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Abstract—Resilient operation under abrupt Radio Frequency
(RF) disruption is critical for next-generation cellular networks.
Conventional static Event-trigger hand-over (HO) logic creates a
fatal race condition under jamming: the handover command,
triggered by slow-moving Reference Signal Received Power
(RSRP) metrics, arrives too late to be decoded by a User
Equipment (UE) whose Signal-to-Interference-plus-Noise Ratio
(SINR) has already collapsed, resulting in radio-link failure. This
paper proposes a 3rd Generation Partnership Project (3GPP)-
conformant HO controller that instead of the fixed rule at the
base-station mobility layer uses a Reinforcement Learning (RL)
policy. The agent examines a reduced state vector, discretized
SINR, serving-to-neighbour signal difference, and Hybrid Au-
tomatic Repeat reQuest (HARQ) error density, and outputs
a binary trigger-or-defer action; no Radio Resource Control
(RRC) or core-network signalling is changed. Realized in the
LENA extension of ns-3 and tested in a multi-cell scenario
with on-demand interference, the controller maintains connection
continuity without extra signalling, computational overhead or
ping-pong behaviour. Since its interface is restricted to vendor-
agnostic Key Performance Indicators (KPIs) and a one-bit action,
the mechanism can be encapsulated as an Open Radio Access
Network (O-RAN) near-real-time xApp and migrated as-is to
AI-native mobility functions anticipated in the future radio
architectures.

Index Terms—O-RAN; Programmable Wireless Networks;
RAN Intelligent Controller (RIC); xApp; 6G Architecture; Re-
inforcement Learning.

George Amponis is with K3Y Ltd, Studentski District, Vitosha Quarter, Bl.
9, 1700 Sofia, Bulgaria, and the Dept. of Informatics, Democritus University
of Thrace, Kavala, Greece (e-mail: gamponis@{k3y.bg, cs.duth.gr}). Pana-
giotis Radoglou-Grammatikis is with K3Y Ltd, Studentski District, Vitosha
Quarter, Bl. 9, 1700 Sofia, Bulgaria, and the Dept. of Electrical and Computer
Engineering, University of Western Macedonia, Campus ZEP Kozani, Kozani,
50100, Greece (e-mail: pradoglou@{k3y.bg, uowm.gr}). Antonios Sarigian-
nidis is with K3Y Ltd, Studentski District, Vitosha Quarter, Bl. 9, 1700
Sofia, Bulgaria (e-mail: asarigia@k3y.bg). Georgios Kakamoukas is with K3Y
Ltd, Studentski District, Vitosha Quarter, Bl. 9, 1700 Sofia, Bulgaria (e-mail:
gkakamoukas@k3y.bg). Thomas Boufikos is with K3Y Ltd, Studentski Dis-
trict, Vitosha Quarter, Bl. 9, 1700 Sofia, Bulgaria (e-mail: tboufikos@k3y.bg).
Thomas Lagkas is with the Dept. of Informatics, Democritus University of
Thrace, Kavala Campus, Greece (e-mail: tlagkas@cs.duth.gr). Vasileios Ar-
gyriou is with the Dept. of Networks and Digital Media, Kingston University,
London, UK (e-mail: vasileios.argyriou@kingston.ac.uk). Theofano Kollatou
is with the Dept. of Electrical and Computer Engineering, University of
Western Macedonia, Campus ZEP Kozani, Kozani, 50100, Greece (e-mail:
tkollatou@uowm.gr). Panagiotis Sarigiannidis is with the Dept. of Electrical
and Computer Engineering, University of Western Macedonia, Campus ZEP
Kozani, Kozani, 50100, Greece (e-mail: psarigiannidis@uowm.gr).

I. INTRODUCTION

Resilience is one of the major security requirements of next-

generation cellular systems because mission-critical services

depend on in-service wireless connectivity in the demanding

mobility requirements of emerging applications, which in

turn, create a resilience gap [1]. Recent work has shown

that reactive jammers can collapse the SINR of a serving

link within a few milliseconds, forcing Radio Link Failures

(RLFs) and disrupting sessions before any recovery procedure

is completed [2]. The vulnerability is rooted in the design

of 3GPP mobility triggers: the ubiquitous Event A3 initiates

an HO only after a neighbour cell’s RSRP has exceeded that

of the serving cell for a configured Time-to-Trigger (TTT)

interval [3]. In the case of rapid SINR collapse, there is a

severe resilience gap as the A3/TTT rule responds after it is

too late.

We are attempting to fill this gap with having an AI-native

HO controller, which logically and functionally replaces the

set threshold in the gNodeB mobility layer with RL policy.

This paper contains a number of substantial contributions to

this challenge. To this end we propose and deploy a new inline

RL handover trigger, directly embedded into the standard

DoReportUeMeas callback, and evaluate it on a repro-

ducible and closed-loop simulation platform integrating the

ns-3 NR/LENA stack [4] and an external Python Q-learning

agent. The best is that all the abovementioned nehancements

of the mechanism of control over HO can be embraced

without changing 3GPP protocols. We also give a security-

aware assessment against a wideband jamming attacker and

demonstrate that our agent performs better in terms of number

of successful HOs and link resilience than an optimized static

baseline. Finally, we outline a clear deployment path for our

agent as a near-real-time xApp within the O-RAN architectural

vision, aligning our research with the industry’s trajectory

towards RICs [5].

When considering future 6G networks, the idea of a han-

dover is also transforming, and it is particularly so in cell free

and user centric networks. In these paradigms, the discrete

HO event is replaced by a continuous process of dynamically

managing a UE’s active set of cooperating access points. This

becomes exceptionally challenging in high-mobility scenarios,



such as vehicle-to-everything (V2X) or drone communications,

where the network must make predictive, ultra-low-latency

decisions to maintain a seamless connection. The provided

AI-native solution provides a blueprint of the systems in

the future. The principle of using a lightweight, learning-

based agent to interpret real-time KPIs and issue agile control

commands is directly applicable, whether the action is a

traditional HO or a dynamic update to a UE’s serving cluster

in a cell-free environment.

II. BACKGROUND AND RELATED WORK

A. 3GPP Handover Procedures and Limitations

5G NR is based on UE measurement reports; Event A3

is raised when RSRP of a neighbour cell is higher than the

serving cell by a configurable offset over a TTT interval [3].

Demonstration of parameters indicate that wrong offset/TTT

pairs results in ping-pong HOs or late RLFs in ultra-dense

deployments [6]. Since A3 measures filtered RSRP, it is not

sensitive to non-stationary interference that is sudden. This

forms a critical vulnerability since a rapid SINR stall may

lead to the handover command arriving late leading to race

condition resulting in RLF. This intrinsic timing discrepancy

between the slow RSRP-based trigger and the fast channel

degradation is the main issue which our work deals with.

B. Handover Optimization Research

The majority of HO-optimization research is focused upon

Quality of Service (QoS) or load balancing. The most re-

cent surveys take into account the AI-based approaches to

ultra-dense networks with the attention to fuzzy logic and

supervised learning in order to achieve the balance in the

load [7]. More recent work has focused on Deep Reinforce-

ment Learning (DRL). For example, the authors of [8] propose

a Proximal Policy Optimization (PPO) agent to adapt handover

protocols, focusing on improving data rates and reducing

failures for UEs at different speeds. Similarly, Kwong et al. [9]

employ a Deep Deterministic Policy Gradient (DDPG) agent

to dynamically adjust the Handover Margin (HOM) in Ultra-

Dense Networks. The other DRL-based methods have been

focusing on energy efficiency [10] or reliable operation in

harsh mmWave channels [11].

While powerful, these DRL methods often rely on complex

architectures that can be difficult to train and act as ”black

boxes,” making their decision-making process opaque. Our

measurements are intentionally not in line with such models

so that a baseline of jamming resilience can be set in a

comprehensible manner. We show that in the context of this

problem, a lightweight and highly interpretable tabular Q-

learning agent is not only sufficient, but also desirable.

C. Security-Oriented Mobility and Research Gap

Active adversarial jamming is normally countered at the

PHY layer through such methods as beam-nulling or frequency

hopping. Nevertheless, a risk of disruption of the control-plane

is considerable. The work by Lichtman et al. [12] provides

a foundational threat assessment for 5G NR, identifying the

Physical Broadcast Channel (PBCH) and synchronization sig-

nals as key vulnerabilities to jamming and spoofing. They

verify that despite the architecture enhancements in 5G, jam-

ming attacks can occur and force UEs that cannot access a

cell or decode needed system information to move. Although

the threat is well-documented, there is little to no work done

on protocol-conformant, learning-based handover schemes that

expressly address this form of active interference; this paper

goes some way to fill that particular gap.

D. Portability to Open RAN

The evolution towards disaggregated and intelligent radio

access networks, standardized by the O-RAN Alliance [5],

provides a clear deployment path for our mechanism. Our

framework serves as a direct functional prototype of this

architecture: the Python agent contains the core logic that

would be packaged as a near-real-time xApp, the inline C++

hook in the gNB mirrors the role of a standardized E2 Agent,

and our TCP socket communication represents the function of

the official E2 interface.

However, our work takes this concept a step further: while

much of the O-RAN discussion focuses on generalized opti-

mizations for metrics like load balancing or energy efficiency,

we provide a concrete blueprint for a highly specialized,

security-focused xApp designed to address the issues intro-

duced by jamming-induced false handover triggering. We

demonstrate how the RIC can move beyond QoS improve-

ments to host active, AI-driven defense mechanisms that

respond to PHYa layer threats in milliseconds. This provides

a tangible example of how the O-RAN architecture enables a

new class of resilient applications, contributing to the broader

6G vision of a zero-touch, self-defending, and autonomous

network [13].

III. PROPOSED MECHANISM

Adversarial jamming exposes a fatal race condition inherent

in the 3GPP handover mechanism [14]. The conventional

Event A3 trigger, designed for stability, relies on time-

averaged RSRP measurements and a TTT delay. This logic

is too slow to react to a wideband jammer, which does not

significantly alter the slow-moving RSRP but causes a near-

instantaneous collapse in the SINR. Consequently, by the time

the static A3 rule is satisfied and the RRCR reconfiguration

(handover command) message is sent, the UE’s SINR has often

fallen below the threshold required for successful decoding,

resulting in a Radio Link Failure. Our proposed mechanism

mitigates this threat by replacing the static rule with a learned,

proactive policy. Instead of relying solely on RSRP, our agent

observes a state vector composed of faster, more immediate

indicators of link distress: the instantaneous SINR and the

density of Hybrid Automatic Repeat reQuest (HARQ) NACKs.

Through reinforcement learning, the agent learns to recognize

the early signatures of a jamming-induced SINR collapse and

to treat them as predictors of an impending link failure. This

enables it to issue a handover trigger preemptively, acting

within the critical window where the radio link is still viable



enough to successfully deliver the handover command to the

UE, thereby winning the race condition and preserving the

connection.

A. System Overview

The operational flow of our RL-driven handover mechanism

is illustrated in the sequence diagram in Figure 1. The system

has been designed as a closed loop with intelligent policy

engine built into the 3GPP mobility as it is and without

interfering with external signaling.

The sequence begins when the serving gNB receives a

standard RRC MeasReport from a UE, containing mea-

surements such as RSRP and SINR (1). Rather than this

being readily judged against a fixed rule, a custom C++

hook intercepts the report. It builds a reduced state vector, s,

composed of discretized SINR, the serving-to-neighbor RSRP

difference, and recent HARQ NACK density [15] (1.2). This

state is then serialized and sent via a TCP socket to the external

Python agent (2).

The Python agent, which maintains a Q-table, performs a

lookup on the received state and immediately returns a binary

action (either defer or trigger) back to the gNB (3). It

is based on this decision that further reaction is determined.

If the action is defer, the gNB takes no mobility action and

continues with normal MAC scheduling (4a). If the action

is trigger, the gNB initiates the standard 3GPP handover

procedure (4b) by sending an HO Request to the target gNB

over the Xn/NGAP interface (5b) and, upon acknowledgment,

issuing the RRC Reconfiguration command to the UE

(7) ; to enable learning during training runs, the framework

includes a reward feedback loop. After an action’s outcome is

observed (e.g., a successful handover, a radio-link failure, or a

ping-pong event), the serving gNB computes a corresponding

reward r (10) and sends the new state s′, the reward, and the

episode status back to the agent for its Q-table update (11).

Most importantly, this whole process of decision-making is

within the serving gNB. The air interface or core network

does not carry any proprietary messages.

B. State, Action, and Reward Design

State: The agent observes a three-tuple

s =
{

SINRbin, ΔRSRPbin, NACKbin

}
,

where each component is discretized into two or three levels.

The selection is intenetionally vendor-agnostic: all fields are

already present in 3GPP measurement reports and require no

gNB firmware change.

Action: The action space is minimal,

A = {defer, trigger},
mapping directly to the presence or absence of an

HandoverRequest. This binary interface is sufficient to

replace the static Event-A3/A5 rule and remains compatible

with any future mobility controller.

UE

UE

Serving gNB
(RRC + RL Trigger)

Serving gNB
(RRC + RL Trigger)

Python Agent
(Q-table)

Python Agent
(Q-table)

Target gNB
(RRC)

Target gNB
(RRC)

M easurem ent Processing

(1) {RRC} MeasReport
SINR, RSRP\_s, {RSRP\_n}, HARQ\_NACK

(1.1) Exponential filter
(3GPP Clause 5.5.4)

(1.2) BuildState()
s = {SINR_bin, ΔRSRP_bin, NACK_bin}

RL Decision

(2) TCP send #s#

(2.1) Q_lookup(s)

(3 ) action  ∈  {de fe r, trigger}

a l t [a c tio n  =  d e fe r]

(4a) Normal MAC scheduling

(5a) DL/UL data continues

[a c tio n  =  tr ig g e r]
(4b) TriggerHandover()

(5b) {Xn/NGAP} HO#Request

(6) HO#Request#Ack

(7) {RRC} Reconfiguration (HO cmd)

(8) {RRC} ReconfigurationComplete

(9) {NGAP} HO#Notify

R ew ard Feedback (tra in ing runs)

(10) ComputeReward
r = f(RLF, ping-pong, success)

(11) TCP send #s', r, done#

Fig. 1: Sequence diagram of the RL-driven handover process,

showing the interaction between the UE, serving gNB, Python

agent, and target gNB.

Reward hierarchy: The reward signal encodes operational

priorities:

• Radio-link failure (RLF): large negative

reward—connectivity preservation is paramount.

• Ping-pong hand-over: moderate penalty—stability is

desirable but secondary.

• Successful, stable HO: positive reward—encourages

proactive mobility.

• Healthy defer decision: small positive reward—avoids

over-triggering when the link remains sound.

A grid search over a ±30% scaling of these weights

produced less than five-percent variance in HO-failure rate,

indicating policy robustness to hyper-parameter choice.

C. Implementation Details

Inline C++ hook: Listing 1 sketches the modified

DoReportUeMeas() handler. Only ten lines are required

beyond serialization; all RRC, NGAP, and core-network pro-

cedures remain intact.

Inter-process communication: The RlSocketComm
class opens an ephemeral TCP server at simulation start;

the Python script connects and exchanges newline-terminated

ASCII messages. Throughput never exceeds a few kilobytes

per second, so no optimization is required.

Standards compliance: Because the mechanism merely

alters when an existing RRC message is generated—and



Algorithm 1 Inline hand-over decision hook

0: s ← BUILDSTATE(MeasReport )
0: SENDTOAGENT(s)
0: a ← RECVACTION()
0: if a = trigger then
0: SENDHANDOVERREQUEST()

0: return =0

neither its payload nor the NG core workflow—the proposal

is fully compliant with 3GPP TS 38.331 and TS 38.413.

Consequently, the same binary action can be transported

via the O-RAN E2 interface or mapped to a Service-Based

Interface in foreseen 6G control planes.

IV. EVALUATION

A. Experimental Setup

The NR/LENA component of ns-3 is used to run experi-

ments [4]. There are four gNBs at four corners of a square

of 1-km length. A jammer node is located in the middle and

injects wideband Gaussian noise during a configurable time

interval in order to represent a PHY layer attack. The mobility

pattern of UE instances is random-walk which repeatedly

crosses cell boundaries. Each UE sends constant-bit-rate UDP

traffic to a remote host in the EPC core and generates a

continuous stream of user-plane packets. The RL is trained

through 1,000 episodes, each having 60 seconds. A grid

search over learning rate α ∈ {0.05, 0.1, 0.2} and discount

factor γ ∈ {0.8, 0.9, 0.95} identifies a robust operating point;

ε-greedy exploration decays linearly from 0.5 to 0.05. All

the averages are based on 30 independent seeds; confidence

intervals are calculated within the Student t-distribution and

are shown as areas of gray in the plot.

B. Baselines

• Optimized Static A3: An exhaustive sweep over Event-

A3 offset O ∈ {0, . . . , 6} and Time-to-Trigger TTT ∈
{0, . . . , 320} selects the [ offset, TTT] pair that min-

imises HO failures under our specific wideband noise

profile.

• Reactive Power Ramping: Upon a sharp SINR drop, the

UE increases its uplink power by 3 dB for 200 ms before

reverting, representing a non-mobility-based mitigation

heuristic.

C. Metrics

1) Handover Failure Probability: Fraction of HO attempts

that result in a Radio Link Failure (RLF) before the

handover is complete.

2) UE SINR CDF: The empirical Cumulative Distribution

Function of SINR samples taken at the UE every 10 ms.

3) Ping-Pong Probability: Fraction of handovers that are

followed by a return handover to the previous cell within

2 seconds.

Fig. 2: Handover Resilience vs. Wideband Gaussian Noise

Power. The RL Agent shows graceful degradation compared

to the brittle failure of static baselines.

D. Results

The resilience of each algorithm against wideband Gaussian

noise is presented in Figure 2. The results demonstrate that

the static baselines are brittle. The Optimized Static A3

controller, while effective at very low noise power, exhibits

a ”cliff-edge” behavior, with its failure rate rising sharply

beyond 25 dBm. The Reactive Power Ramping heuristic offers

a marginal improvement but also fails to cope with increasing

interference. In contrast, the RL Agent demonstrates superior

robustness, maintaining a low failure rate that degrades grace-

fully even under high-power (40 dBm) noise injection. The

non-overlapping confidence intervals at higher power levels

confirm the statistical significance of this resilience gain.

The reason for the RL agent’s superior resilience is revealed

by analyzing the UE SINR distributions. Figure 3 establishes

a baseline in a clean channel environment, showing that all

three algorithms maintain a similarly high SINR distribution,

confirming the RL agent ”does no harm” in normal operation.

Under the wideband noise attack, however, Figure 4 shows

a stark divergence. The Static A3 controller leaves the UE

”stuck” in a poor radio environment, with the majority of its

SINR samples falling below 0 dB. The RL agent, by contrast,

successfully maintains a much healthier link for the UE by

proactively triggering handovers, keeping the SINR in a range

where control commands can still be successfully decoded.

Finally, we evaluate whether the agent’s proactivity leads to

network instability. Figure 5 plots the ping-pong probability

against increasing noise power. The results show that the

RL Agent’s stability is statistically indistinguishable from the

highly conservative Optimized Static A3 baseline at low-to-

moderate interference levels. The initial dip in ping-pong

rate around 15-20 dBm suggests a ”decision-freezing” effect,

where moderate, uniform interference removes the cell-edge



Fig. 3: User SINR Distribution in a baseline scenario with no

external interference, showing comparable performance across

all algorithms.

Fig. 4: User SINR Distribution under the Wideband Gaussian

Noise scenario. The RL Agent successfully maintains a health-

ier link quality for the UE.

ambiguity that typically causes ping-ponging. As noise power

increases further, the RL agent’s stability degrades gracefully

and remains well within acceptable operational limits, while

the Power Ramping heuristic becomes increasingly unstable.

This confirms that the RL agent achieves its resilience gains

without a significant stability trade-off.

V. DISCUSSION

Our evaluation demonstrates that a lightweight Reinforce-

ment Learning agent can significantly enhance handover re-

silience against wideband noise jamming, outperforming even

an optimized static baseline. This section interprets these find-

Fig. 5: Handover Stability vs. Wideband Gaussian Noise

Power. The RL Agent maintains stability comparable to the

static baseline across all noise intensities.

ings, contextualizes the trade-offs, and discusses the broader

implications for future network architectures.

A. The Emergence of a Proactive, State-Aware Policy

The core finding of this work is not just that the RL agent

performs better, but how it does so. The results reveal the

emergence of a sophisticated, proactive policy that correctly

balances the competing demands of resilience and stability.

The SINR distribution in Figure 4 is the key evidence: the

RL agent learns to treat a rapid SINR drop, corroborated by

HARQ NACKs, as a leading indicator of an impending Radio

Link Failure. It learns to win the ”race condition” by initiating

a handover before the link is too degraded to transmit the

command—a state the slow, RSRP-based A3 logic is blind to.

This proactive nature, however, is intelligently controlled.

As shown in Figure 5, the agent does not become ”trigger-

happy.” It learns that there is a penalty for instability (ping-

ponging), and therefore develops a nuanced policy: be ag-

gressive only when the risk of link failure is high and a

viable neighbor exists. The initial dip in ping-pong rate under

moderate interference further suggests the agent learns a

sophisticated behavior: in a chaotic but not yet catastrophic

environment, it becomes more conservative to avoid making a

bad situation worse, a dynamic that simple, static rules cannot

replicate.

B. On the Sufficiency of a Compact State Representation

One of the design decisions was a minimalist state vector

with 3 features. The results justify this decision. The selected

KPIs ( instantaneous link quality (SINR), the availability of a

better alternative (ΔRSRP), and immediate user-plane impact

(NACKs) )provide an orthogonal basis for making resilience-

oriented decisions. KPI minimalism ensures that the inputs are

vendor-neutral KPIs that can easily be found in any system that



complies with 3GPP. In case of high-mobility use cases a UE

speed feature would be added and in case of managing network

congestion a target cell load indicator would be required. Such

can be added to the state vector without disturbing the essential

protocol-compliant character of the control loop.

C. Security Scope and the Path to Deployment

Our evaluation focuses on a PHY layer availability attack

(wideband jamming). The agent’s learned policy is to ”flee”

a compromised radio environment. The strategy would not

(by default) work against other threats, like a rogue gNB

attack where a cell transmits a powerful unlawful signal. In

this situation, the current agent would be misled to make a

hazardous handover. Future effort would focus on combining

the state vector with security-related KPIs, such as trust scores

or authentication flags of higher-layer security functions. In the

end, the most practical route of deployment of this mechanism

is as an xApp in an O-RAN RIC. Our system’s design is a

direct analogue to the RIC paradigm: the C++ hook is the E2

Agent, the TCP socket is the E2 interface, and the Python

script is the xApp.

VI. CONCLUSION AND FUTURE WORK

Our research has introduced a 3GPP compliant, RL-based

handover trigger that mitigates the race condition which can

lead to a fatal attack by wideband jamming. The mechanism

is trained to predict link degradation based on fast-changing

indicators such as SINR and HARQ errors, by replacing the

slower, RSRP-based Event A3 logic. This enables it to be

proactive over the limited time window before the communi-

cation link fails, but still be capable of delivering the handover

command successfully. Our experiments demonstrate that the

method provides a large decrease in the number of radio-link

failures across a variety of realistic attack scenarios including

portable, low-power jammers (such as those employed in

vehicle-mounted systems), without compromising the han-

dover stability of the network, and at a minimal compute

overhead cost.

The tabular Q-policy shows that even a very lightweight,

protocol-compatible solution can constitute an initial line of

defense against PHY layer availability attacks. The closed-

loop ns-3-Python simulation framework, baselines, and the

result data are published to the community in order to facilitate

future work and reproducibility. Future development will be

carried out on three main axes. The tabular Q-agent will be

substituted by a lightweight Deep Q-Network to prove its

scalability and performance in complex, multi-UE and multi-

gNB environments, and the end goal will be to prototype

and test on a live O-RAN RIC testbed. We will extend the

agent’s state space to include UE velocity, cell-load metrics,

and higher-layer trust indicators to develop policies that are

resilient not only to jamming but also to more sophisticated

threats (e.g., rogue gNBs). Finally, we will investigate the

policy’s effectiveness on emerging 6G propagation regimes,

including THz bands, reconfigurable intelligent surfaces, and

cell-free deployments.
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