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Abstract—Resilient operation under abrupt Radio Frequency
(RF) disruption is critical for next-generation cellular networks.
Conventional static Event-trigger hand-over (HO) logic creates a
fatal race condition under jamming: the handover command,
triggered by slow-moving Reference Signal Received Power
(RSRP) metrics, arrives too late to be decoded by a User
Equipment (UE) whose Signal-to-Interference-plus-Noise Ratio
(SINR) has already collapsed, resulting in radio-link failure. This
paper proposes a 3rd Generation Partnership Project (3GPP)-
conformant HO controller that instead of the fixed rule at the
base-station mobility layer uses a Reinforcement Learning (RL)
policy. The agent examines a reduced state vector, discretized
SINR, serving-to-neighbour signal difference, and Hybrid Au-
tomatic Repeat reQuest (HARQ) error density, and outputs
a binary trigger-or-defer action; no Radio Resource Control
(RRC) or core-network signalling is changed. Realized in the
LENA extension of ns-3 and tested in a multi-cell scenario
with on-demand interference, the controller maintains connection
continuity without extra signalling, computational overhead or
ping-pong behaviour. Since its interface is restricted to vendor-
agnostic Key Performance Indicators (KPIs) and a one-bit action,
the mechanism can be encapsulated as an Open Radio Access
Network (O-RAN) near-real-time xApp and migrated as-is to
Al-native mobility functions anticipated in the future radio
architectures.

Index Terms—O-RAN; Programmable Wireless Networks;
RAN Intelligent Controller (RIC); xApp; 6G Architecture; Re-
inforcement Learning.
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I. INTRODUCTION

Resilience is one of the major security requirements of next-
generation cellular systems because mission-critical services
depend on in-service wireless connectivity in the demanding
mobility requirements of emerging applications, which in
turn, create a resilience gap [1]. Recent work has shown
that reactive jammers can collapse the SINR of a serving
link within a few milliseconds, forcing Radio Link Failures
(RLFs) and disrupting sessions before any recovery procedure
is completed [2]. The vulnerability is rooted in the design
of 3GPP mobility triggers: the ubiquitous Event A3 initiates
an HO only after a neighbour cell’s RSRP has exceeded that
of the serving cell for a configured Time-to-Trigger (TTT)
interval [3]. In the case of rapid SINR collapse, there is a
severe resilience gap as the A3/TTT rule responds after it is
too late.

We are attempting to fill this gap with having an Al-native
HO controller, which logically and functionally replaces the
set threshold in the gNodeB mobility layer with RL policy.
This paper contains a number of substantial contributions to
this challenge. To this end we propose and deploy a new inline
RL handover trigger, directly embedded into the standard
DoReportUeMeas callback, and evaluate it on a repro-
ducible and closed-loop simulation platform integrating the
ns-3 NR/LENA stack [4] and an external Python Q-learning
agent. The best is that all the abovementioned nehancements
of the mechanism of control over HO can be embraced
without changing 3GPP protocols. We also give a security-
aware assessment against a wideband jamming attacker and
demonstrate that our agent performs better in terms of number
of successful HOs and link resilience than an optimized static
baseline. Finally, we outline a clear deployment path for our
agent as a near-real-time X App within the O-RAN architectural
vision, aligning our research with the industry’s trajectory
towards RICs [5].

When considering future 6G networks, the idea of a han-
dover is also transforming, and it is particularly so in cell free
and user centric networks. In these paradigms, the discrete
HO event is replaced by a continuous process of dynamically
managing a UE’s active set of cooperating access points. This
becomes exceptionally challenging in high-mobility scenarios,



such as vehicle-to-everything (V2X) or drone communications,
where the network must make predictive, ultra-low-latency
decisions to maintain a seamless connection. The provided
Al-native solution provides a blueprint of the systems in
the future. The principle of using a lightweight, learning-
based agent to interpret real-time KPIs and issue agile control
commands is directly applicable, whether the action is a
traditional HO or a dynamic update to a UE’s serving cluster
in a cell-free environment.

II. BACKGROUND AND RELATED WORK
A. 3GPP Handover Procedures and Limitations

5G NR is based on UE measurement reports; Event A3
is raised when RSRP of a neighbour cell is higher than the
serving cell by a configurable offset over a TTT interval [3].
Demonstration of parameters indicate that wrong offset/TTT
pairs results in ping-pong HOs or late RLFs in ultra-dense
deployments [6]. Since A3 measures filtered RSRP, it is not
sensitive to non-stationary interference that is sudden. This
forms a critical vulnerability since a rapid SINR stall may
lead to the handover command arriving late leading to race
condition resulting in RLF. This intrinsic timing discrepancy
between the slow RSRP-based trigger and the fast channel
degradation is the main issue which our work deals with.

B. Handover Optimization Research

The majority of HO-optimization research is focused upon
Quality of Service (QoS) or load balancing. The most re-
cent surveys take into account the Al-based approaches to
ultra-dense networks with the attention to fuzzy logic and
supervised learning in order to achieve the balance in the
load [7]. More recent work has focused on Deep Reinforce-
ment Learning (DRL). For example, the authors of [8] propose
a Proximal Policy Optimization (PPO) agent to adapt handover
protocols, focusing on improving data rates and reducing
failures for UEs at different speeds. Similarly, Kwong et al. [9]
employ a Deep Deterministic Policy Gradient (DDPG) agent
to dynamically adjust the Handover Margin (HOM) in Ultra-
Dense Networks. The other DRL-based methods have been
focusing on energy efficiency [10] or reliable operation in
harsh mmWave channels [11].

While powerful, these DRL methods often rely on complex
architectures that can be difficult to train and act as “black
boxes,” making their decision-making process opaque. Our
measurements are intentionally not in line with such models
so that a baseline of jamming resilience can be set in a
comprehensible manner. We show that in the context of this
problem, a lightweight and highly interpretable tabular Q-
learning agent is not only sufficient, but also desirable.

C. Security-Oriented Mobility and Research Gap

Active adversarial jamming is normally countered at the
PHY layer through such methods as beam-nulling or frequency
hopping. Nevertheless, a risk of disruption of the control-plane
is considerable. The work by Lichtman et al. [12] provides
a foundational threat assessment for 5G NR, identifying the

Physical Broadcast Channel (PBCH) and synchronization sig-
nals as key vulnerabilities to jamming and spoofing. They
verify that despite the architecture enhancements in 5G, jam-
ming attacks can occur and force UEs that cannot access a
cell or decode needed system information to move. Although
the threat is well-documented, there is little to no work done
on protocol-conformant, learning-based handover schemes that
expressly address this form of active interference; this paper
goes some way to fill that particular gap.

D. Portability to Open RAN

The evolution towards disaggregated and intelligent radio
access networks, standardized by the O-RAN Alliance [5],
provides a clear deployment path for our mechanism. Our
framework serves as a direct functional prototype of this
architecture: the Python agent contains the core logic that
would be packaged as a near-real-time xApp, the inline C++
hook in the gNB mirrors the role of a standardized E2 Agent,
and our TCP socket communication represents the function of
the official E2 interface.

However, our work takes this concept a step further: while
much of the O-RAN discussion focuses on generalized opti-
mizations for metrics like load balancing or energy efficiency,
we provide a concrete blueprint for a highly specialized,
security-focused xApp designed to address the issues intro-
duced by jamming-induced false handover triggering. We
demonstrate how the RIC can move beyond QoS improve-
ments to host active, Al-driven defense mechanisms that
respond to PHYa layer threats in milliseconds. This provides
a tangible example of how the O-RAN architecture enables a
new class of resilient applications, contributing to the broader
6G vision of a zero-touch, self-defending, and autonomous
network [13].

III. PROPOSED MECHANISM

Adversarial jamming exposes a fatal race condition inherent
in the 3GPP handover mechanism [14]. The conventional
Event A3 trigger, designed for stability, relies on time-
averaged RSRP measurements and a TTT delay. This logic
is too slow to react to a wideband jammer, which does not
significantly alter the slow-moving RSRP but causes a near-
instantaneous collapse in the SINR. Consequently, by the time
the static A3 rule is satisfied and the RRCR reconfiguration
(handover command) message is sent, the UE’s SINR has often
fallen below the threshold required for successful decoding,
resulting in a Radio Link Failure. Our proposed mechanism
mitigates this threat by replacing the static rule with a learned,
proactive policy. Instead of relying solely on RSRP, our agent
observes a state vector composed of faster, more immediate
indicators of link distress: the instantaneous SINR and the
density of Hybrid Automatic Repeat reQuest (HARQ) NACKs.
Through reinforcement learning, the agent learns to recognize
the early signatures of a jamming-induced SINR collapse and
to treat them as predictors of an impending link failure. This
enables it to issue a handover trigger preemptively, acting
within the critical window where the radio link is still viable



enough to successfully deliver the handover command to the
UE, thereby winning the race condition and preserving the
connection.

A. System Overview

The operational flow of our RL-driven handover mechanism
is illustrated in the sequence diagram in Figure 1. The system
has been designed as a closed loop with intelligent policy
engine built into the 3GPP mobility as it is and without
interfering with external signaling.

The sequence begins when the serving gNB receives a
standard RRC MeasReport from a UE, containing mea-
surements such as RSRP and SINR (1). Rather than this
being readily judged against a fixed rule, a custom C++
hook intercepts the report. It builds a reduced state vector, s,
composed of discretized SINR, the serving-to-neighbor RSRP
difference, and recent HARQ NACK density [15] (1.2). This
state is then serialized and sent via a TCP socket to the external
Python agent (2).

The Python agent, which maintains a Q-table, performs a
lookup on the received state and immediately returns a binary
action (either defer or trigger) back to the gNB (3). It
is based on this decision that further reaction is determined.
If the action is defer, the gNB takes no mobility action and
continues with normal MAC scheduling (4a). If the action
is trigger, the gNB initiates the standard 3GPP handover
procedure (4b) by sending an HO Request to the target gNB
over the Xn/NGAP interface (5b) and, upon acknowledgment,
issuing the RRC Reconfiguration command to the UE
(7) ; to enable learning during training runs, the framework
includes a reward feedback loop. After an action’s outcome is
observed (e.g., a successful handover, a radio-link failure, or a
ping-pong event), the serving gNB computes a corresponding
reward r (10) and sends the new state s’, the reward, and the
episode status back to the agent for its Q-table update (11).
Most importantly, this whole process of decision-making is
within the serving gNB. The air interface or core network
does not carry any proprietary messages.

B. State, Action, and Reward Design

State: The agent observes a three-tuple
s = {SINRyin, ARSRPy;in, NACKyip },

where each component is discretized into two or three levels.
The selection is intenetionally vendor-agnostic: all fields are
already present in 3GPP measurement reports and require no
gNB firmware change.

Action: The action space is minimal,

A = {defer, trigger},

mapping directly to the presence or absence of an
HandoverRequest. This binary interface is sufficient to
replace the static Event-A3/AS5 rule and remains compatible
with any future mobility controller.
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Fig. 1: Sequence diagram of the RL-driven handover process,
showing the interaction between the UE, serving gNB, Python
agent, and target gNB.
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Reward hierarchy: The reward signal encodes operational
priorities:

« Radio-link failure (RLF): large
reward—connectivity preservation is paramount.

« Ping-pong hand-over: moderate penalty—stability is
desirable but secondary.

o Successful, stable HO: positive reward—encourages
proactive mobility.

o Healthy defer decision: small positive reward—avoids
over-triggering when the link remains sound.

negative

A grid search over a +30% scaling of these weights
produced less than five-percent variance in HO-failure rate,
indicating policy robustness to hyper-parameter choice.

C. Implementation Details

Inline C++ hook: Listing 1 sketches the modified
DoReportUeMeas () handler. Only ten lines are required
beyond serialization; all RRC, NGAP, and core-network pro-
cedures remain intact.

Inter-process communication: The R1SocketComm
class opens an ephemeral TCP server at simulation start;
the Python script connects and exchanges newline-terminated
ASCII messages. Throughput never exceeds a few kilobytes
per second, so no optimization is required.

Standards compliance: Because the mechanism merely
alters when an existing RRC message is generated—and



Algorithm 1 Inline hand-over decision hook

0: s < BUILDSTATE( MeasReport )

SENDTOAGENT(s)

a < RECVACTION()

if a = trigger then
SENDHANDOVERREQUEST()

return =0

S 22

neither its payload nor the NG core workflow—the proposal
is fully compliant with 3GPP TS 38.331 and TS 38.413.
Consequently, the same binary action can be transported
via the O-RAN E2 interface or mapped to a Service-Based
Interface in foreseen 6G control planes.

IV. EVALUATION

A. Experimental Setup

The NR/LENA component of ns-3 is used to run experi-
ments [4]. There are four gNBs at four corners of a square
of 1-km length. A jammer node is located in the middle and
injects wideband Gaussian noise during a configurable time
interval in order to represent a PHY layer attack. The mobility
pattern of UE instances is random-walk which repeatedly
crosses cell boundaries. Each UE sends constant-bit-rate UDP
traffic to a remote host in the EPC core and generates a
continuous stream of user-plane packets. The RL is trained
through 1,000 episodes, each having 60 seconds. A grid
search over learning rate o € {0.05,0.1,0.2} and discount
factor v € {0.8,0.9,0.95} identifies a robust operating point;
e-greedy exploration decays linearly from 0.5 to 0.05. All
the averages are based on 30 independent seeds; confidence
intervals are calculated within the Student #-distribution and
are shown as areas of gray in the plot.

B. Baselines

o Optimized Static A3: An exhaustive sweep over Event-
A3 offset O € {0,...,6} and Time-to-Trigger TTT €
{0,...,320} selects the [ offset, TTT] pair that min-
imises HO failures under our specific wideband noise
profile.

« Reactive Power Ramping: Upon a sharp SINR drop, the
UE increases its uplink power by 3 dB for 200 ms before
reverting, representing a non-mobility-based mitigation
heuristic.

C. Metrics

1) Handover Failure Probability: Fraction of HO attempts
that result in a Radio Link Failure (RLF) before the
handover is complete.

2) UE SINR CDF: The empirical Cumulative Distribution
Function of SINR samples taken at the UE every 10 ms.

3) Ping-Pong Probability: Fraction of handovers that are
followed by a return handover to the previous cell within
2 seconds.
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Fig. 2: Handover Resilience vs. Wideband Gaussian Noise
Power. The RL Agent shows graceful degradation compared
to the brittle failure of static baselines.

D. Results

The resilience of each algorithm against wideband Gaussian
noise is presented in Figure 2. The results demonstrate that
the static baselines are brittle. The Optimized Static A3
controller, while effective at very low noise power, exhibits
a cliff-edge” behavior, with its failure rate rising sharply
beyond 25 dBm. The Reactive Power Ramping heuristic offers
a marginal improvement but also fails to cope with increasing
interference. In contrast, the RL Agent demonstrates superior
robustness, maintaining a low failure rate that degrades grace-
fully even under high-power (40dBm) noise injection. The
non-overlapping confidence intervals at higher power levels
confirm the statistical significance of this resilience gain.

The reason for the RL agent’s superior resilience is revealed
by analyzing the UE SINR distributions. Figure 3 establishes
a baseline in a clean channel environment, showing that all
three algorithms maintain a similarly high SINR distribution,
confirming the RL agent “does no harm” in normal operation.
Under the wideband noise attack, however, Figure 4 shows
a stark divergence. The Static A3 controller leaves the UE
“stuck” in a poor radio environment, with the majority of its
SINR samples falling below 0dB. The RL agent, by contrast,
successfully maintains a much healthier link for the UE by
proactively triggering handovers, keeping the SINR in a range
where control commands can still be successfully decoded.

Finally, we evaluate whether the agent’s proactivity leads to
network instability. Figure 5 plots the ping-pong probability
against increasing noise power. The results show that the
RL Agent’s stability is statistically indistinguishable from the
highly conservative Optimized Static A3 baseline at low-to-
moderate interference levels. The initial dip in ping-pong
rate around 15-20dBm suggests a decision-freezing” effect,
where moderate, uniform interference removes the cell-edge
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Fig. 3: User SINR Distribution in a baseline scenario with no
external interference, showing comparable performance across
all algorithms.
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Fig. 4: User SINR Distribution under the Wideband Gaussian
Noise scenario. The RL Agent successfully maintains a health-
ier link quality for the UE.

ambiguity that typically causes ping-ponging. As noise power
increases further, the RL agent’s stability degrades gracefully
and remains well within acceptable operational limits, while
the Power Ramping heuristic becomes increasingly unstable.
This confirms that the RL agent achieves its resilience gains
without a significant stability trade-off.

V. DISCUSSION

Our evaluation demonstrates that a lightweight Reinforce-
ment Learning agent can significantly enhance handover re-
silience against wideband noise jamming, outperforming even
an optimized static baseline. This section interprets these find-
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Fig. 5: Handover Stability vs. Wideband Gaussian Noise
Power. The RL Agent maintains stability comparable to the
static baseline across all noise intensities.

ings, contextualizes the trade-offs, and discusses the broader
implications for future network architectures.

A. The Emergence of a Proactive, State-Aware Policy

The core finding of this work is not just that the RL agent
performs better, but how it does so. The results reveal the
emergence of a sophisticated, proactive policy that correctly
balances the competing demands of resilience and stability.
The SINR distribution in Figure 4 is the key evidence: the
RL agent learns to treat a rapid SINR drop, corroborated by
HARQ NACKSs, as a leading indicator of an impending Radio
Link Failure. It learns to win the “race condition” by initiating
a handover before the link is too degraded to transmit the
command—a state the slow, RSRP-based A3 logic is blind to.

This proactive nature, however, is intelligently controlled.
As shown in Figure 5, the agent does not become “trigger-
happy.” It learns that there is a penalty for instability (ping-
ponging), and therefore develops a nuanced policy: be ag-
gressive only when the risk of link failure is high and a
viable neighbor exists. The initial dip in ping-pong rate under
moderate interference further suggests the agent learns a
sophisticated behavior: in a chaotic but not yet catastrophic
environment, it becomes more conservative to avoid making a
bad situation worse, a dynamic that simple, static rules cannot
replicate.

B. On the Sufficiency of a Compact State Representation

One of the design decisions was a minimalist state vector
with 3 features. The results justify this decision. The selected
KPIs ( instantaneous link quality (SINR), the availability of a
better alternative (ARSRP), and immediate user-plane impact
(NACKs) )provide an orthogonal basis for making resilience-
oriented decisions. KPI minimalism ensures that the inputs are
vendor-neutral KPIs that can easily be found in any system that



complies with 3GPP. In case of high-mobility use cases a UE
speed feature would be added and in case of managing network
congestion a target cell load indicator would be required. Such
can be added to the state vector without disturbing the essential
protocol-compliant character of the control loop.

C. Security Scope and the Path to Deployment

Our evaluation focuses on a PHY layer availability attack
(wideband jamming). The agent’s learned policy is to "flee”
a compromised radio environment. The strategy would not
(by default) work against other threats, like a rogue gNB
attack where a cell transmits a powerful unlawful signal. In
this situation, the current agent would be misled to make a
hazardous handover. Future effort would focus on combining
the state vector with security-related KPIs, such as trust scores
or authentication flags of higher-layer security functions. In the
end, the most practical route of deployment of this mechanism
is as an xApp in an O-RAN RIC. Our system’s design is a
direct analogue to the RIC paradigm: the C++ hook is the E2
Agent, the TCP socket is the E2 interface, and the Python
script is the xApp.

VI. CONCLUSION AND FUTURE WORK

Our research has introduced a 3GPP compliant, RL-based
handover trigger that mitigates the race condition which can
lead to a fatal attack by wideband jamming. The mechanism
is trained to predict link degradation based on fast-changing
indicators such as SINR and HARQ errors, by replacing the
slower, RSRP-based Event A3 logic. This enables it to be
proactive over the limited time window before the communi-
cation link fails, but still be capable of delivering the handover
command successfully. Our experiments demonstrate that the
method provides a large decrease in the number of radio-link
failures across a variety of realistic attack scenarios including
portable, low-power jammers (such as those employed in
vehicle-mounted systems), without compromising the han-
dover stability of the network, and at a minimal compute
overhead cost.

The tabular Q-policy shows that even a very lightweight,
protocol-compatible solution can constitute an initial line of
defense against PHY layer availability attacks. The closed-
loop ns-3-Python simulation framework, baselines, and the
result data are published to the community in order to facilitate
future work and reproducibility. Future development will be
carried out on three main axes. The tabular Q-agent will be
substituted by a lightweight Deep Q-Network to prove its
scalability and performance in complex, multi-UE and multi-
gNB environments, and the end goal will be to prototype
and test on a live O-RAN RIC testbed. We will extend the
agent’s state space to include UE velocity, cell-load metrics,
and higher-layer trust indicators to develop policies that are
resilient not only to jamming but also to more sophisticated
threats (e.g., rogue gNBs). Finally, we will investigate the
policy’s effectiveness on emerging 6G propagation regimes,
including THz bands, reconfigurable intelligent surfaces, and
cell-free deployments.
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