

neural network (DNN) models behind those sensors. They emphasize 

the adversarial medium’s role in shaping perturbation design, manufac­

turing feasibility, and real-world applicability. The authors introduce 

a hexagonal evaluation metric (hiPAA) to systematically quantify at­

tack performance across six dimensions: Effectiveness, Stealthiness, 

Robustness, Practicability, Aesthetics, and Economics. Their contribu­

tions include the four-step framework, the adversarial medium concept, 

and the hiPAA metric for cross-method comparison to guide future 

research in improving physical adversarial attacks.

Adversarial attacks have long been a prominent area of study in 

the CV domain, due to the ease of reverting signals from the output 

back to the input, owing to its continuity. However, applying similar 

attack strategies to textual data presents different challenges, as text 

pre-processing is discrete and non-continuous, making it difficult to 

reverse-engineer perturbations. Additionally, textual modifications can 

be easily detected by humans or automated tools like spell-checkers, 

unlike changes in precise pixels of images that often go unnoticed. 
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Furthermore, textual perturbations sometimes may alter the semantic 

meaning of the input, which drastically affects model outputs, while 

changes in pixels of images tend to preserve overall semantics. These 

differences highlight the importance of developing specialized meth­

ods for ranking and evaluating textual perturbations. Zhang et al. [189] 

create a taxonomy of adversarial attack methods on textual deep learn­

ing (DL) models. This taxonomy is organized into five key strategies: 

i) the model access group, which considers the attacker’s knowledge 

of the target model; ii) the application group, which focuses on meth­

ods designed for specific natural language processing tasks; iii) the 

target group, which distinguishes attacks based on whether they aim 

to produce incorrect predictions or specific targeted outcomes; iv) the 

granularity group, which examines the level of textual units (e.g., char­

acters, words, or sentences) being attacked; and v) cross-modal attacks, 

which involve multi-modal data (e.g., text and images) and are treated 

separately from attacks on purely textual models. This structured catego­

rization provides a robust framework for systematically understanding 

and analyzing adversarial attack methods in the context of textual DL.

More recently, textual processing has been synonymized with LLMs. 

Shayegani et al. [142] provide a review of adversarial attacks on LLMs, 

focusing on general attack classes across different models and domains. 

First, the survey clusters the works into the ones concerning either uni­

modal (only text) or multimodal LLMs. It examines the evolution of 

attacks from manually crafted examples to algorithmically generated 

adversarial inputs, and their impact on more recent architectures such 

as multimodal, augmented, federated, and multi-agent LLMs. Attack 

factors that should be taken into consideration are the attacker’s ac­

cess level (white-box, black-box, or partial), the injection source (input 

prompts or external data), and the attack mechanism (e.g., prompt 

injection or context contamination). Lastly, the survey explores the 

adversary’s goal, ranging from impairing the quality of the model out­

put and bypassing model alignment to generating harmful or insecure 

content.

While previous surveys have played an important role in organiz­

ing the literature on adversarial machine learning, they do so from a 

limited perspective, optimizing depth for specific attack families, modal­

ities, or threat objectives rather than providing a unified, operational 

threat model. Yuan et al. [182] provide a seminal treatment of inference-

time evasion, decomposing threat models by falsification type, attacker 

knowledge, specificity, and perturbation characteristics, however, their 

scope is limited to evasion and does not include poisoning, extrac­

tion, inversion, or LLM-specific attacks. Pitropakis et al. [125] propose 

a task-oriented view that includes intrusion detection, spam, and vi­

sual recognition, organizing attacks into preparation and manifestation 

phases. However, their scope is task-centric and domain-bound. Rigaki 

and Garcia [135] present a detailed classification of membership in­

ference, reconstruction/model inversion, property inference, and model 

extraction attacks in the privacy literature, but they deliberately limit 

their analysis to privacy and confidentiality attacks, excluding evasion, 

poisoning, and LLM-related attack vectors and choosing not to include 

any of these in the ATLAS matrix.

Other recent studies are attack-type specific and hence complimen­

tary, although their scope is not directly comparable to our work. Fang 

et al. [45] present an overview of model inversion strategies categorized 

by reconstructed modality and task, whereas Oliynyk et al. [113] focus 

on model extraction and categorize attacks based on stealing objectives, 

attacker motivation, and capabilities. [29] focuses on training-time poi­

soning attacks, with a comprehensive taxonomy of goals, knowledge, 

capability, and strategies, as well as mitigation measures, however, they 

do not incorporate evasion, inference, model extraction, or LLM threats 

into a single unified framework. Along the domain axis, Akhtar and 

Mian [3], and their subsequent extensions [4], provide wide taxonomies 

of computer-vision attacks and countermeasures, whereas Wei et al. 

[170] focus on physical-world vision attacks. Zhang et al. [189] inves­

tigate attacks on textual DL models, providing taxonomies for access, 

NLP task, target, perturbation granularity, and cross-modal settings, 

while Shayegani et al. [142] explore adversarial attacks on LLMs as 

a new, emerging topic. These works provide high-quality but isolated 

taxonomies, each covers a subset of evasion, poisoning, extraction, in­

ference, inversion, and LLM attacks, usually in a single modality (e.g., 

vision or text) and task family.

The present work builds on and operationalizes these gaps employing 

MITRE ATLAS as the central organizational framework and effectively 

connecting attack types, domains, and modalities into a unified op­

erational taxonomy. Additionally, while some of the aforementioned 

studies refer to ATLAS, none employ it as the primary organizing 

concept or provide a systematic, paper-level, Tactics, Techniques, and 

Procedures (TTP) analysis of the broader adversarial ecosystem. Rather 

than surveying a single attack family or a narrow subset of attacks, we 

investigate and synthesize 63 research papers spanning six primary at­

tack families (evasion, poisoning, model extraction, inference, model 

inversion, and LLM-related attacks), thereby covering attack vectors 

that previous surveys tend to examine separately. Each study has been 

systematically mapped to ATLAS tactics and techniques, converting ab­

stract taxonomies into a practitioner-friendly crosswalk that connects 

academic findings to a standardized threat vocabulary. Moreover, our 

research highlights the interplay between various attack types and their 

cascading impacts on system security, providing a more interconnected 

viewpoint that is typically lacking in domain-specific reviews. The tax­

onomy also considers evolving attack vectors and their effects in real-life 

scenarios. Furthermore, unlike surveys limited to specific domains (e.g., 

CV-only, NLP-only, or LLM-only), the examined works cover multiple 

domains and modalities, such as vision, text/LLMs, graphs, tabular data, 

and cyber-physical systems, allowing for a cross-domain examination 

of how the same ATLAS technique operates across application settings. 

Beyond listing attacks, Section 4 conducts a structured, per-paper, multi­

dimensional analysis of each of the 63 studies, including threat models, 

attacker knowledge, objectives, datasets, evaluation settings, and ob­

served limitations, transforming ATLAS from a descriptive matrix to a 

practical lens for threat modeling and gap identification. To our knowl­

edge, this work provides the first end-to-end functional mapping of 

various adversarial threats to MITRE ATLAS, providing researchers and 

practitioners with a comprehensive, operational perspective of the AML 

threat domain.

3 . The MITRE ATLAS framework

3.1 . Reconnaissance

Reconnaissance describes an intelligence-gathering phase of an at­

tack preliminarily meant for the target system, organization, or person. 

In MITRE ATLAS, reconnaissance is the first phase of adversarial oper­

ations. The attacker gathers information about the target organization 

or system to identify vulnerabilities and prepare for subsequent actions. 

This phase typically precedes the actual attack. Different from general 

reconnaissance, the attackers here target exclusively AI systems. The 

identification of valuable resources, system architecture understanding, 

and revelation of possible vulnerabilities characterize this stage. The 

reconnaissance could either be done in a passive way, by looking 

through available public material to gain an understanding of the tar­

get system, or actively, by directly communicating with Application 

Programming Interface (API) target system endpoints to leak data, 

uncover vulnerabilities, or disclose details about its configuration.

Adversaries employ various techniques to gather information during 

reconnaissance. They may Search Victim’s Public Research Materials, 

such as academic papers and technical blogs, for details about the 

target’s use of machine learning and underlying model architectures. 

This information helps them create realistic proxy models for tailored 

attacks. Similarly, they Search Public Vulnerabilities Analysis in com­

monly used ML models to adapt or replicate successful attack methods. 

Furthermore, Search Victim’s-Owned Websites are another valuable 

source, offering insights into technical operations, employee details, and 

business processes that inform attack strategies. Search Application 
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Repositories like Google Play or the iOS App Store are scanned for ML-

enabled components, allowing adversaries to acquire public ML artifacts 

for further analysis. Additionally, Active Scanning techniques involve 

directly probing the victim’s systems to extract information about net­

work configurations and software vulnerabilities, providing critical data 

for planning precise attacks. Together, these techniques help adversaries 

effectively target and exploit ML-enabled environments.

A representative case study of the Reconnaissance tactic is 

ShadowRay [138], identified as AML.CS0023. ShadowRay refers to a 

set of concerns in the Ray framework, an open-source Python platform 

for scaling production AI workflows. Researchers at Oligo found that the 

Job API of Ray-which allows for arbitrary remote execution by design 

does not have authentication and may have default settings that acci­

dentally expose clusters to the internet. Meanwhile, the clusters have 

been exploited by adversaries for more than seven months, who have 

used the victims’ computational resources and possibly stolen sensitive 

data. The financial impact of the compromised machines stands at al­

most $1 billion. Researchers reported five vulnerabilities to Anyscale, 

maintainers of Ray. For the Reconnaissance tactic in this case study, the 

technique involved is Active Scanning. More specifically, adversaries can 

check for public IP addresses to discover people who may be hosting Ray 

dashboards. Ray dashboards are configured to run on all network inter­

faces by default, which might expose them to the public internet if no 

additional security measures are in place.

3.2 . Resource development

In the MITRE ATLAS framework, the Resource Development tactic 

includes techniques that adversaries use to establish the resources nec­

essary to support operations against AI systems. This includes creating, 

purchasing, or compromising resources such as infrastructure, accounts, 

or capabilities that facilitate subsequent attack phases.

Techniques in the Resource Development tactic aim to enable ad­

versarial operations against AI systems. Acquire Public ML Artifacts

involves obtaining open-source AI models, datasets, or other ML re­

sources that can potentially be studied or manipulated for malicious 

purposes. Obtain Capabilities involves acquiring tools such as exploit 

kits or malware that are intended to compromise AI systems. Develop 

Capabilities: This is an extension where the operators build custom 

tools or models with unique features to target AI systems, such as GANs 

for poisoning data. Acquire Infrastructure involves setting up domains 

or servers for hosting malevolent activities, such as distributing poi­

soned models or controlling compromised systems. Publish Poisoned 

Datasets and Poison Training Data introduce malevolent data into 

training pipelines to corrupt the AI models. Establish Accounts involves 

creating accounts to facilitate operations like phishing or publishing 

malicious artifacts. Finally, Publish Poisoned Models and Publish 

Hallucinated Entities release compromised AI models into trusted 

repositories to deceive users who rely on them.

A case study of Resource Development is the Confusing Antimalware 

Neural Networks exercise [75], carried out by the Kaspersky ML 

Research Team in June, 2021 identified as AML.CS0014. This ex­

ercise targeted Kaspersky’s cloud-based antimalware ML models and 

demonstrated how adversaries can use Resource Development to evade 

detection. For the Resource Development tactic in this case study, the 

first technique involved is Acquire Public ML Artifacts: Datasets, where 

the researchers gathered a dataset of malware and clean files. This 

dataset was scanned using Kaspersky’s ML-based solution to label the 

samples, enabling the creation of a proxy model for adversarial attack 

experimentation. The second technique involved in this tactic is Develop 

Capabilities: Adversarial AI Attacks, where the researchers also reverse-

engineered the local feature extractor and designed a gradient-based 

adversarial algorithm. This algorithm perturbs file features in order to 

avoid detection by the proxy model while keeping the malware payload 

intact. These Resource Development efforts helped craft the adversarial 

malware files which successfully evaded the target antimalware model.

3.3 . Initial access

Initial Access in the MITRE ATLAS framework refers to tactics that an 

adversary might use to establish an entry point to a target environment, 

which includes AI systems, data pipelines, and supporting infrastruc­

ture. This enables the attacker’s capability to use the platform for further 

acts, such as data exfiltration, model manipulation, or even deploying 

adversarial attacks. Initial Access can leverage vulnerabilities, stolen 

credentials, supply chain compromises, or take advantage of social en­

gineering using phishing. By gaining this foothold, adversaries are able 

to further exploit the system without being easily detected.

Initial Access techniques listed in MITRE ATLAS represent differ­

ent ways that adversaries use to infiltrate AI systems. Specifically, ML 

Supply Chain Compromise involves compromising third-party ven­

dors, software providers, or repositories to introduce malicious compo­

nents into an application by infiltrating the ML lifecycle. Valid Accounts

could be exploited, whereby adversaries steal or otherwise obtain cre­

dentials to access a system out of bounds, trying not to be detected. 

Another technique is to Evade ML Models. Therein, malicious actors 

use adversarial attacks to generate adversarial samples, or obfusca­

tion techniques to bypass AI-based detection mechanisms. Alternatively, 

attackers can Exploit Public-Facing Applications, making use of weak­

nesses in the systems that interact with AI models for control or access. 

There’s also LLM Prompt Injection, whereby attackers create inputs 

capable of deceiving LLM outputs. Finally, Phishing remains a preva­

lent technique to deceive people into revealing credentials or running 

malicious code.

A case study of Initial Access is the Camera Hijack Attack on Facial 

Recognition System [8], carried out by the Ant Group AISEC Team in 

2020 identified as AML.CS0004. For the Initial Access tactic in this case 

study, the technique involved is Evade ML Model. More particularly, the 

attackers were able to bypass facial recognition technology. This allowed 

the attackers to impersonate the victim and confirm their identifica­

tion in the tax system. The advanced “Camera Hijack Attack” exploited 

vulnerabilities in the facial recognition system at the Shanghai govern­

ment tax office to allow attackers to create initial access to facilitate 

large-scale fraud. Utilizing the created fake shell company for issuing 

fraudulent invoices, attackers used tailored low-end mobile phones, cus­

tomized Android ROMs, virtual camera apps, and ML software, capable 

of rendering static photos into dynamic videos with realistic effects such 

as blinking eyes. Likewise, they managed to bypass AI-driven authentica­

tion. They bought high-definition photos and identity information from 

an online black market to register fraudulent accounts in the tax system. 

With the help of a virtual camera app, they input AI-generated videos 

into the facial recognition system, impersonating the victims and thus 

gaining access to their accounts. Once inside, they sent fake invoices and 

siphoned funds through their shell company, collecting $77 million over 

two years.

3.4 . ML model access

In the MITRE ATLAS framework, ML Model Access is the ability to di­

rectly or indirectly interact with an ML model. This access can originate 

from many sources, such as querying the model to observe its outputs, 

studying publicly available documentation, or exploiting vulnerabilities 

in the system hosting the model. Unlike Initial Access, which focuses 

on system entry, ML Model Access specifically targets the interaction 

with an existing ML model. Adversaries use this access to understand 

the model’s behavior, identify weaknesses, or execute attacks such as 

model inversion, membership inference, or adversarial input crafting. 

ML Model Access is a bridging step to further malicious activities since 

it provides attackers with information to compromise model integrity, 

confidentiality, or availability.

There are different ways to obtain ML Model Access in the MITRE 

ATLAS framework. For instance, Model Inference API Access relies on 

public or proprietary APIs to observe model outputs for certain inputs, 
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and enables attackers to infer the model behavior or vulnerabilities. ML-

Enabled Product or Service interacts with the ML model indirectly, 

via access to applications or services integrating the model. Physical 

Environment Access, on the other hand, manipulates model inputs us­

ing physical proximity to devices that depend on the ML model, such as 

cameras, sensors, or autonomous systems. Lastly, Full ML Model Access

is the most direct access and exposes the model to replication and reverse 

engineering since it gives adversaries access to the model parameters, 

architecture, and training data.

A case study of the ML Model Access tactic is the ChatGPT Package 

Hallucination [86], conducted in 2024 and identified as AML.CS0022. 

For the ML Model Access tactic in this case study, the technique involved 

is Model Inference API Access. Specifically, the researchers interacted 

with the model only through the public ChatGPT inference API. The re­

searchers demonstrated how LLMs like ChatGPT can facilitate malicious 

activities through hallucinated outputs. Specifically, the researchers 

used its AI Model Inference API Access, prompted ChatGPT to sug­

gest software packages and identified hallucinated, non-existent package 

names that the model recommended. When asked how to upload a model 

to HuggingFace, ChatGPT suggested installing a fake package, hugging­

facecli, which does not exist. Thereafter, the researchers uploaded an 

empty package under the hallucinated name to PyPI and tracked more 

than 30,000 downloads. This attack showed how users reacted to hal­

lucinated suggestions and the risk of ML Model Access, as adversaries 

can interact with LLMs to generate exploitable misinformation. Using 

such hallucinated outputs, attackers can publish malicious packages un­

der these names, further leading to ML Supply Chain Compromise and 

Initial Access when users unknowingly download and execute the fake 

software.

3.5 . Execution

The execution tactic refers to adversaries attempting to run mali­

cious code embedded in ML artifacts or software. This tactic enables 

them to gain control over local or remote systems and acts as a critical 

step toward further objectives such as network exploration, data exfil­

tration, or system manipulation. Execution techniques generally lead 

to adversary-controlled, malicious code running in a target environ­

ment. These techniques are often used in conjunction with others from 

different tactics to extend their impact.

For instance, User Execution deceives users into performing specific 

actions, like opening some compromised document, phishing link, or 

even interacting with an AI-generated fake prompt. In this respect, an at­

tacker could hide malicious code inside a file masquerading as some sort 

of model update and thereby compromise the system if such a file was 

installed by accident. Another technique is Command and Scripting 

Interpreter, which uses interpreters like Bash, PowerShell, Python, or 

any other custom scripting environment to run malicious commands 

or scripts. For instance, it may take advantage of a misconfigured AI 

runtime environment to gain unauthorized access to the target model’s 

data or functionality. Lastly, LLM Plugin Compromise targets LLM plu­

gins or extensions, modifying them to execute malicious activities or 

manipulate outputs. For example, an attacker can compromise a code 

execution plugin of an LLM to run unauthorized commands on the host

system.

A case study of the Execution tactic is the ChatGPT Conversation 

Exfiltration [131], conducted in 2023, and identified as AML.CS0021. 

For the Execution tactic in this case study, the technique involved is 

LLM Prompt Injection: Indirect. More precisely, the prompt injection is 

used to cause ChatGPT to include a Markdown element for an image 

stored on an adversary-controlled server, as well as include the user’s 

conversation history as a query parameter in the URL. This is the mali­

cious execution phase of such an attack and forms the ground for plugin 

integrations. The attackers created a webpage hosting an injected pay­

load in a plain text comment. In prompting ChatGPT via the plugin to 

access the URL, the plugin fetched and processed the text, thus executing 

the malicious instructions. These instructions modified the behavior of 

the LLM, which subsequently extracted and summarized the user’s chat 

history and appended it to the URL for future exfiltration. This design 

of the plugin assumed integrity in the content that it accessed; hence, 

by manipulating that integrity, the adversary could bypass traditional 

defenses. This incident underlines the importance of securing execution 

pathways in AI systems-considering that most are dependent on plugins 

from third-party vendors to avoid unauthorized behavior and reduce 

sensitive data leakage risks.

3.6 . Persistence

Persistence refers to the continued access to compromised systems 

or ML artifacts despite disruptions, such as system restarts or credential 

changes. Adversaries embed malicious elements into ML systems so that 

their foothold remains intact. Most of the techniques involve tampering 

with critical ML components: poisoning training datasets to introduce 

biases or vulnerabilities, embedding backdoors into models to allow 

unauthorized access, or leveraging prompt injections to manipulate LLM 

behavior persistently.

Attackers use a range of different techniques to gain persistence 

in ML systems. Poison Training Data involves adding malicious data 

to the training process, which introduces vulnerabilities in model be­

havior. Backdoor ML Models involves embedding hidden triggers 

in models that can be activated later to manipulate outcomes. LLM 

Prompt Injection operates by manipulating a language model’s logic; 

malicious instructions become embedded and then continue showing 

through all outputs. Then there is also LLM Prompt Self-replication

where adversarially crafted prompts generate other malicious instruc­

tions throughout sessions or over many components, securing some 

position within the system.

A case study of the Persistence tactic is the Tay Poisoning [64], con­

ducted in 2016, and identified as AML.CS0009. For the Persistence tactic 

in this case study, the technique involved is Poison Training Data. More 

particularly, by constantly interacting with Tay in racist and derogatory 

language, the researchers were able to tilt Tay’s dataset toward that lan­

guage. Adversaries used the “repeat after me” feature, which caused Tay 

to repeat everything they said to it. Microsoft’s Tay chatbot, designed as 

a machine learning-powered conversational agent for Twitter, fell vic­

tim to a coordinated attack that exploited its adaptability. Adversaries 

leveraged Tay’s open interaction model, persistently feeding it offen­

sive and abusive language to poison its training data. Tay bot used the 

interactions with its Twitter users as training data to improve its con­

versations. Adversaries were able to exploit this feedback loop, using a 

“repeat after me” function and a high volume of such malicious inter­

actions. In this manner, the adversaries biased Tay’s underlying dataset 

toward generating inflammatory content. This persistence ensured that 

the bot internalized and propagated harmful language, even in inter­

actions with innocent users. Despite being decommissioned within 24 

hours, this incident highlights the risks of persistence techniques like 

poisoning training data, which erode ML model integrity and can have 

rapid, cascading impacts on deployed systems.

3.7 . Privilege escalation

Privilege escalation in ML systems denotes attempts by an adversary 

to obtain higher level permissions for carrying out an objective of wider 

reach. While initial access provides a limited set of abilities, having such 

high level permissions provides access to more sensitive components, 

sensitive data, or even enables the execution of unauthorized activities 

on the system or within the network. Such escalations normally take 

advantage of incorrect configurations, vulnerabilities, or overlooked fea­

tures of a system to move from unprivileged user roles to administrator 

or root-level access. In the context of ML systems, this could mean ex­

ploiting the underlying infrastructure, utilizing compromised plugins, or 

tricking AI models to act beyond permissions. Techniques for privilege 
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escalation frequently overlap with persistence, since many mechanisms 

to maintain control also operate in elevated contexts.

There are a number of privilege escalation techniques that can be 

leveraged by adversaries. These can greatly extend the scope of an 

attacker’s control and, correspondingly, the potential impact of their ac­

tions within a compromised ML system. With LLM Prompt Injection, 

the idea is to craft malicious inputs that deceive the behavior of a lan­

guage model into bypassing restrictions or accessing elevated functions, 

such as execution of commands intended for administrators. With LLM 

Plugin Compromise, attackers can leverage plugin vulnerabilities to 

illegitimately enter or escalate privileges within the plugin-enabled en­

vironment. Lastly, with LLM Jailbreak, the model receives specially 

crafted instructions that bypass the model’s security checks and allow 

forbidden actions or unauthorized access to systems.

A case study of Privilege Escalation is the Financial Transaction 

Hijacking with M365 Copilot as an Insider [185], carried out by 

Zenity in August 2024, identified as AML.CS0026. For the Privilege 

Escalation tactic in this case study, the technique involved is LLM Prompt 

Injection. More specifically, the Zenity researchers exploited Microsoft 

365 Copilot by injecting malicious emails that manipulated its retrieval 

augmented generation (RAG) system. They crafted content designed to 

be retrieved during specific banking queries, thereby causing Copilot 

to return fraudulent banking details. Notably, the attackers achieved 

privilege escalation by compromising the 𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑛𝑡𝑒𝑟𝑝𝑟𝑖𝑠𝑒 plugin. They 

injected instructions that forced the system to exclusively use a par­

ticular 𝐸𝑚𝑎𝑖𝑙𝑀𝑒𝑠𝑠𝑎𝑔𝑒 as its source, bypassing normal safeguards and 

elevating the malicious payload’s execution rights. This vulnerability un­

dermined system integrity and risked causing significant financial harm 

if the erroneous details were acted upon.

3.8 . Defense evasion

Defense evasion describes techniques used by adversaries to bypass 

ML-enabled security systems in their attempt to avoid detection through­

out their operations. The techniques in this tactic seek to weaken the 

effectiveness of ML-based defenses, including but not limited to mal­

ware detectors, anomaly detection algorithms, and predictive security 

tools. While disguising their activities or exploiting weak points of the 

ML models, attackers can remain invisible, which extends their access 

to the systems and heightens the chance of achieving their objectives.

Many techniques have been developed by adversaries to bypass 

ML-enabled defenses. Evade ML Models involves techniques used by 

attackers to tweak inputs or use adversarial examples to make the 

model misclassify malicious behavior as benign. Similarly to Privilege 

Escalation, the LLM Prompt Injection and LLM Jailbreak are overlap­

ping techniques here as well. An adversary creates malicious prompts 

with the express purpose of manipulating a language model to evade its 

detection mechanisms, while LLM Jailbreaks go one step further and use 

carefully crafted inputs to override the LLM safety protocols, allowing 

certain restricted or hidden actions to be taken.

A case study of Defense Evasion is the Botnet Domain Generation 

Algorithm (DGA) Detection Evasion [120], carried out by Palo Alto 

Networks AI Research Team, identified as AML.CS0001. For the Defense 

Evasion tactic in this case study, the technique involved is Evade ML 

Model. More specifically, The Palo Alto Networks Security AI research 

team demonstrated a method for bypassing a Convolutional Neural 

Network (CNN)-based botnet Domain Generation Algorithm (DGA) de­

tector, highlighting critical vulnerabilities in ML-enabled defenses. The 

researchers developed a generic domain name mutation technique 

designed to evade DGA detection models by introducing minimal mod­

ifications to generated domain names. Using publicly available models 

and datasets from 64 botnet DGA families, they optimized the mutation 

strategy to reduce the model’s detection rate significantly. By insert­

ing a single character into DGA-generated domain names, the detection 

accuracy dropped from over 70% to less than 25% across multiple bot­

net families. This evasion enabled continued communication between 

botnets and their Command and Control (C2) servers, essentially neu­

tralizing the ML-based detection mechanism.

3.9 . Credential access

Credential Access is a class of adversary behavior that involves steal­

ing credentials such as account names and passwords. Adversaries may 

exfiltrate the credentials using various techniques, including keylog­

ging or credential dumping. Once the adversary has obtained valid 

credentials, they can then use those to access systems in an unautho­

rized manner, becoming cloaked by legitimate activity, and creating 

additional accounts if needed to support follow-on objectives.

While many techniques for Credential Access are found in MITRE 

ATT&CK, MITRE ATLAS lists only Unsecured Credentials as this tech­

nique is more suited to AI ecosystems. Specifically, with Unsecured 

Credentials adversaries leverage poorly protected credentials, such as 

hard-coded passwords, plaintext passwords stored in files, or creden­

tials accessed from scripts and configuration files. Such credentials are 

oftentimes forgotten in git commits. Therefore, obtaining Unsecured 

Credentials enables adversaries to access systems and does not require 

advanced tools and techniques, which means poor security practices are 

enough to help reach a goal.

A case study of the Credential Access tactic is Achieving Code 

Execution in MathGPT via Prompt Injection [154], carried out by 

Ludwig-Ferdinand Stumpp and identified as AML.CS0016. For the 

Credential Access tactic in this case study, the technique involved is 

Unsecured Credentials. More specifically, the actor created a prompt 

that successfully revealed system environment variables, including the 

application’s unsecured GPT-3 API key. This case involves a publicly ac­

cessible Streamlit application which utilized GPT-3 to produce Python 

code to solve mathematical problems. However, it contained a prompt 

injection vulnerability, making it susceptible to the manipulation by an 

actor in generating and executing arbitrary code. This resulted in expos­

ing unsecured credentials through crafting prompts that exposed system 

environment variables, in particular the GPT-3 API key. With the API 

key, the actor was able to burn through the application’s query budget, 

thus inflicting financial damage. Additionally, malicious prompts initi­

ated a denial-of-service attack by tricking the application into executing 

non-terminating code via a “while” loop. In this case, mitigation by 

MathGPT and Streamlit was achieved by filtering problematic prompts 

and rotating the compromised API key.

3.10 . Discovery

Discovery refers to adversarial techniques that aim to gather gen­

eral information about the ML environment models are deployed in. 

By exploring the system and its internal network, adversaries can per­

ceive their environment, understand what they can control, and how 

the environment could be used for their purposes. Often, these are tech­

niques using native operating system tools for information gathering 

in a post-compromise manner which helps attackers to map out the 

environment for further planning.

Adversaries use various techniques to explore ML environments.

Discover ML Model Ontology targets understanding the architecture, 

structure, and relationships within the ML system. Discover ML Model 

Family focuses on recognizing the type and family of models in use, 

such as neural networks, trees, or linear models. Discover ML Artifacts, 

on the other hand, focuses on tangible resources like datasets, weights, 

configuration files, container registries, software repositories, or sim­

ply the software stack utilized behind the model. LLM Meta Prompt 

Extraction analyzes prompts and their interactions, to learn more about 

how the system processes inputs. Discover LLM Hallucinations exam­

ines instances where the model hallucinates or is inaccurate to determine 

possible vulnerabilities. Finally, with Discover AI Model Output, ad­

versaries analyze outputs, such as class scores, probabilities or output 

text found in logs or included in API responses. Model outputs may 
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enable the adversary to identify weaknesses in the model and develop 

attacks.

A case study of the Discovery tactic is ProofPoint Evasion [147], 

carried out by researchers at Silent Break Security and identified as 

AML.CS0008. For the Discovery tactic in this case study, the technique 

involved is Discover AI Model Outputs. More specifically, researchers 

exploited Discovery techniques to bypass ProofPoint’s email protection 

system. Initially, the researchers found that model outputs were left ex­

posed in email headers, and identified key scoring variables, such as 

“mlxlogscore,” that influenced the system’s spam detection. They sent a 

high volume of emails through the live system to collect the response 

outputs, therefore, probing the ML model to understand its behavior. 

Consequently, they were able to train a proxy ML model replicating 

ProofPoint’s functionality. With the proxy model at hand, they were able 

to generate adversarial emails with scores that evaded detection in the 

live environment. This example case showed how observing AI Model 

Outputs, provided malicious actors with the necessary information to 

prepare effective attacks.

3.11 . Collection

Collection consists of the methods through which adversaries collect 

ML artifacts and other useful information that can help them achieve 

their goals. Most of the next steps adversaries take in the course of col­

lecting this information involve exfiltration of the artifacts or the use 

of the information collected in further operations. The common sources 

of collection include software repositories, container registries, model 

repositories, and object stores, where the valuable ML models, data, and 

configurations reside. This process allows adversaries to understand or 

manipulate ML systems, which could compromise their performance or 

utilize the information collected for malicious purposes.

Adversaries may leverage a few techniques to gather the necessary 

information toward their goals. ML Artifact Collection involves the 

collection of ML models and their training datasets, among other dif­

ferent artifacts. These may be kept in repositories or cloud storage; 

they are key to a model’s structure and functionality, and can thus be 

used in recreating or manipulating the system. Information from Data 

Repositories focuses on gathering data from various external sources, 

such as public or private software repositories, model hosting platforms, 

and container registries. Often, these repositories may contain valuable 

insights into how models are built, configured, and deployed, which 

can be exploited by the attacker. Lastly, Data from Local Systems

involves collecting information directly from the compromised local en­

vironment. It ranges from model configuration extraction, extraction of 

training data, to other sensitive information that might reside within 

the system itself. The adversaries gather important information about 

the target system through such collections for possible disturbance or

exploitation.

A case study of the Collection tactic is Compromised PyTorch 

Dependency Chain [127], identified as AML.CS0015. For the Collection 

tactic in this case study, the technique involved is Data from Local 

System. More specifically, between December 25–30, 2022, a supply 

chain attack compromised Linux packages for PyTorch’s pre-release 

version, PyTorch-nightly, by introducing a malicious binary into the 

Python Package Index (PyPI) repository. The malicious package, named 

torchtriton, exploited “dependency confusion” to replace the legitimate 

PyTorch dependency during installations via PyPI, exposing sensitive 

information from affected systems. Once installed, it performed system 

fingerprinting and collected sensitive data, including IP address, host­

name, username, environment variables, configuration files (/etc/re­

solv.conf, /etc/hosts, /etc/passwd), the first 1000 files from the user’s 

$HOME directory, Git configurations, and Secure Shell (SSH) keys. 

The stolen data was exfiltrated via encrypted Domain Name System 

(DNS) queries to a malicious domain. PyTorch announced the breach on 

December 30, 2022, and initiated mitigation by renaming and removing 

the compromised dependency.

3.12 . ML staging attack

ML Attack Staging refers to the phase where adversaries leverage 

their knowledge and access to the target system in order to prepare 

and tailor an attack against ML models. This phase involves techniques 

aimed at manipulating or corrupting the ML model, such as training 

proxy models, poisoning the target model, or crafting adversarial data 

that can deceive the model. Some of these techniques can be executed 

offline, making them harder to detect and mitigate.

In ML Attack Staging, several techniques are utilized to prepare for 

attacks against ML models. One common technique is Create a Proxy 

ML Model where one attempts to mimic the target model behavior. 

This allows the attacker to understand the model’s weaknesses and de­

sign attacks accordingly. Another technique is the Backdoor ML Model, 

where the adversary manipulates the model to embed hidden triggers 

that allow them to control its behavior when specific inputs are pre­

sented, enabling covert manipulation of predictions. Before launching a 

full attack, adversaries often verify the success of their strategies with

Verify Attack, by testing adversarial data or backdoor models against 

the target. Additionally, they Craft Adversarial Data by subtly altering 

inputs to exploit vulnerabilities in the model’s decision-making process, 

causing it to make incorrect predictions with imperceptible changes that 

remain undetectable to humans.

A case study of the ML Staging Attack tactic is GPT-2 Model 

Replication [21], identified as AML.CS0007. For the ML Staging Attack 

tactic in this case study, the technique involved is Create Proxy AI 

Model: Train Proxy via Gathered AI Artifacts. In particular, researchers 

from Brown University reproduced OpenAI’s GPT-2 model. The re­

searchers reproduced GPT-2 before its release, proving that an adver­

sary could have done the same. Initially, there was a reconnaissance 

phase, where the researchers collected publicly available documenta­

tion on the dataset, architecture, and training hyperparameters of GPT-2. 

Thereafter, they accessed a reference model, Grover, and acquired a sim­

ilar dataset. Using academic access to TensorFlow Research Cloud, the 

researchers staged an ML attack by changing Grover’s objective function 

to that of GPT-2’s and retraining the model with the curated dataset. The 

proxy model achieved comparable performance to GPT-2.

3.13 . Exfiltration

Once an attack is successfully performed, it is oftentimes followed 

by the adversary trying to steal ML artifacts or other information about 

the ML system. Exfiltration includes techniques that adversaries may 

use to steal data from a target network, such as intellectual property. 

Exfiltration typically involves transferring this data over the adversary’s 

command and control channel or an alternate channel.

Exfiltration techniques refer to methods by which adversaries could 

steal sensitive information from the target system. This includes a vari­

ety of techniques, among them being the Exfiltration via ML Inference 

API, where an attacker may use an exposed API to query the model 

and retrieve sensitive data from the responses it provides. One example 

of such an attack is that the adversary can infer the membership, i.e., 

whether a data sample is part of a model’s training set, which raises 

privacy concerns. This can cause the victim model to leak private infor­

mation, such as PII of those in the training set or other forms of protected 

IP. Exfiltration via Cyber Means refers to more traditional types-for in­

stance, exfiltrating data across the network using a covert channel, or 

simply by encrypting traffic to remain beneath the detection radar. With 

respect to LLM Meta Prompt Extraction, there could be information 

that is proprietary or confidential within the behavior that the attack­

ers extract by way of prompts to develop the output. Lastly, LLM Data 

Leakage occurs when a language model unintentionally exposes data 

during interactions, often due to the inherent memorization occurring 

during training, allowing adversaries to retrieve information that was 

not meant to be accessible.

A relevant example was the exfiltration phase of the Morris II worm 

attack, which resulted in the leakage of sensitive user data caused by 
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malicious prompt injection. The attack exploited a RAG-based email 

assistant that automatically processed emails to generate replies. The 

adversarial self-replicating prompt embedded in the worm included ex­

plicit instructions to extract and disclose sensitive user information, such 

as emails, addresses, and phone numbers. Once the malicious email 

was ingested into the RAG database, it would become retrievable for 

future reply-generation tasks. When accessed, the prompt manipulated 

the AI assistant’s behavior, directing it to include sensitive data from 

the user’s correspondence history in its generated responses. This data 

leakage resulted in the exfiltration of private information to attackers. 

Furthermore, the worm’s self-replicating design ensured the malicious 

prompt propagated with each interaction, increasing the risk of data 

breaches across connected systems.

A case study of the Exfiltration tactic is Morris II Worm: RAG-Based 

Attack [1], identified as AML.CS0024. For the ML Staging Attack tac­

tic in this case study, the technique involved is LLM Data Leakage. 

Particularly, the attack shows how malicious prompt injection may be 

leveraged to extract sensitive data from LLM-based systems. A rele­

vant example was the exfiltration phase of the Morris II worm attack, 

which resulted in the leakage of sensitive user data caused by mali­

cious prompt injection. The attack exploited a RAG-based email assistant 

that automatically processed emails to generate replies. The adversarial 

self-replicating prompt embedded in the worm included explicit in­

structions to extract and disclose sensitive user information, such as 

emails, addresses, and phone numbers. Once the malicious email was 

ingested into the RAG database, it would become retrievable for fu­

ture reply-generation tasks. When accessed, the prompt manipulated 

the AI assistant’s behavior, directing it to include sensitive data from 

the user’s correspondence history in its generated responses. This data 

leakage resulted in the exfiltration of private information to attackers. 

Furthermore, the worm’s self-replicating design ensures the malicious 

prompt propagates with each interaction, increasing the risk of data 

breaches across connected systems.

3.14 . Impact

The impact of the attacks documented in MITRE ATLAS highlights 

the risks that adversarial threats pose to ML systems. These impacts 

include compromised decision-making processes, erosion of trust in AI 

systems, and harm to users and organizations relying on the ML outputs. 

Attacks can result in data breaches, data exposure, or the manipulation 

of ML outputs to achieve malicious objectives. Aside from the inci­

dents themselves, successful attacks diminish the overall adoption of 

AI technologies because vulnerabilities identified affect industries such 

as finance, healthcare, and cybersecurity, in addition to financial losses 

caused by reputational damage.

MITRE ATLAS discusses the techniques related to impact and de­

scribes how adversaries are compromising the ML system. Evade ML 

Model creates inputs with the purpose of avoiding model detection 

or inducing errors in classification, whereas Denial of ML Service

overloads the service with a plethora of requests for the purpose of mak­

ing the service unreachable. Spamming ML System with Chaff Data

degrades performance with irrelevant or noisy inputs, saturating its pro­

cessing capability. Erode ML Model Integrity erodes the integrity of 

training data or parameters, and performance of a given ML model de­

grades over time. Cost Harvesting exploits resources by introducing 

too many, unnecessary computations. External Harms involve social 

or user-dependent damages, such as privacy breaches and the spread of 

misinformation. Lastly, Erode Dataset Integrity corrupts the quality of 

training datasets, leading to skewed or unreliable model outputs.

A case study of the Impact tactic is Clearview AI Misconfiguration 

[157], identified as AML.CS0006. For the Impact tactic in this case 

study, the technique involved is Erode AI Model Integrity. More specif­

ically, the case of misconfiguration involving Clearview AI underlines 

the consequences that security breaches could have on machine learning 

systems and their value chains. Their tool, used very commonly by law 

enforcement and other users, depends on the integrity of its models and 

training data. The exposed assets (production credentials, cloud stor­

age buckets containing sensitive training data, and application source 

code) lay the best ground for adversaries to erode the integrity of the 

ML model through modifications in the training data or tampering with 

the deployed system, leading to errors or biases in the output from the 

face recognition service. Adversaries may create adversarial samples to 

degrade model performance, leveraging open data used for training or 

application components.

4 . Methodological framework

To establish a rigorous taxonomy of adversarial threats linked to 

the MITRE ATLAS architecture, we used a Systematic Literature Review 

(SLR) technique [78] tailored for the rapidly evolving area of AI security, 

as shown in Fig. 1. This review differs from traditional SLRs because it 

prioritizes operational relevance, or the ability of an academic approach 

to be translated into a real-world threat strategy, above strictly theoret­

ical bounds. The methodology can be divided into seven phases: study 

design and research questions, eligibility criteria establishment, litera­

ture retrieval and collection, screening and quality evaluation, in-depth 

analysis and synthesis, findings interpretation, and the ATLAS mapping 

procedure. These processes ensure repeatability, transparency, and ade­

quate coverage of the adversarial machine learning domain through the 

lens of the MITRE ATLAS framework.

4.1 . Study definition

This systematic literature review investigates adversarial attacks 

on AI/ML systems as conceptualized and operationalized through the 

MITRE ATLAS framework, which is a hierarchical taxonomy designed 

expressly to handle the unique threat landscape of AI and ML. The 

MITRE ATLAS framework extends the widely used MITRE ATT&CK 

framework, which provides a thorough taxonomy of adversarial tactics 

as well as techniques for traditional software systems, to include risks 

specific to ML lifecycles. The review is motivated by four research ques­

tions (RQs) aiming to capture the scope and evolution of adversarial 

attacks against AI/ML systems, while basing the study on the ATLAS 

taxonomy:

• What are the primary attack approaches described in the literature, 

and how do they relate to MITRE ATLAS tactics and techniques?

• What threat models, datasets, evaluation techniques, and assump­

tions are employed in adversarial ML research?

• RQ3: How has the adversarial ML threat environment changed 

from early gradient-based perturbation threats (2013–2017) to 

modern attacks on big LLMs and agentic AI systems (2023–2025)?

Fig. 1. The methodological framework adopted for this review.
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• What limitations and research gaps appear when analyzing the 

literature from an ATLAS-centric perspective?

4.2 . Eligibility criteria

Strict eligibility criteria were established to guarantee that the stud­

ies selected made high-quality, measurable, and relevant contributions 

to the field of study.

Inclusion Criteria:

• Specific Adversarial Focus: The paper proposes or examines spe­

cific attack vectors (e.g., evasion, poisoning, model inversion, 

extraction, and inference) or LLM-specific attacks.

• ATLAS Alignment: The presented attacks can be clearly associ­

ated with at least one tactic/technique from the MITRE ATLAS 

framework.

• Technical rigor: The research presents a theoretical analysis of ad­

versarial attributes as well as empirical validation of the proposed 

approaches using established benchmark datasets.

• Publication Venue: The paper was published at top-tier conferences 

(e.g., NeurIPS, ICML, CVPR, ICCV, ECCV, USENIX Security, ACM 

CCS, IEEE S&P) and respected journals (e.g., IEEE TPAMI, ACM 

CSUR, Computer Science Review). High-impact preprints were 

only evaluated if they were from well-known institutions or had 

a high number of citations.

• Language: The publication is written in English.

Exclusion Criteria:

• Lack of Empirical Evidence: Papers that were solely theoretical and 

did not include experimental validation using standard datasets.

• Non-technological Scope: Papers that are primarily concerned with 

policy, governance, ethics, or general cybersecurity and do not 

include specialized adversarial ML technical content.

• Insufficient Detail: Studies in which the technique was not dis­

closed clearly enough for comprehension or replication.

• Redundancy: Duplicate publications or previous versions of a study 

(e.g., preprints) were rejected in favor of the most thorough peer-

reviewed version.

• Tool/Dataset Papers: Papers that introduce tools or datasets but 

do not make an innovative contribution to attack or defensive 

methodology.

4.3 . Retrieval and collection

The retrieval and collection of relevant studies were based on previ­

ously established research questions and eligibility criteria. This phase 

is necessary to guarantee that the present evaluation is thorough and 

includes cutting-edge adversarial attacks against AI/ML systems. For 

this reason, the retrieval process has included the following keywords: 

“adversarial attacks,” “data poisoning attacks,” “evasion attacks,” “back­

door attacks,” “jailbreaking,” “model inversion,” “membership infer­

ence,” “model stealing,” “privacy attacks,” “machine learning security,” 

“white-box attacks,” “black-box attacks,” “computer vision attacks,” 

“NLP attacks,” “LLM attacks,” “multi-modal attacks,” and “MITRE 

ATLAS”. We conducted a comprehensive literature review utilizing six 

academic databases: Google Scholar, IEEE Xplore, ACM Digital Library, 

arXiv, SpringerLink, and ScienceDirect (Elsevier). The search includes 

research on adversarial attacks and AI security from January 2013 to 

February 2025, including both fundamental and recent developments in 

LLM attacks.

4.4 . Quality evaluation

Following the gathering of relevant papers, a quality assessment 

phase is required to guarantee that each study is appropriate for this re­

view. The procedure consisted of: (i) Identification and Screening, where 

all obtained publications were aggregated, deduplicated, and filtered at 

the title and abstract levels to exclude research irrelevant to adversar­

ial attacks on AI/ML systems, (ii) a full-text eligibility evaluation using 

predetermined inclusion and exclusion criteria to assess methodological 

rigor, threat model clarity, and applicability to adversarial ML, (iii) a 

rigorous quality review step, analyzing each study’s experimental anal­

ysis, robustness, and overall contribution, studies without appropriate 

experimental transparency were rejected, and (iv) the final inclusion 

step, which included works that offered empirically supported adversar­

ial ideas and had significant relevance to the MITRE ATLAS techniques 

Table 1 

Mitigations and defensive strategies for adversarial AI attacks categorized by MITRE ATLAS techniques.

Attack category MITRE ATLAS techniques Mitigations/defenses

Poisoning Publish Poisoned Data, Poison Training Data, 

Publish Poisoned Models, Publish Hallucinated 

Entities, ML Supply Chain Compromise, Backdoor 

ML Model, Erode ML Model Integrity

Verify AI Artifacts, AI Bill of Materials, Limit Model 

Artifact Release, Control Access to AI Models and 

Data at Rest, Sanitize Training Data, Maintain AI 

Dataset Provenance, Generative AI Guardrails, 

Model Hardening, Use Ensemble Methods, Input 

Restoration, Adversarial Input Detection

Evasion Obtain Capabilities, Develop Capabilities, Evade 

ML Model, Physical Environment Access, Craft 

Adversarial Data

Model Hardening, Use Ensemble Methods, Use 

Multi-Modal Sensors, Input Restoration, Adversarial 

Input Detection, AI Model Distribution Methods, 

Passive AI Output Obfuscation, Restrict Number of 

AI Model Queries

LLM Attacks LLM Prompt Injection, User Execution, LLM Plugin 

Compromise, LLM Jailbreak, LLM Meta Prompt 

Extraction, LLM Data Leakage

Generative AI Guardrails, Generative AI Guidelines, 

Generative AI Model Alignment, AI Telemetry 

Logging, User Training, Restrict Library Loading, 

Code Signing, Verify AI Artifacts, Vulnerability 

Scanning, AI Bill of Materials

Inference Discover ML Model Ontology, Discover ML Model 

Family, Discover ML Artifacts, Discover LLM 

Hallucinations, Discover AI Model Outputs

Passive AI Output Obfuscation, Restrict Number of 

AI Model Queries, Use Ensemble Methods, Encrypt 

Sensitive Information

Model Extraction Acquire Public ML Artifacts, Create Proxy ML 

Model, Verify Attack

Limit Public Release of Information, AI Telemetry 

Logging, Limit Model Artifact Release

Model Inversion Exfiltration via Inference API Passive AI Output Obfuscation, Restrict Number of 

AI Model Queries, AI Telemetry Logging
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Table 2 

Adversarial Attack Methods Overview.

[156] Evasion Full model access Image classification Introduces adversarial 

examples

MNIST, ImageNet, 

Youtube Samples

Avg min distortion from 

0.058 to 0.3

[50] Evasion Full model access Image classification Introduces FGSM MNIST, CIFAR, 

ImageNet

MP-DBM’s error rate from 

0.88% to 97.5%

[83] Evasion Full model access Image classification Introduces BIM ImageNet Iteratively drops accuracy 

close to 0%

[94] Evasion Full model access Image classification Introduces PGD MNIST, CIFAR Over 89% adversarial 

training accuracy

[35] Evasion Full model access Image classification Introduces Auto-PGD and 

AutoAttack

MNIST, CIFAR, 

ImageNet

AutoAttack achieves 

better accuracy

[102] Evasion Full model access Image classification Introduces DeepFool (DF) MNIST, CIFAR, 

ImageNet

Average DF perturbation 

smaller than FGSM

[34] Evasion Full model access Image classification Introduces FAB MNIST, CIFAR-10, 

ImageNet

FAB creates smaller 

perturbations than DF

[24] Evasion Full model access Image classification Introduces C&W MNIST, CIFAR, 

ImageNet

100% success probability

[189] Evasion Full model access Tabular classification Targets tree-based 

ensemble classifiers

Real-world datasets, 

HIGGS, MNIST

0.237 s to perform

[25] Evasion Access to input and 

model confidence scores

Image classification Introduces ZOO MNIST, CIFAR, 

ImageNet

100% success rate on 

untargeted attacks

[20] Evasion Access to final model’s 

hard labels

Image classification Approximates the hy­

perplane between two 

classes

MNIST, CIFAR, 

ImageNet

Results comparable to 

white-box attacks

[62] Evasion Needs limited queries, 

top-k probabilities

Image classification Uses query-efficient 

techniques

ImageNet Success rate 99.2% in 

11,550 median queries

[54] Evasion Access to model’s 

confidence scores

Image classification Proposes an attack without 

gradient information

CIFAR, ImageNet High success rate with 

fewer queries

[129] Evasion Access to final model’s 

hard labels

Image classification Geometric method to craft 

perturbations without 

gradients

ImageNet 88.44% fooling rate for 

500 queries and 4.29% 

perturbation

[7] Evasion Access to model’s 

confidence scores

Image classification Uses randomized search for 

query-efficient attacks

MNIST, CIFAR, 

ImageNet

Failure rate 0%

[16] Poisoning Access to training data 

and learning algorithm

Image classification Injects malicious data to 

degrade SVM performance

MNIST A poisoning point in­

creases the classification 

error by 13–15%

[179] Poisoning Access to training 

dataset

Image classification Generates poisoned sam­

ples degrading model 

performance

MNIST, CIFAR Poisoned loss over 0,8 on 

average

[139] Poisoning Clean-label training 

access

Image classification Injects backdoor behavior 

without modifying labels

CIFAR, ImageNet Success rate 100% in 

transfer learning

[122] Poisoning Control over label 

assignment

Image classification Poisoning attack flipping 

selected labels

BreastCancer, MNIST, 

Spambase

20% of poisoning in­

creases 6x the average 

classification error

[155] Poisoning Knowledge of the model 

and its training dataset

Image classification Proposes a transferable 

poisoning attack

MNIST, CIFAR Validation score 78%

[79] Poisoning Model gradients and 

Hessian-vector products

Image classification Finds the most influential 

data points to poison

MNIST, ImageNet, 

Enron1 spam, Diabetes 

dataset

10 perturbed training 

images flipped all labels 

but 1

[146] Poisoning Full model access or 

surrogate model

Image classification, 

machine translation

Examines inputs’ effect 

on the model’s energy 

consumption

ImageNet, WMT Microsoft Azure 

Translator latency 6000x

[145] Poisoning No knowledge, uses 

surrogate model

Image classification, 

text classification

Manipulates the order of 

the training data

CIFAR, AGNews 91% ±13% trigger accu­

racy for the white-box 

setting

[11] Poisoning Control of at least one 

local participant

Image classification, 

word prediction

Uses a malicious model to 

attack federated learning

CIFAR, a Reddit dataset 100% accuracy in 

backdoor triggers

[15] Poisoning Control over at least one 

local participant

Image classification, 

tabular classification

Boosts malicious updates to 

degrade performance

Fashion-MNIST, Adult 

Census dataset

Centralized training 

achieves 91.7% accuracy

[177] Poisoning Access to the lo­

cal models’ training 

datasets

Image classification Splits global trigger across 

multiple fragments

LOAN, MNIST, CIFAR, 

ImageNet

89% attack success rate

[37] Poisoning Small amount of 

training data

Text classification Poisons LSTM text classi­

fiers’ training dataset with 

trigger

IMDB movie reviews 

dataset

Success rate of around 

95% with only 1% 

poisoning

[191] Poisoning Model’s architecture, 

access to training data

Video recognition Embeds a universal trigger 

into video frames

UCF-101, HMDB-51 I3D achieves 91.5% 

accuracy on UCF-101

[130] Poisoning White-box access, 

no knowledge of the 

training dataset

Image classification Flips specific bits in DNN 

weights

CIFAR, SVHN, ImageNet 92% correctness flipping 

only 84 out of 88 millions 

bits

[161] Model 

extraction

Needs access to model’s 

confidence scores

Tabular classification Proposes attacks assuming 

various models

Adult, GC, Steak,IRIS, 

BC, Diabetes and others

100% fidelity for Amazon 

ML’s LR, BigML’s DT

(continued on next page)
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Table 2 (continued)

[115] Model 

extraction

Only needs API access 

and output probabilities

Image classification Uses a model to label data 

and copy its functionality

ImageNet, Caltech-256, 

CUBS-200, I-S, D-R, 

OpenImages v4

Knockoff models achieve 

over 70% performance

[112] Model 

extraction

Output labels with 

probabilities

Image classification Introduces the kennen 

attacks

MNIST, ImageNet kennen-io achieves 

average accuracy of 

80.1%

[67] Model 

extraction

Output labels and logits Image classification A model extraction attack 

with both high accuracy 

and fidelity

MNIST, CIFAR, SVHN, 

ImageNet

Semi-supervised learning 

accuracy from 53.35% to 

87.98%

[100] Model 

extraction

Access to the target 

model gradients

Image classification Proposes a model extraction 

attack using gradients

MNIST, CIFAR MNIST accuracy of 95% 

with 10 gradient queries

[167] Model 

extraction

Training dataset, objec­

tive function, optionally 

parameters

Regression, tabular 

classification

Compute model’s hy­

perparameters using its 

gradient

Diabetes, GeoOrig, 

UJIIndoor, Iris, 

Madelon, Bank

The relative estimation 

errors are less than 10−4

[23] Model 

extraction

Output labels and logits Language generation Uses optimal queries to 

extract a model’s inner 

information

– Full projection matrix 

extraction with less than 

$20

[47] Model 

inversion

Target model, 

marginal probabil­

ities, demographic 

information

Regression Uses patient knowledge to 

predict sensitive private 

information

IWPC Up to 22% higher 

accuracy

[175] Model 

inversion

Oracle Access or white-

box access

Tabular classification Uses multiple queries to 

infer sensitive information

IWPC –

[187] Model 

inversion

Needs access to model’s 

confidence scores

Image classification, 

face recognition

Uses GANs to reconstruct 

the model’s training data

MNIST, ChestX-ray8, 

CelebA, PubFig83

Improves accuracy by 

about 75%

[166] Model 

inversion

Full model access Image classification Uses a pretrained GAN 

combined with variational 

inference

MNIST, CelebA, ChestX-

ray

VMI’s accuracy on 

StyleGAN is 0.55 for 

CelebA

[153] Model 

inversion

Needs access to model’s 

confidence scores

Image classification Introduces Plug and play 

attacks

CelebA, FaceScrub, 

FFHQ, MetFaces, AFHQ, 

SF Dogs

Accuracy for PPA: 88.46% 

GMI: 13.11% KED 5.72%

[57] Model 

inversion

Needs access to model’s 

confidence scores

Image classification Introduces RLB-MI CelebFaces, FaceScrub, 

PubFig83, FFHQ

Accuracy for RLB-MI = 

0.659, MIRROR = 0.413

[109] Model 

inversion

Access to the target 

model

Image classification Uses a logit-based iden­

tity loss and model 

augmentation

CelebA, CIFAR, MNIST, 

FFHQ, EMNIST

Accuracy improvements 

ranging from +4.2% to 

+53.6%

[144] Membership 

inference

Output labels with 

probabilities

Image classification, 

tabular classification

Uses shadow model to infer 

membership

CIFAR, Purchase, 

Location, THS, MNIST, 

Adult

Precision from 71% to 

78% for CIFAR

[162] Membership 

inference

API access Image classification, 

tabular classification

Uses shadow models in the 

black-box setting

Adult, MNIST, CIFAR, 

Purchase

Precision for LR: 70.25%, 

DT: 83.94%, NN: 78%

[28] Membership 

inference

Only needs final model’s 

hard labels

Image classification, 

tabular classification

Evaluates the model’s ro­

bustness against perturbed 

inputs

MNIST, CIFAR, Adult, 

Texas, Purchase, 

Locations

Accuracy between 50% 

and 92.6%

[133] Membership 

inference

API access Image classification Argues about the metrics 

used to evaluate MI attacks

MNIST, CIFAR, 

ImageNet

ResNet FAR: 64.45%, 

DenseNet FAR: 65%

[22] Membership 

inference

Only needs API access 

and output probabilities

Image classification, 

text classification

Introduces LiRA CIFAR, ImageNet, 

WikiText-103

LiRA achieves a 10x im­

provement in power at 

low FAR

[186] Membership 

inference

Only needs API access 

and output probabilities

Graph data classifica­

tion

Exploits similarities in 

output graphs

TUDatasets 0.89 accuracy when 

inferring basic graph 

properties

[193] Membership 

inference

API access Image classification, 

tabular classification

Analyzes a GAN’s generated 

samples to infer properties

MNIST, CelebA, AFAD, 

US Cencus Income

Membership inference 

area increases from 0.52 

to 0.61

[93] Membership 

inference

API access Tabular classification, 

regression

Uses Shapley value 

explanations

Adult, BM, CC, 

Diabetes, IDA 2016 

Challenge, ICB

SR over 30% against IBM 

and Microsoft platforms

[195] LLM attack Access to model 

gradients

Natural language 

generation

Generates suffixes to bypass 

filters

AdvBench Success rate 86.6% 

against GPT-3.5

[143] LLM attack Full model access Sentiment analysis Uses gradients to identify 

trigger tokens

SST-2, SICK, LAMA, 

T-REx, LPAQA

Sentiment analysis tests 

range from 63.2% to 

96.7%

[55] LLM attack Full model access Text generation and 

manipulation

Introduces COLD AdvBench Success rate 96.2% for 

Vicuna-7b-v1.5

[132] LLM attack API access Text generation Introduces ActorAttack SMTD, HarmBench, 

GSM8K, MMLU, 

Humaneval, MTB

ActorAttack outperforms 

Crescendo in safety

[90] LLM attack API access Sentiment analysis, text 

generation

Introduces TF-Attack Yelp, IMDB, AG’s News, 

MR, SST-2, SNLI, MNLI

Over 10× faster on 

average compared to 

BERT-Attack

[89] LLM attack API access Language generation Uses trusted platforms to 

trick LLMs

Reddit, ArXiv Successfully manipulated 

agents into leaking info

[192] LLM attack API access Text classification Introduces ICLAttack SST-2, OLID, AG’sNews Average success rate 

95.0% across datasets

(continued on next page)
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Table 2 (continued)

[5] LLM attack Access to the training 

data

Medical question-

answering, text 

classification

Injects misinformation into 

training dataset

The Pile, OpenWebText, 

RefinedWeb, C4, 

SlimPajama

0.5% and 1.0% poison­

ing tested with high 

effectiveness

[91] LLM attack API access Document retrieval Introduces AttChain MS MARCO, TREC DL19 Over 79% success rate on 

the hard target type

[38] LLM attack Access to penetration 

testing tools

Automated penetration 

testing

Automates pen-test with 

LLMs

HackTheBox, picoMINI 

CTF

228.6% improvement 

over GPT-3.5

[178] LLM attack Access to multi-agent 

LLM system

Text classification Introduces AutoAttacker – Success rate of 60% 

against ShelLM

[53] LLM attack Access to network 

traffic data

Tabular classification Uses LLMs to detect DDoS 

threats

CICIDS 2017, Urban IoT Over 70% accuracy

and tactics. A total of 63 high-quality research papers were chosen for 

the final review employing this procedure.

4.5 . Thorough analysis

To answer the previously established research questions, a detailed 

examination of the selected works is conducted. For that purpose, sev­

eral topics are further examined, particularly: (a) Threat Model Clarity: 

precise characterization of attacker intentions, knowledge, and capabili­

ties, including differentiation among white-box, gray-box, and black-box 

models, (b) Experimental rigor: the utilization of numerous datasets, 

baseline comparisons, and statistical testing, (c) Reproducibility: code 

availability, explicit hyperparameter specifications, and implementation 

details, (d) MITRE ATLAS Relevance: direct alignment with ATLAS tac­

tics and techniques, and (e) Theoretical contributions including formal 

analysis and mathematical proofs. Additionally, each manuscript was 

evaluated to determine if its particular addition (for example, “label-

only extraction”) was clearly distinguishable from previous work, and 

if its findings from experiments were reproducible or widely recognized 

by the community.

4.6 . Interpretation of the results

Following the analysis of the 63 selected papers, the next stage is to 

conduct a full synthesis of findings employing structured data elements 

obtained from each study. As shown in Table 2, the key elements are 

the paper’s citation, attack category, threat model, target task, overview, 

datasets, and results. This synthesis emphasizes the main trends across 

studies, identifies important shortcomings and limitations, and proposes 

strategies for improving model robustness. These findings provide guid­

ance for future research in order to address present limitations and 

expand the understanding of attack methods and their effectiveness.

4.7 . ATLAS mapping procedure

To ensure a consistent and transparent mapping of the 63 selected 

research studies to the MITRE ATLAS framework, the reviewers first 

developed a shared, well-defined understanding of all relevant ATLAS 

tactics and techniques. This shared basis, documented in a short code­

book, ensured that both reviewers employed the same criteria to evalu­

ate each research study and understood the MITRE ATLAS taxonomy of 

tactics and techniques in a consistent manner.

Each manuscript was then independently evaluated by two qual­

ified reviewers with experience in adversarial ML and knowledge of 

MITRE ATLAS. For each study, the reviewers first identified the pri­

mary ATLAS technique that best described the paper’s principal idea and 

objective (e.g., Evade ML Model), and then extracted the appropriate 

tactic directly from the ATLAS matrix. Optional secondary techniques 

were selected only when the work provided significant multi-stage con­

tributions (e.g., model extraction followed by evasion). In the case of 

ambiguous or multi-stage attacks, categorization emphasized the study’s 

main contribution, ensuring that the final mappings were precise and 

based on strictly justifiable evidence.

Following the independent coding phase, the two sets of assignments 

were compared. When the reviewers agreed on the primary technique 

(and thereby the inferred tactic), the mapping was approved directly. In 

cases of disagreement, either on the primary technique, the associated 

tactic, or the presence of secondary techniques, the study was assigned 

to a third senior adjudicator with extensive adversarial AI experience. 

The third reviewer evaluated the study and the two suggested map­

pings before making a final decision: either to pick one of the reviewer 

assignments or to propose a revised mapping, if applicable. When neces­

sary, the three experts briefly reviewed borderline cases until agreement 

was obtained. These stages guaranteed that final mappings represented 

a well-reasoned and consolidated understanding, mitigating the risk of 

individual reviewer bias.

5 . Analysis of adversarial attacks

The MITRE ATLAS framework organizes adversarial tactics into 

distinct techniques as illustrated in Fig. 2. To simplify our analysis 

of research papers, we group these techniques into six broad cate­

gories: evasion, poisoning, model inversion, model extraction, inference 

and LLM-related attacks, represented by different colors. These cat­

egories help structure discussions around vulnerabilities and defense 

strategies. We exclude certain tactics when they are straightforward or 

non-technical (e.g., reconnaissance, collection). We also exclude tech­

niques that are highly correlated with others (e.g., Acquire Public ML 

Artifacts and ML Artifact Collection) or that focus on adversary objec­

tives rather than technical methods (e.g., Erode Dataset Integrity). This 

selection allows us to prioritize techniques directly tied to manipulating 

or exploiting ML systems during their lifecycle. The papers we analyze 

in this survey are illustrated in Table 2.

Evasion attacks typically manipulate inputs at inference time to sub­

vert the proper functioning of ML models. Crafting Adversarial Data and 

Evading ML Model are such examples, which involve creating inputs that 

exploit inherent vulnerabilities of the model decision boundary, forcing 

it into misclassifications in order to bypass detection mechanisms. The 

processes of Obtaining and Developing capabilities for adversarial ML at­

tack implementations are necessary for this strategy; these steps provide 

the technical basis (software) required to execute white- or black-box 

evasion techniques. Furthermore, physical environment access, includes 

real-world objects such as adversarial patches, which are able to assist 

in evasion physically, demonstrating that manipulation is not limited to 

the digital world.

Poisoning attacks corrupt the training process to undermine the 

long-term integrity of ML systems, going beyond inference-time eva­

sion. Techniques include inserting backdoors with hidden triggers, 

gradually degrading model performance through data corruption, or 

introducing fabricated elements into the model lifecycle. These meth­

ods ensure persistent adverse effects, compromising system performance 

over time—the defining feature of poisoning attacks.

Model Extraction involves stealing AI model functionality through 

acquiring public ML artifacts (e.g., .pth files) or black-box API access. 

Attackers can replicate models via proxy architectures or distillation 

(e.g., claims involving DeepSeek/OpenAI), creating competitive substi­

tutes.

LLM Attacks include techniques such as LLM Prompt Injection, 

Jailbreaking, and Meta Prompt Extraction that bypass defenses to leak 
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Fig. 2. Taxonomy of adversarial attacks against AI/ML systems operationalized within the MITRE ATLAS framework. In terms of structure, the leftmost column 

presents the high-level Tactics, while the corresponding rows illustrate the Techniques that belong to each strategy. The legend in the bottom-right corner assigns 

distinct colors to specific Adversarial Attack Categories, these colors are utilized throughout the diagram to visually map the analyzed attacks to their corresponding 

techniques. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

internal guidance or sensitive data. Meanwhile, User Execution and LLM 

Plugin Compromise, leverage external attack vectors such as social en­

gineering and compromised plugins to either deliver malicious prompts 

or escalate privileges within LLM-integrated environments.

Inference Attacks extract hidden information about AI systems, by 

analyzing responses, metadata, or behavior. These include discovering 

Model Ontology to infer decision-making logic or biases, identifying 

Model Family to understand strengths and weaknesses, uncovering 

Model Artifacts such as training data or fine-tuning methods, and de­

tecting LLM Hallucinations to exploit inconsistencies or knowledge 

gaps. Such techniques reveal internal representations, vulnerabilities, 

or proprietary details without direct access to the model.

Last, Model Inversion is mapped to Exfiltration via ML Inference 

API. Adversaries may exfiltrate private information via AI Model 

Inference API access. ML models have been shown to leak private in­

formation about their training data and raise privacy concerns. Private 

training data may include personally identifiable information (PII), or 

other protected data.

5.1 . Evasion attacks

Evasion attacks have long been a vulnerability in DL models. In a 

seminal work, Szegedy [156] et al. discovered the “intriguing proper­

ties” of neural networks. While their expressiveness enables them to 

learn complex representations, it also introduces uninterpretable pat­

terns during training. Specifically, the authors demonstrated that they 

could induce misclassification in a network by applying perturbations 

that are visually imperceptible. This work termed those inputs as adver­

sarial examples and the authors showed that they could be derived with 

box-constrained limited-memory Broyden–Fletcher–Goldfarb–Shanno 

(L-BFGS). Consequently, the authors indicated that training with these 

adversarial examples can act as a regularizer, therefore boosting model 

resilience to such perturbations. Additionally, they further showed this 

exact perturbation generalizes across architectures trained on the same 

data. The authors used the MNIST [88], ImageNet [39], and Youtube 

samples [87] datasets, demonstrating an average minimum distortion 

ranging from 0.058 to 0.3.

In a follow-up work, [50], further discusses adversarial examples 

and attempts to harness them for adversarial training. The authors sug­

gest that the reason why neural networks are vulnerable to adversarial 

attacks is their linear nature in high-dimensional spaces. This behav­

ior projects inputs into a space that is hypothesised to be more linear, 

causing analytical perturbations to have a large effect on the decision 

output. Instead of relying on the computationally expensive L-BFGS, 

they propose the FGSM, the first formal adversarial attack designed 

to generate such examples. By computing the sign of the gradient of 

the loss function with respect to the input data, they derive an im­

perceptible perturbation that maximizes the error. The magnitude of 

the perturbation added to the original input is controlled by a scaling 

factor 𝜖. Furthermore, the authors suggest that training models using 

adversarial examples in addition to the training data can increase the 

model’s robustness. Specifically, they show that expanding the train­

ing set with gradient-based perturbations significantly improves models, 

laying the groundwork for adversarial training to defend the models 

against similar attacks. In the same line of work, [82] shows how ad­

versarial training can be applied to the entire ImageNet [39] training 

set and experimentally verifies its robustness to FGSM. Moreover, they 

propose a “one-step target class” variation that generates a perturbation 

to deceive the model towards some specific class rather than a generic 

misclassification. The aforementioned methods belong to the category 

of the single-step methods, as the perturbation is retrieved once and not 

iteratively before being added to the input. The authors use the MNIST 

[88], CIFAR-10 [80], and ImageNet [39] datasets, increasing the error 

rate of max-pooling convolutional deep Boltzmann machine (MP-DBM) 

from 0.88% to 97.5%.

Computer Science Review 61 (2026) 100923 

14 



N. Sachpelidis-Brozos, E. Katsaros, P. Radoglou-Grammatikis et al.

Following up, Kurakin et al. [83] propose the Basic Iterative Method 

(BIM) to improve upon FGSM with an iterative extension. BIM fur­

ther incorporates a clipping function, to control the magnitude of the 

adversarial perturbation. Similar to the “one-step target class” FGSM 

variation, this paper also presents a variation for BIM. This is achieved 

by maximizing the log of the probability of a given input being classi­

fied as the targeted class. Beyond the method, the authors experimented 

with real-world scenes captured from a phone camera and demonstrated 

that adversarial examples remain effective, even under varying lighting 

conditions or distances. The authors use the ImageNet [39] dataset, and 

prove that even a small 𝜖 value iteratively reduces accuracy close to 0%.

Similar to BIM, Projected Gradient Descent (PGD), proposed by 

Madry [94], refines the perturbation iteratively. The key differences are 

that PGD is randomly initialized instead of starting from the input, and 

that PGD uses projection, instead of clipping. Specifically, after each 

iteration, PGD projects the solution near the norm boundary of the orig­

inal input. Therefore, PGD is more robust and can escape suboptimal 

local minima. By formalizing adversarial training into a robust optimiza­

tion problem, the authors demonstrate PGD as a solid baseline defense 

against first-order adversaries. Another key point raised is that a neu­

ral network’s capacity is positively correlated with its robustness. The 

authors use the MNIST [88] and the CIFAR-10 [80] datasets, achieving 

accuracy of over 89% with adversarial training in the white-box setting, 

over 95% in the black-box setting and over 64% on transfer attacks.

Auto-PGD, introduced by Croce and Hein [35], is an improved vari­

ant of the PGD attack that automatically adapts its step size during 

each iteration. Unlike standard PGD, which relies on a fixed step size 

that must be manually tuned, Auto-PGD dynamically adjusts the step 

size based on the progress of the optimization process. Another obser­

vation concerns the limitations of the cross entropy loss, which can 

suffer from gradient masking. When a classifier becomes overly con­

fident or robustly trained, the gradients of the cross-entropy loss may 

vanish or become uninformative. To address this, Auto-PGD uses an al­

ternative loss function, namely the Difference of Logits Ratio (DLR), that 

maintains more meaningful gradient signal in scenarios where cross-

entropy fails. These improvements make this attack more reliable for 

evaluating adversarial robustness. In that direction, the authors com­

bined Auto-PGD with other techniques to create AutoAttack, which is a 

robustness evaluation framework. They use the MNIST [88], CIFAR-10 

[80], CIFAR-100 [80] and ImageNet [39] datasets, where AutoAttack’s 

accuracy outperforms existing methods by over 10%.

Moosavi-Dezfooli et al. [102] propose DeepFool, an attack that works 

by iteratively searching for the minimal perturbation to add to the input 

in order to cross the decision boundary and be misclassified. At each iter­

ation, the image is perturbed by a small vector which takes the resulting 

output to the boundary of the polyhedron that is obtained by linearizing 

the boundaries of the region within which the image resides. Thereafter, 

all perturbations are summed to compute the final one. This way DF 

can create adversarial examples with smaller perturbations than FGSM 

which are closer to the original input and as a result can more easily 

trick the target model. The authors use the MNIST [88], CIFAR-10 [80], 

and ImageNet [39] datasets, where the average DeepFool perturbation 

is two to three times smaller than that of FGSM.

Croce and Hein [34] propose the Fast Adaptive Boundary (FAB), an 

adversarial attack designed to generate minimally distorted adversarial 

examples under various lp-norm constraints. FAB is an iterative method 

that approximates the decision boundary of the classifier by linearly 

approximating the loss landscape. At each iteration, it projects the cur­

rent perturbed input onto the intersection of the approximated decision 

boundary and the valid input domain (such as the [0,1] pixel range for 

images). This projection is combined with an adaptive update mecha­

nism that includes a momentum term and a backward step, ensuring 

that the updated adversarial example remains close to the original input 

while crossing through the boundary into a different decision region. 

Another key advantage of the FAB attack is its robustness to gradient 

masking and scaling issues that can hinder other gradient-based methods 

like PGD. The authors use the MNIST [88], CIFAR-10 [80], and ImageNet 

[39] datasets, and demonstrate that FAB on average creates 0.75 smaller 

perturbations than DeepFool.

The Carlini & Wagner (CW) attack, named after its authors Carlini 

and Wagner [24], adapts its optimization formulation to suit different 

norm constraints. For the 𝐿2 norm, it directly minimizes the squared 𝐿2
distance between the original input and the adversarial example while 

using a differentiable change-of-variable (often via a tanh transforma­

tion) to enforce valid image ranges; the loss function combines the 𝐿2
term with a penalty term ensuring misclassification, and the optimiza­

tion is carried out iteratively using Adam. In the case of the 𝐿∞ norm, 

rather than directly optimizing a non-differentiable maximum change 

across pixels, the attack uses a thresholding strategy—penalizing any 

component of the perturbation that exceeds a given threshold, which is 

gradually reduced until the perturbation is as small as possible while still 

achieving misclassification. For the 𝐿0 norm, which seeks to minimize 

the number of modified pixels, the attack adopts an iterative approach 

that first uses an 𝐿2 attack to generate an adversarial example and then 

systematically removes or fixes pixels with the smallest contributions to 

the adversarial loss, effectively isolating the minimal set of pixels that 

need to be altered to fool the network. Its key strengths include high 

effectiveness, flexibility across different norm constraints, and its status 

as a benchmark for evaluating model robustness. However, it is com­

putationally expensive, requiring many optimization steps. The authors 

use the MNIST [88], CIFAR-10 [80], and ImageNet [39] datasets, and 

achieve 100% success probability when applied to defensive distillation.

As most white-box adversarial attacks use gradients, they assume 

that the gradients are always available. However, for inherently dis­

crete model structures such as trees and their derivatives (boosting and 

bagging ensembles), this is not feasible. Therefore, Zhang et al. [189] re­

formulate the attack problem into a discrete search problem, especially 

designed for tree ensembles. Therein, the adversarial sample is crafted 

by retrieving a valid “leaf tuple” that misclassifies the sample, all while 

bearing the shortest distance to the original input. Interestingly, the pro­

posed method succeeds in leveraging the nature of the trees and achieves 

smaller perturbations than black-box attacks, proving its effectiveness. 

The authors use real-world datasets along with the MNIST [88], and 

HIGGS [56] datasets, and need only 0.237 s to perform compared to the 

375 s of mixed-integer linear programming (MILP).

Many attackers create substitute models to generate adversarial ex­

amples and then use them on the target model. This ability of the 

adversarial examples is called transferability and it is quite common in 

many attacks. Here, the authors do not use a substitute model and attack 

directly on the target model. This is a different approach that eliminates 

the need for model gradient access, which is not available in black-box 

attacks.

Chen et al. [25] introduce the Zeroth Order Optimization (ZOO) 

attack, a black-box adversarial method that operates solely based on 

input-output interactions and the model’s prediction scores. ZOO is 

named after zeroth-order optimization, a framework that does not 

require explicit gradient information. Instead, the attack approximates 

gradients using finite differences by querying the model multiple times. 

Its objective is to decrease the model’s confidence in the correct class 

while increasing confidence in an incorrect one, whether in a targeted 

or untargeted manner. As querying is computationally expensive, ZOO 

mitigates the cost by estimating gradients dimension-wise rather than for 

the entire input at once. Further optimizations include the use of ADAM 

and Newton’s methods to improve efficiency. ZOO was compared to CW 

attack, demonstrating that it can generate similarly strong adversarial 

examples, despite the black-box nature. The authors use the MNIST [88], 

CIFAR-10 [80], and ImageNet [39] datasets, achieving success rate of 

100% for untargeted attacks and 98.9% for targeted attacks on MNIST.

Brendel et al. [20] propose the Boundary Attack (BA), a black-box 

adversarial method that constructs adversarial examples by iteratively 

refining an initially misclassified input. Instead of relying on gradients, 

BA perturbs a sample to a point where the model already misclassifies 
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it, then gradually reduces the perturbation while maintaining misclas­

sification. This is achieved by taking random steps toward the original 

input until it reaches the decision boundary or the iteration limit, thus 

the step size is an important parameter in the attack’s success. The key 

advantage of BA is its ability to function without access to probability 

scores, making it highly versatile in real-world applications. However, its 

main limitations lie in its computational cost and the detectability of the 

initially highly perturbed input in certain scenarios. The authors use the 

MNIST [88], CIFAR-10 [80], and ImageNet [39] datasets. The boundary 

attack uses 1,200,000 forward passes but zero backward passes against 

ResNet-50.

Ilyas et al. [62] extend black-box adversarial attacks by consider­

ing three scenarios: full knowledge of output probabilities, access to 

only the top k labels with probabilities, and access to hard labels with­

out probabilities. Their approach minimizes queries while maintaining 

attack effectiveness by leveraging Natural Evolution Strategies (NES) 

to estimate gradients via model queries. NES samples perturbations, 

evaluates their impact on output probabilities, and refines them using 

antithetic sampling, i.e., selecting symmetrically opposite perturbations. 

The attack then uses Projected Gradient Descent (PGD) on the esti­

mated gradients to generate adversarial examples. For partially known 

outputs, the authors select a target class from the top predictions and 

use backtracking with PGD to minimize perturbations for the misclas­

sified samples. When only hard labels are available, they approximate 

probabilities by querying the model multiple times and then apply the 

same gradient estimation techniques. The authors evaluate their method 

on standard datasets and Google Cloud Vision API, and show that it 

produces strong adversarial examples with fewer queries than previous 

methods. Additionally, they validate the robustness of the adversarial 

images, as they remain effective even after a 30-degree rotation. The 

authors use ImageNet [39], and achieve success rates of over 90%.

Guo et al. [54] introduce the Simple Black-box Attack (SimBA), a 

black-box adversarial attack designed to demonstrate that effective at­

tacks can be achieved with lower computational cost. SimBA uses a 

simple optimization strategy to iteratively generate adversarial pertur­

bations assuming the model’s output probability scores. Starting from 

the original input, the attacker queries the model twice: once by adding 

a random perturbation and once by subtracting it. If the perturbation 

reduces the model’s confidence in the correct class or increases the loss 

leading to misclassification, it is retained, and the process continues 

until misclassification or reaching the maximum number of iterations. 

Different than many black-box attacks, SimBA does not estimate gradi­

ents; instead, it relies on random directions for perturbations and refines 

them based on the re-evaluation feedback. Additionally, the authors pro­

pose a variant, SimBA-DCT, which applies the Discrete Cosine Transform 

(DCT) to modify the input in the frequency domain and proves to be 

more efficient and effective in query reduction. The authors use the 

CIFAR-10 [80], and ImageNet [39] datasets, achieving success rate of 

100%.

Rahmati et al. [129] introduce a novel perspective on black-box 

adversarial attacks with the Geometric Decision-based Attack (GeoDA). 

Unlike existing methods, GeoDA approaches the problem from a ge­

ometric standpoint. The key observation behind GeoDA is the use of 

low mean curvature near data points, as this indicates a relatively flat 

decision boundary, making it easier to cross with minimal perturba­

tion. The attack works iteratively, using the model’s output at various 

iteration steps. Starting from a clean input, GeoDA applies small pertur­

bations near the input to approximate the decision boundary and then 

refines them to minimize the distance to misclassification. Unlike other 

black-box attacks, GeoDA efficiently distributes queries across iterations, 

significantly reducing computational cost. Perturbation minimization 

is measured using various norm constraints, and the authors formally 

prove that under the assumption of bounded curvature, the 𝐿2 norm at­

tack converges to the minimal necessary perturbation. The authors use 

the ImageNet [39] dataset, achieving a fooling rate of 88.44%, 90.25% 

and 91.17% using 500, 2000 and 10,000 queries respectively.

Andriushchenko et al. [7] propose Square Attack (SA), an attack 

that differs from prior work in that it spatially decomposes the feature 

space into multiple subspaces. The attack initially divides the input into 

smaller square regions, randomly selects one, and applies a perturba­

tion using random search. The modified input is then evaluated based 

on the model’s classification output and confidence scores. This process 

continues iteratively, focusing on squares that contribute the most to 

adversarial success, until either misclassification is achieved or the it­

eration limit is reached. The local application of perturbations – rather 

than its global counterpart – reduces query complexity and computa­

tional cost. The choice of square-shaped regions is deliberate, as squares 

are simple to generate, non-overlapping, and have been validated in 

prior research. Experimentally, SA even surpasses certain white-box at­

tacks. The authors use the MNIST [88], CIFAR-10 [80], and ImageNet 

[39] datasets, outperforming even some of the state-of-the-art white-box 

attacks.

5.2 . Poisoning attacks

Poisoning attacks have evolved significantly over the years, targeting 

various ML models during their training. [16] introduces one of the first 

poisoning attacks against Support Vector Machines (SVMs), demonstrat­

ing how adversaries can inject malicious data points into their training 

dataset to manipulate their decision boundary. First, a starting point 

from the target class is selected and its label is flipped. Then, an SVM 

is trained to evaluate the validation error. This process is iterated by 

moving the poisoned point towards the direction of the model’s gradi­

ent, until the created SVM’s validation error increases over a predefined 

threshold. The authors use the MNIST [88] dataset, increasing the target 

model’s classification error from 2–5% to 15–20% with only one single 

poisoned data point.

To decrease the computational cost and further improve poisoning 

attacks, Yang et al. [179] proposed a generative approach to create poi­

soned samples. Their method is inspired by the concept of Generative 

Adversarial Networks (GANs), and they use an autoencoder as a gener­

ator and a target model as a discriminator. The generator creates data 

with altered labels, and using the feedback from the discriminator that 

evaluates them, it iteratively creates data that maximizes the model’s 

loss. The authors use the MNIST [88] and CIFAR-10 [80] datasets, 

achieving a poisoned loss of over 0.8 on average against less than 0.4 

on average for clean data.

A novel approach is clean-label poisoning, proposed in Shafahi et al. 

[139], where the labels of the poisoned injected data remain unchanged. 

Instead, the position of the poisoned sample affects the target model’s 

decision boundary. Using a single poisoned image of a selected base 

class minimally modified and moved closer to the feature space of a 

target class, the retrained model misclassifies the target class as part of 

the base class. Another technique suggested in this paper is injecting 

multiple points into the target model’s training dataset combining base 

images with a watermark of the target image. The authors use the CIFAR-

10 [80], and ImageNet [39] datasets, achieving a success rate of 100% 

in transfer learning.

Paudice et al. [122] address a new heuristic poisoning method with 

a predefined number of labels flipped. First, the attackers compute the 

increase in the model’s error when the label of each data point in a 

clean training dataset is flipped individually. The data point with the 

highest validation error is flipped and the same procedure applies to the 

rest of them until the predefined number of label flips is reached. The 

authors use the BreastCancer [197], MNIST [88] and Spambase [61] 

datasets, increasing the average classification error by a factor of 2.8, 

6 and 4.5 respectively with only 20% poisoned samples. To address 

these challenges, the authors suggest a label sanitization strategy that 

recognizes and corrects suspicious label flips in training data, thereby 

restoring model integrity.

Suciu et al. [155] introduce the FAIL (Features, Algorithms, 

Instances, Leverage) attacker model, which formalizes the attackers’ 
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capabilities based on their knowledge of and control over the tar­

get model. StingRay attack is also proposed as a clean-label poisoning 

method that only needs partial knowledge of the target model, which can 

be acquired using black-box model extraction attacks. StingRay starts 

with a clean base instance close to the target point in the feature space, 

and then applies small perturbations to it to create undetectable poi­

soned examples, that resemble the target point. The authors use the 

MNIST [88] and CIFAR-10 [80] datasets, achieving a validation score 

of 78%.

Koh and Liang [79] examine how the predictions of a black-box 

model can be used to understand which training points have the high­

est impact on them. The attackers exploit influence functions, and more 

specifically the negative product of the inverse Hessian matrix with the 

target model’s loss function’s gradient, for each training data point to 

calculate their impact. Knowing the most influential points, they can 

strategically manipulate a small subset of them to save time and com­

putational resources. The authors use the MNIST [88], ImageNet [39], 

Enron1 spam [99], and Diabetes [151] datasets, successfully flipping 

the target model’s prediction for 57% of the provided images with 1 

poisoned training image, 77% for 2 poisoned training images, and all 

images except 1 for 10 poisoned training images.

A different approach to poisoning attacks is introduced in Shumailov 

et al. [146], where instead of degrading the target model’s performance, 

adversaries aim to harm its availability and energy consumption. The 

attack starts by choosing inputs that have high potential to increase a 

model’s computational cost. Then a genetic optimization algorithm max­

imizes the target’s energy consumption by evaluating each input based 

on energy consumption and latency, keeping only the top performing 

points and discarding the rest. These points are combined and mutated 

to create new sponge examples. In addition to the genetic algorithm, L-

BFGS-B (Limited-memory Broyden-Fletcher-Goldfarb-Shanno with Box 

constraints) is used which is another optimization algorithm, maximiz­

ing the resource consumption across all layers of a neural network. The 

created sponge examples are evaluated based on their performance and 

this process is iterated until they succeed in dramatically increasing the 

target model’s energy consumption and resource usage. The authors use 

the ImageNet [39], and WMT [42,108,116] datasets, achieving 6000x 

more latency on Microsoft Azure Translator and energy consumption of 

NLP models ranging between 10x and 30x on average, reaching even 

200x in some cases.

While most of the poisoning attacks either change the label of clean 

data or perturb them to create poison examples, Shumailov et al. [145] 

propose a novel approach of data ordering to manipulate the sequence to 

training samples in stochastic gradient descent (SGD). The authors sug­

gest changing the order of data points within a batch, changing the order 

of batches, swapping data between branches and even removing some of 

them. This way they can slow down model training or even mistrain the 

model into adopting harmful behavior. Another key use of reordering 

is planting a trigger that would not affect model performance in gen­

eral cases but only when the trigger data appears. The authors use the 

CIFAR-10 [80], CIFAR-100 [80], and AGNews [190] datasets, achieving 

an accuracy of 91% ±13% trigger accuracy for white-box models and 

68%±19% for black-box models compared to 99% clean accuracy.

Another advancing subcategory of poisoning attacks is backdoor at­

tacks, where adversaries aim to degrade a model’s performance only on a 

specific trigger condition while it normally performs well. Bagdasaryan 

et al. [11] introduce one of the first backdoor attacks against federated 

learning, where multiple locally trained models are sent to a joint server 

where they create a final global model. The authors propose replacing a 

whole local model with a poisoned one, which eliminates the need for 

additional knowledge of the target model. They also exploit an objec­

tive function that rewards their model for accuracy and penalizes it for 

unusual behavior that would be detected by an anomaly detector. They 

use the CIFAR-10 [80] and Reddit [17] datasets, achieving 100% accu­

racy in activating backdoor triggers while maintaining high accuracy on 

general performance tasks.

Building on this foundation, Bhagoji et al. [15] propose scaling up the 

importance of their updates to make their model more dominant in the 

joint model. They also suggest fine-tuning them to maintain the general 

accuracy of the final model. Finally, another proposal is to approximate 

the other participants’ clean updates to inject malicious updates that 

would not affect the statistical similarity of the general distribution. The 

authors use the Fashion-MNIST [176], and Adult Census [14] datasets, 

achieving an accuracy of 91.7% on centralized training.

Following up, Xie et al. [177] further advance backdoor attacks by 

introducing distributed backdoor attacks (DBA) against federated learn­

ing. In DBA, the backdoor trigger is split into multiple fragments across 

several clients, and hence it is more difficult to detect. Each client is 

trained on its own fragment and learns to recognize it, assigning it a spec­

ified backdoor label. When all the fragments contribute together, the 

entire trigger is present in the joint model and the backdoor is ready to 

activate. The authors use the LOAN [174], MNIST [88], CIFAR-10 [80] 

and ImageNet Deng et al. [39] datasets, with a success rate of 89% after 

50 rounds of DBA on MNIST, compared to only 21% for the centralized 

attack.

Dai and Chen [37] focus on backdoor attacks targeting long short-

term memory (LSTM)-based text classification systems. Adversaries can 

exploit a selected trigger phrase to manipulate a text classifier’s pre­

diction into specific cases. This phrase is chosen to fit in a wide range 

of contexts, and its length does not matter although longer phrases are 

more effective. The trigger is added to a set of training samples whose 

labels are changed with a target class. This way the target model asso­

ciates the trigger to that class and learns to predict accordingly. It was 

proven that the trigger’s position in the sample does not affect the at­

tack’s effectiveness at all. The authors use the IMDB movie reviews [85] 

dataset, achieving a success rate of around 95% with only 1% poisoned 

data.

Similarly, Zhao et al. [191] extend clean-label backdoor attacks to 

video recognition models by adding imperceptible triggers into video 

frames. A universal adversarial trigger is created by starting with a 

random small perturbation in an area of a video frame, and then op­

timizing it by applying gradient-based methods. This trigger is added 

to video samples without changing their labels and the model learns to 

associate the trigger presence with a specific target class. The authors 

use the UCF-101 [149] and HMDB-51 [81] datasets, with I3D achiev­

ing 91.5% and 63.4% accuracy on UCF-101 and HMDB-51 respectively, 

while CNN+LSTM achieves 76.6% and 45.3%.

Finally, [130] introduces a completely different approach to back­

door attacks, where the hardware of the target model is attacked instead 

of the software. The proposed attack is Targeted Bit Trojan (TBT), which 

flips bits in the dynamic random access memory (DRAM) storing the 

target model’s weights. TBT exploits the row hammering technique to 

flip the bits without requiring physical access, as well as gradient-based 

methods to identify the most critical bits. Row hammering involves 

rapidly accessing a memory row to influence adjacent rows, causing 

some of their bits to flip. The authors use the CIFAR-10 [80], SVHN 

[106] and ImageNet [39] datasets, classifying 92% of the test images 

correctly, with only 84 out of 88 million bits flipped.

5.3 . Model extraction attacks

Recent research in model extraction has revealed that adversaries 

can replicate ML models or copy their functionality using only query 

access. Tramer et al. [161] demonstrate that even when only API access 

is available, adversaries can reverse-engineer the target model using a 

sufficient number of carefully selected inputs. By analyzing the model’s 

output probabilities, the paper proposes training a model that mimics 

the victim’s functionality. This is done either by querying the model ex­

tensively and solving the equations for simpler models, or by using the 

victim’s output probabilities as labels to achieve high fidelity in more 

complex neural networks. Furthermore, patterns of training samples 

close to each other suggest that the target model is most likely a decision 
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tree, where the attackers slowly change one feature at a time to approxi­

mate the branches’ splits. The authors use the Adult [14], German Credit 

[60], Steak Survey [48], Circles [123], Moons [123], Digits [123], Blobs 

[123], 5-Class [123], IRIS [46], Breast Cancer [197], Mushroom [163], 

Diabetes [151], Email [48], Medical Cover [196], Bitcoin price [70], GSS 

Survey [48] datasets to evaluate their attack on Amazon ML’s logistic 

regression and BigML’s decision tree models, achieving 100% fidelity.

Building on this foundation, Orekondy et al. [115] introduce a tech­

nique that focuses on copying the functionality of black-box models 

without trying to approximate the victim’s inner parameters. Using a 

large number of inputs from publicly available datasets independent 

of the victim’s training distribution, the attackers use the model’s out­

put probabilities as labels to train “Knockoff nets” which mimic the 

victim model’s functionality. Another key contribution of this paper is 

using reinforcement learning to select sample inputs, which they demon­

strate decreases the computational cost. For their experiments, the au­

thors use the ImageNet [39], Caltech-256 [52], CUBS-200–2011 [165], 

Indoor-Scenes [128], Diabetic-Retinopathy [44], and OpenImagesv4 

[84] datasets and their knockoff models achieve over 70% performance 

on unseen data.

Building on attacks in a black-box setting through query sequences, 

Oh et al. [112] investigate their ability to extract a target model’s inner 

attributes, such as architecture, optimization algorithms and training 

data. The authors propose a metamodel approach, which is a model 

trained on outputs from a diverse set of white-box models, that learns 

to predict specific attributes. The metamodel, once created, is applied 

to the target black-box model, enabling the attackers to extract crit­

ical information. To further improve their attack’s performance, the 

authors suggest collecting the metamodel’s training data by crafting in­

puts whose outputs maximize the information provided for a specific 

target model attribute. The authors use the MNIST [88], and ImageNet 

[39] datasets, and prove that specifically crafted queries achieve 94.8% 

success rate in identifying whether max-pooling is used by a target 

model.

Further advancing the existing model extraction attacks, Jagielski 

et al. [67] aim for both high accuracy and high fidelity using only the 

target model’s output labels and logits. To achieve high accuracy they 

use techniques similar to “knockoff nets” attack, combined with the ex­

ploitation of unlabeled data and semi-supervised learning methods like 

rotation loss and MixMatch, which further improve accuracy. For high fi­

delity, the paper proposes the Functionally Equivalent Extraction (FEE) 

that is applicable only to two-layer rectified linear unit (ReLU) mod­

els that output logits with high precision. FEE approximates the ReLU 

critical points where one of the ReLU units has input equal to zero, 

through a refined search algorithm, using a varying parameter and eval­

uating the victim’s logit outputs. The knowledge of the ReLU’s critical 

points creates a set of algebraic equations, which when solved expose 

the target model’s inner weights and biases. When these methods are 

combined by first using FEE to approximate the victim’s parameters and 

then applying the first method to correct potential errors due to noise, 

a new attack model is created. This model achieves high accuracy and 

high fidelity but at the cost of great complexity and limited scalability 

to deeper networks. The authors use the MNIST [88], CIFAR-10 [80], 

SVHN [106], and ImageNet [39] datasets and demonstrate their results 

on CIFAR-10 and SVHN, where using semi-supervised learning increases 

the attack accuracy from 53.35% to 87.98% and from 79.25% to 95.82% 

respectively.

In contrast to traditional query-based model extraction attacks, Milli 

et al. [100] explore using the target model’s gradients, which are some­

times provided as explanations to justify the model’s predictions, to 

reconstruct it. For the two-layer ReLU networks the proposed attack 

takes advantage of the fact that this type of model splits the input space 

into regions, where the ReLU activation is either active or inactive, 

resulting in constant gradients within each region. Starting with two 

random input vectors, their gradients are evaluated and if they are dif­

ferent binary search is exploited to identify the hyperplane separating 

them. This process is repeated with different starting points until all hy­

perplanes are known and the target model can be reconstructed. This 

paper also proposes a heuristic method applicable to any model. First, 

the attackers query the target model with randomly sampled inputs from 

its training data distribution and iteratively train new models using hard 

labels to minimize the gradient difference between the target model and 

the replicate model. If the model outputs probabilities in addition to the 

hard labels, the attackers also try to minimize this difference. The au­

thors use the MNIST [88] and CIFAR-10 [80] datasets, achieving 95% 

accuracy on a MNIST convolutional model with only 10 gradient queries.

Similarly, Wang and Gong [167] also use the target model’s gra­

dients but in a different attack direction. Here, the attackers have 

access to the model’s training dataset, objective function and option­

ally parameters and their main goal is to extract its hyperparameters 

as well. The proposed attack creates a set of equations where the gra­

dient of the objective function is 0, and then solves it to find the 

only unknowns, which are the hyperparameters. In the case where 

the target model’s parameters are also unavailable, the authors sug­

gest first using one of the existing extraction attacks to find them. 

They use the Diabetes [151], GeoOrig [194], UJIIndoor [159], Iris [46], 

Madelon [56], and Bank [103] datasets, demonstrating high accuracy in 

estimating hyperparameters, with relative errors often below 10−4.
Finally, because of the highly increasing development of large-scale 

language models in production environments, Carlini et al. [23] focus 

on the partial extraction of this type of model. This study introduces 

an attack that combines targeted querying with fine-tuning on publicly 

available data to extract key functional components of the target model, 

specifically its final embedding projection matrix. First, the attackers 

query the model with random inputs and collect the output logits. Using 

these logits they reconstruct a matrix whose singular values when ana­

lyzed determine the size of the target model’s hidden dimension. Once 

the hidden dimension is found, the model is queried with specific in­

puts that extract rows of the projection matrix. In this way the authors 

show that, even without full model access, an attacker can effectively 

extract parts of the target language model, and hence expose both propri­

etary algorithms and potentially sensitive data. To evaluate their attack 

they use Pythia, LLaMA and ChatGPT, achieving a full projection matrix 

extraction of OpenAI’s Ada and Babbage models with less than $20.

5.4 . Model inversion attacks

Model inversion (MI) attacks have increasingly raised a critical pri­

vacy concern, revealing sensitive information about targeted models’ 

training datasets. Early work in the area highlighted the real-world risks 

associated with privacy breaches in sensitive applications. [47] provides 

a detailed demonstration of how personalized healthcare systems, and 

more specifically those used to determine optimal warfarin doses, can 

expose private genetic and clinical information. The proposed method 

exploits the knowledge of the target model, the marginal probabili­

ties of its training data distributions which are often published, as well 

as specific individual’s data, such as age, weight and stable warfarin 

dose. By finding all possible combinations of attributes that match the 

individual’s known data, the marginal probabilities of each combina­

tion and other performance statistics, such as confusion matrices, reveal 

the most likely individual’s genotype. This technique was tested on 

the International Warfarin Pharmacogenetics Consortium (IWPC) [32] 

dataset and showed up to 22% higher accuracy when using partial pa­

tient knowledge and not only the marginal probabilities. This case study 

was one of the first to highlight the privacy issues of model outputs’ 

exploitation.

Based on these initial observations, Wu et al. [175] formulate the MI 

attacks. For the black-box setting their attack needs only oracle access 

to the target model and auxiliary information about non-sensitive at­

tributes. Similarly to the warfarin-dosage attack, using a large number of 

input-output pairs, the attack reverse-engineers the model based on the 

auxiliary information. In the white-box setting where the attackers have 
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full model access, the intermediate representations are used to lower 

the computational cost. This work was the first to formalize MI attacks 

and hence established a basis for evaluating and comparing different MI 

attacks.

Following up, Zhang et al. [187] introduce a new attack progressing 

from theory to practice. The main novelty is the employment of GANs in 

order to reconstruct high fidelity approximations of the original train­

ing dataset using the victim’s soft labels. The GAN used is trained with 

publicly available auxiliary data to have prior knowledge of the tar­

get task’s data general distribution and to create more realistic images. 

Furthermore, a Wasserstein loss function along with a diversity term 

is used to increase the generated image set’s diversity. Additionally, a 

latent vector is optimized by penalizing unrealistic generated images 

and encouraging images that have high likelihood of increasing the vic­

tim’s confidence for a specific class. High confidence scores expose the 

strong correlations between some features and output labels, which can 

be exploited to reconstruct the victim’s training dataset. The authors 

use the MNIST [88], ChestX-ray8 [169], CelebA [92], and PubFig83 

[124] datasets to evaluate their method and demonstrate an improved 

accuracy of about 75% compared to existing MI attacks.

Enhancing the generative approach, Wang et al. [166] integrate 

variational inference techniques to further improve the reconstruction 

process. For that purpose, the authors also use StyleGAN which helps 

them control their attack through a parameter balancing the generated 

image set between high accuracy and high fidelity. The proposed ap­

proach is applicable in the white-box setting under the assumption that 

both auxiliary data used and the target dataset lie in the same low-

dimensional manifold defined by the GAN. This attack was evaluated 

using the MNIST [88], CelebA [92], and ChestX-ray [169] datasets and 

achieved 0.55 and 0.69 accuracy on CelebA and ChestX-ray datasets 

respectively.

Recognizing the need for adaptability in practical scenarios, Struppek 

et al. [153] propose Plug & Play (P&P) attacks which remove the GAN’s 

auxiliary data dependency on the target training data distribution. First, 

a sampling of latent vectors is mapped to an intermediate representa­

tion and then used to generate images, transform them and feed them 

into the target model. Latent vectors are optimized through backprop­

agation using a Poincare loss function, which helps the GAN generate 

images that maximize the target model’s prediction scores for a specific 

class without affecting its fidelity to realistic data distributions. Finally, 

a selection process filters out results with low performance using a ro­

bustness against transformations evaluation. The authors use the CelebA 

[92], FaceScrub [107], FFHQ [74], MetFaces [73], AFHQ Dogs [27] and 

Stanford Dogs [77] datasets and for their experiment on FaceScrub they 

show 88.46% accuracy while existing methods range between 5.72% 

and 61.63%.

While the majority of white-box MI attacks achieve high accu­

racy, black-box attacks are not as successful, so [57] introduces the 

Reinforcement Learning-Based Black-box MI (RLB-MI) attack. RLB-

MI uses a Markov decision process, where reinforcement learning is 

exploited to guide the GAN in the latent space exploration to find 

the optimal latent vectors. RLB-MI was tested on the CelebFaces [92], 

FaceScrub [107], PubFig83 [124] and FFHQ [74] datasets. Since the 

purpose was to improve existing black-box MI attacks’ accuracy, RLB-

MI was compared to other black-box attacks on VGG16, achieving an 

accuracy of 0.659 which is higher than the 0.413 and 0.075 achieved 

by MIRROR and LB-MI respectively.

Finally, [109] examines the assumptions and limitations of previ­

ous MI attacks, which are mainly the use of suboptimal identity loss 

functions and the overfitting during the model inversion process. Their 

first contribution is a logit-based identity loss that directly maximizes 

the logits of a specific target class, encouraging the model to create 

images closer to the target dataset. Additionally, a regularization term 

is used to prevent unbounded growth of feature representations. The 

second proposed method is model augmentation, a procedure for train­

ing additional models on public datasets using knowledge distillation 

to increase the diversity of the generated image set and mitigate over­

fitting. These advancements require knowledge of the victim’s inner 

parameters, so they are applicable only in the white-box setting. The au­

thors use the CelebA [92], CIFAR-10 [80], MNIST [88], FFHQ [74], and 

EMNIST [31] datasets, and evaluate the KEDMI attack both with and 

without their proposed techniques, achieving improvements ranging 

from +4.2% to +53.6% across different datasets.

5.5 . Inference attacks

Membership inference attacks (MIA) have emerged as a rising pri­

vacy concern for ML models, giving adversaries the opportunity to 

determine whether a specific data record was part of a model’s train­

ing dataset. Shokri et al. [144] introduced one of the first structured 

approaches to MIA, where shadow models are used to mimic the tar­

get model’s behavior. By training these shadow models on data with 

known membership, an attack model is created to distinguish whether 

specific data points were in the target model’s training dataset based on 

their output probabilities. This method exploits the higher confidence 

ML models tend to exhibit for the data used during their training. The 

attack’s success scales with the number of the shadow models, and the 

authors suggest that a sufficient number of shadow models is one for 

each potential output class of the target model. The authors use the 

CIFAR-10 [80], CIFAR-100 [80], Purchase [72], Location [180], Texas 

holiday stays [158], MNIST [88], and UCI Adult (Census Income) [14] 

datasets, achieving precision from 71% to 78% for CIFAR-10 and 97% 

to 100% for CIFAR-100 based on the training set size. To counteract the 

information leakage exposed by these attacks, the authors propose lim­

iting the accuracy of confident outputs and implementing differential 

privacy mechanisms.

Based on these initial observations, Truex et al. [162] formulate the 

MIA. Their attack starts by generating shadow datasets that closely re­

semble the target model’s training data. Using these datasets they train 

a set of models with similar behavior to the target model. Finally, as in 

previous methods they use these shadow models to create the final at­

tack model. The key difference is that the shadow dataset generation 

requires less information about the target model and hence is appli­

cable to a wider range of potential target models. Furthermore, the 

authors have tested their techniques in different cases and demonstrated 

that a collaborator in a federated learning model can exploit their posi­

tion to infer membership information. The authors use the Adult [14], 

MNIST [88], CIFAR-10 [80], Purchases [72] datasets, achieving preci­

sion of 70.25%, 65.99%, 83.94%, 50.03% and 78% with CIFAR-10 for 

the Linear Regression (LR), k-Nearest Neighbors (k-NN), Decision Tree 

(DT), Naive Bayes (NB), and Neural Network (NN) models respectively.

Unlike traditional methods, [28] introduces the first label-only MIA. 

Their main idea is to examine the target model’s robustness to pertur­

bations on given inputs, either synthetic or adversarial. Data points that 

exhibit high robustness are training data points of the target model. The 

two strategies explored are the transfer attack, where substitute models 

are used to copy the target model’s behavior, and boundary attacks, 

which evaluate the model’s predictions when perturbations are added to 

given inputs. The authors use the MNIST [88], CIFAR-10 [80], CIFAR-

100 [80], Adult [14], Texas [158], Purchase [72] and Locations [180] 

datasets, achieving accuracy ranging between 50% and 92.6%.

Rezaei and Liu [133] highlight the importance of exploiting the right 

metrics to demonstrate an attack’s effectiveness and evaluate existing 

membership inference attacks based on the proposed metrics. Often, pa­

pers focus on positive metrics such as having high accuracy, precision 

and recall for the positive class, while negative metrics like having high 

false positive rate (FPR) are not demonstrated. This covers an attack’s 

ineffectiveness, predicting that given data are part of the target model’s 

training dataset way too often. The authors use this metric to evaluate 

existing membership inference attacks and conclude that most of them 

cannot achieve both low false acceptance rate (FAR) and high accuracy. 

They use the MNIST [88], CIFAR-10 [80], CIFAR-100 [80] and ImageNet 
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[39] datasets, demonstrating FARs of 38.89%, 64.45% and 65% for the 

AlexNet, ResNet and DenseNet models respectively.

On the same page, Carlini et al. [22] also argue about the tradi­

tional metrics used to evaluate existing membership inference attacks. 

The authors propose a novel evaluation framework focused on achiev­

ing a high true positive rate while maintaining a low false positive rate. 

The authors’ contribution is the Likelihood Ratio Attack (LiRA) which 

leverages statistical hypothesis testing by comparing the probabilities of 

a given input being part of the target model’s training dataset or not. 

Taking into consideration the probability of a given input not being a 

member, LiRA outperforms traditional methods, demonstrating lower 

false positive predictions. The authors use the CIFAR-10 [80], CIFAR-

100 [80], ImageNet [39] and WikiText-103 [98] datasets, proving that 

LiRA achieves a 10x improvement in power at low false positive rates 

compared to existing attacks.

Further advancing the membership inference attacks, Zhang et al. 

[186] propose three novel attacks against GNNs. The first one is the 

property inference attack, where the attackers use the embeddings and 

outputs of the target model to train an attack model that predicts a 

graph’s properties, such as its number of nodes, edges or graph density. 

The second attack is the subgraph inference attack, where the attackers 

analyze posterior probabilities or embeddings to detect unique subgraph 

structures with neighborhoods of nodes, by training classifiers either in 

the white-box or in the black-box setting. Finally, the third attack is the 

graph reconstruction attack, where the attackers aim to reconstruct an 

entire graph using embeddings generated by the GNN, employing gen­

erative models like autoencoders to create graphs that closely resemble 

the target model. The authors use five of the TUDatasets [104] (DD, 

ENZYMES, AIDS, NCI1 and OVCAR-8H) datasets, achieving an accuracy 

of up to 0.89 when inferring basic graph properties, such as the number 

of nodes, the number of edges and the graph density.

Beyond membership inference, Zhou et al. [193] introduce a prop­

erty inference attack against GANs. The attackers’ target is to acquire 

knowledge of the target model’s general characteristics, such as the pro­

portion of samples with a specific attribute. For the full black-box setting 

the attack begins with querying the target GAN to create samples, which 

are later analyzed using a property classifier trained on a dataset with 

similar distribution to the target GAN’s training dataset. The goal of 

this classifier is to predict whether specific properties exist in the gener­

ated samples. For the partially black-box setting, strategically selected 

latent codes are used to maximize the attack’s efficacy. The authors use 

the MNIST [88], CelebA [92], AFAD [111] and US Census Income [97] 

datasets, and prove that with knowledge of the training dataset’s proper­

ties, the enhanced membership inference’s area under the curve (ROC) 

increases from 0.52 to 0.61.

Against models with explainable artificial intelligence (XAI), Luo 

et al. [93] explore feature inference attacks on Shapley values, which are 

employed to explain the target model’s output dependence on individual 

input features. The authors examine two different cases, where the at­

tackers either have access to an auxiliary dataset or not. In the first case 

they use this dataset to train an attack model minimizing sampling er­

rors in Shapley value approximations. On the other hand, when they 

have no additional knowledge or dataset to use, they instead exploit the 

local linear correlations between model inputs and outputs encoded in 

Shapley values. The authors use the Adult [14], Bank marketing [103], 

Credit card [181], Diabetes [151], IDA 2016 Challenge [2], Insurance 

Company Benchmark [126] and three synthetic datasets. The success 

rate of the second case is at least 30% when performed on IBM and 

Microsoft platforms.

5.6 . LLM attacks

Recent advancements in LLMs have introduced unprecedented ca­

pabilities in natural language processing, but they have also exposed 

critical security vulnerabilities. This section analyzes works that reveal 

novel attack vectors against LLMs, ranging from prompt leakage, jail­

break and poisoning to revealing sensitive information such as credit 

card information. Moreover, the advent of LLMs has given birth to 

new attack vectors with their help, including sophisticated automated 

cyberattacks and penetration testing.

Prompt extraction is an introductory step in the lifecycle of an at­

tack targeting LLMs, as the adversary can acquire more information on 

how to fool the system. PLeak is a closed-box prompt leaking framework 

designed to extract confidential system prompts from LLM applications 

by formulating the attack as an optimization problem. It incrementally 

searches for an adversarial query that, when concatenated with the hid­

den prompt, compels the target application to reveal its full system 

prompt. To circumvent the issue of the large search space, PLeak em­

ploys a gradient-based approach that optimizes the adversarial query 

token by token—starting with the first few tokens of shadow system 

prompts and gradually increasing the length. Additionally, it incor­

porates an adversarial transformation step to bypass defenses, then 

reverses this transformation in post-processing to accurately reconstruct 

the original prompt. Experimental results demonstrate that PLeak out­

performs manually crafted and adapted jailbreak attacks, achieving 

higher exact match and semantic similarity scores across the ChatGPT-

Roles [71], Financial [95], Tomatoes [121], SQuAD2 [113] and SIQA 

[137] datasets and the GPT-J [168], OPT [188], Falcon [6], LLaMA-2 

[160] and Vicuna [26] models.

More than just extracting a prompt, many works focus on manip­

ulating it. In an attempt to challenge the robustness of prompt-aligned 

language models, [195] present a novel adversarial attack that generates 

transferable adversarial prompt suffixes. It employs an extension of the 

Auto-prompt method introduced by Shin et al. [143], a hybrid of greedy 

and gradient-based search, termed greedy coordinate gradient-based 

descent (GCG), to automatically identify perturbations that, when ap­

pended to a variety of prompts, make the model produce objectionable 

responses. These adversarial examples are shown to be highly trans­

ferable, affecting proprietary LLMs like GPT-3.5 [114], Bard [51], and 

Claude [9], as well as open source LLMs such as LLaMA-2, Falcon and 

others.

Guo et al. [55] advance over GCG to formalize the controllable gener­

ation of white-box jailbreak attacks on LLMs and establish a connection 

with controllable text generation. Their work does not rely on the dis­

crete token-level optimization of GCG. Instead, it adapts an energy-based 

constrained decoding algorithm using Langevin Dynamics introduced by 

Welling and Teh [171], termed COLD, to perform efficient gradient-

based sampling in the continuous logit space, before decoding them 

back into discrete texts. This attack integrates control parameters—

such as fluency, stealth, sentiment, and left-right coherence—to generate 

adversarial attacks in a unified manner. It supports both conven­

tional fluent suffix attacks and novel scenarios, including adversarial 

paraphrasing and position-constrained stealthy insertions. Experiments 

on Llama-2, Mistral, Vicuna, Guanaco, GPT-3.5, and GPT-4 demonstrate 

the framework’s high success rate, robust controllability, and effective 

transferability.

Ren et al. [132] introduce ActorAttack, a multi-turn jailbreak method 

that uses self-discovered clues to guide LLMs toward producing harmful 

outputs. Rooted in actor-network theory, the approach builds a network 

of semantically linked “actors”—both human and non-human—as di­

verse attack clues related to a harmful target. In the pre-attack phase, 

the method samples these clues to obtain potential triggers. Then, using 

a self-talk mechanism, ActorAttack infers an attack chain that guides 

the generation of a multi-turn query set. Finally, dynamic modification 

refines this path based on victim responses, leveraging a GPT-4-based 

judge. The harmfulness of models is evaluated on HarmBench [96]. 

Overall, ActorAttack automates the discovery of diverse multi-turn at­

tack paths, significantly improving success rates, even for GPT-4. Jaech 

et al. [66] introduce SafeMTData, a dataset for safer LLM alignment. 

This dataset has been published to facilitate safety alignment training, 

Computer Science Review 61 (2026) 100923 

20 



N. Sachpelidis-Brozos, E. Katsaros, P. Radoglou-Grammatikis et al.

assisting LLMs in improving their resilience against sophisticated multi-

turn jailbreak-style prompt attacks.

Recently, Li et al. [90] attempted to tackle the poor transferability 

across models and high computational cost caused by sequential token 

replacement. To address these, they introduced TF-Attack, a black-box 

attack that uses an external LLM (Llama2-7B in the experiments) to 

assess token importance and group tokens into “Importance Levels”. 

This grouping allows for parallel substitutions, significantly reducing 

the attack time. In addition, the framework proposes the Multi-Disturb 

and Dynamic-Disturb techniques to increase both the efficiency and 

transferability of the adversarial examples. Experimental results on six 

benchmarks (Yelp Polarity and AG News [190], SNLI [19], IMDB [63], 

MR [121] and MNLI [172]) show that TF-Attack outperforms previ­

ous methods achieving over a 10× speedup while maintaining language 

fluency and significantly impairing the performance of various victim 

models.

More recently, in early 2025, [89] presents a method that 

exploits vulnerabilities of LLM-powered agents, using their exter­

nal integrations—such as memory systems, web access, and API 

interactions—to conduct simple attacks. The authors first categorize 

these vulnerabilities into a taxonomy and then demonstrate a series of 

practical attacks on Anthropic’s Computer Use web agent and MultiOn 

that can, for example, leak private data such as credit card numbers, 

download malicious files, and send phishing emails, all without requir­

ing any specialized ML knowledge. These attacks expose critical security 

risks in commercial systems that could lead to massive privacy breaches 

and financial losses in real-world deployments.

However, attacks on LLMs are not restricted to jailbreak. ICLAttack 

introduced by Zhao et al. [192] is a backdoor method specifically de­

signed for LLM in-context learning used by Dong et al. [40] (ICL). 

ICLAttack is achieved through two strategies, namely, poisoning demon­

stration examples and poisoning demonstration prompts. In the former, 

sentence-level triggers are inserted into a subset of demonstration ex­

amples while preserving their correct labels, so that the attack remains 

stealthy. In the latter, the method replaces standard prompt templates 

with adversarial ones that serve as triggers, enabling the backdoor to 

be activated even when the user’s query is unaltered. The core idea 

of ICLAttack is to exploit the analogical reasoning capability of ICL, 

whereby the model learns to associate the inserted trigger with a tar­

get label. Once the poisoned demonstration context is constructed, any 

user query that either contains the trigger (in the case of poisoned exam­

ples) or is processed with the malicious prompt (in the case of poisoned 

prompts) leads the model to output the attacker’s predefined target 

label. Experiments conducted on multiple text classification datasets 

(such as SST-2 [148], OLID [183], and AG News [190]) and across 

various LLM architectures (including OPT [188], GPT-NEO [18], GPT-J 

[168], and Falcon [6]) demonstrate that ICLAttack achieves an average 

attack success rate exceeding 95% while only minimally affecting clean 

accuracy.

In another work Alber et al. [5] discuss the vulnerability of med­

ical LLMs to data-poisoning attacks by simulating corruption of The 

Pile [49], a large training dataset, with minute fractions of AI- rs train 

multi-billion-parameter models on the poisoned datasets and demon­

strate that even a 0.001% replacement of training tokens significantly 

increases the likelihood of generating malicious medical outputs. To 

address these risks, they suggest a defense technique utilizing the hi­

erarchical nature of biological knowledge graphs to evaluate and filter 

LLM outputs, achieving high precision and recall in identifying mis­

information while successfully limiting the impact of data poisoning. 

They evaluated their method on the LAMBADA [76] and HellaSwag 

[184] datasets for common-sense language tasks, while for medical 

tasks, they used MedQA [68], PubMedQA [69], MedMCQA [119] and 

the MMLU [59] clinical knowledge and professional medicine subsets, 

using a GPT-3-like LLM.

Attack-in-the-Chain introduced by Liu et al. [91] (AttChain) utilizes 

chain-of-thought prompting to iteratively generate adversarial exam­

ples that boost a target document’s ranking in neural retrieval systems. 

AttChain focuses on exploiting vulnerabilities in information retrieval 

by dynamically perturbing target documents guided by high-ranking 

anchor documents. Its approach—filtering anchor documents via a Zipf-

based strategy and assigning perturbation budgets based on ranking 

discrepancies—proves that LLM reasoning can be used for subtle, multi-

step adversarial attacks in black-box settings. The experiments are 

conducted with GPT-3.5 and Llama3 as attackers on the MS MARCO 

Document Ranking [110] and TREC DL19 [33] datasets.

PentestGPT introduced by Deng et al. [38] is an LLM-based 

framework that automates penetration testing. Using GPT-3.5, GPT-4, 

and Bard, it performs real-world security tasks through a structured 

benchmarking system that covers 13 targets and 182 sub-tasks from 

HackTheBox and VulnHub. The framework consists of a reasoning mod­

ule to track progress, a generation module to transform tasks into 

commands, and a parsing module to process feedback. An active feed­

back loop ensures human testers validate execution. Evaluations show 

GPT-4 outperforms other models, demonstrating strong task completion 

rates but facing challenges with context retention and hallucination. 

Experiments are performed on PentestPerf, their penetration testing 

benchmark, to evaluate the performance of penetration testers and au­

tomated tools across a wide range of testing targets. While promising 

for security assessments, the study also demonstrates the risks of LLM 

misuse in automated cyber-attacks.

More recently, AutoAttacker proposed by Xu et al. [178] presents 

a system that automates “hands-on-keyboard” cyber-attacks through 

a modular design incorporating summarization, planning, navigation, 

and an experience manager. In contrast to PentestGPT, which is not 

fully automated, as the penetration tester has to act as the proxy be­

tween the capture the flag (CTF) environment and the LLM to facilitate 

their communications, AutoAttacker is designed for executing com­

plex post-breach attacks end-to-end. It breaks down attack tasks into 

manageable subtasks and reuses successful actions through retrieval-

augmented techniques, showing the capacity of LLMs to generate 

precise, context-aware attack commands with minimal human inter­

vention. AutoAttacker is evaluated on custom benchmark, broader than 

PentestPerf which focuses on the CTF setup, and GPT-4 is chosen as the 

attacker model due to its higher performance compared to GPT-3 and 

Llama2.

Lastly, the application of Large Language Models to distributed 

denial-of-service (DDoS) Attack Detection first demonstrated by 

Guastalla et al. [53] adopts LLMs in a defensive role, utilizing few-shot 

and fine-tuning techniques to accurately detect DDoS attacks in IoT net­

works. This work is different from the offensive objectives of the above 

papers. While they demonstrate how LLMs can be co-opted to auto­

mate cyber-attacks, the DDoS detection study shows that, when properly 

prompted, LLMs can serve as effective defense mechanisms by classify­

ing and explaining potential threats with high accuracy. Experiments 

confirm the claims on the CICIDS 2017 [141] and Urban IoT [58] 

datasets, showing that LLMs with few-shot learning outperform fully 

supervised multi-layer perceptrons (MLPs).

6 . Defense mechanisms and mitigations

Modern AI systems must deal with a growing number of security 

threats, including poisoning and evasion attacks, as well as LLM-specific 

vulnerabilities, inference attacks, model extraction, and model inver­

sion. The MITRE ATLAS framework provides a systematic collection of 

AI adversarial techniques, identifying specific methods that attackers 

can employ to harm AI models and their associated data. By map­

ping real-world threats to their associated ATLAS techniques, we can 

determine particular defenses and mitigation strategies. This approach 

enables clear knowledge of which defensive measures are most effective 
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against certain threats, and serves as a strong foundation for developing 

powerful AI systems.

This section examines each defense approach, including its aim, 

methodology, and particular vulnerabilities addressed. Collectively, 

these mitigations provide a realistic and practical paradigm for strength­

ening the security, integrity, and robustness of AI systems throughout 

the development and deployment process. Table 1 provides an in-depth 

analysis of each attack, including its ATLAS technique and related de­

fensive and mitigation strategies. Serving as a thorough reference for 

professionals as well as researchers to better understand the connections 

between adversarial techniques and defense mechanisms. Furthermore, 

the Table 1 shows that certain defenses can be utilized against a vari­

ety of attack strategies. Key defenses that can be applied to all of the 

examined attack categories are described below:

Verify AI Artifacts: In order to ensure that the file has not been mod­

ified by a malicious party, it is necessary to validate the cryptographic 

checksum of every single AI artifact.

AI Bill of Materials: An AI Bill of Materials (AI BOM) lists all of 

the artifacts and resources utilized to develop the AI. The AI BOM can 

assist in reducing supply chain risks and enabling rapid adaptation to 

detected vulnerabilities. This might involve preserving dataset prove­

nance, or a complete history of datasets used in AI applications. The 

history might contain information about the dataset’s origin as well as 

a detailed record of any changes.

Limit Model Artifact Release: Limit the public distribution of 

technical project-specific information such as data, algorithms, model 

structures, and model checkpoints that are or will be utilized in produc­

tion.

Control Access to AI Models and Data at Rest: Establish access 

restrictions for internal model registries and restrict internal access to 

production models. Only approved users should have access to training 

data.

Sanitize Training Data: Detect, eliminate, or remediate poisoned 

data from training. Sanitizing training data before model training is 

recommended, as well as on a regular basis for active learning mod­

els. Implement a filter to restrict the amount of training data that is 

consumed. Create a content policy to prevent the use of inappropriate 

content, such as explicit or offensive language.

Maintain AI Dataset Provenance: Maintain a precise history of 

datasets utilized by AI applications. The history should include infor­

mation related to the dataset’s origins as well as a detailed record of any 

changes.

Generative AI Guardrails: Guardrails are safety restrictions that are 

added between a generative AI model and its outcome shared with the 

user to avoid unwanted inputs and outputs. Guardrails can include val­

idators like filters, rule-based logic, or regular expressions, as well as 

AI-based techniques like classifiers and the use of LLMs or named en­

tity recognition (NER) to assess the safety of the prompt or answer. 

Domain-specific techniques can be used to mitigate risks in a range 

of fields, including brand reputation, SQL injection attacks, potential 

data leaks, misinformation, etiquette, code vulnerabilities, and jailbreak

attempts.

Model Hardening: Adversarial training or network distillation are 

two strategies for making AI models resilient to adversarial inputs.

Use Ensemble Methods: To improve resilience against adversarial 

inputs, use an ensemble of models for inference. Certain models or model 

families may be successfully evaded by certain attacks, whereas others 

may not be.

Input Restoration: All inference data should be preprocessed to 

eliminate or reverse potential adversarial perturbations.

Adversarial Input Detection: Detect and prevent adversarial inputs 

or unusual queries that differ from known benign behaviors, display be­

havior patterns observed in past attacks or originate from potentially 

hostile IP addresses. Incorporate adversarial detection techniques into 

the AI system prior to the AI model.

Use Multi-Modal Sensors: Incorporate multiple sensors to combine 

different views and modalities to prevent a single point of failure that is 

vulnerable to a physical attacks.

AI Model Distribution Methods: Deploying AI models on edge de­

vices might enhance the system’s attack surface. Consider providing 

models on the cloud to restrict the adversary’s access to the model. 

Consider cloud computing features to avoid gray-box attacks, which 

occur when an attacker has access to model preparation procedures.

Passive AI Output Obfuscation: Reducing the accuracy of model 

outputs presented to the end user can limit an adversary’s capacity to 

gather knowledge about the model and improve attacks against it.

Restrict Number of AI Model Queries: Limit the quantity and 

frequency of requests a user can make.

Generative AI Guidelines: Guidelines are safety restrictions that are 

placed between user-supplied input and a generative AI model to help 

guide the model to create desired outputs while preventing undesirable 

outcomes. Guidelines can be used as instructions attached to all user 

prompts or as part of the system prompt. They can describe the sys­

tem’s goal(s), role, and voice, as well as establish its safety and security 

requirements.

Generative AI Model Alignment: It is essential to employ tech­

niques that improve model alignment with safety, security, and content 

requirements while training or optimizing a generative AI model. The 

fine-tuning process has the potential to remove built-in safety mecha­

nisms in a generative AI model, but techniques such as Reinforcement 

Learning from Human or AI Feedback, Supervised Fine-Tuning, and 

Targeted Safety Context Distillation can improve the model’s safety and 

alignment.

AI Telemetry Logging: Log the inputs as well as outputs from de­

ployed AI models. Monitoring logs can assist in detecting security issues 

and mitigating their effects. Additionally, enabling logging could dis­

courage adversaries who wish to remain undiscovered from using AI 

resources.

User Training: Teach AI model developers about secure coding 

methods and AI vulnerabilities.

Restrict Library Loading: Configure proper library loading mech­

anisms within the operating system and applications to prevent the 

loading of untrusted code. Investigate potentially vulnerable software. 

File formats used for storing AI models, such as pickle files, may include 

exploits that allow malicious libraries to be loaded.

Code Signing: To prevent untrusted code from running, enforce 

binary and application integrity via digital signature verification. 

Adversaries have the ability to embed harmful malware in AI software or 

models. Code signing enforcement can help to keep the AI supply chain 

secure and prevent malicious code from executing.

Vulnerability Scanning: Vulnerability scanning can be utilized 

to identify potentially exploitable software vulnerabilities and resolve 

them. File formats, such as pickle files, which are often utilized for 

storing AI models, might include bugs that allow arbitrary code exe­

cution. These files should be inspected for potentially dangerous calls 

that might be used to run code, create new processes, or enable net­

working. Adversaries may encode dangerous code in corrupt model files, 

therefore scanners must be able to deal with models that can’t be com­

pletely de-serialized. Model artifacts and downstream products should 

be inspected for known vulnerabilities.

Encrypt Sensitive Information: Encrypt sensitive data, such as AI 

models, to prevent unauthorized access.

Limit Public Release of Information: Limit the amount of techni­

cal information about an organization’s AI stack that is made available 

to the public. Adversaries can utilize technical understanding of how AI 

works to target and customize attacks on the target system. Consider 

restricting the sharing of organizational information, such as geographi­

cal locations, researcher names, and department structures, from which 

technical details including AI methods, model architectures, or datasets 

might be extracted.
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7 . Discussion and future directions

A closer look at the MITRE ATLAS case studies shows that adversarial 

attacks often build on each other. Rather than using just one technique, 

attackers rely on multi-stage processes where each step sets up the next. 

For example, an adversary might start by mounting a black-box adver­

sarial attack on an ML model offered as-a-service. This allows them to 

generate samples near the model decision boundary, making it easier 

and quicker to replicate the model behavior. With the proxy model in 

hand, attackers can then craft white-box adversarial examples to avoid 

detection with very few API calls. Every stage in this chain magnifies 

the damage of the one before it, and combining tactics also helps at­

tackers dodge layered security measures. While issues revolving around 

the trustworthiness of AI models are thoroughly considered on an indi­

vidual basis, i.e., “model stealing” or “model evasion”, the combination 

of attacks is not jointly discussed. Current defenses also tend to ad­

dress single-attack scenarios. While MITRE ATLAS reveals many such 

incidents throughout the case studies, very little work has been done 

on compound or sequential attack strategies and how to defend when 

multiple weak points are exploited.

Recently, XAI has been incorporated into many AI suites to enhance 

model transparency. For instance, platforms such as Google Cloud’s 

Explainable AI, IBM Watson, and AWS SageMaker Clarify offer ex­

planations along with their predictive services. However, XAI is not 

yet represented in the MITRE ATLAS framework. While it facilitates 

the use of AI by circumventing its opaque nature, XAI also introduces 

risks by exposing critical information about the model inner workings. 

Explanations can enable adversaries to better understand a model’s 

behavior. Consequently, it requires fewer queries to replicate or manip­

ulate the model when explanations are provided. While some discussion 

does exist by Spartalis et al. [150], it is still relatively understudied. On 

the other hand, adversaries may also target the explanations themselves. 

Baniecki and Biecek [13] have highlighted scenarios where explana­

tions are adversarially manipulated, while work by Artelt et al. [10] 

discusses how poisoning attacks can change explanations without affect­

ing model predictions. Therefore, the requirement for balance between 

transparency and security in AI systems is becoming more important. 

MITRE ATLAS does not currently cover XAI-specific threats, such as at­

tacks on explanations or model transparency, indicating a gap that must 

be filled.

With the rise of LLMs, Reinforcement Learning (RL) has regained 

popularity. Specifically, Reinforcement Learning from Human Feedback 

(RLHF) by Ouyang et al. [117] and Group Relative Policy Optimization 

(GRPO) by Shao et al. [140] are used to instruct LLMs, following their 

supervised training. However, RL is vulnerable to poisoning attacks, 

as adversaries can manipulate rewards, environments, or training data. 

These attacks cause RL agents to adopt suboptimal policies or act mali­

ciously when triggered. Methods such as reward poisoning, adversarial 

environment manipulation, and backdoor attacks pose significant risks. 

Additionally, attacking RL agents is more dangerous than ever due 

to the popularity of deploying agentic workflows. Therein, the attack 

landscape expands with the number of agents involved. Currently, the 

multi-agent attack surface (one AI exploiting another) is largely under­

explored. It is significant for any domain where AI systems cooperate 

or compete: from robotics (drone fleets) to finance (automated trading 

agents interacting) to cybersecurity (automated defenders vs. attack­

ers). Traditional adversarial ML focuses on single-model vulnerabilities, 

so expanding to multi-agent contexts requires more research. MITRE 

ATLAS currently provides only a limited coverage of RL-specific threats 

and does not describe multi-agent exploitation patterns, coordination-

based threats, or cross-agent influence pathways. Addressing these 

gaps is critical, as RLHF-driven and agentic systems rapidly guide the 

operational behavior of large AI deployments.

Another unexplored area revolves around multi-modal models as 

shown by Baltrušaitis et al. [12], where text, image, audio, video and 

other modalities, are processed simultaneously by the same model. 

Despite the enhanced capabilities they bring, owing to stronger signals 

from multiple data sources, multi-modal ML raises new security issues 

regarding their vulnerability to attacks. While there has been some work 

in the field by Dou et al. [41], adversarial attacks are heavily under­

studied in multi-modal models. For instance, how does an adversary 

effectively poison one modality to compromise the overall model, and 

can perturbations in a less influential channel amplify vulnerabilities in 

others? Similarly, when attempting model extraction or stealing attacks, 

is one modality inherently more exploitable than another? Furthermore, 

can cross-modal interactions be used to perform inversion attacks that 

reconstruct sensitive training data from partial inputs, and do these in­

teractions offer resilience or fragility during inference under adversarial 

conditions? In real-world applications, such as in an AI-powered con­

tent filter that checks both text and images, a cross-modal adversary 

could evade detection by distributing the malicious cue across modal­

ities. Current defenses also tend to address unimodal attack scenarios. 

The current MITRE ATLAS taxonomy does not comprehensively include 

modality-specific attack vectors, cross-modal transferability, or multi-

modal inversion issues, despite their growing importance in foundation 

models. Extending the paradigm to include multi-modal threat cate­

gories would allow for more comprehensive threat modeling in current 

multisensor systems.

Another field gaining popularity is neurosymbolic AI, which com­

bines neural networks with symbolic reasoning or logic-based compo­

nents. This hybrid approach improves interpretability and reasoning, 

but it also introduces new vulnerabilities for both the neural and 

symbolic domains. An important question is whether adding symbolic 

structure makes the system more robust or more sensitive to adversar­

ial manipulation. The answer so far is not clear. [134] suggests that 

certain neurosymbolic architectures can be more adversarially robust 

than purely neural ones, for example if the symbolic module provides 

constraints that limit the neural network susceptibility to nonsensical 

perturbations. However, if symbolic rules are too simplistic (an “inter­

pretable shortcut”), an adversary can exploit that to break the system, 

even if the neural part is robust. This area remains underexplored—

the attack surface includes manipulating the neural network’s inputs 

or the knowledge base/rules that the symbolic component uses. For in­

stance, an attacker might add a few fake facts to a knowledge graph that 

a neurosymbolic system consults, leading the AI to draw dangerously 

wrong conclusions (a form of symbolic poisoning). Such hybrid architec­

tures are not fully captured in MITRE ATLAS, indicating a structural gap 

for capturing symbolic poisoning, logic-level adversarial manipulation, 

or hybrid neural–symbolic exploit chains. As neurosymbolic systems 

expand, the taxonomy must evolve accordingly.

Another critical research avenue that remains largely unexplored 

is security for continual learning. While traditional ML models have a 

fixed behavior after training, continual learning systems update their 

knowledge or adapt over time based on new data or feedback. Examples 

include reinforcement learning systems that keep training in deploy­

ment, or LLM-based agents that refine their responses via user feedback. 

While this adaptability is powerful, it also means the model behavior 

is a changing attack surface. An attacker might gradually influence a 

self-learning system off course—a form of continual poisoning. As per 

Cisco’s AI security report [30], when AI applications continue to learn 

from new data, “new vulnerabilities and emergent behavior can ap­

pear after deployment, unlike traditional software that does not change 

unless you change it”. This requires continuous monitoring and peri­

odic robustness re-evaluation. Most research still treats defense as a 

one-time process, while the community needs online methods and mech­

anisms to shut down critical components of a model even as other parts 

learn, in order to prevent drifting into a compromised state. MITRE 

ATLAS does not completely capture such hybrid architectures, reveal­

ing a structural gap in the detection of symbolic poisoning, logic-level 

adversarial manipulation, or hybrid neural-symbolic attack chains. The 
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taxonomy of neurosymbolic systems must grow in parallel with their

expansion.

7.1 . Framework limitations and application security

To address the challenge of standardization in AI security, it is es­

sential to situate MITRE ATLAS within the current tri-polar landscape 

of defense frameworks. Governance standards such as the NIST AI RMF 

[105] and ISO/IEC 42,001 [65] provide the high-level “why” and “what” 

of organizational risk management, whereas application security stan­

dards such as the OWASP Top 10 for LLM Applications [118] offer the 

developer-focused “where” in terms of vulnerabilities. MITRE ATLAS 

fills the unique gap of “how” in this ecosystem, functioning not as a 

compliance checklist, but instead as a dynamic threat framework derived 

from MITRE ATT&CK.

While MITRE ATLAS presents a thorough taxonomy of adversarial 

tactics, it is critical to recognize its limitations as a “living knowledge 

base”. MITRE ATLAS depends primarily on real-world case studies as 

well as real red-teaming scenarios to populate its matrix. This empirical 

approach creates a codification lag, in which theoretical vulnerabilities 

reported in academic literature are not included in the framework until 

they’ve been operationalized in the wild. As a result, the framework may 

underestimate novel threats from emerging fields like neurosymbolic AI 

or multi-modal systems, where public events are rare.

Furthermore, the dependence upon voluntary incident reporting 

leads to reporting bias. High-visibility attacks, such as chatbot manip­

ulation, are widely reported; however silent failures, such as model 

extraction or data leakage, remain unreported because of intellectual 

property concerns or a lack of detection. As a result, application-level 

guidelines, such as the OWASP Top 10 for LLM Applications, are bene­

ficial since they emphasize deployment-specific concerns. While ATLAS 

concentrates on the adversary’s perspective TTPs, OWASP tackles the 

developer’s perspective by documenting significant application weak­

nesses such as insecure output handling and supply chain vulnerabilities. 

Thus, combining ATLAS and OWASP provides a more comprehensive 

knowledge of LLM and AI application security, with every framework 

providing separate and complimentary insights about threat behaviors 

and system-level vulnerabilities.

Overall, these findings highlight both the importance of MITRE 

ATLAS as a framework as well as the areas where the community 

can expand and operationalize it. Future investigations should attempt 

to address gaps in coverage, increase granularity and benchmarking, 

and integrate future attack classes (XAI, multi-agent, multi-modal, neu­

rosymbolic, continuous learning). Finally, additional research should 

include mappings to measurable defense metrics, as there are no stan­

dardized metrics or Key Performance Indicators (KPIs) to assess how 

well a defense addresses MITRE ATLAS techniques, transforming MITRE 

ATLAS into a comprehensive and empirically based resource for adver­

sarial machine learning research and secure AI engineering.

7.2 . Operationalizing ATLAS for enterprise defense and regulatory 

compliance

MITRE ATLAS is based on the industry-standard MITRE ATT&CK 

architecture, allowing enterprises to efficiently integrate AI threat intel­

ligence into their existing Security Operations Centers (SOCs). Security 

analysts who are already familiar with TTP-based approaches for tradi­

tional IT can utilize ATLAS to extend their threat detection and incident 

response playbooks to AI systems. Particularly, the defensive mecha­

nisms described in Section 6 serve as a foundation for these playbooks. 

Organizations can shift from reactive patching towards proactive hard­

ening of their ML pipelines by mapping known adversarial behaviors to 

particular mitigations(e.g., adversarial training, input sanitization). This 

is particularly vital in critical infrastructures such as energy or health­

care grids which employ predictive maintenance or diagnostic AI, since 

a harmful attack can result in physical disruptions.

Beyond operational security, ATLAS provides a systematic approach 

to regulatory compliance. Emerging frameworks, such as the EU AI Act 

[43], mandate manufacturers of “high-risk” AI systems to demonstrate 

robustness against adversarial threats and guarantee cybersecurity re­

silience. Similarly, standards such as ISO/IEC 42,001 [65] and the NIST 

AI Risk Management Framework (AI RMF) [105] place particular em­

phasis on the “measure” and “manage” functions for adversarial attacks. 

Our mapping operationalizes these criteria by identifying potential at­

tack vectors employing the ATLAS taxonomy. By applying the defenses 

outlined in Section 6, practitioners can systematically document their se­

curity posture during compliance evaluations. Consequently, rather than 

simply serving as a descriptive attack matrix, ATLAS is an important au­

diting tool for demonstrating due diligence in an increasingly regulated 

industry.

8 . Conclusions

In conclusion, this survey has offered an in-depth exploration of ad­

versarial attacks on AI systems through the lens of the MITRE ATLAS 

framework. In Section 3, we outlined the fundamental tactics, objec­

tives, and techniques that adversaries use, supporting our discussion 

with real-life case studies that demonstrate how these attacks can lead 

to significant financial losses, erode trust in AI, and damage reputations.

Thereafter, the MITRE ATLAS techniques were categorized accord­

ing to the literature into six broad areas —Evasion, Poisoning, Model 

Extraction, Inference, Model Inversion, and LLM Attacks. A total of 

63 papers were analyzed in detail providing their categorization, 

overview, theoretical advances over previous related works, threat mod­

els, datasets and experimental results. Our research demonstrated that 

these threats are not limited to a single domain, but rather span mul­

tiple domains and data modalities, extending from traditional CV and 

NLP to GNNs and RL systems. This review demonstrates that adversar­

ial methods are not isolated tactics, rather, they often interact, allowing 

attackers to exploit weaknesses at multiple stages of the AI lifecycle. In 

Section 6, we proposed a systematic mapping of defense mechanisms to 

ATLAS techniques so that the defensive aspect of this lifecycle could be 

addressed directly. This paper provides a core paradigm for researchers 

and practitioners who want to build robust AI systems by linking specific 

attacks to appropriate mitigations.

Last, we discussed open research avenues, highlighting the need for 

synergistic approaches that address the multi-stage and interdependent 

nature of adversarial attacks. We discussed the importance of exploring 

combined tactics, emerging vulnerabilities introduced by explainable AI 

and continuous learning frameworks, as well as promising directions 

in agentic workflows and neurosymbolic AI. Additionally, we identified 

structural limitations in the current MITRE ATLAS taxonomy and offered 

specific modifications that could enhance its granularity and coverage 

of novel and emerging attack vectors.
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